

How to go to your page

In this eBook, each chapter has its own page numbering scheme, consisting of a chapter
number and a page number, separated by a hyphen.

For example, to go to page 5 of Chapter 1, type 1-5 in the "page #" box at the top of the
screen and click "Go." To go to page 5 of Chapter 2, type 2-5… and so forth.

The
Computer Engineering

Handbook
Second Edition

Edited by

Vojin G. Oklobdzija

Digital Design and Fabrication

Digital Systems and Applications

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page i 19.10.2007 9:05pm Compositor Name: BMani

Computer Engineering Series

Series Editor: Vojin G. Oklobdzija

Coding and Signal Processing for
Magnetic Recording Systems

Edited by Bane Vasic and Erozan M. Kurtas

The Computer Engineering Handbook
Second Edition

Edited by Vojin G. Oklobdzija

Digital Image Sequence Processing,
Compression, and Analysis
Edited by Todd R. Reed

Low-Power Electronics Design
Edited by Christian Piguet

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page ii 19.10.2007 9:05pm Compositor Name: BMani

DIGITAL SYSTEMS
AND APPLICATIONS

Edited by

Vojin G. Oklobdzija
University of Texas

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page iii 19.10.2007 9:05pm Compositor Name: BMani

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-0-8493-8619-0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa-
tion storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Digital systems and applications / editor, Vojin Oklobdzija.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-8493-8619-0 (alk. paper)
1. Computer engineering--Management. 2. Systems engineering--Management. I. Oklobdzija,

Vojin G. II. Title.

TK7885.D56 2008
621.39--dc22 2007023257

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page iv 19.10.2007 9:05pm Compositor Name: BMani

Preface

Purpose and Background

Computer engineering is a vast field spanning many aspects of hardware and software; thus, it is difficult

to cover it in a single book. It is also rapidly changing requiring constant updating as some aspects of it

may become obsolete. In this book, we attempt to capture the long-lasting fundamentals as well as the

new trends, directions, and developments. This book could easily fill thousands of pages. We are aware

that in this book, some areas were not given sufficient attention and some others were not covered at all.

We plan to cover these missing parts as well as more specialized topics in more detail with new books

under the computer engineering series and new editions of the current book. We believe that the areas

covered by this new edition are covered very well because they are written by specialists, recognized as

leading experts in their fields.

Organization

This book deals with systems, architecture, and applications and contains seven sections.

Section I is dedicated to computer architecture and computer system organization, a top-level view.

Several architectural concepts and organizations of computer systems such as superscalar and vector

processor, VLIW architecture, servers, parallel systems, as well as new trends in multithreading and

multiprocessing, are described. Implementation and performance-enhancing techniques such as branch

prediction, register renaming, virtual memory, and system design issues are also addressed. The section

ends with a description of performance evaluation measures and techniques, which are the ultimate

measure from the user’s point of view.

Section II deals with embedded systems and applications. As the ability to integrate more transistors

continues, the chip is turning into a system containing various elements needed to serve a particular

application.

Section III describes important digital signal processing applications and low-power implementations.

Section IV deals with communication and networks, followed by Section V, which deals with input

and output issues such as circuit implementation aspects, parallel I=O, algorithms, read channel

recording, and issues related to read channel and disk drive technology.

Section VI is dedicated to operating systems, which manage the computer system operation and host

the application software.

The final section (Section VII) is dedicated to new directions in computing. Given the rapid develop-

ment of computer systems and their penetration into many new fields and aspects of our everyday life,

this section is rich with chapters describing many diverse aspects of computer usage and potentials for

use. It describes programmable and reconfigurable computing, media signal processing, processing of

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page v 19.10.2007 9:05pm Compositor Name: BMani

v

audio signals, Internet, home entertainment, communications, including video-over-mobile network,

and data security. This section illustrates deep penetration of computer systems into the consumer’s

market enabled by advances in signal processing and embedded applications.

Locating Your Topic

Several avenues are available to access the desired information. A complete table of contents is presented

at the front of the book. Each of the sections is preceded with an individual table of contents. Finally,

each chapter begins with its own table of contents. Each contributed chapter contains comprehensive

references. Some of them contain a ‘‘To Probe Further’’ section, in which a general discussion of various

sources such as books, journals, magazines, and periodicals is located. To be in tune with the modern

times, some of the authors have also included Web pointers to valuable resources and information. We

hope our readers will find this to be appropriate and of much use.

A subject index has been compiled to provide a means of accessing information. It can also be used to

locate definitions. The page on which the definition appears for each key defining term is given in the

index.

This book is designed to provide answers to most inquiries and to direct inquirers to further sources

and references. We trust that it will meet the needs of our readership.

Acknowledgments

The value of this book is based entirely on the work of people who are regarded as top experts in their

respective fields, and their excellent contributions. I am grateful to them. They contributed their valuable

time without compensation and with the sole motive to provide learning material and help enhance the

profession. I would like to thank Saburo Muroga, who provided editorial advice, reviewed the content of

the book, made numerous suggestions, and encouraged me. I am indebted to him as well as to other

members of the advisory board. I would like to thank my colleague and friend Richard Dorf for asking

me to edit this book and trusting me with this project. Kristen Maus worked tirelessly on the first

edition of this book and so did Nora Konopka of CRC Press. I am also grateful to the editorial staff of

Taylor & Francis, Theresa Delforn and Allison Shatkin in particular, for all the help and hours spent on

improving many aspects of this book. I am particularly indebted to Suryakala Arulprakasam and her

staff for a superb job of editing, which has substantially improved this book over the previous one.

Vojin G. Oklobdzija

Berkeley, California

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page vi 19.10.2007 9:05pm Compositor Name: BMani

vi

Editor

Vojin G. Oklobdzija is a fellow of the Institute of Electrical and

Electronics Engineers and distinguished lecturer of the IEEE Solid-

State Circuits and IEEE Circuits and Systems Societies. He received his

PhD and MSc from the University of California, Los Angeles in 1978

and 1982, as well as a Diplom-Ingenieur (MScEE) from the Electrical

Engineering Department, University of Belgrade, Yugoslavia in 1971.

From 1982 to 1991, he was at the IBM T.J. Watson Research Center

in New York where he made contributions to the development of

RISC architecture and processors. In the course of this work he

obtained a patent on register-renaming, which enabled an entire

new generation of superscalar processors.

From 1988 to 1990, he was a visiting faculty at the University of California, Berkeley, while on leave

from IBM. Since 1991, Professor Oklobdzija has held various consulting positions. He was a consultant

to Sun Microsystems Laboratories, AT&T Bell Laboratories, Hitachi Research Laboratories, Fujitsu

Laboratories, Samsung, Sony, Silicon Systems=Texas Instruments Inc., and Siemens Corp., where he

was also the principal architect of the Siemens=Infineon’s TriCore processor.

In 1996, he incorporated Integration Corp., which delivered several successful processor and encryp-

tion processor designs.

Professor Oklobdzija has held various academic appointments, in addition to the one at the University

of California. In 1991, as a Fulbright professor, he helped to develop programs at universities in South

America. From 1996 to 1998, he taught courses in Silicon Valley through the University of California,

Berkeley Extension, and at Hewlett–Packard. He was visiting professor in Korea, EPFL in Switzerland and

Sydney, Australia. Currently he is Emeritus Professor at the University of California and Research

Professor at the University of Texas at Dallas.

He holds 14 U.S. and 18 international patents in the area of computer architecture and design.

Professor Oklobdzija is a member of the American Association for the Advancement of Science, and

the American Association of University Professors.

He serves as associate editor for the IEEETransactions onCircuits and Systems II; IEEEMicro; and Journal of

VLSI Signal Processing; International Symposium on Low-Power Electronics, ISLPED; Computer Arithmetic

Symposium, ARITH, and numerous other conference committees. He served as associate editor of the IEEE

Transactions on Computers (2001–2005), IEEE Transactions on Very Large Scale of Integration (VLSI) Systems

(1995–2003), the ISSCC Digital Program Committee (1996–2003), and the first Asian Solid-State Circuits

Conference,A-SSCC in 2005.Hewas a general chairof the 13thSymposiumonComputerArithmetic in1997.

He has published over 150 papers in the areas of circuits and technology, computer arithmetic, and

computer architecture, and has given over 150 invited talks and short courses in the United States,

Europe, Latin America, Australia, China, and Japan.

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page vii 19.10.2007 9:05pm Compositor Name: BMani

vii

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page viii 19.10.2007 9:05pm Compositor Name: BMani

Editorial Board

Krste Asanović

University of California at Berkeley

Berkeley, California

William Bowhill

Intel Corporation

Shrewsbury, Massachusetts

Anantha Chandrakasan

Massachusetts Institute of Technology

Cambridge, Massachusetts

Hiroshi Iwai

Tokyo Institute of Technology

Yokohama, Japan

Saburo Muroga

University of Illinois

Urbana, Illinois

Kevin J. Nowka

IBM Austin Research Laboratory

Austin, Texas

Takayasu Sakurai

Tokyo University

Tokyo, Japan

Alan Smith

University of California at Berkeley

Berkeley, California

Ian Young

Intel Corporation

Hillsboro, Oregon

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page ix 19.10.2007 9:05pm Compositor Name: BMani

ix

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page x 19.10.2007 9:05pm Compositor Name: BMani

Contributors

John F. Alexander

University of North Florida

Jacksonville, Florida

Krste Asanović

University of California at Berkeley

Berkeley, California

Ming Au-Yeung

San Francisco State University

San Francisco, California

Pervez M. Aziz

Agere Systems

Allentown, Pennsylvania

Raymond Barrett

University of North Florida

Jacksonville, Florida

Lejla Batina

Katholieke Universiteit Leuven

Leuven, Belgium

Mario Blaum

IBM Almaden Research Center

San Jose, California

Pradip Bose

IBM T.J. Watson Research Center

Yorktown Heights, New York

Don Bouldin

University of Tennessee

Knoxville, Tennessee

E. Bozorgzadeh

University of California

Los Angeles, California

Tzi-cker Chiueh

State University of New York at Stony Brook

Stony Brook, New York

Adam Dabrowski

Poznan University of Technology

Poznan, Poland

Babak Daneshrad

University of California

Los Angeles, California

Miroslav Despotović

University of Novi Sad

Novi Sad, Yugoslavia

Jozo J. Dujmović

San Francisco State University

San Francisco, California

Mohammad Faheemuddin

King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia

Manoj Franklin

University of Maryland

College Park, Maryland

Matthew Franklin

University of California at Davis

Davis, California

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xi 19.10.2007 9:05pm Compositor Name: BMani

xi

Borko Furht

Florida Atlantic University

Boca Raton, Florida

Jean-Luc Gaudiot

University of California at Irvine

Irvine, California

Ricardo E. Gonzalez

Tensilica, Inc.

Santa Clara, California

Anna Hać

University of Hawaii

Honolulu, Hawaii

Siamack Haghighi

Intel Corporation

Santa Clara, California

Yoshiaki Hagiwara

Sony Corporation

Tokyo, Japan

Ali Ibrahim

Advanced Micro Devices

Sunnyvale, California

Mohammad Ilyas

Florida Atlantic University

Boca Raton, Florida

Bruce Jacob

University of Maryland

College Park, Maryland

Lizy Kurian John

University of Texas at Austin

Austin, Texas

R. Kastner

University of California

Los Angeles, California

Ruby Lee

Princeton University

Princeton, New Jersey

Worayot Lertniphonphun

Georgia Institute of Technology

Atlanta, Georgia

Tomasz Marciniak

Poznan University of Technology

Poznan, Poland

Brian Marcus

IBM Almaden Research Center

San Jose, California

Daniel Martin

Infineon

Mountain View, California

Binu Mathew

Apple Inc.

Cupertino, California

James H. McClellan

Georgia Institute of Technology

Atlanta, Georgia

S.O. Memik

University of California

Los Angeles, California

Milica Mitić

University of Niš

Niš, Serbia

John Morris

Auckland University

Auckland, New Zealand

Samiha Mourad

Santa Clara University

Santa Clara, California

Danny F. Newport

University of Tennessee

Knoxville, Tennessee

Garret Okamoto

Santa Clara University

Santa Clara, California

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xii 19.10.2007 9:05pm Compositor Name: BMani

xii

Ara Patapoutian

Maxtor

Shrewsbury, Massachusetts

Gerald G. Pechanek

BOPS, Inc.

Chapel Hill, North Carolina

Donna Quammen

George Mason University

Fairfax, Virginia

Todd R. Reed

University of Hawaii at Manoa

Honolulu, Hawaii

Peter Reiher

University of California

Los Angeles, California

Eric Rotenberg

North Carolina State University

Raleigh, North Carolina

Abdul H. Sadka

University of Surrey

Surrey, England

Sadiq M. Sait

King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia

Kazuo Sakiyama

Katholieke Universiteit Leuven

Leuven, Belgium

M. Sarrafzadeh

University of California

Los Angeles, California

Thomas C. Savell

Creative Advanced Technology Center

Scotts Valley, California

Necip Sayiner

Agere Systems

Allentown, Pennsylvania

Giovanni Seni

Motorola Human Interface Labs

Palo Alto, California

Vojin Šenk

University of Novi Sad

Novi Sad, Yugoslavia

Dezsö Sima

Budapest Polytechnic

Budapest, Hungary

Kevin Skadron

University of Virginia

Charlottesville, Virginia

Mark Smotherman

Clemson University

Clemson, South Carolina

Emina Šoljanin

Lucent Technologies

New Vernon, New Jersey

Zoran Stamenković

IHP Gmbh—Innovations for High Performance

Microelectronics

Frankfurt (Oder), Germany

Mile Stojčev

University of Niš

Niš, Serbia

Jayashree Subrahmonia

IBM Thomas J. Watson Research Center

Yorktown Heights, New York

David Tarjan

University of Virginia

Charlottesville, Virginia

Fred J. Taylor

University of Florida

Gainesville, Florida

Daniel N. Tomasevich

San Francisco State University

San Francisco, California

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xiii 19.10.2007 9:05pm Compositor Name: BMani

xiii

Jonathan W. Valvano

University of Texas at Austin

Austin, Texas

Peter J. Varman

Rice University

Houston, Texas

Bane Vasić

University of Arizona

Tucson, Arizona

Ingrid Verbauwhede

Katholieke Universiteit Leuven and UCLA

Leuven, Belgium

Jeffrey Scott Vitter

Purdue University

West Lafayette, Indiana

Albert Wang

Tensilica, Inc.

Santa Clara, California

Alice Wang

Texas Instruments

Dallas, Texas

Shoichi Washino

Tottori University

Tottori City, Japan

Wayne Wolf

Princeton University

Princeton, New Jersey

Thucydides Xanthopoulos

Cavium Networks

Marlboro, Massachusetts

Larry Yaeger

Indiana University

Bloomington, Indiana

Chik-Kong Ken Yang

University of California

Los Angeles, California

Habib Youssef

King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xiv 19.10.2007 9:05pm Compositor Name: BMani

xiv

Contents

SECTION I Computer Systems and Architecture

1 Computer Architecture and Design
Introduction Jean-Luc Gaudiot ... 1-2

1.1 Server Computer Architecture Siamack Haghighi.. 1-2

1.2 Very Large Instruction Word Architectures Binu Mathew .. 1-12

1.3 Vector Processing Krste Asanović ... 1-25

1.4 Multithreading, Multiprocessing Manoj Franklin .. 1-35

1.5 Survey of Parallel Systems Donna Quammen ... 1-51

1.6 Virtual Memory Systems and TLB Structures Bruce Jacob.. 1-59

1.7 Architectures for Public-Key Cryptography Lejla Batina, Kazuo Sakiyama,
and Ingrid Verbauwhede... 1-70

2 System Design
2.1 Superscalar Processors Mark Smotherman .. 2-1

2.2 Register Renaming Techniques Dezsö Sima .. 2-10

2.3 Predicting Branches in Computer Programs Kevin Skadron and David Tarjan.......... 2-38

2.4 Network Processor Architecture Tzi-cker Chiueh ... 2-60

2.5 Stream Processors and Their Applications for the Wireless Domain
Binu Mathew and Ali Ibrahim... 2-66

3 Architectures for Low Power Pradip Bose ... 3-1

4 Performance Evaluation
4.1 Measurement and Modeling of Disk Subsystem Performance

Jozo J. Dujmović, Daniel N. Tomasevich, and Ming Au-Yeung.. 4-1

4.2 Performance Evaluation: Techniques, Tools, and Benchmarks Lizy Kurian John........ 4-21

4.3 Trace Caching and Trace Processors Eric Rotenberg... 4-38

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xv 19.10.2007 9:05pm Compositor Name: BMani

xv

SECTION II Embedded Applications

5 Embedded Systems-on-Chips Wayne Wolf ... 5-1

6 Embedded Processor Applications Jonathan W. Valvano 6-1

7 An Overview of SoC Buses Milica Mitić, Mile Stojčev,

and Zoran Stamenković .. 7-1

SECTION III Signal Processing

8 Digital Signal Processing Fred J. Taylor ... 8-1

9 DSP Applications Daniel Martin.. 9-1

10 Digital Filter Design Worayot Lertniphonphun and James H. McClellan 10-1

11 Audio Signal Processing Adam Dabrowski and Tomasz Marciniak................... 11-1

12 Digital Video Processing Todd R. Reed.. 12-1

13 Low-Power Digital Signal Processing Alice Wang
and Thucydides Xanthopoulos .. 13-1

SECTION IV Communications and Networks

14 Communications and Computer Networks Anna Hać...................................... 14-1

SECTION V Input=Output

15 Circuits for High-Performance I=O Chik-Kong Ken Yang 15-1

16 Algorithms and Data Structures in External Memory Jeffrey Scott Vitter........ 16-1

17 Parallel I=O Systems Peter J. Varman .. 17-1

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xvi 19.10.2007 9:05pm Compositor Name: BMani

xvi

18 A Read Channel for Magnetic Recording
18.1 Recording Physics and Organization of Data on a Disk Bane Vasić

and Miroslav Despotović... 18-2

18.2 Read Channel Architecture Bane Vasić, Pervez M. Aziz, and Necip Sayiner 18-11

18.3 Adaptive Equalization and Timing Recovery Pervez M. Aziz 18-20

18.4 Head Position Sensing in Disk Drives Ara Patapoutian .. 18-46

18.5 Modulation Codes for Storage Systems Brian Marcus and Emina Šoljanin 18-55

18.6 Data Detection Miroslav Despotović and Vojin Šenk .. 18-65

18.7 An Introduction to Error-Correcting Codes Mario Blaum....................................... 18-91

SECTION VI Operating System

19 Distributed Operating Systems Peter Reiher ... 19-1

SECTION VII New Directions in Computing

20 SPS: A Strategically Programmable System M. Sarrafzadeh,

E. Bozorgzadeh, R. Kastner, and S.O. Memik.. 20-1

21 Reconfigurable Processors
21.1 Reconfigurable Computing John Morris.. 21-1

21.2 Using Configurable Computing Systems Danny F. Newport and Don Bouldin....... 21-18

21.3 Xtensa: A Configurable and Extensible Processor Ricardo E. Gonzalez
and Albert Wang ... 21-25

22 Roles of Software Technology in Intelligent Transportation Systems
Shoichi Washino .. 22-1

23 Media Signal Processing
23.1 Instruction Set Architecture for Multimedia Signal Processing Ruby Lee 23-1

23.2 DSP Platform Architecture for SoC Products Gerald G. Pechanek 23-35

23.3 Digital Audio Processors for Personal Computer Systems Thomas C. Savell.......... 23-45

23.4 Modern Approximation Iterative Algorithms and Their Applications in
Computer Engineering Sadiq M. Sait and Habib Youssef .. 23-62

23.5 Parallelization of Iterative Heuristics Sadiq M. Sait, Habib Youssef,
and Mohammad Faheemuddin .. 23-82

24 Internet Architectures Borko Furht .. 24-1

25 Microelectronics for Home Entertainment Yoshiaki Hagiwara......................... 25-1

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xvii 19.10.2007 9:05pm Compositor Name: BMani

xvii

26 Mobile and Wireless Computing
26.1 Bluetooth—A Cable Replacement and More John F. Alexander

and Raymond Barrett ... 26-2

26.2 Signal Processing ASIC Requirements for High-Speed Wireless Data
Communications Babak Daneshrad .. 26-8

26.3 Communication System-on-a-Chip Samiha Mourad and Garret Okamoto 26-16

26.4 Communications and Computer Networks Mohammad Ilyas 26-27

26.5 Video over Mobile Networks Abdul H. Sadka.. 26-39

26.6 Pen-Based User Interfaces—An Applications Overview Giovanni Seni,
Jayashree Subrahmonia, and Larry Yaeger .. 26-50

26.7 What Makes a Programmable DSP Processor Special? Ingrid Verbauwhede 26-72

27 Data Security Matthew Franklin... 27-1

Index... I-1

Vojin Oklobdzija/Digital Systems and Applications 6195_C000 Final Proof page xviii 19.10.2007 9:05pm Compositor Name: BMani

xviii

I
Computer
Systems and
Architecture

1 Computer Architecture and Design Jean-Luc Gaudiot, Siamack Haghighi,

Binu Mathew, Krste Asanović, Manoj Franklin, Donna Quammen, Bruce Jacob,

Lejla Batina, Kazuo Sakiyama, and Ingrid Verbauwhede ...1-1

Server Computer Architecture . Very Large Instruction Word Architectures .

Vector Processing . Multithreading, Multiprocessing . Survey of Parallel Systems .

Virtual Memory Systems and TLB Structures . Architectures for Public-Key

Cryptography

2 System Design Mark Smotherman, Dezsö Sima, Kevin Skadron,

David Tarjan, Tzi-cker Chiueh, Binu Mathew, and Ali Ibrahim2-1

Superscalar Processors . Register Renaming Techniques . Predicting Branches

in Computer Programs . Network Processor Architecture . Stream Processors

and Their Applications for the Wireless Domain

3 Architectures for Low Power Pradip Bose .. 3-1

Introduction . Fundamentals of Performance and Power: An Architect’s

View . A Review of Key Ideas in Power-Aware Microarchitectures . Power-Efficient

Microarchitecture Paradigms . Conclusions

4 Performance Evaluation Jozo J. Dujmović, Daniel N. Tomasevich, Ming Au-Yeung,

Lizy Kurian John, and Eric Rotenberg .. 4-1

Measurement and Modeling of Disk Subsystem Performance .

Performance Evaluation: Techniques, Tools, and Benchmarks . Trace Caching

and Trace Processors

Vojin Oklobdzija/Digital Systems and Applications 6195_S001 Final Proof page 1 4.10.2007 4:05pm Compositor Name: VBalamugundan

I-1

Vojin Oklobdzija/Digital Systems and Applications 6195_S001 Final Proof page 2 4.10.2007 4:05pm Compositor Name: VBalamugundan

1
Computer

Architecture and
Design

Jean-Luc Gaudiot
University of California at Irvine

Siamack Haghighi
Intel Corporation

Binu Mathew
Apple Inc.

Krste Asanović
University of California at Berkeley

Manoj Franklin
University of Maryland

Donna Quammen
George Mason University

Bruce Jacob
University of Maryland

Lejla Batina
Katholieke Universiteit Leuven

Kazuo Sakiyama
Katholieke Universiteit Leuven

Ingrid Verbauwhede
Katholieke Universiteit Leuven and

UCLA

Introduction.. 1-2

1.1 Server Computer Architecture ... 1-2
Introduction . Client–Server Computing . Server Types .

Server Deployment Considerations . Server Architecture .

Future Directions

1.2 Very Large Instruction Word Architectures 1-12
What Is a VLIW Processor? . Different Flavors of Parallelism .

A Brief History of VLIW Processors . Defoe: An Example

VLIWArchitecture . Intel Itanium Processor . Transmeta

Crusoe Processor . Scheduling Algorithms for VLIW

1.3 Vector Processing... 1-25
Introduction . Data Parallelism . History of Data-Parallel

Machines . Basic Vector Register Architecture . Vector

Instruction Set Advantages . Lanes: Parallel Execution Units .

Vector Register File Organization . Traditional Vector Computers

versus Microprocessor Multimedia Extensions . Memory

System Design . Future Directions . Conclusions

1.4 Multithreading, Multiprocessing.................................... 1-35
Introduction . Parallel Processing Software Framework .

Parallel Processing Hardware Framework .

Concluding Remarks . To Probe Further

1.5 Survey of Parallel Systems .. 1-51
Introduction . Single Instruction Multiple Processors (SIMD) .

Multiple Instruction Multiple Data . Vector Machines .

Dataflow Machine . Out of Order Execution Concept .

Multithreading . Very Long Instruction Word (VLIW) .

Interconnection Network . Conclusion

1.6 Virtual Memory Systems and TLB Structures 1-59
Virtual Memory, a Third of a Century Later . Caching the

Process Address Space . An Example Page Table Organization .

Translation Lookaside Buffers: Caching the Page Table

1.7 Architectures for Public-Key Cryptography.................. 1-70
Introduction . RSA Algorithm . Elliptic Curve Cryptography .

Architectures Supporting Both RSA and ECC . Concluding

Remarks

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 1 19.10.2007 9:09pm Compositor Name: BMani

1-1

Introduction

Jean-Luc Gaudiot

It is a truism that computers have become ubiquitous and portable in the modern world: personal digital

assistants (PDAs), as well as many various kinds of mobile computing devices are easily available at

low cost. This is also true because of the ever-increasing presence of the Wide World Web connectivity.

One should not forget, however, that these life changing applications have only been made possible by

the phenomenal advances that have been made in device fabrication and more importantly in the

architecting of these individual components into powerful systems.

In the 1980s, advances in computer architecture research were most pronounced on two fronts: on the

one hand, new architectural techniques such as RISC made their appearance and revolutionized single

processor design and allowed high performance for the single chip microprocessors which first came out

as system components in the 1970s. At the same time, large-scale parallel processors became mature and

could be used by researchers in many high-end, computationally intensive, scientific applications.

In recent times, the appetite of Internet surfers has been fueling the design of architectures for

powerful servers: in Section 1.1 Siamack Haghighi emphasizes the unique requirements of server design

and identifies the characteristics of their applications.

In Section 1.2, Binu Matthew describes the very long instruction word (VLIW) processor model,

compares it to more traditional approaches of Instruction Level Parallelism extraction, and demon-

strates the future of VLIW processors, particularly in the context of multimedia applications.

Similarly, multimedia applications have promoted a dual architectural approach. In Section 1.3, Krste

Asanovic traces the ancestry of vector processors to the supercomputers of the 1980s (Crays, Fujitsu,

etc.) and describes the modern applications of this architecture model.

Architectures cannot be evaluated independently of the underlying technology. Indeed, nowadays,

while deep-submicron design rules for VLSI circuit are allowing increasing numbers of devices on the

same chip, techniques of multiprocessing are seeing additional applications in different forms which

range from networks of workstations. Portability, all the way to multiprocessing on a chip, is the topic of

Section 1.4 by Manoj Franklin.

Taking concurrent processing to the next level, Donna Quammen surveys parallel systems in Section

1.5 including large-scale tightly coupled parallel processors.

Finally, in Section 1.6 Bruce Jacob surveys the concepts underlying virtual memory systems and

describes the tremendous advances this approach has undergone since first being proposed in the late

1960s.

1.1 Server Computer Architecture

Siamack Haghighi

1.1.1 Introduction

Widespread availability of inexpensive high-performance computers and Internet access have resulted in

considerable business productivity improvement and cost savings.Many companies use high-performance

computing and networking technologies for highly efficient electronic or e-commerce. As a result, most

modern businesses rely on enterprise information technology (IT) computing and communication

infrastructure for the backbone of their operation. The cost-savings potential has required many modern

companies to fully automate their traditional manual order entry, processing, inventory management, and

operations via web-based technologies. Current e-commerce revenue estimates exceed hundred billion

dollars in the United States alone.

Availability of low-cost, robust, reliable, and secure IT infrastructure is one of the key drivers of

the new Internet-based businesses. Customer usage models and applications affect IT infrastructure

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 2 19.10.2007 9:09pm Compositor Name: BMani

1-2 Digital Systems and Applications

performance, operation, and cost. The requirements of many modern IT deployments can be cost-

effectively met with client–server computing technologies. Although not a new idea, availability of

inexpensive high-performance commodity microprocessors, scalable computer architecture, storage,

and high-speed networks make client–server computing model an ideal fit for enterprise electronic

business data processing or e-commerce. Other client–server computing advantages are shared data

storage and back up, improved infrastructure reliability, availability, serviceability, manageability, and

cost amortization over large number of client devices and users. Figure 1.1 illustrates an example client–

server architecture computing deployment.

High-performance servers are built from multiple interconnected processors, high-performance

memory systems, scalable networking, local storage subsystems, advanced software, and packaging.

This section provides an overview of server architecture design, deployment, and the associated

challenges.

1.1.2 Client–Server Computing

Client–server computing was developed to address cost-effective computing and communication cap-

ability for multiple users. Clients use variety of devices and terminal types to access shared servers.

Application server

File server

Web server

Internet access

E-mail serverProxy serverCompute server

Ethernet router

Ethernet network

Database server

Smart phone client

Wireless access point

Tablet client

Mobile client

Mobile client

Shared printer Client terminal Client PC Client PC

Client PC

Networked storage

Ethernet router

Ethernet hub
Ethernet bridge

FIGURE 1.1 Client–server computing infrastructure.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 3 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-3

Hence, users get access to high-performance services economically since infrastructure costs are shared

and amortized among many users.

During 1970s, business computing infrastructure consisted of centralized mainframe computers

connected to user terminals via networks. Mainframes provided high-performance centralized process-

ing facilities for compute intensive tasks as well as data storage, external network interface, and task

management. In 1980s, business computing evolved to distributed model due to advent of low-cost,

high-performance personal computers (PCs) fueled by the availability of inexpensive powerful micro-

processors. In this architecture, many of the computing tasks previously serviced by the mainframes are

performed locally by the PCs. Recently, e-commerce and rapid growth of Internet as the common

communication protocol have resulted in another change in business computing infrastructure. World

Wide Web (WWW) optimized applications and low-cost computing have facilitated businesses adop-

tion of client–server computing architecture. The following are the modern IT infrastructure elements:

. Simple and robust standardized web-based user interfaces

. Support for variety of access devices such as mobiles, desktop computers, personal digital

assistants, and smart phones

. Wired and wireless high-speed data and communication networking

. Shared data storage and peripheral connectivity

. Centralized server array (sometimes referred to as server farm) configured and optimized for

enterprise applications

1.1.3 Server Types

Modern servers are designed and optimized for low cost, high performance, low maintenance, and, in

many cases, specific application usage models. There are a variety of server types, e.g., proxy, application,

web cache, compute, communication, security, video, file, and streaming media. A typical server consists

of several high-performance CPUs, large centralized or distributed system memory, high-speed local

storage subsystem, and network interfaces. Specialization is achieved through selection of elements such

as number of CPUs, size, type, and speed of system memory, operating system, number, and speed

of network interfaces, local storage subsystem capacity, type, and access speed. As an example, an

e-commerce server requires fast network interface, modest system memory, and multiple CPUs for

high-throughput transaction processing whereas a file server benefits from large networked storage

subsystem and a compute server benefits from many CPUs and large system memory.

Servers also differ based on form factors. Physical size and configuration are important considerations

for high-density (high computing capability) server infrastructure deployments because power delivery,

thermal cooling, and standardized installation are often the dominant concern factors. While some

servers are designed to fit cabinets, others are designed to fit rack mounted enclosures.

In summary, configurability, form factor, scalable hardware, and software are required for optimized

high-performance server deployment and operation.

1.1.4 Server Deployment Considerations

In addition to form factor, optimal server deployment and operation requires hardware, software

features, and flexible configuration. In this section, some of these aspects are detailed.

1.1.4.1 Server Features

Most servers have reliability, availability, serviceability, and manageability (RASM) features.

1. Reliability: Servers are expected to operate reliably with the ability for manual or automatic

diagnosis and isolation of errors and failures. For example, banking and investment brokerage

computing facilities require rapid diagnosis and isolation of hardware and software failures.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 4 19.10.2007 9:09pm Compositor Name: BMani

1-4 Digital Systems and Applications

Example reliability features are hardware, software error or failure event detection, response

mechanisms such as error correction codes (ECC) and error detection codes, transaction integrity

checks, checksum, and multiple redundancies. Example event response mechanisms are event

logging, failure source isolation, provisioning, and fail-over switching. Desired reliability features

are selected based on cost, complexity, and server application usage model considerations as

follows:
. Redundant hardware and software (e.g., independent operating system images on multiple

server nodes)

. Server network interface and local storage subsystem integrity check mechanisms

. Fault detection, isolation, and mitigation

. ECC memory scrubbing to detect and correct bit errors that may cause system crash due to

charged particle–induced errors

. System management software to collect detected errors and isolate faults

. Networked storage systems that use redundant array of independent disks (RAID) technology

for data storage integrity assurance

2. Availability: The rapid rise in business reliance on computing infrastructure has resulted in

demand for nonstop computing operations. Servers with such capabilities are referred to as

high-availability servers. In banking and investment brokerage businesses, even brief service

interruptions are detrimental and cost prohibitive. High-availability servers require specially

configured deployments such as multiple backup systems, load balancing, and fail-over switching

capabilities. Two key metrics for measuring the value and potential cost of high-availability

computing are average downtime per year (in seconds) and potential revenue loss due to service

interruption. Other high-availability server features are service provisioning, user task isolation

and migration, traffic differentiation, dynamic prioritization, ability to quickly detect, and

remedy failures. Scheduled maintenance and upgrade of hardware and software elements may

also decrease potential for failures and increase server availability.

3. Serviceability: Continuous trouble-free server operation requires routine maintenance, error and

failure monitoring, and the ability to quickly fix or replace defective hardware or software

components. The mechanisms that provide such facilities are generally referred to as serviceabil-

ity options. In many cases, the failure source can be isolated to one unit or subsystem, e.g., one

dynamic memory module in system memory. Software mechanisms (e.g., real-time diagnostic

tools, alerting, and dynamic server configuration) may be used manually or automatically to

isolate, disable a faulty unit, swap backup units and prepare for service or faulty unit replacement

before an error or failure becomes catastrophic and propagates to entire server or computing

facilities. Features that may assist rapid replacement of faulty components are traffic isolation

and hot replacement. Plug and play subsystem capabilities also improve ease of service.

Hot replacement allows changing faulty subsystems without the need to power down or reboot

the server. Other services such as scheduled downtime to do off-line enhancement may also be

necessary.

4. Manageability: Routine and emergency system operation requires management facilities such as
. Server performance monitoring and key application tuning

. Capacity planning for existing and future clients, users, and applications

. Manual or automatic load balancing, distribution, task migration, and scheduling for efficient

operation of the enterprise resources and applications

. Special accommodation of circumstances requiring increased alerting and manageability cap-

abilities (e.g., virus protection, intrusion detection, etc.)

. Rapid installation and configuration of new applications and systems (e.g., software upgrade

and installation)

. Automatic and preventive operator notification applications and services

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 5 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-5

. Mechanisms for rapid recovery from service outages

. Remote or local server management despite faulty server components and errors

The following are the other important and desirable deployment features:

5. Scalability: High-performance IT infrastructure can be built in two ways. In one approach, few

servers each configured with large number of CPUs and powerful input=output (I=O) capability

can be used. Alternatively, large number of servers, each containing a few CPU may be clustered

for high-performance computing. A combination of both approaches may also be used.

6. Security: In routine and emergency cases, access to system resources and facilities such as user

authentication, intrusion detection, and privileged access may be needed. Cryptographic tech-

nologies such as encryption and decryption may also be used to enhance the overall system

security. In some cases, cooperation with local and government officials may be required for

intrusion detection and prevention.

1.1.4.2 Operation

An important server deployment issue is the form factor and installation requirements. A typical

server board contains multiple CPUs, system and peripheral connection bridges, networking, display,

and local storage peripherals. In deployments such as data centers, large number of server modules may be

housed in racks or cabinets. In dense server deployments, rack or cabinet mounting, operation, mainten-

ance, thermal management, power delivery, and wiring management are major challenges. The proximity

of data centers to major customer sites is also important. Other considerations are as follows:

1. Power: A typical server board may consume several hundred watts of power. Providing power to

large server racks may be a significant challenge. Power provisioning includes accommodating

outages, voltage regulation, power delivery, uninterrupted supply, and, if necessary, battery

backup.

2. Thermal: Servers generate large amounts of heat. Large server installations demand planning and

accommodation for heat dissipation and cooling. In many cases, thermal dissipation and cooling

solution limits server deployment size. Since high-performance server thermal management is a

major challenge, many new servers are built from low-power consumption VLSI building blocks.

Development of low-power CPUs and chipsets that lower the need for active cooling can

effectively address thermal limitations.

3. Total cost of ownership: An important consideration for enterprise servers is the total cost of

ownership (TCO). TCO is a metric used to estimate overall IT infrastructure operational costs

such as hardware and software purchases, services, required personnel, and downtimes. In each

enterprise deployment, one or more TCO factors may be dominant. For example, in an online

investment brokerage server installation, the downtime is a major consideration. In many cases,

the downtime costs may easily justify additional backup servers.

4. Server clustering: Many business applications such as manufacturing, financial, health care, and

telecommunication require mission-critical servers. Telecommunication billing and banking

servers are examples of server clustering. Mission-critical servers may be designed by connecting

several servers and providing fail-over switching capabilities. If one server crashes, others can

continue operation of key applications. Server clustering may be used to mitigate hardware

(server components, storage, networking hardware), operating system, and application software

failures. Variety of hardware and software automatic fault detection, isolation, and fail-over

switching mechanisms are available and used by various mission-critical server manufacturers.

1.1.5 Server Architecture

1.1.5.1 Hardware Architecture

Even though servers may be built using custom very large scale integration (VLSI) devices, economic

considerations necessitate the use of commodity hardware VLSI whenever possible. Figures 1.2 and 1.3

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 6 19.10.2007 9:09pm Compositor Name: BMani

1-6 Digital Systems and Applications

Centralized
system memory

System
interconnect

CPU

CPU

CPU

CPU

Peripheral
interconnect

Network
interface

Storage
subsystem

Miscellaneous
peripherals

Cluster interface

Peripheral hub

System hub

FIGURE 1.2 Centralized shared memory server architecture.

System interconnect

Peripheral
interconnect

CPU

CPU

Storage
subsystem

Optional shared
system memory

CPU
Local

distributed
memory

Local
distributed
memory

Local
distributed
memory

Local
distributed
memory

CPU

Miscellaneous
peripherals

Cluster
interface

System hub

Network
interface

Peripheral hub

FIGURE 1.3 Distributed memory server architecture.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 7 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-7

illustrate shared centralized and distributed memory multiprocessor server architectures. In both cases,

the major building block components are central processing unit (CPU), memory, system, and

peripheral hubs, interconnects, and peripherals. Each of these components are now be described in

more depth.

1.1.5.1.1 CPU

Most servers contain multiple CPUs. For economic reasons, servers use special configurations of

commodity desktop or mobile PC CPUs. Server CPUs differ from desktop or mobile PC CPUs due to

additional features such as larger on-chip caches, hardware multiprocessing, hardware cache coherency

support and high-performance system interconnects. Most current servers have symmetric multipro-

cessing architecture whereby all CPUs are of the same type and configuration. A server may be built from

heterogeneous CPUs. In such architecture, the few used CPU types can be optimized, each for specific

application classes.

Server CPUs have fast execution capability and multiple levels of hierarchically organized on-chip

cache memory. Fast execution capability is required for high-performance application processing. Large,

high-performance on-chip cache memory ensures sustained high-performance CPU operation. Modern

CPU architectures have multiple execution cores, each operating at several gigahertz speed and include

several megabytes of on-chip high-speed cache memory.

Figure 1.4 illustrates a simplified internal organization of a modern server CPU. Most commodity

CPUs have 64-bit addressing capability and can easily accommodate processing of large data set

applications, support for many clients, applications, and users. Each CPU processing core contains

several arithmetic logic units (ALU), multi-ported register files, floating-point multiply, and sophisti-

cated branch prediction and execution units. Most server CPUs execute program instructions out-of-

order (OOO) and several operations at a time (super scalar).

High-performance CPU execution rate requires sustained high-bandwidth instruction and data

delivery. Caches are useful for high-speed storage and retrieval of frequently used instruction and

data. At each level, disjoint or integrated instruction and data caches may be available. Caches are

enumerated in increasing order with the lowest level closest to the CPU execution units. In Fig. 1.4, three

levels of cache hierarchy are enumerated as L1–L3. As the cache hierarchy level increases, the size is also

increased; typically 2–10 times the size of the preceding cache level. Current high-end server micropro-

cessors use 3–4 cache hierarchy levels. Cache organization optimization parameters are capacity,

associativity, line size, speed, number of access ports, and line replacement policy. These parameters

are determined based on variety of application execution characteristics, performance simulation

models and measurements. Current server CPU costs are dominated by the on-chip cache size and

optimized for state-of-the-art VLSI processing technology capabilities, circuit design, power consump-

tion, and salient software application characteristics.

The numbers of CPUs used in a server determine the desired server performance, cost, form factor,

and thermal and power requirements. Most server designs contain sockets for additional CPUs and

scalable computing performance. Architecture and design of high-performance multiprocessor servers

are an active area of research.

1.1.5.1.2 Memory

A critical server building block is the system memory. Server systems use several channels of dynamic

random access memory (DRAM) modules. The larger the number of independent memory channels,

the larger is the total bandwidth available to devices requesting memory access (such as CPUs and

peripheral devices).

A server system memory may be centralized or distributed. Centralized memory organization

facilitates simple software architecture. Additional memory modules may be added to the central

memory array, benefiting the overall system. The main disadvantages of the centralized system memory

architecture are memory access contention and latency. Distributed system memory, as shown in

Fig. 1.3, enables lower latency memory access if the CPU to local memory access traffic can be localized.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 8 19.10.2007 9:09pm Compositor Name: BMani

1-8 Digital Systems and Applications

If a CPU needs to access indirectly attached memory, the request will be routed to the destination CPU

via intersystem interconnects and system hubs.

There are several DRAMmemory configurations such as single in-linememory module (SIMM) or dual

in-line memory module (DIMM). A server system memory may support multiple DRAM types using

high-performance open standard or proprietary memory system interface. This type of memory is

generally referred to as buffered memory. Most servers have the capacity for several gigabytes of system

memory.

For improved reliability and robustness, server system memory includes fault tolerance features such

as ECC. Errors can happen for a variety of reasons such as DRAM memory charged particle induced or

intra-chip physical layer random errors. One example robustness metric is the number of error bits that

System interconnect

System interface unit Miscella-
neous

L3 I/D-cache

L2 I/D-cache

L1 I-cache L1 D-cache

Instruction fetch, decode, issue, schedule

Instruction retirement, data write back

Register file
Register file

Register file

Arithmetic logic unit (ALU)
Arithmetic logic unit (ALU)

Arithmetic logic unit (ALU)

FIGURE 1.4 Internal server CPU organization.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 9 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-9

can be detected and corrected. Low-end servers use single error correct, double error detect (SECDED)

ECC. Another robustness feature is the chip kill. Chip kill feature allows isolation and correction of

multi-bit faults stemming from failure of a single memory chip.

Since servers have large system memory capacity, high-speed auto-initialization of memory to known

values, e.g., during boot time may be beneficial. At runtime, accessed memory may be checked for

initialization, providing additional robustness. Other robustness features include memory mirroring,

redundant memory-bit steering, and soft-error (charge particle–induced error) scrubbing.

1.1.5.1.3 System Interconnects

For high-performance server operation, the connections between CPUs and the system hub and system

to peripheral hubs should be high bandwidth and low latency. Figures 1.2 and 1.3 illustrate example

system and peripheral interconnects. Modern servers use point-to-point, pipelined, high-speed inter-

connects operating at several gigahertz speed. Modern system interconnects are built using state-of-the-

art high-speed serial physical layer signaling capable of error detection, correction, and support for cache

coherency hardware protocols. System interconnects need to be low cost, low latency, high performance,

require inexpensive circuit board design and have low-power consumption. In most cases, some of these

requirements are conflicting, hence the need for trade-offs.

1.1.5.1.4 System Hub

The design of low-cost, high-performance multiprocessor server system hub is an engineering trade-

off challenge. On one hand, high-performance system hub needs to deliver peak server performance.

On the other hand, system hub needs to be low cost, scalable to multiple CPUs, configurable for

various server types and provide variety of connectivity interfaces. In a server, the CPUs compete for

low-latency, high-throughput access to shared resources such as system memory. The system hub

provides communication mechanisms between the CPUs, system memory, peripheral subsystem,

and potentially graphics controllers. The following are some of the considerations for optimum system

hub design:

1. Servers with centralized shared memory as in Fig. 1.2, use integrated memory controller system

hub. The system hub is capable of supporting multiple memory modules via high-performance

links. In distributed shared memory servers as in Fig. 1.3, memory controllers are integrated

within each CPU. Closely coupled CPU and memory controller enables low-latency access.

Typical system hub features, used in centralized shared memory servers, are multiple, fast,

wide, and independent memory channels and memory interleave support, high-speed pipelined

memory and CPU interconnects.

2. Shared system resources, such as memory are accessed by various system devices (CPU, network-

ing, storage, etc.). Hence, if one device (e.g., a CPU) is to have highest performance access to

system memory, all other devices also competing for system memory access need to be held off.

For applications that require protracted high-traffic system memory access, many requesting

devices may have to stay idle while the highest priority traffic is serviced, potentially causing

severe performance and efficiency loss. Accessing shared system resources is a dynamic applica-

tion and usage model-dependent event. The main memory scheduling and arbitration access

policy optimization are determined through extensive computer simulations that include

dynamic models of the application, operating system (OS), and hardware components. Real-

time application servers require additional mechanisms such as admission control, quality of

service (QoS), traffic differentiation, and bandwidth reservation.

3. Many server system hubs do not provide extensive high-performance graphics capabilities. The

reason is the limited need for high-performance graphics in server applications.

1.1.5.1.5 Peripheral Hub

In addition to traditional user and system connectivity devices (flash, keyboard controller, mouse,

graphics, etc.), many server peripheral subsystems have extensive high-performance I=O capabilities.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 10 19.10.2007 9:09pm Compositor Name: BMani

1-10 Digital Systems and Applications

A server’s I=O capability is useful for supporting multiple high-speed network interfaces, storage arrays,

and clustering interfaces. Example I=O technologies are peripheral component interface (PCI), PCI-X,

and PCI-Express standard interfaces. Many modern peripheral hubs include additional features for

server manageability, serviceability, peer-to-peer communication between I=O interfaces, and the ability

to isolate, disable, and reroute high-performance I=O traffic.

1.1.5.1.6 Peripherals

Because of extensive computational capabilities, server peripheral subsystems are more extensive than

desktop or mobile PCs. Server peripherals include storage, Ethernet network interface controllers (NIC),

clustering interface, and archival storage devices. Some or all traditional peripheral elements such as

boot flash, keyboard, mouse, and graphics processing capabilities may also be available. Server peri-

pherals provide desired capabilities by supporting proprietary or open standard intersystem intercon-

nect interfaces such as PCI-Express. Following are the examples of peripherals:

1. Data storage and retrieval: Server storage and archival systems may be centralized or distributed.

High-performance, fault tolerant disk-storage access is achieved using RAID technology. Other

data-storage and retrieval technologies are network-attached storage (NAS), small computer

system interface (SCSI), and fiber channel storage area networking (SAN).

2. Network interface: High-performance servers require high-speed networking interfaces. Most

servers include several gigabit or higher speed Ethernet standard interfaces.

3. Clustering interfaces: Variety of proprietary or industry standard interfaces are available to

support clustering of multiple servers. Some clustering interfaces are based on switching fabric

technologies to enable multiple server node connection. Other proprietary server clustering

interfaces are the direct attach interface, optimized for large data transfer capabilities compared

to switching fabric interfaces.

4. Miscellaneous peripherals: Servers may include peripherals such as keyboard, mouse, and graph-

ics controller devices. Other special function peripherals such as encryption and decryption

accelerators may also be used.

1.1.5.2 Software Architecture

The server software architecture is very different from desktop or mobile PCs due to enterprise

requirements. In addition to supporting large number of users, server software are required to be

robust, secure, scalable, fault tolerant, and optimized for large database or transaction processing tasks.

In most cases, software architecture closely matches server types, e.g., web and proxy servers.

1.1.5.2.1 Operating System

Server operating systems are optimized for supporting large number of users, applications, CPU

utilization, large capacity system memory, extensive I=O, networking, and multiprocessor scheduling.

Clustered servers use independent and potentially different OS for each server node. Internet working

issues in such heterogeneous environment requires additional consideration and optimization. Many OS

and software programs use advanced caching techniques for high-performance access of large data sets

and databases.

1.1.5.2.2 Applications

There are a variety of server applications depending on the server type and the enterprise needs, e.g.,

database management, transaction processing, and decision support. Most server applications support

large number of simultaneous users, provide isolation among users accessing and sharing the same

database, contain extensive security, error or fault tolerance features. E-commerce servers have opti-

mized features for high-throughput transaction processing.

There are also many specialized server software applications typically referred to as middleware used

for application development and delivery process tools for web and application servers.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 11 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-11

1.1.5.3 Applications Usage Models

Server applications support variety of usage models and states since each customer may use it differently

and the applications have multitude of supported operational modes. For example, a user may be

updating the database with recent entries while others are accessing the same database. Application

usage models and states have specific system demand characteristics. Robust IT infrastructure deploy-

ment and operation ensures that the servers, network, and client architecture are performance tuned and

optimized for major usage models of interest. Example server configuration parameters are the number

of CPUs, system memory type and size, system and peripheral hubs, peripheral storage size, type, and

network interface speed. Software tuning mechanisms include optimizing compilers for parallel pro-

cessing, multithreading, and customizable libraries.

Server application usage models can be characterized in many ways. Some usages require high-

bandwidth communication between CPUs, system memory, and storage devices. Other usages require

extensive execution processing rate. Some servers, such as web cache, require high-performance network

interfaces.

1.1.6 Future Directions

Advanced server design requires enhancements in several areas:

1. Low-cost, high-performance, scalable server system design is an active area of research. Delivering

high user-perceived performance while overcoming system deployment limitations such as cost,

security, capacity, thermal, and power consumption are example challenges that need to be

addressed.

2. New server board material and design technologies that facilitate higher computing density

servers at lower cost, lower power consumption, or denser packaging would benefit future

high-performance server designs.

3. With advancements in semiconductor processing technology, VLSI feature sizes (line width,

transistor size, etc.) are becoming ever smaller. Small geometry devices are more sensitive to

charged particle–induced errors and high-speed signaling faults. Hence, for reliable operation, the

future server CPUs may need to include internal circuit error detection and correction or other

fault tolerance mechanisms. System software and hardware architecture of fault-tolerant CPU

servers are active areas of investigation.

4. With advancements in semiconductor processing technology, server CPUs will have ever-

increasing processing capabilities. Software and tools that can expose and exploit the increased

performance for key enterprise applications are highly desirable. Example requirements are

parallelizing compilers, advanced operating systems, development and debug tools, parallel file

systems, and high-speed networking.

5. Advancements in new enterprise class usage models are an active research area. Example

improvements are enhanced server security, combining real-time, data and transaction processing

enterprise applications, and support for more client devices.

6. Scalable and high-performance networking and clustering technologies to interconnect compon-

ents and servers are also active areas of research.

1.2 Very Large Instruction Word Architectures

Binu Mathew

1.2.1 What Is a VLIW Processor?

Recent high-performance processors have depended on instruction-level parallelism (ILP) to achieve

high execution speed. ILP processors achieve their high performance by causing multiple operations to

execute in parallel, using a combination of compiler and hardware techniques. Very long instruction

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 12 19.10.2007 9:09pm Compositor Name: BMani

1-12 Digital Systems and Applications

word (VLIW) is one particular style of processor design that tries to achieve high levels of ILP by

executing long instruction words composed of multiple operations. The long instruction word called a

MultiOp consists of multiple arithmetic, logic, and control operations each of which would probably be

an individual operation on a simple RISC processor. The VLIW processor concurrently executes the set

of operations within a MultiOp thereby achieving instruction level parallelism. The remainder of this

section discusses the technology, history, uses, and the future of such processors.

1.2.2 Different Flavors of Parallelism

Improvements in processor performance come from two main sources: faster semiconductor technology

and parallel processing. Parallel processing on multiprocessors, multicomputers, and processor clusters

has traditionally involved a high degree of programming effort in mapping an algorithm to a form

that can better exploit multiple processors and threads of execution. Such reorganization has often

been productively applied, especially for scientific programs. The general-purpose microprocessor

industry, on the other hand, has pursued methods of automatically speeding up existing programs

without major restructuring effort. This leads to the development of ILP processors that try to speedup

program execution by overlapping the execution of multiple instructions from an otherwise sequential

program.

A simple processor that fetches and executes one instruction at a time is called a simple scalar

processor. A processor with multiple function units has the potential to execute several operations in

parallel. If the decision about which operations to execute in an overlapped manner is made at run time

by the hardware, it is called a super scalar processor. In a simple scalar processor, a binary program

represents a plan of execution. The processor acts as an interpreter that executes the instructions in the

program one at a time. From the point of view of a modern super scalar processor, an input program is

more like a representation of an algorithm for which several different plans of execution are possible.

Each plan of execution specifies when and on which function unit each instruction from the instruction

stream is to be executed.

Different types of ILP processors vary in the manner in which the plan of execution is derived, but it

typically involves both the compiler and the hardware. In the current breed of high-performance

processors like the Intel Pentium and the MIPS R18000, the compiler tries to expose parallelism to

the processor by means of several optimizations. The net result of these optimizations is to place as many

independent operations as possible close to each other in the instruction stream. At run time, the

processor examines several instructions at a time, analyses the dependences between instructions, and

keeps track of the availability of data and hardware resources for each instruction. It tries to schedule

each instruction as soon as the data and function units it needs are available. The processor’s decisions

are complicated by the fact that memory accesses often have variable latencies that depend on whether a

memory access hits in the cache or not. Since such processors decide which function unit should be

allocated to which instruction as execution progresses, they are said to be dynamically scheduled. Often,

as a further performance improvement, such processors allow later instructions that are independent to

execute ahead of an earlier instruction which is waiting for data or resources. In that case, the processor

is said to be out-of-order.

Branches are common operations in general-purpose code. On encountering a branch, a processor

must decide whether or not to take the branch. If the branch is to be taken, the processor must start

fetching instructions from the branch target. To avoid delays due to branches, modern processors

try to predict the outcome of branches and execute instructions from beyond the branch. If the

processor predicted the branch incorrectly, it may need to undo the effects of any instructions

it has already executed beyond the branch. If a super scalar processor uses resources that may

otherwise go idle to execute operations the result of which may or may not be used, it is said to be

speculative.

Out-of-order speculative execution comes at a significant hardware expense. The complexity and

nonscalability of the hardware structures used to implement these features could significantly hinder the

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 13 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-13

performance of future processors. An alternative solution to this problem is to simplify processor

hardware and transfer some of the complexity of extracting ILP to the compiler and run time

system—the solution explored by VLIW processors.

Joseph Fisher, who coined the acronym VLIW, characterized such machines as architectures that issue

one long instruction per cycle, where each long instruction called a MultiOp consists of many tightly

coupled independent operations each of which execute in a small and statically predictable number of

cycles. In such a system, the task of grouping independent operations into a MultiOp is done by a

compiler or binary translator. The processor freed from the cumbersome task of dependence analysis has

to merely execute in parallel the operations contained within a MultiOp. This leads to simpler and faster

processor implementations. In later sections, we see how VLIW processors try to deal with the problems

of branch and memory latencies and implement their own variant of speculative execution. But, first, we

present a brief history of VLIW processors.

1.2.3 A Brief History of VLIW Processors

For various reasons, which were appropriate at that time, early computers were designed to have

extremely complicated instructions. These instructions made designing the control circuits for such

computers difficult. A solution to this problem was microprogramming, a technique proposed by

Maurice Wilkes in 1951. In a microprogrammed CPU, each program instruction is considered a macro-

instruction to be executed by a simpler processor inside the CPU. Corresponding to each macroinstruc-

tion, there will be a sequence of microinstructions stored in a microcode ROM in the CPU.

Horizontal microprogramming is a particular style of microprogramming where bits in a wide

microinstruction are directly used as control signals within the processor. In contrast, vertical micro-

programming uses a shorter microinstruction or series of microinstructions in combination with

some decoding logic to generate control signals. Microprogramming became a popular technique for

implementing the control unit of processors after IBM adopted it for the System=360 series of

computers.

Even before the days of the first VLIWmachines, there were several processors and custom computing

devices that used a single wide instruction word to control several function units working in parallel.

However, these machines were typically hand-coded and the code for such machines could not be

generalized to other architectures. The basic problem was that compilers at that time looked only within

basic blocks to extract ILP. Basic blocks are often short and contain many dependences and, therefore,

the amount of ILP that can be obtained inside a basic block is quite limited.

Joseph Fisher, a pioneer of VLIW, while working on PUMA, a CDC-6600 emulator, was frustrated by

the difficulty of writing and maintaining 64-bit horizontal microcode for that processor. He started

investigating a technique for global microcode compaction—a method to generate long horizontal

microcode instructions from short sequential ones. Fisher soon realized that the technique he developed

in 1979, called trace scheduling, could be used in a compiler to generate code for VLIW-like architec-

tures from a sequential source since the style of parallelism available in VLIW is very similar to that of

horizontal microcode. His discovery led to the design of the ELI-512 processor and the Bulldog trace-

scheduling compiler.

Two companies were founded in 1984 to build VLIW-based mini supercomputers. One was Multi-

flow, started by Fisher and colleagues from Yale University. The other was Cydrome founded by VLIW

pioneer Bob Rau and colleagues. In 1987, Cydrome delivered its first machine, the 256-bit Cydra 5,

which included hardware support for software pipelining. In the same year, Multiflow delivered the

Trace=200 machine, which was followed by the Trace=300 in 1988 and Trace=500 in 1990. The 200 and

300 series used a 256-bit instruction for 7 wide issue, 512 bits for 14 wide issue, and 1024 bits for 28 wide

issue. The 500 series only supported 14 and 28 wide issues. Unfortunately, the early VLIW machines

were commercial failures. Cydrome closed in 1988 and Multiflow in 1990.

Since then, VLIW processors have seen a revival and some degree of commercial success. Some of the

notable VLIW processors of recent years are the IA-64 or Itanium from Intel, the Crusoe processor from

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 14 19.10.2007 9:09pm Compositor Name: BMani

1-14 Digital Systems and Applications

Transmeta, the Trimedia media-processor from Philips, and the TMS320C62x series of DSPs from Texas

Instruments. Some important research machines designed during this time include the Playdoh from

HP labs, Tinker from North Carolina State University, and the Imagine stream and image processor

currently developed at Stanford University.

1.2.4 Defoe: An Example VLIW Architecture

We now describe Defoe, an example processor used in this section to give the reader a feel for VLIW

architecture and programming. Although it does not exist in reality, its features are derived from those

of several existing VLIW processors. Later sections that describe the IA-64 and the Crusoe, will contrast

those architectures with Defoe.

1.2.4.1 Function Units

Defoe is a 64-bit architecture with the following function units:

. Two load=store units.

. Two simple ALUs that perform add, subtract, shift, and logical operations on 64-bit numbers and

packed 32-, 16-, and 8-bit numbers. In addition, these units also support multiplication of packed

16- and 8-bit numbers.

. One complex ALU that can perform multiply and divide on 64-bit integers and packed 32-, 16-,

and 8-bit integers.

. One branch unit that performs branch, call, and comparison operations.

There is no support for floating point. Figure 1.5 shows a simplified diagram of the Defoe architecture.

Simple
integer

Simple
integer

Complex
integer

Load/
store

Load/
store

Branch/
cmp

64-Entry register file

Predecode buffer

Dispersal unit

I-cache

Score-
board
and
fetch

D-cache

16x
Pred

To L2
cache

From L2
cache

FIGURE 1.5 Defoe architecture.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 15 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-15

1.2.4.2 Registers and Predication

Defoe has a set of 64 programmer visible general-purpose registers that are 64 bits wide. As in the MIPS

architecture, register R0 always contains zero. Predicate registers are special 1-bit registers that specify a

true or false value. There are 16 programmer visible predicate registers in the Defoe named from PR0 to

PR15. All operations in Defoe are predicated, i.e., each instruction contains a predicate register (PR)

field that contains a PR number. At run time, if control reaches the instruction, the instruction is always

executed. However, at execution time, if the predicate is false, the results are not written to the register

file and side effects such as TLB miss exceptions are suppressed. In practice, for reasons of efficiency, this

may be implemented by computing a result, but writing back the old value of the target register.

Predicate register 0 (PR0) always contains the value 1 and cannot be altered. Specifying PR0 as the

predicate performs unconditional operations. Comparison operations use a predicate register as their

target register.

1.2.4.3 Instruction Encoding

Defoe is a 64-bit compressed VLIW architecture. In an uncompressed VLIW system, MultiOps have a

fixed length. When suitable operations are not available to fill the issue slots within a MultiOp, NOPs are

inserted into those slots. A compressed VLIWarchitecture uses variable lengthMultiOps to get rid of those

NOPs and achieve high code density. In the Defoe, individual operations are encoded as 32-bit words.

A special stop bit in the 32-bit word indicates the end of a MultiOp. Common arithmetic operations have

an immediate mode, where a sign or zero extended 8-bit constant may be used as an operand. For larger

constants of 16, 32, or 64 bits, a special NOP code may be written into opcode field of the next operation

and the low-order bits may be used to store the constant. In that case, the predecoder concatenates the

bits from two or more different words to assemble a constant (Fig. 1.6 depicts the instruction format).

1.2.4.4 Instruction Dispersal and Issue

A traditional VLIW with fixed width MultiOps has no need to disperse operations. However, when using

a compressed format like that of the Defoe, there is a need to expand the operations, and insert NOPs for

function units to which no operations are to be issued. To make the dispersal task easy, we make the

following assumptions:

. A few bits in the opcode specify the type of function unit (i.e., load=store, simple arithmetic,

complex arithmetic, or branch) the operation needs.

. The compiler ensures that the instructions that comprise a MultiOp are sorted in the same order

as the function units in the processor. This reduces the circuit complexity of the instruction

dispersal stage. For example, if a MultiOp consists of a load, a 32-bit divide, and a branch, then

the ordering (load, multiply, branch) is legal, but the ordering (load, branch, multiply) is not

legal.

. The compiler ensures that all the operations in the same MultiOp are independent.

. The compiler ensures that the function units are not oversubscribed. For example, it is legal to

have two loads in a MultiOp, but it is not legal to have three loads.

. It is illegal to not have a stop bit in a sequence of more than six instructions.

. Basic blocks are aligned at 32-byte boundaries.

Apart from reducing wastage of memory, another reason to prefer a compressed format VLIW over an

uncompressed one is that the former provides better I-cache utilization. To improve performance,

Stop bit
(1 bit)

Predicate
(4 bits)

Opcode
(9 bits)

Rdest
(6)

Rsrc1
(6)

Rscr2
(6)

FIGURE 1.6 Instruction encoding.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 16 19.10.2007 9:09pm Compositor Name: BMani

1-16 Digital Systems and Applications

we use a predecode buffer that can hold up to eight uncompressed MultiOps. The dispersal network can

use a wide interface (say 512 bits) to the I-cache to uncompress up to two MultiOps every cycle and save

them in the predecode buffer. Small loops of up to eight MultiOps (maximum 48 operations) will

experience repeated hits in the predecode buffer. It may also help to lower the power consumption of a

low-power VLIW processor.

Defoe supports in-order issue and out-of-order completion. Further, all the operations in a

MultiOp are issued simultaneously. If even one operation cannot be issued, issue of the whole

MultiOp stalls.

1.2.4.5 Branch Prediction

Following the VLIW philosophy of enabling the software to communicate its needs to the hardware,

branch instructions in Defoe can advise the processor about their expected behavior. A 2-bit hint

associated with every branch may be interpreted as follows:

Opcode Modifier Meaning

Stk Static prediction. Branch is usually taken.

Sntk Static prediction. Branch is usually not taken.

Dtk Dynamic prediction. Assume branch is taken if no history is available.

Dntk Dynamic prediction. Assume branch is not taken if no history is available.

Implementations of the Defoe architecture may provide branch prediction hardware, but a branch

predictor is not required in a minimal implementation. If branch prediction hardware is provided, static

branches need not be entered in the branch history table, thereby freeing up resources for dynamically

predicted branches.

1.2.4.6 Scoreboard

To accommodate branch prediction and the variable latency of memory accesses because of cache hits

and misses, some amount of scoreboarding is required. Although we will not describe the details of the

scoreboard here, it should be emphasized that the scoreboard and control logic for a VLIW processor

like the Defoe is much simpler than that of a modern super scalar processor because of the lack of out-

of-order execution and speculation.

1.2.4.7 Assembly Language Syntax

The examples that follow use the following syntax for assembly language instructions:

(predicate_reg) opcode.modifier Rdest¼Rsource1, Rsource2

If the predicate register is omitted, PR0 will be assumed. In addition, a semicolon following an

instruction indicates that the stop bit is set for that operation, i.e., this operation is the last one in its

MultiOp. The prefix ‘‘!’’ for a predicate implies that the opcode actually depends on the logical and not

on the value of the predicate register.

Example 1

This example demonstrates the execution model of the Defoe by computing the following set of

expressions.

a¼ xþ y� z

b¼ xþ y� 23 z

c¼ xþ y� 33 z

Register assignments: r1¼ x, r2¼ y, r3¼ z, r32¼ a, r33¼ b, r34¼ c.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 17 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-17

The first three lines are followed by a stop bit to indicate that these three operations constitute a

MultiOp and that they should be executed in parallel. Unlike a super scalar processor where inde-

pendent operations are detected by the processor, the programmer=compiler has indicated to the

processor by means of the stop bit that these three operations are independent. The multiply operation

will typically have a higher latency than the other instructions. In that case, we have two different ways

of scheduling this code. Since Defoe already uses scoreboarding to deal with variable load latencies, it

is only natural for the scoreboard to stall the issue till the multiply operation is done. In a traditional

VLIW processor, the compiler will insert additional NOPs after the first MultiOp. Lines 4–6 show how

structural hazards are handled in a VLIW system. The compiler is aware that Defoe has only two

simple integer ALUs. Even instruction 6 is independent of instructions 4 and 5 because of the

unavailability of a suitable function unit; instruction 6 is issued as a separate MultiOp, one cycle

after its two predecessors. In a super scalar processor, this decision will be handled at run time by the

hardware.

Example 2

This example contrasts the execution of an algorithm on Defoe and a super scalar processor (Intel

Pentium). The C language function absdiff computes the sum of absolute difference of two arrays A and

B, which contain 256 elements each.

int absdiff(int *A, int *B)

{

int sum, diff, i;
sum¼0;
for(i¼0; i<256; iþþ)

{

diff¼A[i]�B[i];
if(A[i]> ¼ B[i])
sum ¼ sumþdiff;
else
sum ¼ sum�diff;

}

return sum;

}

A hand-assembled version of absdiff in Defoe assembly language is shown below. For clarity, it has

been left unoptimized. An optimizing compiler will unroll this loop and software pipeline it.

Register assignment: On entry, r1¼ a, r2¼ b. On exit, sum is in r4.

Line # Code Comments

1. add r4¼r1, r2 == r4¼xþy
2. shl r5¼r3, 1 == r5¼z << 1, i.e. z * 2
3. mul r6¼r3, 3; == r6¼z * 3. Stop bit.
4. sub r32¼r4, r3 == r5¼a¼gets xþy - z
5. sub r33¼r4, r5; == r33¼b¼xþy - 2 * z.

== Stop bit.
6. sub r34¼r4, r6; == r34¼c¼xþy - 3 * z.

== Stop bit.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 18 19.10.2007 9:09pm Compositor Name: BMani

1-18 Digital Systems and Applications

The corresponding code for an Intel processor is shown below. This is a snippet of actual code

generated by the GCC compiler.

Stack assignment: On entry, 12(%ebp)¼B, 8(%ebp)¼A. On exit, sum is in the eax register.

The level of parallelism available in the Defoe listing lines 3–7 (five issue) can be achieved on a

super scalar processor only if the processor can successfully isolate the five independent operations fast

enough to issue them all during the same cycle. Dependency checking in hardware is extremely complex

and adds to the delay of super scalar processors. The 386 being a register deficient CISC architecture

also incurs additional penalties because of register renaming and CISC to internal RISC format

translation.

It is worth noticing that the Defoe listing contains only one branch (on line 12) whereas the 386

listing contains three branches. On a VLIW processor, we can often use predicated instructions to

Line # Code Comment

1. add r3¼r1, 2040 == r3¼End of array A
2. add r4¼r0, r0; == sum¼r4¼0
.L1:
3. ld r5¼[r1] == load A[i]
4. ld r6¼[r2] == load B[i]
5. add r1¼r1, 8 == Increment A address
6. add r2¼r2, 8 == Increment B address
7. cmp.neq pr1¼r1, r3; == pr1¼(i !¼ 255)
8. sub r7, r5, r6 == diff¼A[i] - B[i]
9. cmp.gte pr2¼r5, r6; == pr2¼(A[i] >¼ B[i])
10. (pr2) add r4¼r4, r7 == if A[i] >¼ B[i]

== sum¼sumþdiff
11. (!pr2) sub r4¼r4, r7 == else sum¼sum - diff
12. (pr1) br.sptk .L1;

Line # Code Comment

1. movl 12(%ebp), %edi == edi¼B
2. xorl %esi, %esi == esi sum¼0
3. xorl %ebx, %ebx == ebx¼0
.p2align 2
.L6:
4. movl 8(%ebp), %eax == eax¼A
5. movl (%eax,%ebx,4), %edx == edx¼A[i]
6. movl %edx, %ecx == ecx¼A[i]
7. movl (%edi,%ebx,4), %eax == eax¼B[i]
8. subl %eax, %ecx == ecx¼diff¼A[i]�B[i]
9. cmpl %eax, %edx == A[i]<B[i]
10. jl .L7 == goto .L7 is A[i]<B[i]
11. addl %ecx, %esi == sum¼sumþdiff
12. jmp .L5
.p2align 2
.L7:
13. subl %ecx, %esi == sum¼sum � diff
.L5:
14. incl %ebx == iþþ
15. cmpl $255, %ebx == i <¼ 255 ?
16. jle .L6
17. popl %ebx
18. Movl %esi, %eax

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 19 19.10.2007 9:09pm Compositor Name: BMani

Computer Architecture and Design 1-19

eliminate branches. In both listings, line 9 corresponds to the comparison of A[i] and B[i]. The Pentium

version does a conditional jump based on the result of the comparison. On the other hand, the VLIW

uses the result of the comparison to set a predicate. The predicate is then used to selectively write back

the result of either the add or the subtract operation and the result of the other operation is discarded.

This technique of converting a control dependence into a data dependence is called ‘‘if conversion.’’ The

benefits go beyond the single cycle saved by not doing a jump as in the case of the super scalar processor.

The jumps on lines 10 and 12 in the second listing depend on the condition code, which in turn depends

on the data. Such data-dependent branches are difficult to predict. Assuming that A[i]<B[i] and A[i]�
B[i] are equally likely, the super scalar processor is likely to experience a branch misprediction and the

resulting branch penalty half of the time.

Going by the VLIW philosophy of conveying performance-critical information from the compiler

to the hardware, the final branch on line 12 uses the opcode modifier ‘‘sptk’’ to inform the processor

that the branch is statically predicted to be taken. For that particular loop, a VLIW processor can

therefore predict the loop accurately 255 times out of 256 loop iterations without any hardware

branch predictor. Even when a hardware branch predictor is available, the instruction advises the

processor not to waste a branch history table entry on that branch because its behavior is already

known at compile time.

1.2.5 Intel Itanium Processor

The Itanium-1 processor is Intel’s first implementation of the IA-64 ISA. IA-64 is an ISA for the

explicitly parallel instruction computing (EPIC) style of VLIW developed jointly by Intel and HP. It is

a 64-bit, 6 issue VLIW processor with four integer units, four multimedia units, two load=store units,

two extended precision floating-point units, and two single-precision floating-point units. This proces-

sor running at 800 MHz on a 0.18 m process has a 10-stage pipeline.

Unlike the Defoe, the IA-64 architecture uses a fixed-width bundled instruction format. Each MultiOp

consists of one or more 128-bit bundles. Each 128-bit bundle consists of three operations and a

template. Unlike the Defoe where the opcode in each operation specifies a type field, the template

encodes commonly used combinations of operation types. Since the template field is only 5 bits wide,

bundles do not support all possible combinations of instruction types. Much like the Defoe’s stop bit, in

the IA-64, some template codes specify where in the bundle a MultiOp ends. In IA-64 terminology,

MultiOps are called instruction groups. Like Defoe, the IA-64 uses a decoupling buffer to improve its

issue rate. Although the IA-64 registers are nominally 64 bits wide, there is a hidden 65th bit called NaT

(Not a Thing). This is used to support speculation. There are 128 general-purpose registers and another

set of 128, 82-bit wide floating-point registers. Like the Defoe, all operations on the IA-64 are predicated.

However, the IA-64 has 64 predicate registers.

The IA-64 register mechanism is more complex than the Defoe’s because it implements support for

software pipelining using a method similar to the overlapped loop execution support pioneered by Bob

Rau and implemented in the Cydra 5. On the IA-64, general-purpose registers GPR0 to GPR31 are fixed.

Registers 32–127 can be renamed under program control to support a register stack or to do modulo

scheduling for loops. When used to support software pipelining, this feature is called register rotation.

Predicate registers from 0 to 15 are fixed whereas PRs from 16 to 63 can be made to rotate in unison with

the general-purpose registers. The floating-point registers also support rotation.

Modulo scheduling is a software pipelining technique that can support overlapped execution of loop

bodies while reducing tail code. In a pipelined function unit, each stage can hold a computation, and

successive items of data may be applied to the function unit before previous data is completely

processed. To take advantage of pipelined operation, in a modulo scheduled loop, the loop body is

unrolled and split into several stages. The compiler can schedule multiple iterations of a loop in a

pipelined manner as long as data outputs of one stage flow into the inputs of the next stage in the

software pipeline. Traditionally, this required unrolling the loop and renaming the registers used in

successive iterations. IA-64 reduces the overhead of such a loop and avoids the need for register

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 20 19.10.2007 9:09pm Compositor Name: BMani

1-20 Digital Systems and Applications

renaming by rotating registers forward, i.e., the rotating register base is incremented in the direction of

increasing register index. After rotating by n registers, the value that was in register Xþ n can be accessed

from register X. When used in conjunction with predication, this allows a natural expression of software

pipelines similar to their hardware counterparts.

The IA-64 supports software directed control and data speculation. To do control speculation,

the compiler moves a load before its controlling branch. The load is then flagged as a speculative

load. The processor does not signal exceptions on a speculative load. If the controlling branch is taken,

the compiler uses a special opcode named check.s to determine if an exception occurred. If an exception

occurred, the check operation transfers control to exception handling code.

To support data speculation, the processor supports a special kind of load called an advance load. If

the compiler cannot disambiguate between the addresses of a store and a later load, it can issue an

advance load ahead of the store. The processor uses a special hardware structure called the ALAT to keep

track of whether a later store wrote to the same location as the advance load. In the original location

where the load might naturally have been placed, the compiler inserts a special check operation to see if a

store invalidated the result of the advance load. If the advance load was invalidated, the check operation

transfers control to recovery code.

As in the case of Defoe, the IA-64 too supports both static and dynamic hints for branches. It also

makes use of hardware branch prediction. There are also hints in load and store instructions that inform

the processor about the cache behavior of a particular memory operation.

The IA-64 also includes SIMD instructions suitable for media processing. Special multimedia

instructions similar to the MMX and SSE extensions for 803 86 processors treat the contents of a

general-purpose register as two 32-bit, four 16-bit, or eight 8-bit operands and operate on them in

parallel.

To improve performance, the IA-64 architecture includes several features that are not found in a

traditional VLIW architecture. The Intel Itanium processor is probably the most complex VLIW ever

designed. It is a matter of debate whether some of the control complexity of the IA-64 is justifiable in a

VLIW architecture and whether the enhancements deliver commensurate performance improvements.

Next, we will look at a simpler VLIW processor that has been designed with a totally different goal—that

of reducing power consumption.

1.2.6 Transmeta Crusoe Processor

The Crusoe processor from Transmeta Corporation represents a very interesting point in the develop-

ment of VLIW processors. Traditionally, VLIW processors were designed with the goal of maximizing

ILP and performance. The designers of the Crusoe, on the other hand, needed to build a processor with

moderate performance compared to the CPU of a desktop computer, but with the additional restriction

that the Crusoe should consume very little power since it was intended for mobile applications. Another

design goal was that it should be able to efficiently emulate the ISA of other processors, particularly the

803 86 processors and the Java virtual machine.

The designers left out features like out-of-order issue and dynamic scheduling that require significant

power consumption. They set out to replace such complex mechanisms of gaining ILP with simpler and

more power-efficient alternatives. The end result was a simple VLIW architecture. Long instructions on

the Crusoe are either 64 or 128 bits. A 128-bit instruction word called a molecule in Transmeta parlance

encodes four operations called atoms. The molecule format directly determines how operations get

routed to function units. The Crusoe has two integer units, a floating-point unit, a load=store unit, and a

branch unit. Like the Defoe, the Crusoe has 64 general-purpose registers and supports strictly in order

issue. Unlike the Defoe, which uses predication, the Crusoe uses condition flags that are identical to

those of the 386 for ease of emulation.

Binary 386 programs, firmware and operating systems are emulated with the help of a run time

binary translator called code morphing software. This makes the classical VLIW software compatibility

problem a nonissue. Only the native code morphing software needs to be changed when the Crusoe

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 21 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-21

architecture or ISA changes. As a power and performance optimization, the hardware and software

together maintain a cache of translated code. The translations are instrumented to collect execution

frequencies and branch history and this information is fed back to the code morphing software to guide

its optimizations.

To correctly model the precise exception semantics of the 386 processor, the part of the register file

that holds 386 register state is duplicated. The duplicate is called a shadow copy. Normal operations

only affect the original registers. At the end of a translated section of code, a special commit operation is

used to copy the working register values to the shadow registers. If an exception happens while executing

a translated unit, the run time software uses the shadow copy to recreate the precise exception state.

Store operations are implemented in a similar manner using a store buffer. As in the case of IA-64, the

Crusoe provides alias detection hardware and data speculation primitives.

1.2.7 Scheduling Algorithms for VLIW

The difficulty of programming VLIW processors by hand should be evident even from the simple Defoe

programming examples. One reason programming VLIWs is more difficult than writing code for a super

scalar processor is that the program for a super scalar processor is inherently sequential and it is left to

the hardware to extract parallelism from the sequential program. On the other hand, when generating

code for a VLIW processor, the assembly language programmer or the compiler is faced with the task of

extracting parallelism from a sequential algorithm and scheduling independent operations concurrently.

For this reason, instruction scheduling algorithms are critical to the performance of a VLIW processor.

We next describe three important scheduling algorithms starting with the classic trace scheduling

algorithm.

1.2.7.1 Trace Scheduling

Many compilers for first-generation ILP processors used a three phase method to generate code. The

following were the phases:

. Generate a sequential program. Analyze each basic block in the sequential program for inde-

pendent operations.

. Schedule independent operations within the same block in parallel if sufficient hardware

resources are available.

. Move operations between blocks when possible.

This three phase approach fails to exploit much of the ILP available in the program for two reasons.

. Often times, operations in a basic block are dependent on each other. Therefore sufficient ILP

may not be available within a basic block.

. Arbitrary choices made while scheduling basic blocks make it difficult to move operations

between blocks.

Trace scheduling is a profile-driven method developed by Joseph Fisher to circumvent this problem. In

trace scheduling, a set of commonly executed sequence of blocks is gathered together into a trace and the

whole trace is scheduled together.

The trace scheduling algorithm works as follows:

1. Generate a possibly unoptimized version of the program, run it on sample input and collect

statistics. Estimate the probability of each conditional branch.

2. From the basic block level data precedence graph of the program (also commonly called DAG for

directed acylic graph), select a loop-free linear sequence of basic blocks, which have a high

probability of execution. Such a sequence is called a trace. The compiler may use other optimiza-

tions like loop unrolling or procedure inlining to generate DAGs from which suitable traces can

be selected.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 22 19.10.2007 9:10pm Compositor Name: BMani

1-22 Digital Systems and Applications

3. Consider the trace as if it were a basic block. Build a DAG for it considering branches like all other

operations. If an operation controlled by a conditional jump could overwrite a value that is

live on the off-trace edge, add an edge that makes the operation dependent on the branch so that

the operation cannot be moved ahead of the branch. Also, add edges to preserve the relative order

of conditional branches.

4. Schedule the resulting DAG as if it were a basic block doing register allocation and function unit

selection as each operation is scheduled.

5. Generate compensation code for mistakes made by considering the trace as a basic block. In

particular

a. If an operation that used to precede a conditional branch in the sequential code is moved after

that branch, then add a copy of that operation preceding the off-trace target of the conditional

jump.

b. If an operation that succeeded a point of entry into the trace from outside the trace is moved

ahead of that point of entry, place a copy of that operation outside the trace, on the path that

leads to that point of entry.

c. Ensure that the rejoins used to enter the trace enter the new trace only at a point after which no

operation is found in the new trace that were not below the rejoin point in the old trace.

6. Link the new trace back into the old DAG.

7. After scheduling the very first trace, new operations would have been added to the original DAG.

Pick a different frequent trace and schedule it. Repeat till the DAG has been covered using disjoint

traces and no unscheduled operations remain.

1.2.7.2 Trace Scheduling-2

Trace scheduling-2 goes beyond the original trace scheduling in that it allows nonlinear code motion,

i.e., it allows operations from both sides of a conditional branch to be moved above the branch. Trace

scheduling usually misses code motions that are speculative or moves operations from one trace to

another. Trace scheduling-2, on the other hand, uses an expected value function called speculative yield

to consider the cost of speculative execution and decide whether or not to move operations from one

block to another. Unlike trace scheduling, which operates on a linear sequence of blocks, the newer

algorithm works by picking clusters of operations where each cluster is a maximal set of operations that

are connected without back edges in the flow graph of the program. The actual details of the algorithm

are beyond the scope of this section.

1.2.7.3 Superblock Scheduling

Superblock scheduling is a region scheduling algorithm developed in conjunction with the IMPACT

compiler at the University of Illinois. Like trace scheduling, superblock scheduling is based on the

premise that extracting ILP from sequential programs requires code motion across multiple basic blocks.

Unlike trace scheduling, superblock scheduling is driven by static branch analysis, not profile data. A

superblock is a set of basic blocks in which control may enter only at the top, but may exit at more than

one point. Superblocks are identified by first identifying the traces and then eliminating side entries into

a trace by a process called tail duplication. Tail duplication works by creating a separate off-trace copy of

the basic blocks in between a side entrance and the trace exit and redirecting the edge corresponding to

the side entry to the copy. Traces are identified using static branch analysis based on loop detection,

heuristic hazard avoidance, and heuristics for path selection. Loop detection identifies loops and marks

loop back edges as taken and loop exits as not taken. Hazard avoidance uses a set of heuristics to detect

situations like ambiguous stores and procedure calls that could cause a compiler to use conservative

optimization strategies and then predicts the branches so as to avoid having to optimize hazards. Path

selection heuristics use the opcode of a branch, its operands, and the contents of its successor blocks to

predict its direction if no other method can be used to predict the outcome of the branch. These

are based on common programming patterns like the fact that pointers are unlikely to be NULL,

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 23 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-23

floating-point comparisons are unlikely to be equal etc. Once branch information is available, traces are

grown and superblocks created by tail duplication followed by scheduling of the superblock. Studies

have shown that static analysis-based superblock scheduling can achieve results that are comparable to

profile-based methods.

1.2.7.4 Future of VLIW Processors

VLIW processors have enjoyed moderate commercial success in recent times as exemplified by the

Philips Trimedia, TI TMS320C62x DSPs, Intel Itanium, and, to a lesser extent, the Transmeta Crusoe.

However, the role of VLIW processors has changed since the days of Cydrome and Multiflow. Even

though early VLIW processors were developed to be scientific supercomputers, newer processors have

been used mainly for stream, image and digital signal processing, multimedia codec hardware, low-

power mobile computers etc. VLIW compiler technology has made major advances during the last

decade. However, most of the compiler techniques developed for VLIW are equally applicable to super

scalar processors. Stream and media processing applications are typically very regular with predictable

branch behavior and large amounts of ILP. They lend themselves easily to VLIW style execution. The

ever-increasing demand for multimedia applications will continue to fuel development of VLIW

technology. However, in the short term, super scalar processors will probably dominate in the role of

general-purpose processors. Increasing wire delays in deep submicron processes will ultimately force

super scalar processors to use simpler and more scalable control structures and seek more help from

software. It is reasonable to assume that in the long run, much of the VLIW technology and design

philosophy will make its way into main stream processors.

References

1. J.A. Fisher, Global code generation for instruction-level parallelism: Trace scheduling-2. Technical

Report HPL-93-43, Hewlett–Packard Laboratories, June 1993.

2. J.A. Fisher, Very long instruction word architectures and the ELI-512, Proceedings of the 10th

Symposium on Computer Architectures, pp. 140–150, IEEE, June 1983.

3. J.A. Fisher, Very Long Instruction Word Architectures and the ELI-512. 25 Years ISCA: Retrospectives

and Reprints 1998: 263–273.

4. M. Schlansker, B.R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. Anik, and S.G. Abraham, Achieving

high levels of instruction-level parallelism with reduced hardware complexity. Technical Report HPL-

96-120, Hewlett–Packard Laboratories, February 1997.

5. M. Schlansker and B.R. Rau, Epic: an architecture for instruction level parallel processors. Technical

Report HPL-1999-111, Hewlett–Packard Laboratories, February 2000.

6. S. Rixner, W.J. Dally, U.J. Kapasi, K. Brucek, A. Lopez-Lagunas, P.R Mattson, and J.D. Owens,

A bandwidth-efficient architecture for media processing. Proceedings of the 31st Annual International

Symposium on Microarchitecture, Dallas, TX, November 1998.

7. Intel Corporation. Itanium Processor Microarchitecture Reference for Software Optimization. Intel

Corporation, Santa Clara, CA, March 2000.

8. Intel Corporation. Intel IA-64 Architecture Software Developer’s Manula, Volume 3: Instruction Set

Reference. Intel Corporation, Santa Clara, CA, January 2000.

9. Intel Corporation. IA-64 Application Developer’s Architecture Guide. Intel Corporation, Santa Clara,

CA, May 1999.

10. P.G. Lowney, S.M. Freudenberger, T.J. Karzes, W.D. Lichtenstein, R.P. Nix, J.S. O’Donnell, and J.C.

Ruttenberg, The Multiflow trace scheduling compiler. Journal of Supercomputing, 7, 1993.

11. R.E. Hank, S.A. Mahlke, J.C. Gyllenhaal, R. Bringmann, and W.W. Hwu, Superblock formation using

static program analysis, Proceedings of the 26th Annual International Symposium on Microarchi-

tecture, Austin, TX, pp. 247–255, December 1993.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 24 19.10.2007 9:10pm Compositor Name: BMani

1-24 Digital Systems and Applications

12. S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann, Effective compiler support for

predicated execution using the hyperblock, Proceedings of the 25th International Symposium on

Microarchitecture, pp. 45–54, December 1992.

13. J.C. Dehnert, P.Y.-T. Hsu, and J.P. Bratt, Overlapped loop support in the Cydra 5, Proceedings of

ASPLOS 89, pp. 26–38, 1989.

14. A. Klaiber, The Technology Behind Crusoe Processors. Transmeta Corporation, Santa Clara, CA, 2000.

1.3 Vector Processing

Krste Asanović

1.3.1 Introduction

For over 30 years, vector processing has been used in the world’s fastest supercomputers to accelerate

applications in scientific and technical computing. More recently, vector-like extensions have become

popular in desktop and embedded microprocessors to accelerate multimedia applications. In both cases,

architects are motivated to include data-parallel instructions because they enable large increases in

performance at much lower cost than alternative approaches to exploiting application parallelism. This

chapter reviews the development of data-parallel instruction sets from the early SIMD (single instruction,

multiple data) machines, through the vector supercomputers, to the new multimedia instruction sets.

1.3.2 Data Parallelism

An application is said to contain data parallelism when the same operation can be carried out across

arrays of operands, for example, when two vectors are added element by element to produce a result

vector. Data-parallel operations are usually expressed as loops in sequential programming languages.

Data-parallel instructions can be used to execute the code, if each loop iteration is independent of the

other. The following vector add code written in C is a simple example of a data-parallel loop:

for (i ¼ 0; i<N; iþþ)
C[i] ¼ A[i]þB[i];

Provided that the result array C does not overlap the source arrays A and B, the individual

loop iterations can be run in parallel. Many compute-intensive applications are built around such

data-parallel loop kernels. One of the most important factors in determining the performance of data-

parallel programs is the range of vector lengths observed for typical data sets. Vector lengths vary

depending on the application, how the application is coded, and also on the input data for each run. In

general, the longer the vectors, the greater the performance achieved by a data-parallel architecture, as

any loop start-up overheads will be amortized over a larger number of elements.

The performance of a piece of vector code running on a data-parallel machine can be summarized

with a few key parameters. Rn is the rate of execution (for example, in MFLOPS) for a vector of length n.

R1 is the maximum rate of execution achieved assuming infinite length vectors. N1
2
is the number of

elements at which vector performance reaches one half of R1. N1
2
indirectly measures start-up overhead,

as it gives the vector length at which the time lost to overheads is equal to the time taken to execute the

vector operation at peak speed ignoring overheads. The larger the N1
2
for a code kernel running on a

particular machine, the longer the vectors must be to achieve close to peak performance.

1.3.3 History of Data-Parallel Machines

Data-parallel architectures were first developed to provide high throughput for supercomputing

applications. There are two main classes of data-parallel architectures: distributed-memory SIMD

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 25 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-25

(DM-SIMD) [1] architecture and shared-memory vector architecture. An early example of a DM-SIMD

architecture is the Illiac-IV [2]. A typical DM-SIMD architecture has a general-purpose scalar processor

acting as the central controller and an array of processing elements (PEs) each with its own private

memory, as shown in Fig. 1.7. The central processor executes arbitrary scalar code and also fetches

instructions, and broadcasts them across the array of PEs, which execute the operations in parallel and in

lockstep. Usually the local memories of the PE array are mapped onto the central processor’s address

space so that it can read and write any word in the entire machine. PEs can communicate with each

other using a separate parallel inter-PE data network. Many DM-SIMD machines, including the ICL

DAP [3] and the Goodyear MPP [4], used single-bit processors connected in a 2-D mesh, providing

communications well matched to image processing or scientific simulations that could be mapped to a

regular grid. The later Connection Machine design [5] added a more flexible router to allow arbitrary

communication between single-bit PEs, although at much slower rates than the 2-D mesh network. One

advantage of single-bit PEs is that the number of cycles taken to perform a primitive operation, such as

an add can scale with the precision of the operands, making them well suited to tasks such as

image processing, where low-precision operands are common. An alternative approach was taken in

the Illiac-IV where wide 64-bit PEs could be subdivided into multiple 32-bit or 8-bit PEs to give higher

performance on reduced precision operands. This approach reduces N1
2
for calculations on vectors with

wider operands but requires more complex PEs. This same technique of subdividing wide datapaths has

been carried over into the new generation of multimedia extensions (MX) for microprocessors. The

main attraction of DM-SIMD machines is that the PEs can be much simpler than the central processor

because they do not need to fetch and decode instructions. This allows large arrays of simple PEs to be

constructed, for example, up to 65,536 single-bit PEs in the original Connection Machine design.

Shared-memory vector architectures (henceforth abbreviated as vector architectures) also belong to

the class of SIMD machines, as they apply a single instruction to multiple data items. The primary

difference in the programming model of vector machines versus DM-SIMD machines is that vector

machines allow any PE to access any word in the system’s main memory. Because it is difficult to

construct machines that allow a large number of simple processors to share a large central memory,

vector machines typically have a smaller number of highly pipelined PEs.

The two earliest commercial vector architectures were the CDC STAR-100 [6] and the TI ASC [7].

Both these machines were vector memory–memory architectures, where the vector operands to a vector

instruction were streamed in and out of memory. For example, a vector add instruction would specify

the start addresses of both source vectors and the destination vector; during execution, elements were

Inter-PE communication network

PE PE PE PE PE PE PE PE

MEM MEM

Array controller
and

scalar processor

MEM MEM MEM MEM MEM MEM

FIGURE 1.7 Structure of a distributed-memory SIMD (DM-SIMD) processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 26 19.10.2007 9:10pm Compositor Name: BMani

1-26 Digital Systems and Applications

fetched from memory before being operated on by the arithmetic unit, which produced a set of results

that had to be written back to main memory.

The Cray-1 [8] was the first commercially successful vector architecture and introduced the idea of

vector registers. A vector register architecture provides vector arithmetic operations that can only take

operands from vector registers, with vector load and store instructions that only move data between the

vector registers and memory. Vector registers hold short vectors close to the vector functional units,

shortening instruction latencies and allowing vector operands to be reused from registers thereby

reducing memory bandwidth requirements. These advantages have led to the dominance of vector

register architectures and vector memory–memory machines are ignored for the rest of this section.

DM-SIMD machines have two primary disadvantages compared to vector supercomputers when

writing applications. The first disadvantage is that the programmer has to be extremely careful in

selecting algorithms and mapping data arrays across the machine to ensure that each PE can satisfy

almost all of its data accesses from its local memory, while ensuring the local data set still fits into the

limited local memory of each PE. In contrast, the PEs in a vector machine have equal access to all main

memories, and the programmer only has to ensure that data accesses are spread across all the interleaved

memory banks in the memory system.

The second disadvantage is that DM-SIMD machines typically have a large number of simple PEs and

so to avoid having many PEs sit idle, applications must have long vectors. For the large-scale DM-SIMD

machines, N1
2
can be in the range of tens of thousands of elements. In contrast, the vector supercom-

puters contain a few highly pipelined PEs and have N1
2
in the range of tens to hundreds of elements.

To make effective use of a DM-SIMD machine, the programmer has to find a way to restructure code

to contain very long vector lengths, while simultaneously mapping data structures to distributed small

local memories in each PE. Achieving high performance under these constraints has proven difficult

except for a few specialized applications. In contrast, the vector supercomputers do not require data

partitioning and provide reasonable performance on much shorter vectors and so require much less

effort to port and tune applications. Although DM-SIMD machines can provide much higher peak

performances than vector supercomputers, sustained performance was often similar or lower, and

programming effort was much higher. As a result, although they achieved some popularity in the

1980s, DM-SIMD machines have disappeared from the general-purpose computing market with no

current commercial manufacturers, whereas high-end vector supercomputers are still being produced by

Cray and NEC. DM-SIMD architectures remain popular in a few niche special-purpose areas, particu-

larly in image processing and in graphics rendering, where the natural application parallelism maps well

onto the DM-SIMD array, providing extremely high throughput at low cost.

Although data-parallel instructions were originally introduced for high-end supercomputers, they can

be applied to many applications outside of scientific and technical supercomputing. Beginning with the

Intel i860 released in 1989, microprocessor manufacturers have introduced data-parallel instruction set

extensions which allow a small number of parallel SIMD operations to be specified in single instruction.

These microprocessor SIMD ISA (instruction set architecture) extensions were originally targeted at

multimedia applications and supported only limited-precision, fixed-point arithmetic, but now support

single- and double-precision floating-point arithmetic and hence a much wider range of applications. In

this chapter, SIMD ISA extensions are viewed as a form of short vector instruction to allow a unified

discussion of design trade-offs.

1.3.4 Basic Vector Register Architecture

Vector processors contain a conventional scalar processor that executes general-purpose code together

with a vector processing unit that handles data-parallel code. Figure 1.8 shows the general architecture of

a typical vector machine. The vector processing unit includes a set of vector registers and a set of vector

functional units that operate on the vector registers. Each vector register contains a set of two or more

data elements. A typical vector arithmetic instruction reads source operand vectors from two vector

registers, performs an operation pairwise on all elements in each vector register, and writes a result

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 27 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-27

vector to a destination vector register, as shown in Fig. 1.9. Often, versions of vector instructions are

provided that replace one vector operand with a scalar value; these are termed vector–scalar instructions.

The scalar value is used as one of the operand inputs at each element position.

VAU

Vector registers

VMU

Memory system

VFU

Mask
registersInstruction

cache

Scalar unit

Scalar
data cache

VAU

FIGURE 1.8 Structure of a vector machine. This example has a central vector register file, two vector arithmetic

units (VAU), one vector memory load=store unit (VMU), and one vector flag=mask unit (VFU) that operates on the

mask registers. (Adapted from Asanovic, K., Vector Microprocessors, Ph.D. Thesis, University of California, Berkeley,

1998. With permission.)

V1[0] V1[1] V1[2] V1[3]

V2[0] V2[1] V2[2] V2[3]

V3[0] V3[1] V3[2] V3[3]

FIGURE 1.9 Operation of a vector add instruction. Here, the instruction is adding vector registers 1 and 2 to give a

result in vector register 3.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 28 19.10.2007 9:10pm Compositor Name: BMani

1-28 Digital Systems and Applications

The vector ISA usually fixes the maximum number of elements in each vector register, although some

machines, such as the IBM vector extension for the 3090 mainframe, support implementations with

differing numbers of elements per vector register. If the number of elements required by the application

is less than the number of elements in a vector register, a separate vector length register (VLR) is set with

the desired number of operations to perform. Subsequent vector instructions only perform this number

of operations on the first elements of each vector register. If the application requires vectors longer than

will fit into a vector register, a process called strip mining is used to construct a vector loop that executes

the application code loop in segments that each fit into the machine’s vector registers. The MX ISAs have

very short vector registers and do not provide any vector length control. Various types of vector load and

store instruction can be provided to move vectors between the vector register file and memory. The

simplest form of vector load and store transfers a set of elements that are contiguous in memory to

successive elements of a vector register. The base address is usually specified by the contents of a register

in the scalar processor. This is termed a unit-stride load or store, and is the only type of vector load and

store provided in existing MX instruction sets.

Vector supercomputers also include more complex vector load and store instructions. A strided load

or store instruction transfers memory elements that are separated by a constant stride, where the stride is

specified by the contents of a second scalar register. Upon completion of a strided load, vector elements

that were widely scattered in memory are compacted into a dense form in a vector register suitable for

subsequent vector arithmetic instructions. After processing, elements can be unpacked from a vector

register back to memory using a strided store.

Vector supercomputers also include indexed load and store instructions to allow elements to be

collected into a vector register from arbitrary locations in memory. An indexed load or store uses a

vector register to supply a set of element indices. For an indexed load or gather, the vector of indices is

added to a scalar base register to give a vector of effective addresses from which individual elements are

gathered and placed into a densely packed vector register. An indexed store, or scatter, inverts the process

and scatters elements from a densely packed vector register into memory locations specified by the

vector of effective addresses.

Many applications contain conditionally executed code; for example, the following loop clears values

of A[i] smaller than some threshold value:

for (i¼0; i<N; iþþ)
if (A[i]<threshold)

A[i]¼0;

Data-parallel instruction sets usually provide some form of conditionally executed instruction to

support parallelization of such loops. In vector machines, one approach is to provide a mask register that

has a single-bit per element position. Vector comparison operations test a predicate at each element and

set bits in the mask register at element positions where the condition is true. A subsequent vector

instruction takes the mask register as an argument, and at element positions where the mask bit is set,

the destination register is updated with the result of the vector operation, otherwise the destination

element is left unchanged. The vector loop body for the previous vector loop is shown below (with all

strip mining loop code removed).

lv va, (ra) # Load slice of vector A from memory
cmp.lt.vs va, rt # Set mask where A[i]<threshold
move.vs.m va, r0 # Clear elements of A[i] under mask
sv va, (ra) # Store updated slice of A to memory

1.3.5 Vector Instruction Set Advantages

Vector instruction set extensions provide a number of advantages over alternative mechanisms for

encoding parallel operations. Vector instructions are compact, encoding many parallel operations in a

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 29 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-29

single, short instruction, compared with superscalar or very long instruction word (VLIW) instruction

sets, which encode each individual operation using a separate collection of instruction bits.

They are also expressive, relaying much useful information from software to hardware. When a

compiler or programmer specifies a vector instruction, they indicate that all of the elemental operations

within the instruction are independent, allowing hardware to execute the operations using pipelined

execution units, or parallel execution units, or any combination of pipelined and parallel execution

units, without requiring dependency checking or operand bypassing for elements within the same vector

instruction. Vector ISAs also reduce the dependency checking required between two different vector

instructions. Hardware only has to check dependencies once per vector register, not once per elemental

operation. This dramatically reduces the complexity of building high-throughput execution engines

compared with reduced instruction set computer (RISC) or VLIW scalar cores, which have to perform

dependency and interlock checking for every elemental result. Vector memory instructions can also relay

much useful information to the memory subsystem by passing a whole stream of memory requests

together with the stride between the elements in the stream.

Another considerable advantage of a vector ISA is that it simplifies scaling of implementation

parallelism. As described in the next section, the degree of parallelism in the vector unit can be increased

while maintaining object–code compatibility.

1.3.6 Lanes: Parallel Execution Units

Figure 1.10a shows the execution of a vector add instruction on a single-pipelined adder. Results are

computed at the rate of one element per cycle. Figure 1.10b shows the execution of a vector add

A [9]

A [8]

A [7]

A [6]

A [5]

A [4]

A [3]

A [2]

A [1]

B [9]

B [8]

B [7]

B [6]

B [5]

B [4]

B [3]

B [2]

B [1]

A [8]

A [4]

B [8]

B [4]

A [9]

A [5]

B [9]

B [5] A [6] B [6] A [7] B [7]

C [0]

C [0] C [1] C [2] C [3]

(a) (b) Element group

FIGURE 1.10 Execution of vector add instruction using different numbers of execution units. The machine in (a)

has a single adder and completes one result per cycle, while the machine in (b) has four adders and completes four

results every cycle. An element group is the set of elements that proceed down the parallel pipelines together. (From

Asanovic, K., Vector Microprocessors, Ph.D. Thesis, University of California, Berkeley, 1998. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 30 19.10.2007 9:10pm Compositor Name: BMani

1-30 Digital Systems and Applications

instruction using four parallel pipelined adders. Elements are interleaved across the parallel pipelines

allowing up to four element results to be computed per cycle. This increase in parallelism is invisible to

software except for the increased performance.

Figure 1.11 shows how a typical vector unit can be constructed as a set of replicated lanes, where each

lane is a cluster containing a portion of the vector register file and one pipeline from each vector

functional unit. Because of the way the vector ISA is designed, there is no need for communication

between the lanes except via the memory system. The vector registers are striped over the lanes, with lane

0 holding all elements 0, N, 2N, etc., lane 1 holding elements 1, Nþ 1, 2Nþ 1, etc. In this way, each

elemental vector arithmetic operation will find its source and destination operands located within the

same lane, which dramatically reduces interconnect costs.

Vector supercomputers can have as many as 16 parallel 64-bit lanes in each CPU. For example, the

NEC SX-5 can complete 16 loads, sixteen 64-bit floating-point multiplies, and sixteen 64-bit floating-

point adds each clock cycle.

Many data-parallel systems, ranging from vector supercomputers, such as the early CDC STAR-100, to

the MX ISAs, such as AltiVec, provide variable precision lanes, where a wide 64-bit lane can be

subdivided into a larger number of lower precision lanes to give greater performance on reduced

precision operands. This technique can be traced back to the MIT Lincoln Labs TX-2 computer from

1957 (famous as the machine used to run Ivan Sutherland’s seminal Sketchpad program), which had a

36-bit datapath that could be divided into two 18-bit lanes, or four 9-bit lanes [9].

1.3.7 Vector Register File Organization

Vector machines differ widely in the organization of the vector register file. The important software-

visible parameters for a vector register file are the number of vector registers, the number of elements

in each vector register, and the width of each element. The Cray-1 had eight vector registers each

holding sixty four 64-bit elements (a total of 4096 bits). The AltiVec MX for the PowerPC has 32 vector

Add

Elements
0,4,8,...

Mult. Mult. Mult. Mult.

Memory system

Elements
1,5,9,...

Elements
2,6,10,...

Elements
3,7,11,...

Add Add Add

Lane

Add FU

Multiply FU

Vector
registers

FIGURE 1.11 Avector unit constructed from replicated lanes. Each lane holds one adder and one multiplier as well

as one portion of the vector register file and a connection to the memory system. The adder functional unit (adder

FU) executes add instructions using all four adders in all four lanes.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 31 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-31

registers each holding 128-bits that can be divided into four 32-bit elements, eight 16-bit elements, or

sixteen 8-bit elements. Some vector supercomputers have extremely large vector register files organized

in a vector register hierarchy, e.g., the NEC SX-5 has 72 vector registers (8 foreground plus 64

background) that can each hold five hundred and twelve 64-bit elements.

For a fixed vector register storage capacity (measured in elements), an architecture has to choose

between few longer vector registers and more shorter vector registers. The primary advantage of

lengthening a vector register is that it reduces the instruction bandwidth required to attain a given

level of performance because a single instruction can specify a greater number of parallel operations.

Increases in vector register length give rapidly diminishing returns, as amortized start-up overheads

become small and as fewer applications can take advantage of the increased vector register length.

The primary advantage of providing more vector registers is that it allows more temporary values to be

held in registers, reducing data memory bandwidth requirements. For machines with only eight vector

registers, vector register spills have been shown to consume up to 70% of all vector memory traffic, while

increasing the number of vector registers to 32 removes most register spill traffic [10,11]. Adding more

vector registers also gives compilers more flexibility in scheduling vector instructions to boost vector

instruction-level parallelism. In 2002, Cray announced a completely redesigned vector instruction set for

their new Cray X1 vector computer [12]. The X1 instruction set increases the number of software-visible

vector registers from eight, used on all earlier Cray machines since the Cray-1, to a more modern 32.

Some vector machines provide a configurable vector register file to allow software to dynamically

choose the optimal configuration. For example, the Fujitsu VPP 5000 allows software to select vector

register configurations ranging from 256 vector registers each holding 128 elements to eight vector

registers holding 4096 elements each. For loops where few temporary values exist, longer vector registers

can be used to reduce instruction bandwidth and strip mining overhead, whereas for loops where many

temporary values exist, the number of shorter vector registers can be increased to reduce the number of

vector register spills and, hence, the data memory bandwidth required. The main disadvantage of a

configurable vector register file is the increase in control logic complexity and the increase in machine

state to hold the configuration information.

1.3.8 Traditional Vector Computers versus Microprocessor
Multimedia Extensions

Traditional vector supercomputers were developed to provide high performance on data-parallel code

developed in a compiled high-level language (almost always a dialect of FORTRAN) while requiring

only simple control units. Vector registers were designed with a large number of elements (64 for the

Cray-1). This allowed a single-vector instruction to occupy each deeply pipelined functional unit for

many cycles. Although only a single instruction could be issued per cycle, by starting separate vector

instructions on different vector functional units, multiple vector instructions could overlap in execu-

tion at one time. In addition, adding more lanes allows each vector instruction to complete more

elements per cycle.

MX ISAs for microprocessors evolved at a time when the base microprocessors were already issuing

multiple scalar instructions per cycle. Another distinction is that the MX ISAs were not originally

developed as compiler targets, but were intended for use in a few key library routines. This helps in

explaining why MX ISAs, although sharing many attributes with earlier vector instructions, have evolved

differently. The very short vectors in MX ISAs allow each instruction to specify only one or two cycle’s

worth of work for the functional units. To keep multiple functional units busy, the superscalar dispatch

capability of the base scalar processor is used. To hide functional unit latencies, the multimedia code

must be loop unrolled and software pipelined. In effect, the multimedia engine is being programmed in

a microcoded style with the base scalar processor providing the microcode sequencer and each MX

instruction representing one microcode primitive for the vector engine.

This approach of providing only primitive microcode level operations in the MX also explains the lack

of other facilities standard in a vector ISA. One example is vector length control. Rather than using long

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 32 19.10.2007 9:10pm Compositor Name: BMani

1-32 Digital Systems and Applications

vectors and a VLR, the MX ISAs provide short vector instructions that are placed in unrolled loops to

operate on longer vectors. These unrolled loops can only be used with long vectors that are a multiple of

the intrinsic vector length multiplied by the unrolling factor. Extra code is required to check for shorter

vectors and to jump to separate code segments to handle short vectors and the remnants of any longer

vector that were not handled by the unrolled loop. This overhead is greater than for the strip mining

code in traditional vector ISAs, which simply set the VLR appropriately in the last iteration of the strip-

mined loop.

Vector loads and stores are another place where functionality has been moved into software for the

MX ISAs. Most MX ISAs only provide unit-stride loads and stores that have to be aligned on boundaries

corresponding to the vector length, not just aligned at element boundaries as in regular scalar code. For

example, a unit-stride load of four 16-bit quantities has to be aligned at 64-bit boundaries in most MX

instruction sets, although in some cases hardware will handle misaligned loads and stores at a slower

rate. To help handle misaligned application vectors, various shift and align instructions have been added

to MX ISAs to allow misalignment to be handled as part of the software microcoded loop. This approach

simplifies the hardware design, but unfortunately these misaligned vectors are common in application

code, and significant slowdown occurs when performing alignment in software. This encourages the use

of loops optimized for certain operand alignments, which leads to an increase in code size and also in

loop start-up time to select the appropriate routine. In certain cases, the application can constrain the

layout of the data elements to ensure alignment at the necessary boundaries, but typically this is only

possible when the entire application has been optimized for these MX instructions, for example, in a

dedicated media player. Strided and indexed operations are also usually coded as scalar loads and stores

with a corresponding slowdown over full vector mode.

1.3.9 Memory System Design

Perhaps the biggest difference between microprocessors and vector supercomputers is in the capabilities

of the vector memory system. Vector supercomputers usually forgo data caches and rely on many banks

of interleaved main memory to provide high memory bandwidth, whereas microprocessors rely on

multilevel cache hierarchies to isolate the CPU from memory latencies and limited main memory

bandwidth. A modern high-end vector supercomputer provides over 50 GB=s of main memory

bandwidth per CPU, whereas high-end microprocessor systems provide only around 5 GB=s per CPU.

For applications that require nonunit stride accesses to large data sets, the bandwidth discrepancy is even

larger, because microprocessors access memory using long cache lines that waste bandwidth when there

is little spatial locality. A modern vector CPU might sustain 16 or 32 nonunit stride memory operations

every cycle pipelined out to main memory, with hundreds or thousands of outstanding memory

accesses, whereas a microprocessor usually can only have a total of four–eight cache line misses

outstanding at any time. This large difference in nonunit stride memory bandwidth is the main reason

that vector supercomputers remain popular for certain applications, including car crash simulation and

weather forecasting.

Traditional vector ISAs use long vector registers to help hide memory latency. MX ISAs have only very

short vector registers and so require a different mechanism to hide memory latency and make better use

of available main memory bandwidth. Various forms of hardware and software prefetching schemes

have become popular with microprocessor designers to hide memory latency. Hardware prefetching

schemes dynamically inspect memory references and attempt to predict the data that will be needed

next, fetching these into the cache before requested by the application. This approach has the advantage

of not requiring changes to software, but can be inaccurate and can consume excessive memory

bandwidth for incorrectly speculated prefetches.

Software prefetching schemes can be very accurate as the compiler knows the reference patterns

of each piece of code, but the software prefetch instructions have to be carefully scheduled so that data

are not brought in too early, perhaps evicting useful data, or too late, which will leave some memory

latency exposed. The optimal schedule depends on the CPU and memory system implementation,

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 33 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-33

which implies that prefetch code optimized for one generation of CPU or one particular memory system

will not be optimal for another.

For either hardware or software prefetching schemes, it is essential that the memory controller can

support many outstanding requests; otherwise, high memory bandwidths cannot be sustained from a

typical high-latency memory system.

1.3.10 Future Directions

Microprocessor architects are continually searching for techniques that can take advantage of ever-

increasing transistor counts to improve application performance. Data-parallel ISA extensions have

proven effective on a wide range of applications, and hardware designs scale well to more parallel lanes.

Existing supercomputers have sixteen 64-bit lanes while microprocessor MX implementations have

expanded to two 64-bit lanes. It is likely that there will be further expansion of MX units to four or more

64-bit lanes. At higher lane counts, efficiencies drop, partly because of limited application vector lengths

and partly because additional lanes do not help nondata parallel portions of each application.

An alternative approach to attaining high throughput on data-parallel applications is to build a

multicore chip, i.e., multiple independent CPUs each with vector units, and to parallelize loops at the

thread level. This technique also allows independent CPUs to run different tasks to improve system thro-

ughput. The main disadvantages of this multiprocessor approach compared to simply increasing the

number of lanes are the hardware costs of additional scalar processor logic and the additional inter-

CPU synchronization overhead. The relative cost of adding more CPUs is reduced as lane counts grow,

particularly, when the cost of providing sufficient main memory bandwidth is considered. The inter-

CPU synchronization cost is a more serious issue as it adds to vector start-up latencies and can increase

N1
2
dramatically, reducing the effectiveness of multiprocessors on shorter vectors. For this reason,

multiprocessor vector supercomputers have added dedicated hardware for fast inter-CPU synchroni-

zation. For example, the Cray X1 gangs together four 2-lane processors in software to appear as a single

8-lane processor to the user [12]. It should be expected that some form of fast inter-CPU synchron-

ization primitive will be added to general-purpose ISAs as chip-scale multiprocessors become common,

as these primitives can also be applied to many types of thread-level parallel code.

Increased CPU clock frequencies and increased lane counts combine to dramatically increase the

memory bandwidth required by a vector CPU. The cost of a traditional vector style memory system has

become prohibitive even for high-end vector supercomputers. Even if the cost could be justified, the

high memory latency of a flat memory system will hamper performance for applications that have lower

degrees of parallelism and that can fit in caches, and a continued move toward cached memory

hierarchies for vector machines is to be expected, leading to a merging of vector supercomputer and

microprocessor design points. The Cray X1 relies on a cached memory hierarchy, for example, and

cannot sustain full vector load and store bandwidth from main memory.

MX for microprocessors have undergone considerable changes since their introduction. The current

designs provide low-level arithmetic and memory system primitives that are intended to be used in

hand-microcoded loops. These result in high start-up overheads and large code size relative to trad-

itional vector extensions as discussed above. A possible future direction that could merge the benefit of

vector ISAs and out-of-order superscalar microprocessors would be to add vector-style ISA extensions,

but have these interpreted by microcode sequencers that would produce internal elemental microopera-

tions that would be passed through the regular register renaming and out-of-order dispatch stages of a

modern superscalar execution engine. This would be similar to the way that legacy complex instruction

set computers (CISC) string operations are handled by modern implementations.

1.3.11 Conclusions

Data-parallel instructions have appeared in many forms in high-performance computer architectures

over the last 30 years. They remain popular because many applications are amenable to data-parallel

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 34 19.10.2007 9:10pm Compositor Name: BMani

1-34 Digital Systems and Applications

execution, and because data-parallel hardware is the simplest and cheapest way to exploit this type of

application parallelism. As MX evolve, they are likely to adopt more of the characteristics of traditional

shared-memory vector ISAs to reduce loop start-up overhead and decrease code size. However, these

new multimedia vector ISAs will be shaped by the need to coexist with the speculative out-of-order

execution engines used by the superscalar processors.

References

1. Flynn, M.J., Very high-speed computing systems, Proceedings of the IEEE, 54, 1901, 1966.

2. Barnes, G.H. et al., The Illiac IV computer, IEEE Transactions on Computers, C-17, 46, 1968.

3. Reddaway, S.F., DAP–A distributed array processor, in Proceedings of the 1st Annual Symposium on

Computer Architectures, Gainesville, FL, 61, 1973.

4. Batcher, K.E., Architecture of a massively parallel processor, in Proceedings of the 7th Annual

Symposium on Computer Architecture, ACM Press, La Baule, NY, 168–173, 1980.

5. Hillis, W.D., The Connection Machine, MIT Press, Cambridge, MA, 1985.

6. Hintz, R.G. and Tate, D.P., Control data STAR-100 processor design, in Proceedings of the 6th Annual

IEEE Computer Society, International Conference (COMPCON), CA, 1972, 1.

7. Cragon, H.G. and Watson, W.J., A retrospective analysis: The TI advanced scientific computer, IEEE

Computer, 22, 55, 1989.

8. Russel, R.M., The CRAY-1 computer system, Communications of the ACM, 21, 63, 1978.

9. Frankovich, J.M. and Peterson, H.P., A functional description of the Lincoln TX-2 computer,

Western Joint Computer Conference, Los Angeles, CA, 1957.

10. Espasa, R., Advanced Vector Architectures, Ph.D. Thesis, Universitat Politecnica de Catalunya,

Barcelona, 1997.

11. Asanovic, K., Vector Microprocessors, Ph.D. Thesis, University of California, Berkeley, CA, 1998.

12. Cray, Inc., Cray X1 System Overview, Technical manual S-2346–22, 2002.

1.4 Multithreading, Multiprocessing

Manoj Franklin

1.4.1 Introduction

A defining challenge for research in computer science and engineering has been the ongoing quest for

faster execution of programs. There is broad consensus that barring the use of novel technologies such as

quantum computing and biological computing, the key to further progress in this quest is to do parallel

processing of some kind.

The commodity microprocessor industry has been traditionally looking to fine-grained or instruction

level parallelism (ILP) for improving performance, with sophisticated microarchitectural techniques

(such as pipelining, branch prediction, out-of-order execution, and superscalar execution) and sophis-

ticated compiler optimizations. Such hardware-centered techniques appear to have scalability problems

in the sub-micron technology era and are already appearing to run out of steam. According to a recent

position paper by Dally and Lacy [4], ‘‘Over the past 20 years, the increased density of VLSI chips was

applied to close the gap between microprocessors and high-end CPUs. Today this gap is fully closed and

adding devices to uniprocessors is well beyond the point of diminishing returns.’’ We view ILP as the

main success story form of parallelism thus far, as it was adopted in a big way in the commercial world

for reducing the completion time of general purpose applications. The future promises to expand the

‘‘parallelism bridgehead’’ established by ILP with the ‘‘ground forces’’ of thread-level parallelism (TLP),

by using multiple processing elements to exploit both fine-grained and coarse-grained parallelism in a

natural way.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 35 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-35

Current hardware trends are playing a driving role in the development of multiprocessing techniques.

Two important hardware trends in this regard are single chip transistor count and clock speed, both of

which have been steadily increasing due to advances in sub-micron technology. The Semiconductor

Industry Association (SIA) has predicted that by 2012, industry will be manufacturing processors

containing 1.4 billion transistors and running at 10 GHz [39]. DRAMs will grow to 4 Gbits in 2003.

This increasing transistor budget has opened up new opportunities and challenges for the development

of on-chip multiprocessing.

One of the challenges introduced by sub-micron technology is that wire delays become more

important than gate delays [39]. This effect is predominant in global wires because their length depends

on the die size, which is steadily increasing. An important implication of the physical limits of wire

scaling is that, the area that is reachable in a single clock cycle of future processors will be confined to a

small portion of the die [39].

A natural way to make use of the additional transistor budget and to deal with the wire delay problem

is to use the concept of multithreading or multiprocessing* in the processor microarchitecture. That is,

build the processor as a collection of independent processing elements (PEs), each of which executes a

separate thread or flow of control. By designing the processor as a collection of PEs, (a) the number of

global wires reduces, and (b) very little communication occurs through global wires. Thus, much of the

communication occurring in the multi-PE processor is local in nature and occurs through short wires.

In the recent past, several multithreading proposals have appeared in the literature. A few commercial

processors have already started implementing some of these multithreading concepts in a single chip

[24,34]. Although the underlying theme behind the different proposals is quite similar, the exact manner

in which they perform multithreading is quite different. Each of the methodologies has different

hardware and software requirements and trade-offs. The objective of this chapter is to present a

common framework for studying different multiprocessing and multithreading techniques, and to

discuss existing multithreaded processors and futuristic proposals in the light of this framework. The

following are some of the questions that are specifically addressed in the common framework:

. Parallel programming model

. Nature of threads

. PE Interconnects

. Role of the compiler

Section 1.4.1 has highlighted the importance of multithreading and multiprocessing. The rest of this

chapter is organized as follows. Section 1.4.2 presents a common framework for studying different

multithreading and multiprocessing approaches, and highlights software issues that are important to

consider while examining them. Section 1.4.3 presents a common framework for studying parallel

processor hardware configurations. Section 1.4.4 provides a survey of existing multithreaded processors

and proposals. In particular, it describes how multithreading is employed in the multiscalar processor,

the superthreaded processor, the trace processor, the M-machine, and some of the other multithreaded

microarchitectures. Finally, it presents a qualitative comparison and discusses future trends.

1.4.2 Parallel Processing Software Framework

In this section we discuss our framework for studying multithreading and multiprocessing. We also

identify three key issues related to multithreading: thread granularity, parallel programming model, and

program partitioning into threads. We shall discuss each of these issues in detail. Not all of these issues

are entirely orthogonal to each other, and it is our objective to highlight how each issue bears on other

related issues.

*In this section, we use the terms multithreading, multiprocessing, and parallel processing interchangeably.

Similarly, we use the generic term threads whenever the context is applicable to processes, light-weight processes,

and light-weight threads.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 36 19.10.2007 9:10pm Compositor Name: BMani

1-36 Digital Systems and Applications

We define a thread as a flow of control through a program and that flow’s current state (represented by

a current program counter, a call=return stack and, occasionally, some thread-private data). The central

idea behind multithreading and multiprocessing is to have multiple flows of control within a process,

allowing parts of the process to be executed in parallel. A process can have one or more threads doing its

work. Threads that execute in parallel are invariably control-independent, in which case the decision to

execute a thread does not depend on the other active threads. Thus, instructions that are control-

dependent on a conditional branch invariably belong to the thread to which that branch belongs.

1.4.2.1 Parallel Programming Model

An important attribute of any multiprocessing=multithreading system is its parallel programming

model, embodied in a parallel language or programming environment. This model specifies the

names (such as registers and memory addresses) the thread can access, the operations it can perform

on the named data, and the ordering semantics among these operations, particularly those done by

distinct threads. (In the simplest case, the model assumes multiprogramming, which has no inter-thread

communication and synchronization.) First, we will discuss thread sequencing model, which specifies

ordering constraints (if any) on multiple threads. Then, we discuss inter-thread communication, which

deals with passing data values among two or more threads. Finally, we discuss synchronization aspects of

the programming model, which cause running threads to wait for one another, and waiting threads to

resume execution at the proper time. Orchestrating the inter-thread ordering often requires explicit

synchronization operations when the ordering implicit in the basic operations is not sufficient.

1.4.2.1.1 Thread Granularity and Management

Thread-level parallelism (TLP) is more coarse-grained than ILP, and has wide variance in granularity.

We categorize the TLP granularities into three levels as described below. Depending on the granularity,

thread management (including run-time thread scheduling) is done by the operating system or the

runtime hardware.

. Processes : In this case, a thread is a process itself. Parallel processing then involves executing

multiple processes in parallel, which is traditionally known as multitasking or multiprogramming.

This is perhaps the most common form of parallel processing, as even most of the uniprocessor

operating systems implement this (by time sharing). Multiple processes can be created using the

fork system call. Processes can be thought of as heavy-weight threads, as their creation entails

duplicating the memory address space, and can take hundreds of thousands of CPU clock cycles.

Management and scheduling of processes is done by the operating system. In a multiprogram-

ming environment, parallelly executing processes either do not communicate, or communicate

through operating system features such as pipes.

. Light-weight processes or threads : A light-weight process (also called thread) has a granularity

somewhat finer than a process. The concept of light-weighted processes has been implemented in

a number of operating systems (SUN Solaris, IBM AIX, and Microsoft Windows NT), thread

libraries, and parallel programming languages. Such threads are used in today’s symmetric

multiprocessor workstations and servers. An important characteristic is that these threads share

a common memory address space, and are nonspeculative from the control point of view.

. Fine-grain threads : These threads are much smaller (of the order a few hundred instructions, at

most) and are not generally known to the operating system. Thread management and scheduling

are typically done by the run-time hardware. In many cases, such threads share a common register

space, besides sharing a common memory address space. Furthermore, the threads are often

speculative from the control point of view.

For a particular TLP granularity, the system performance will depend to a large extent on the nature

of the application and the level of the memory hierarchy at which the PEs are interconnected.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 37 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-37

1.4.2.1.2 Thread Sequencing Model

The commonly used model for control flow among threads is the parallel threads model (also called the

control operators based parallel control flow model). In this model, a fork instruction or a variant specifies

the creation of new threads and their starting addresses. The parent thread as well as the forked threads

are allowed to execute in parallel until they reach a join instruction, after which only one of them can

continue. Thus, the join operation serves as a synchronizing point. Apart from the join, other explicit

synchronization operations can be introduced using locks and barriers. Computation inside each thread

is based on sequential control flow. This thread sequencing model is illustrated in Fig. 1.12.

Compilers and programmers have made significant progress in parallelizing regular numeric appli-

cations for the parallel threads model; however, they have had little or no success in doing the same for

highly irregular numeric or especially non-numeric applications [18]. In such applications memory

addresses are difficult (if not impossible) to statically predict—in part because they often depend on

run-time inputs and behavior—that makes it extremely difficult for the compiler to statically prove

whether or not potential threads are independent. Given the size and complexity of real non-numeric

programs, parallelization appears to be an unrealistic goal if we stick to the parallel threads model. For

such applications, we can use a different thread control flow model called sequential threads model. This

model is closer to sequential control flow, and envisions a strict sequential ordering among the threads.

That is, threads are extracted from sequential code and run in parallel, without violating the sequential

program semantics. The control flow of the sequential code imposes an order on the threads and,

therefore, we can use the terms predecessor and successor to qualify the relation between any given pair of

threads. This means that inter-thread communication between any two threads (if any) is strictly in one

direction, as dictated by the sequential thread ordering. Thus, no explicit synchronization operations are

necessary, as the sequential semantics of the threads guarantee proper synchronization. This relaxation

allows us to ‘‘parallelize’’ non-numeric applications into threads without explicit synchronization, even

if there is a potential inter-thread data dependence. Program correctness will not be violated if at run

time there is a true data dependence between two threads. The purpose of identifying threads in such a

model is to indicate that those threads are good candidates for parallel execution.

Examples for multithreading proposals using sequential threads are the multiscalar model [8,9,30],

the superthreading model [35], the trace processing model [28,36], and the dynamic multithreading

model [1]. When using the sequential threads model, we can have threads that are nonspeculative from

the control point of view, as well as threads that are speculative from the control point of view. The latter

model is often called speculative multithreading (SpMT). This model is particularly important to deal

with the complex control flow present in typical non-numeric programs. The multiscalar architecture

[8,9,30] provided a complete design and evaluation of an SpMT architecture. Since then, many other

proposals have extended the basic idea of SpMT [5,19,22,28,31,35,36]. One such extension is threaded

Serial execution

Parallel execution

Spawn threads

Join threads

FIGURE 1.12 Parallelism profile for a parallel threads model.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 38 19.10.2007 9:10pm Compositor Name: BMani

1-38 Digital Systems and Applications

multipath execution (TME) [38], in which the speculative threads are the alternate paths of hard-to-

predict branches. A simple form of the SpMTmodel uses loop-based threads only [15,22].

1.4.2.1.3 Inter-Thread Communication

Inter-thread communication refers to passing data values between two or more threads. One of the key

issues in a parallel programming model is the name levels at which sharing takes place between threads.

Communication can take place at the level of register space, memory address space, and I=O space, with

the registers being the level closest to the processor. If sharing can happen at a particular level, it can also

happen at a more distant level. Parallel programming models can be classified into three categories,

based on the sharing level that is closest to the processor:

. Shared register model

. Shared memory model

. Message passing model

In the shared register model, multiple threads share the same register space (or a portion of it).

Interthread communication happens implicitly due to reads and writes to the shared registers (and to

shared memory locations). This model typically uses fine-grain threads, because it is difficult to have

long threads that communicate at the low level of registers, granularity is small. This class of parallel

processors is fairly new and has evolved as an extension of single-threaded ILP processors. Examples are

the multiscalar execution model [8,9,30], the trace execution model [28,36], and the dynamic multi-

threading model (DMT) [1].

In the shared memory model, multiple threads share a common memory address space (or a portion of

it). Inter-thread communication occurs implicitly as a result of conventional memory access instructions

to shared memory locations. That is, writes to a logically shared address by one thread are visible to

reads of the other threads, provided there are no other prior writes to that address as per the memory

consistency=synchronization model.

In the message passing model, inter-thread communication occurs only through explicit I=O oper-

ations called messages. That is, the inter-thread communication is integrated at the I=O level rather than

at the memory level. The messages are of two kinds—send and receive—and their variants. The

combination of a send and a matching receive accomplishes a pairwise synchronization event. Several

variants of the above synchronization event are possible. Message passing has long been used as a means

of communication and synchronization among cooperating processes. Operating system functions such

as sockets serve precisely this function.

1.4.2.1.4 Inter-Thread Synchronization

Synchronization involves coordinating the results of a set of parallel threads into some merged result. An

example is waiting for one thread to finish filling a buffer before another begins using the data.

Synchronization is achieved in different ways:

. Control Synchronization: Control synchronization depends only on the threads’ control state and

is not affected by the threads’ data state. This synchronization method requires a thread to wait

until other thread(s) reach a particular control point. Examples for control synchronization

operations are barriers and critical sections. With barrier synchronization, all parallel threads

have a common barrier point. Each thread is allowed to proceed after the barrier only after all of

the spawned threads have reached the barrier point. This type of synchronization is typically used

when the results generated by the spawned threads need to be merged. With critical section type

synchronization, only one thread is allowed to enter into the critical section code at a time. Thus,

when a thread reaches a critical section, it will wait if another thread is currently executing the

same critical section code.

. Data Synchronization: Data synchronization depends on the threads’ data values. This synchroni-

zation method requires a thread to wait at a point until a shared name is updated with a

particular value (by another thread). For instance, a thread executing a wait (x¼ 0) statement

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 39 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-39

will be delayed until x becomes zero. Data synchronization operations are typically used to

implement locks, monitors, and events, which, in turn, can be used to implement atomic operations

and critical sections. When a thread executes a sequence of operations as an atomic operation,

other threads cannot access any of the (shared) names updated during the atomic operation until

the atomic operation has been completed.

1.4.2.2 Coherence and Consistency

The last aspect that we will consider about the parallel programming model is coherence and consistency

when threads share a name space. Coherence specifies that the value obtained by a read to a shared

location should be the latest value written to that location. Notice that when a read and a write are

present in two parallel threads, coherence does not specify any ordering between them. It merely states

that if one thread sees an updated value at a particular time, all other threads must also see the updated

value from that time onward (until another update happens to the same location).

The consistency model determines the time at which a written value will be made visible to other

threads. It specifies constraints on the order in which operations to the shared space must appear to be

performed (i.e., become visible to other threads) with respect to one another. This includes operations to

the same locations or to different locations, and by the same thread or different threads. Thus, every

transaction (or parallel transactions) transfers a collection of threads from one consistent state to

another. Exactly what is consistent depends on the consistency model. Several consistency models

have been proposed:

. Sequential Consistency : This is the most intuitive consistency model. As per sequential consist-

ency, the reads and writes to a shared address space from all threads must appear to execute

serially in such a manner as to conform to the program orders in individual threads. This implies

that the overall order of memory accesses must preserve the order in each thread, regardless of

how instructions from different threads are interleaved. A multiprocessor system is sequentially

consistent if it always produces results that are same as what could be obtained when the

operations of all threads are executed in some sequential order [20]. Sequential consistency is

very restrictive and prevents the multiprocessor hardware from performing many optimizations

to improve performance.

. Weak Consistency : This consistency model [6] relaxes the constraints imposed by sequential

consistency by relating memory access order to synchronization points in the program. That is,

sequential consistency is maintained among the synchronization accesses. In addition, a syn-

chronization access serves as a barrier by enforcing that all previous memory accesses must be

completed before performing a synchronization access, and no subsequent memory accesses can

be performed before completing a synchronization access.

In addition to weak consistency, several other relaxed consistency models have been proposed—

release consistency [12], processor consistency [13], etc.

1.4.2.3 Partitioning a Program into Threads

Thread selection involves partitioning a control flow graph (CFG) into threads. Given a particular

parallel programming model (inter-thread communication model as well as thread sequencing model),

how should the parallelizer go about deciding where the thread boundaries should be? Perhaps the most

important issue in multiprocessing=multithreading is the basis used for partitioning a program into

threads. The criterion used for partitioning is very important, because an improper partitioning could in

fact result in high inter-thread communication and synchronization, thereby degrading performance!

True multithreading should not only aim to distribute instructions evenly among the threads, but

also aim to minimize inter-thread communication by localizing a major share of the inter-instruction

communication occurring in the processor to within each PE. In order to achieve this, mutually

data dependent instructions are most likely allocated to the same thread. This is somewhat hard,

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 40 19.10.2007 9:10pm Compositor Name: BMani

1-40 Digital Systems and Applications

because programs are currently written in control-driven form, which often causes individual strands of

data-dependent instructions to be spread over a large segment of code. Thus, the partitioning software

has to first construct the data flow graph (DFG), and then do the program partitioning. Notice that if

programs were specified in data-driven form as in the dataflow computation model [17], taking data

dependences into account would have been simpler.

Thread selection is a difficult problem, because we need to consider many issues such as PE

utilization, load balancing, control independence of threads (thread prediction accuracy for SpMT

models), and inter-thread data dependences. Often, trying to make optimizations for one area will

have a negative effect on another.

1.4.2.3.1 Who Does the Program Partitioning?

Program partitioning can be done by the programmer, compiler, or run-time hardware. Depending on

who does the partitioning, the type of analysis that can be done will be different.

. Programmer : In this approach, the programmer explicitly represents the threads in the

high-level language program. In order to do this, three types of extensions are provided at the

high-level language level: (i) multithreading library, (ii) language extensions, and (iii) compiler

directives. Examples for this approach are EARTH [21] and XMT [37]. All of these use the parallel

threads model. Notice that the compiler has to be modified to handle these extensions. The

compiler does not, however, make decisions on where to do the partitioning. It is interesting to

note that although conventional multiprocessors have been commercially available for quite some

time, only a small fraction of the software has been written so far to exploit parallelism.

. Compiler : In this case, the compiler takes a sequential program and partitions it into threads. The

main advantage of deferring program partitioning to the compiler is that it frees the programmer

from reasoning about parallel threads. Its main advantages with respect to hardware-based

partitioning are that it does not add to the complexity of the processor, and that it has the ability

to perform complex pre-partitioning and post-partitioning optimizations that are difficult to

perform at run-time. Compiler-directed partitioning algorithms are generally insensitive to the

number of PEs in the processor, however, its partitioning decisions need to be conveyed to the

multithreaded hardware, possibly by making it part of the ISA (at the expense of incompatibility

for existing binaries). Parallelizing compilers have been successful in parallelizing many numeric

applications for the parallel threads model. As pointed out earlier, their success has not been

spectacular when it comes to non-numeric applications and the parallel threads model. Several

researchers are currently working on parallelizing compilers that parallelize such applications for

the sequential threads model.

. Hardware : It is also possible to let the run-time hardware do the program partitioning. If

partitioning decisions are taken by the hardware, the multithreaded processor provides object

code compatibility to existing sequential code. Furthermore, it has the ability to adapt to run-time

behavior. Hardware-based partitioning is typically done only if the thread granularity is small, and

if sequential control flow is used. Themain limitation is the significant impact it may have on clock

cycle time. In order to simplify the dynamic partitioning hardware and to reduce the impact on

clock cycle time, the partitioning job is often split into two parts—a static part (which is done by

pre-processing hardware) and a dynamic part. The static part collects information that is static in

nature (such as register dependences in a straightline piece of code) and stores it in a special i-cache

structure, often after performing some additional processing. The dynamic part uses this infor-

mation while deciding the final partitioning at run-time. Examples of multithreaded processors

that use hardware-based partitioning are trace processor [28,36], speculative multithreading

processor [22], and dynamic multithreading processor [1].

1.4.2.3.2 Compiling for Multithreading

Most of the multithreading approaches perform partitioning at compile time, possibly with some help

from the programmer; it is somewhat unrealistic at this time to expect programmers to write only

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 41 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-41

parallel programs. The hardware is also limited in its program partitioning capability. Therefore, the

compiler has the potential to play a significant role in multithreading. Besides program partitioning, it

can schedule threads as well as the instructions within threads.

The task of the compiler is to identify sufficient parallelism to keep the processors busy, while

minimizing the effects of synchronization and communication latencies on the execution time of

the program. To accomplish this objective, a parallelizing compiler typically performs the following

functions:

1. Identify the parallelism inherent in the program. This phase has received the most attention in

parallel compiler research to date [25,26]. Many varied program transformations have been

developed to unearth parallelism buried in the semantics of sequential programs.

2. Partition the program into multiple threads for parallel execution. This is perhaps the most

crucial phase. Many factors must be considered, such as inter-thread dependences, intra-thread

locality, thread size, critical path, and deadlock avoidance.

3. Schedule the concurrent execution of threads; the final scheduling is often determined by the run-

time environment. The compiler must assign threads to processors in a way that maximizes

processor utilization without severely restricting the amount of parallelism to be exploited.

4. After program partitioning, the compiler can schedule the instructions in a thread so as to reduce

inter-thread wait times. For instance, if a shared value is produced very late in one thread, but is

needed very early in another thread, very little parallelism will be exploited by the hardware. This

problem is likely to surface frequently, if the compiler assumed a single-threaded processor in the

code generation phase. In such situations, post-partitioning scheduling can help minimize the

waiting time of instructions by ensuring that shared values required in other threads are produced

as early as possible. Post-partitioning scheduling is especially beneficial if PEs execute their

instructions in strict serial order.

1.4.2.3.3 Object Code Compatibility

Another important issue, especially from the commercial point of view, is the level of compati-

bility that the multithreaded processor provides. We can think of three levels of compatibility in

the context of multithreaded processors: full compatibility, family-wide compatibility, and no

compatibility.

. Full Compatibility : In some multithreaded processors, the multithreading aspect is strictly a

microarchitectural phenemenon and is invisible at the ISA level. Such processors provide full

compatibility, i.e., both backward compatibility and forward compatibility. Existing executable

binaries can be run on them, and their executable binaries can be run on existing processors.

Furthermore, these processors also provide compatibility across all multithreading models (of the

same ISA) that provide full compatibility. In these processors, the thread partitioning is done by

offline hardware or run-time hardware. Fully compatible multithreaded processors have a higher

chance for commercial success.

. Family-Wide Compatibility : Although full compatibility is desirable, some multithreaded proces-

sors opt for ISA-level changes so as to benefit from compiler techniques to extract additional

performance. Processors in the family-wide compatibility category provide compatibility within

its multithreading family. Thus, they do not require recompilation to be performed when the

number of PEs is changed. Generally, these processors also provide limited backward compati-

bility (albeit at reduced performance). For example, if an existing binary executable is given to the

multiscalar processor, it can execute the entire program as a single task. This will not give good

performance, but it can run the old binaries.

. No Compatibility : In spite of the benefits of object code compatibility, some multithreaded

processors, such as the M-machine, go in for significant changes at the ISA-level, which preclude

any possibility of backward compatibility or family-wide compatibility. The motivation is to tap

into sophisticated compiler techniques to extract performance.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 42 19.10.2007 9:10pm Compositor Name: BMani

1-42 Digital Systems and Applications

Several techniques for binary translation have been proposed recently to address the object code

compatibility problem. These include static approach as in the FX!32 [16], dynamic approach as in the

DAISY [7] and hardware-based schemes such as DIF [23]. Object code compatibility may become a less

important issue in the future when these techniques become more mature and efficient. This will also

open up more opportunities to tap architecture specific optimizations for multithreading in the future.

1.4.3 Parallel Processing Hardware Framework

The previous section discussed a common framework for parallel programming and compilation. This

section discusses a common framework for parallel processing hardware. In our hardware framework,

regardless of the specific implementation, a multithreaded processor consists of multiple PEs, possibly

along with a few centralized resources such as the thread allocation mechanism and parts of the

memory subsystem, as shown in Fig. 1.13. The PEs work independently of each other (subject only to

inter-PE synchronization) and usually contain multiple execution units (EUs). The PEs are intercon-

nected by some network or through centralized resources such as register file and memory, for inter-

PE communication.

Our definition of a PE is somewhat loose. On one extreme, the PEs in some multithreaded processors

are separate processor-memory systems with their own instruction cache, decode unit, register file,

and execution units; on the other extreme, the PEs in some multithreaded processors even share the

execution units, as in the dynamic multithreading processor [1]. Such a loose definition allows us to

discuss a wide spectrum of multithreaded processors under a common framework.

1.4.3.1 Number of PEs and PE Organization

The number of PEs in a multiprocessor is an important hardware parameter. This number is strongly

tied to the perceived parallelism in the targeted application domain, and also the nature of the threads.

On one extreme, we have single-PE multithreaded processors that perform time sharing. On the other

extreme, we have massively parallel processors (MPPs) consisting of thousands of PEs, which are the

most powerful machines available today for many time-critical applications [4]. Because of the sharp

increase in the number of transistors integrated in a single chip, there is significant interest in integrating

multiple PEs in the same chip. This has been the motivation behind many of the SpMT processing

models.

EU

EU

EU

EU

EU

EU

EU

EU

PE
ICN

PE 0

PE 1

PE 2

PE 3

Centralized
resources

Centralized
resources

FIGURE 1.13 A generic 4-PE multiprocessor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 43 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-43

1.4.3.1.1 Processor Context Interleaving

When the number of parallel threads exceeds the number of PEs, it is possible to time-share a single PE

among multiple threads in a way that minimizes the time required to switch threads. This is accom-

plished by sharing as much as possible of the program execution environment between the different

threads so that very little state needs to be saved and restored when changing threads. This type of low-

overhead interleaving is given the name multithreading in many circles [2,3,17]. Interleaving-based

multithreading differs from conventional multitasking (or multiprogramming) in that the concurrent

threads share more of their environment with each other than do concurrent tasks under multitasking.

Threads may be distinguished only by the value of their program counters and stack pointers while

sharing a single address space and set of global variables. As a result, there is very little protection of one

thread from another, in contrast to multitasking. Interleaving-based multithreading can thus be used for

very fine-grain multitasking, at the level of a few instructions, and so can hide latency by keeping the

processor busy after one thread issues a long-latency instruction on which subsequent instructions in

that thread depend.

. Cycle-level interleaving : In this scheme, a PE switches to a different thread after each instruction

fetch; i.e., an instruction of another thread is fetched and fed into the execution pipeline in the

next clock cycle. Cycle-level interleaving is typically used for coarse-grain threads—processes or

light-weight processes. The motivation for this is that it eliminates control and data dependences

between the instructions that are simultaneously active in the pipeline. Thus, there is no need to

build complex forwarding paths, permitting a simple and potentially fast pipeline. Furthermore,

the context switch latency is zero cycles. Memory latency is tolerated by not scheduling a thread

until the memory access has been completed. For this interleaving to work well, there must be as

many threads as the worst-case latencies experienced by the instructions. Interleaving the

instructions from many threads limits the processing speed of a single thread, thereby degrading

single-thread performance. The most well-known examples of cycle-level interleaving processors

are HEP [29], Horizon [33], and Tera MTA [2].

. Block interleaving : In this scheme, the instructions of a thread are executed successively until a

long-latency event occurs, which causes a context switch. A typical long-latency operation is a

remote memory access. Compared to the cycle-level interleaving technique, a smaller number of

threads is sufficient, and a single thread can execute at full speed until the next context switch.

The events that cause a context switch can be determined statically or dynamically.

When hardware technology allows more PEs to be integrated in a processor, PE interleaving becomes

less attractive, because computational throughput will clearly improve when multiple threads execute in

parallel on multiple PEs instead of time-sharing a single PE. As we look into the future, and the prospect

of a billion transistors on a single chip, it seems inevitable that microprocessors will have multiple PEs.

1.4.3.1.2 PE Organization

The next issue of importance in a multithreaded processor is the organization of the PEs. This issue is

strongly tied to the PE interconnect used. Most of the sequential threads model based processors

organize the PEs as a circular queue, as shown in Fig. 1.14. The circular queue imposes a sequential

order among the PEs, with the head pointer indicating the oldest active PE. When the tail PE is idle, a

thread allocation unit (TAU) invokes the next thread (as per the sequential thread ordering) on the tail

PE and advances the tail pointer. Completed threads are retired from the head of the PE queue,

enforcing the required sequential ordering. Although this PE organization is tailored for sequential

threads (from a sequential program), this multithreaded hardware can also execute multiple threads

from different processes, if required.

An important issue that needs to be considered when organizing the PEs as a circular queue is load

balancing. If some PEs have long threads assigned to them, and the rest have short ones, only modest

performance will be obtained. If threads are not close to the same size, a short thread may complete soon

and perform no useful computation while it waits for longer predecessor threads to retire. To get good

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 44 19.10.2007 9:10pm Compositor Name: BMani

1-44 Digital Systems and Applications

performance, threads should be of uniform length.* One option to deal with load balancing, albeit with

additional hardware complexity, is to let each physical PE have multiple virtual PEs and assign a thread

to each of the virtual PEs.

1.4.3.2 Inter-PE Register Communication and Synchronization

As discussed earlier, a few multithreading approaches have a shared register space for all threads, and the

rest do not. When threads share a common register space, the thread sequencing model has always been

the sequential threads model. Because the semantics of this model are in line with sequential control

flow, synchronization happens automatically, once inter-PE register communication is handled properly.

1.4.3.2.1 Register File Implementation

When threads do not share a common register space, it is straightforward to implement the register file

(RF)—each PE can have its own register file, thereby providing fast register access. When threads share

a common register space, it is important that we still provide a separate register file in each PE to

support fast register access, as it is difficult for a centralized register file to provide a 1-cycle multi-port

access time with today’s high clock rates. This decentralization can be achieved in two ways, both of

which provide faster register access times due to physical proximity and fewer access ports per physical

register file.

. RF Partitioning : In this approach, each physical register file implements (or maps) an independ-

ent set of ISA-visible registers. Notice that a PE may occasionally need a register value stored in a

nonlocal register file, in which case the value is fetched through an interconnection network that

interconnects the PEs.

. RF Replication : With the replication scheme, a physical copy of the register file is kept in each PE, so

that each PE has a local copy of the shared set register space. These register file replica maintain

TAU

0 4

31

2

7 5

6

PE

H T

FIGURE 1.14 Organizing the PEs of a multithreaded processor as a circular queue.

*The actual, more stringent, requirement is that the thread execution times should be matched across all PEs. This

is a more difficult problem, because it depends on intra- and inter-PE data dependences as well.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 45 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-45

different versions of the register space, i.e., themultiple copies of the register file store register values

that correspond to the processor state at different points in a sequential execution of the program.

In general, replication avoids unnecessary communication; however, if not done carefully, it might

increase communication by replicating data that is not used in the future. A multithreaded

processor that uses the replication scheme is the multiscalar processor [9].

1.4.3.2.2 PE Interconnect for Register Values

When threads share a common register space, and a distributed RF structure is used, an important

hardware attribute is the type of interconnect used to send register values from one PE to another. The

interconnects that have been proposed in the context of multithreaded processors are bus, ring

(unidirectional and bi-directional), crossbar, mesh, and hypercube; of course, it is possible to use

other types of interconnects as well.

Bus: The bus is a simple, fully connected network. However, it permits only one data transmission at any

time, providing a bandwidth of only O(1). In fact, the bandwidth scaling is worse than O(1) because of

reduction in bus operating speed with the number of ports, due to increase in capacitance. Therefore, it

may be a poor choice as an interconnect for inter-PE register communication, which may be nontrivial,

especially when using a large number of PEs.

Crossbar: A crossbar interconnect also provides full connectivity from every PE to every other PE. It

provides O(N) bandwidth, but the cost of the interconnect is proportional to the number of cross-

points, or O(N2). When using a crossbar, all PEs are of same proximity to each other; hence the thread

allocation algorithm becomes straightforward; however, a crossbar may not scale as easily as a ring or

mesh. It is important to note that fast crossbars can be built on a single chip. With a crossbar-type

interconnect, there is no notion of neighboring PEs, so all PEs become equally far away. Therefore, the

cross-chip wire delays begin to dominate the inter-PE communication latency.

Ring: With a ring-type interconnect, the PEs are connected as a circular loop, and there is a notion of

neighboring PEs and distant PEs. Routing in a ring is trivial because there is exactly one route between

any pair of nodes (two routes if it is a bi-directional ring). The ring can be easily laid out with O(N)

space using short wires (as depicted in Fig. 1.14), which can be easily widened. A ring is ideal if most of

the inter-PE register communication can be localized to neighboring PEs (which is typically the case in a

sequential threads processor that uses the circular queue PE organization [36]), but is a poor choice if a

lot of communication happens across distant PEs. An advantage of the ring is that it easily supports the

scaling up of the number of PEs, as allowed by technological advances.

Mesh: Rings generalize naturally to higher dimensions, including 2D grids and 3D cubes (with end-

around connections). The main advantages of mesh are its regular structure and its ability to provide full

connectivity between four neighboring PEs (as opposed to two PEs with the ring). Similar to a ring, a

mesh can easily support the scaling up of the number of PEs. The mesh suffers from the same

disadvantages of a ring in communicating with distant PEs. Moreover, thread allocation for a mesh

topology is more complex than that for ring and crossbar.

1.4.3.3 Inter-PE Memory Communication and Synchronization

When threads do not share a common memory address space (as in the message passing model), it is

straightforward to provide a memory system for each PE, as we do not need to worry about inter-thread

memory communication and synchronization.

1.4.3.3.1 Memory System Implementation

When threads do share a common memory address space, the multithreaded processor needs to provide

appropriate mechanisms for inter-thread memory communication as well as synchronization. One

option is to provide a central memory system, in which all memory accesses roughly take the same

amount of time. Such a system is called uniform memory access (UMA) system. An important class of

UMA systems is the symmetric multiprocessor (SMP).

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 46 19.10.2007 9:10pm Compositor Name: BMani

1-46 Digital Systems and Applications

A UMA system may provide uniformly slow access time for every memory access. Instead of slowing

down every access, we can provide fast access time for most of the accesses by distributing the memory

system (or at least the top portions of the memory hierarchy system). Shared memory multiprocessors

that use partitioning are called distributed shared memory (DSM) systems. As with the register file

structure, we can use two techniques—partitioning and replication—to distribute the memory.

. Memory Partitioning : Partitioning is useful if it is possible to confine most of the memory accesses

made in one PE to its partition. Partitioning the top portion of the memory hierarchy may not be

attractive, at least for irregular, non-numeric applications, because it may be difficult to do this

confinement due to not knowing the addresses of most of the loads and stores at compile time.

Partitioning of the lower portion of the memory hierarchy is often done, however, as this portion

needs to handle only those accesses that missed in the PEs’ local caches.

. Memory Replication : It is impractical to replicate the entire memory system. Therefore, only the

top part of the memory hierarchy is replicated. The basic motivation behind replicating the top

portion of the memory hierarchy among local caches is to satisfy most of the memory accesses

made in a PE with its local cache. Notice that a replicated cache structure must maintain proper

coherency among all the duplicate copies of data.

DSMs often use a combination of partitioning and replication, i.e., portions of the memory hierarchy

are replicated and the rest are partitioned. One type uses replicated cache memories and partitioned

main memories. One interesting variation is the cache only memory architecture (COMA) system. A

COMA multiprocessor partitions the entire memory system across the PEs; however, there is no fixed

partition assigned for a particular memory location. Rather, the partition associated with a memory

location is dynamically changed based on the PEs that access that location. Several other shared memory

organizations are also possible [3,17].

1.4.3.3.2 Inter-PE Data Dependence Speculation

In the parallel threads model, synchronization of threads is carried out with the use of special

mechanisms such as locks and barriers. In the sequential threads model, ensuring sequential semantics

ensures proper memory synchronization. However, this means that when a load instruction is

encountered in a PE, it has to ensure that its producer store has been already executed. This is

difficult to determine if the producer store belongs to another thread, as memory addresses are

calculated at run-time, and it is possible that the producer store instruction may not have even been

fetched. In order to overcome this problem, sequential threads based processors incorporate some

form of thread-level data speculation [11]. The idea is to speculate if a memory operation has to wait

for inter-thread synchronization. This speculation can be as simple as predicting that the producer

store has been already executed, or it can be more complex, based on past behavior of the load

instruction. Below we discuss some of the hardware schemes proposed for carrying out thread-level

data speculation.

. Address Resolution Buffer (ARB): The ARB [11] is a hardware buffer for storing different versions

of several memory locations as well as information regarding the loads and stores executed from

the currently active threads. Each entry in the ARB buffers all versions of the same memory

location. When a load request is issued for a particular memory address, the corresponding ARB

entry is checked to see if a prior store has been done to the same address; if so, the value written

by the latest store is returned by the ARB; if not, the request is sent to the next lower level of the

memory hierarchy. In either case, the state information for that location is updated to reflect

the fact that a load has been made by the current thread. When a store operation is performed, the

ARB checks if any sequentially successor loads have been prematurely performed. If so, that is an

incorrect data dependence speculation, and the ARB hardware initiates a recovery action such

as partially re-executing the thread containing the incorrect load (and subsequent threads).

A centralized hardware approach such as the ARB has the danger of increasing the load latency

due to long latency incurred because of long wires.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 47 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-47

. Multi-Version Cache (MVC): The MVC uses a decentralized approach by using a local data cache

(LDC) for each PE [10]. Each LDC thus stores a different version for each mapped memory

location. The local data caches are interconnected by a unidirectional ring, as shown in Fig. 1.15.

The loads and stores generated in a PE are serviced directly from its local data cache. When a load

request is issued to a local data cache, it provides a value if it has a copy; otherwise, the request is

sent to the next lower level of the memory hierarchy. In either case, the state information for that

location in the data cache is updated to reflect the fact that a load has been made by the current

thread. When a store operation is performed, the value is written in its local data cache. The last

updates to each memory location (in a thread) are forwarded to the subsequent LDCs through

the ring-type interconnect. When a forwarded value reaches an LDC, it checks for incorrect

speculations and takes appropriate recovery actions.

. Speculative Versioning Cache (SVC): The speculative versioning cache is similar to the multi-

version cache in many respects [14]. It also keeps a separate private cache for each PE. The

differences are mainly in the way the caches are connected and in the methodology by which the

caches are kept coherent. SVC uses a bus interconnect for the caches a snooping bus based cache

coherence protocol.

1.4.4 Concluding Remarks

Multithreaded processors are the future of computer design. The ease of hardware replication has proven

to be an ever-increasing impetus toward parallel processor implementations. The goal is to maintain

high levels of parallelism (without increasing hardware complexity and the clock rate) by distributing

the dynamic instruction stream among several processing elements. The combined issue rates of several

processing elements allow large amounts of parallelism to be exploited.

Multithreading and multiprocessing, as with other complex engineering problems, undergo an

ongoing process of reinventing, borrowing, and adapting.

Looking forward to the future of multithreaded processors, the pace of change makes for rich

opportunities and also for great challenges. Although it is difficult to precisely predict where this field

will go, this final section seeks to outline some of the key areas of development in multithreaded

processors. Whatever technological breakthroughs occur and whatever directions the market takes, the

fundamental issues addressed in Section 1.4.2 will still apply. The realization of multithreaded processors

will still rest upon good techniques to perform thread selection, inter-PE communication, and synchroni-

zation. The core techniques for addressing these issues will remain valid; however, the way that they are

employed will surely change as the critical parameters of clock speeds and wire delays continue to change.

It is difficult to obtain good performance without having complexity somewhere in the hardware-

software multithreaded system! In a high-performance multithreaded processor, the complexity could be

PE
1

2

7

1
LDC 2

0

Inter-thread communication Intra-thread communication

0 7

FIGURE 1.15 Block diagram of a multi-version cache in a sequential thread based multithreaded processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 48 19.10.2007 9:10pm Compositor Name: BMani

1-48 Digital Systems and Applications

at the static partitioning side (programming or compiler), at the dynamic partitioning hardware side, or at

the PE interconnect side. Figure 1.16 illustrates this concept. To support hardware scalability, complexity at

thedynamic partitioning hardware and thePE interconnect act as hurdles. In the long run, asmore transistors

are integrated into a processor chip, it can be expected that the number of PEs would be scaled up. However,

the trend towards higher clock rates will make it more difficult to support complexity in the dynamic

partitioning hardware and in the PE interconnect.* Thus, the end result of the trends in high transistor

count and high clock rates (which encourage multithreading=multiprocessing) is a shift towards doing

more and more things statically, as opposed to dynamically. This means that program partitioning will

eventually be done only at compilation time, and perhaps more and more at programming time.

To Probe Further

Multiprocessing has been around for a long time, and so naturally the computer literature has an

overabundance of articles and textbooks on this subject. The multiprocessing community consists of

different camps, which often use different terminology for the same concepts. This lack of consensus

makes it somewhat difficult to merge the ideas presented in different papers or books. Nevertheless, we

list a few helpful references to which interested readers can refer. Two recent good textbooks on this

subject are Parallel Computer Architecture: A Hardware=Software Approach [3] and Scalable Parallel

Computing [17]. Two important journals dealing with parallel processing are Journal of Parallel and

Distributed Computing and IEEE Transactions on Parallel and Distributed Systems. In addition, readers

can keep abreast of the latest research developments by reading the yearly proceedings of International

Conference on Parallel Processing, International Conference on Supercomputing, and Supercomputing.

Acknowledgments

The author thanks U.S. National Science Foundation (NSF grants MIP 9702569, CCR 9711566, and

CCR 0073582) for supporting this work.

PE interconnect complexity
(mostly wire delays)

Static partitioning complexity
(compilation and programming)

Superscalar

Diffic
ulty in scaling up

the number o
f P

Es

Dynamic partitioning complexity
(mostly logic delays)

Multiscalar
superthreading

SpMT processor

Trace
 processor

DMT

FIGURE 1.16 Complexity in multithreading=multiprocessing.

*Although it is possible to pipeline a crossbar interconnect so that it can accept new requests every cycle, the long

inter-PE latency that it causes would increase the number of clock cycles required to execute a program, compared

with what is obtained with scalable interconnects [27].

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 49 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-49

References

1. H. Akkary and M.A. Driscoll, ‘‘A Dynamic Multithreading Processor,’’ Proceedings of 31st Inter-

national Symposium on Microarchitecture, 1998.

2. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and J.B. Smith, ‘‘The Tera

Computer System,’’ Proceedings of International Conference on Supercomputing, pp. 1–6, 1990.

3. D.E. Culler and J.P. Singh, Parallel Computer Architecture A Hardware=Software Approach. Morgan

Kaufmann, 1999.

4. W.J. Dally and S. Lacy, ‘‘VLSI Architecture: Past, Present, and Future,’’ Proceedings of Advanced

Research in VLSI Conference, 1999.

5. P. Dubey, K. O’Brien, K.M. O’Brien, and C. Barton, ‘‘Single-Program Speculative Multithreading

(SPSM) Architecture: Compiler-assisted Fine-Grained Multithreading,’’ Proceedings of International

Conference on Parallel Architecture and Compilation Techniques (PACT’95), 1995.

6. M. Dubois, C. Scheurich, and F.A. Briggs, ‘‘Memory Access Buffering in Multiprocessors,’’ Proceed-

ings of the 13th International Symposium on Computer Architecture, pp. 434–442, 1986.

7. K. Ebcio�g lu and E.R. Altman, ‘‘DAISY: Dynamic Compilation for 100%Architectural Compatibility,’’

Proceedings of the 24th Annual International Symposium on Computer Architecture, pp. 26–37, 1997.

8. M. Franklin and G.S. Sohi, ‘‘The Expandable Split Window Paradigm for Exploiting Fine-Grain

Parallelism,’’ Proceedings of 19th International Symposium on Computer Architecture, pp. 58–67, 1992.

9. M. Franklin, ‘‘The Multiscalar Architecture,’’ Ph.D. Thesis, Technical Report TR 1196, Computer

Sciences Department, University of Wisconsin, Madison, 1993.

10. M. Franklin, ‘‘Multi-Version Caches for Multiscalar Processors,’’ Proceedings of International Con-

ference on High Performance Computing, 1995.

11. M. Franklin and G.S. Sohi, ‘‘ARB: A Hardware Mechanism for Dynamic Reordering of Memory

References,’’ IEEE Transactions on Computers, vol. 45, no. 5, pp. 552–571, May 1996.

12. K. Gharachorloo et al., ‘‘Memory Consistency and Event Ordering in Scalable Shared-Memory

Multiprocessors,’’ Proceedings of the 17th International Symposium on Computer Architecture, pp. 15–

25, 1990.

13. J.R. Goodman, ‘‘Cache Consistency and Sequential Consistency,’’ Technical Report 61, IEEE SCI

Committee, 1990.

14. S. Gopal, T.N. Vijaykumar, J.E. Smith, and G.S. Sohi, ‘‘Speculative Versioning Cache,’’ Proceedings of

4th International Symposium on High Performance Computer Architecture (HPCA-4), 1998.

15. L. Hammond, B.A. Nayfeh, and K. Olukotun, ‘‘A Single-Chip Multiprocessor,’’ IEEE Computer,

September 1997.

16. R. Hookway, ‘‘Running 32-bit 386 Applications on Alpha NT,’’ Proceedings of IEEE COMPCON 97,

pp. 37–42, 1997.

17. K. Hwang and Z. Xu, Scalable Parallel Computing, WCB McGraw-Hill, New York, 1998.

18. R. Joy and K. Kennedy, President’s Information Technology Advisory Committee (PITAC)—Interim

Report to the President. National Coordination Office for Computing, Information and Communi-

cation, 4201 Wilson Blvd, Suite 690, Arlington, VA 22230, August 10, 1998.

19. V. Krishnan and J. Torellas, ‘‘A Chip Multiprocessor Architecture with Speculative Multithreading,’’

IEEE Transactions on Computers, September 1999.

20. L. Lamport, ‘‘How to Make a Multiprocessor Computer That Correctly Executes Multiprocess

Programs,’’ IEEE Transactions on Computers, vol. C-28, pp. 690–691, September 1979.

21. O.C. Maquelin, H.H.J. Hum, and G.R. Gao. ‘‘Costs and Benefits of Multithreading with Off-

the-Shelf RISC Processors,’’ Proceedings of 1st International EURO-PAR Conference, 1995.

22. P. Marcuello, A. Gonzalez, and J. Tubella, ‘‘Speculative Multithreaded Processors,’’ Proceedings of

International Conference on Supercomputing, 1998.

23. R. Nair and M.E. Hopkins, ‘‘Exploiting Instruction Level Parallelism in Processors by Caching

Scheduled Groups,’’ Proceedings of the 24th Annual International Symposium on Computer Architec-

ture, pp. 13–25, 1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 50 19.10.2007 9:10pm Compositor Name: BMani

1-50 Digital Systems and Applications

24. N. Nishi et al., ‘‘A 1-GIPS 1-W Single-Chip Tightly Coupled Four-Way Multiprocessor with

Architecture Support for Multiple Control-Flow Execution,’’ Proceedings of the 47th International

Solid-States Circuits Conference, pp. 418–475, 2000.

25. D. Padua, ‘‘Polaris: An Optimizing Compiler for Parallel Workstations and Scalable Multiproces-

sors,’’ Technical Report 1475, University of Illinois at Urbana-Champaign, Center for Supercom-

puting Research & Development, January 1996.

26. C. Polychronopoulos, M.B. Girkar, M.R. Haghighat, C.L. Lee, B.P. Leung, and D.A. Schouten, ‘‘The

Structure of Parafrase-2: An Advanced Parallelizing Compiler for C and Fortran,’’ Languages and

Compilers for Parallel Computing, MIT Press, Cambridge, MA, 1990.

27. N. Ranganathan and M. Franklin, ‘‘An Empirical Study of Decentralized ILP Execution Models,’’

Proceedings of 8th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-VIII), pp. 272–281, 1998.

28. E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith, ‘‘Trace Processors,’’ Proceedings of the 30th

International Symposium on Microarchitecture, pp. 138–148, 1997.

29. B.J. Smith, ‘‘The Architecture of HEP,’’ Parallel MIMD Computation: HEP Supercomputer and Its

Applications, pp. 41–55, MIT Press, Cambridge, MA.

30. G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, ‘‘Multiscalar Processors,’’ Proceedings of the 22nd

Annual International Symposium on Computer Architecture, pp. 414–425, 1995.

31. J.G. Steffan and T.C. Mowry, ‘‘The Potential for Using Thread-Level Data Speculation to Facilitate

Automatic Parallelization,’’ Proceedings of 4th International Symposium on High Performance Com-

puter Architecture, 1998.

32. K.K. Sundararaman and M. Franklin, ‘‘Multiscalar Execution along a Single Flow of Control,’’

Proceedings of International Conference on Parallel Processing (ICPP), pp. 106–113, 1997.

33. M. Thistle and B.J. Smith, ‘‘A Processor Architecture for Horizon,’’ Proceedings of Supercomputing ’88,

pp. 35–41, 1988.

34. M. Tremblay et al, ‘‘The MAJC Architecture: A Synthesis of Parallelism and Scalability,’’ IEEE

MICRO, pp. 12–25, November=December 2000.

35. J.-Y. Tsai and P.-C. Yew, ‘‘The Superthreaded Architecture: Thread Pipelining with Run-Time Data

Dependence Checking and Control Speculation,’’ Proceedings of the 1996 Conference on Parallel

Architectures and Compilation Techniques (PACT ’96), pp. 35–46, 1996.

36. S. Vajapeyam and T. Mitra, ‘‘Improving Superscalar Instruction Dispatch and Issue by Exploiting

Dynamic Code Sequences,’’ Proceedings of the 24th Annual International Symposium on Computer

Architecture, pp. 1–12, 1997.

37. U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman, ‘‘Explicit Multi-threaded (XMT) Bridging

Models for Instruction Parallelism,’’ Proceedings of the 10th ACM Symposium on Parallel Algorithms

and Architectures (SPAA), pp. 140–151, 1998.

38. S. Wallace, B. Calder, and D. Tullsen, ‘‘Threaded Multiple Path Execution,’’ Proceedings of the 25th

Annual International Symposium on Computer Architecture, pp. 238–249, 1998.

39. ‘‘The National Technology Roadmap for Semiconductors,’’ Semiconductor Industry Association,

1997.

1.5 Survey of Parallel Systems

Donna Quammen

1.5.1 Introduction

Computers have long been considered ‘‘a solution looking for a problem,’’ but because of limits found by

complexity theory and limits on computing power some problems that were presented could not be solved.

Multimedia problems, image processing and recognition, AI application, and weather prediction may not

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 51 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-51

be accomplished unless processing power is increased. There are many varieties of parallel machines, each

has the same goal, to complete a task quickly and inexpensively. Modern physics has continually increased

the speed and capacity of themedia onwhichmodern computer chips are housed, usually VLSI, and at the

same time decreased the price. The challenge of the computer engineers is to use the media effectively.

Different components may be addressed to accomplish this, such as, but not limited to:

. Functionality of the processors—floating point, integer, or high level function, etc.

. Topology of the network which interconnects the processors

. Instruction scheduling

. Position and capability of any master control units that direct the processors

. Memory address space

. Input=output features

. Compilers and operating systems support to make the parallel system accessible

. Application’s suitability to a particular parallel system

. Algorithms to implement the applications

As can be imagined there is an assortment of chooses for each of these components. This provides for

the possibility of a large variety of parallel systems. Plus more chooses and variations are continually

being developed to utilize the increased capacity of the underlining media.

Mike Flynn, in 1972 [Flynn72], developed a classification for various parallel systems, which has

remained authoritative. It is based on the number of instruction streams and the number of data streams

active in one cycle. A sequential machine is considered to have single instruction stream executing on a

single data stream; this is called SISD. An SIMD machine has a single instruction stream executing on

multiple data streams in the same cycle.MIMD hasmultiple instruction streams executing on multiple data

streams simultaneously. All are shown in Fig. 1.17. An MISD is not shown but is considered to be a

systolic array.

Four categories of MIMD systems, dataflow, multithreaded, out of order execution, and very long

instruction words (VLIW), are of particular interest, and seem to be the tendency for the future. These

categories can be applied to a single CPU, providing parallelism by having multiple functional units. All

four attempt to use fine-grain parallelism to maximize the number of instructions that may be executing

in the same cycle. They also use fine-grain parallelism to assist in utilizing cycles, which possibly could be

lost due to large latency in the execution of an instruction. Latency increases when the execution of one

instruction is temporarily staled while waiting for some resource currently not available, such as the

results of a cache miss, or even a cache fetch, the results of a floating point instruction (which takes

longer than a simpler instruction), or the availability of a needed functional unit. This could cause delays

in the execution of other instructions. If there is very fine grain parallelism, other instructions can use

available resources while the staled instruction is waiting. This is one area where much computing power

has been reclaimed.

Two other compelling issues exist in parallel systems. Portability, once a program has been developed

it should not need to be recoded to run efficiently on a parallel system, and scalability, the performance

of a system should increase proportional to the size of the system. This is problematic since unexpected

bottlenecks occur when more processors are added to many parallel systems.

1.5.2 Single Instruction Multiple Processors (SIMD)

Perhaps the simplest parallel system to describe is an SIMD machine. As the name implies all processors

execute the same instruction at the same time. There is one master control unit, which issues instruc-

tions, and typically each processors also has its own local memory unit. SIMD processors are fun to

envision as a school of fish that travel closely together, always in the same direction. Once one turns, they

all turn. In most systems, processors communicate only with a set of nearest neighbors; grids, hypercubes,

or torus are popular. In the most generic system, shown in Fig. 1.17b, no set communication pattern is

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 52 19.10.2007 9:10pm Compositor Name: BMani

1-52 Digital Systems and Applications

dictated. Because different algorithms do better on different physical topologies (algorithms for sorting

do well on tree structures, but array arithmetic does well on grids), reconfigureable networks are ideal

but hard to actually implement. A variety of structures can be built on top of grids if the programmer is

resourceful, but some processing power would be lost. It is difficult for a compiler to decide which

substructure would be optimal to use. A mixture of a close connections supplemented with longer

connections seems to be most advantageous. MasPar [MasPar91] has SIMD capability and uses a grid

structure supplemented with longer connections. The Thinking Machines CM-5 has SIMD capability

using a fat-tree network, also a mix of closer and longer connections. The PEC network also has this

quality [Kirkman91, Quammen96].

Of course, SIMD machines have limits. Logical arrays may not meet the physical topology of the

processors but require folding or skewing. If statements may cause different paths to be followed on

different processors, and since it is necessary to always have synchronization, some processing power will

be lost. Masks are used to inhibit issued instructions on processors on which they should not be

executed. A single control unit becomes a bottleneck as an SIMD system expands. If an SIMD system

were very large, it would be desirable to be able to use it as a multiprogrammed machine where different

programs would be allocated different ‘‘farms’’ of processors for their use as a dedicated array. A large

SIMD system should be sub-dividable for disjoint multiuser applications. The operating system would

have to handle this allocation.

On an SIMD computer a loop such as the one below can be translated to one SIMD instruction as is

shown. The form A(1:N) means array A indexes 1 to N:

(a)

(b)

PControl M
I/O

P = Processor
M = Memory

• • •

Network

Control

P M P M P M P M

•
••

Shared
memory

Control P
MI/O

Control P
MI/O

•
•
•

(c)

FIGURE 1.17 (a) SISD uniprocessor architecture. (b) General SIMD with distributed memory. (c) Shared memory

MIMD.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 53 19.10.2007 9:10pm Compositor Name: BMani

Computer Architecture and Design 1-53

for I¼ 1 to N do

A(I)¼B(I)þC(I); A(1:N)¼B(I:N)þC(1:N);

endfor;

The code below would take four steps:

F(0)¼ 0;

for I¼ 1 to N do F(0)¼ 0;

A(I)¼B(I)=C(I); A(1:N)¼B(I:N)=C(1:N);

D(I)¼A(I) * E(I); D(1:N)¼A(1:N) * E(1:N);

F(I)¼D(I)þ F(I� 1); F(1:N)¼D(1:N)þ F(0:N� 1);

endfor;

Compilers can identify loops such as the ones presented above [Wolfe91]. However, many loops are not

capable of executing in an SIMD fashion because of reverse dependencies. Languages have been

developed for SIMD programming, which allows the programmer to specify data locations and

communication patterns.

1.5.3 Multiple Instruction Multiple Data

Perhaps the easiest MIMD processor to envision is a shared memory multiprocessor such as shown in

Fig. 1.17c. With this machine, all processors access the same memory bank with the addition of local

caches. This allows the processors to communicate by placing data in the shared memory. However,

sharing data causes problems. Data and cache coherence are of major concern. If one processor is altering

data that another processor wishes to use, and the first processor is also holding the current updated

value for this data in its cache, there is a need to guard access to the stale value which is being held in the

shared memory. This creates a need for locks and protocols to protect communal data. Inefficient

algorithms to handle cache coherence can cause delays, or invalidate results. In addition, if more than

one processor wishes to access the same locked memory location, a fairness issue occurs as to which

processor should be allowed first access after the location becomes unlocked [Hwang93]. Further delays

in accessing the shared memory occur due to the use of a single bus. This arrangement is described as a

uniform memory access (UMA) time approach and avoids worst-case communication scenarios pos-

sible in other memory arrangements.

To reduce contention on the bus as a MIMD memory system scales, a distributed memory organiza-

tion can be used. Here, clusters of processors share common memories, and the clusters are connected to

allow communications between clusters. This is called an NUMA (nonuniform memory access) organ-

ization [Gupta91]. If a MIMD machine is to be scalable, this approach must be used. Machines within

the same cluster will be able to share data with less latency than machines housed on different memory

banks. It will be possible to access all data. This creates questions as to which sets of data should be

placed on which processor cluster. Compilers can help with this by locating a code that uses common

data. If data is poorly placed, the worst-case execution time could be devastating.

Message passing systems, such as the Transputer [May88], have no shared memory but handle

communications using message passing. This can cause high latency while waiting for requested data;

however, each processor can hold multiple threads, and may be able to occupy itself while waiting for

remote data. Deadlocks are a problem.

Another variation of memory management is cache only memory access (COMA). Memory is

distributed, but only held in cache [Saulsbury95]. The Kendall Square machine [KSR91] has this

organization. On the KSM distributed memory is held in the cache of each processor, which is connected

by a ring. The caches of remote processors are accessed using this ring.

1.5.4 Vector Machines

A vector machine creates a series of functional units and pumps a stream of data through the series. Each

stage of the pipe will store its resulting data in a vector register, which will be read by the next stage.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 54 19.10.2007 9:11pm Compositor Name: BMani

1-54 Digital Systems and Applications

In this way the parallelism is equal to the number of stages in the pipeline. This is very efficient if the

same functions are to be preformed on a long stream of data. The Cray series computer [Cray92] is

famous for this technique. It is becoming popular to make an individual processor of a MIMD system a

vector processor.

1.5.5 Dataflow Machine

The von Neumann approach to computing has one control state in existence at one time. A program

counter is used to point to the single next instruction. This approach is used in traditional machines,

and is also used in most of the single processors of the multiple processor systems described earlier. A

completely different approach was developed at the Massachusetts Institute of Technology [Dennis91,

Arvind90, Polychronopoulos89]. They realized that the maximum amount of parallelism could be

realized if at any one point all instructions that are ready to execute were executed. An instruction is

ready to execute if the data that is required for its complete execution is available. Therefore, execution of

an instruction is not governed by the sequential order, but by its readiness to execute, that is, when both

operands are available. A table is kept of the instructions that are about ready to execute, that is, one of

the two operands needed for the assembly language level instruction is available. When the second

operand is found, this instruction is executed. The result of the execution is passed to a control unit,

which will select a set of new instructions to be about ready to execute, or mark an instruction as ready

(because the second operand needed has arrived).

This approach yields the maximum amount of parallelism. However, it runs into problems with

‘‘run away execution.’’ Too many instructions may be about ready, and clog the system. It is a

fascinating approach, and machines have been developed. It has the advantage that no, or very little,

changes need to be made to old dusty decks to extract parallelism. Steps can be made to avoid ‘‘run

away execution.’’

1.5.6 Out of Order Execution Concept

An approach similar to the dataflow concept is called out of order execution [Cintra00]. Here again,

program elements that are ready to execute may be executed. It has a big advantage when multiple

functional units are available on the same CPU, but the functional units have different latency values.

The technique is not completely new but similar to issuing a load instruction, which has high latency,

well before the result of the load is required. By the time the load is completed the code has reached the

location where it is used. Also a floating point instruction, again a class of instructions with high latency,

is frequently started before integer instructions coded to execute first are executed. By the time the

floating point is complete, its results are ready to be used. The compiler can make this decision statically.

In out of order execution the hardware has more of a role in the decision of what to execute. This may

include both the then and the else parts of an if statement. They can both be executed, but not be

committed to until the correct path is determined. This technique is also called speculative execution.

Any changes that have been made by a wrong path must be capable of being rolled back. Although this

may seem to be extra computation, it will decrease execution time if done well. Other areas of the

program may also be executed, if it is determined that their execution will not affect the final result or

can be rolled back. The temporary results may be kept in registers. The Alpha Computer [Kessler99] as

well as the Intel Pentium Pro [Intel97] use this technique. This method is becoming popular to fully

utilize increasingly powerful computers.

Compiler techniques can be used to try to determine which streams should be chosen for advance

execution. If the wrong choice is made, there is a risk of extremely poor performance due to continual

rollbacks. Branch prediction, either statically by the compiler, or dynamically by means of architecture

prediction flags, is a useful technique for increasing the number of instructions, which may be beneficial

to execute prematurely.

Since assembler instructions contain precise register addresses, set by the compiler, and it is unknown

which assembler instructions will be caught in partial execution at the same time, a method

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 55 19.10.2007 9:11pm Compositor Name: BMani

Computer Architecture and Design 1-55

called register renaming is used. A logical register address is mapped to a physical register chosen from a

free list. The mapping is then used throughout the execution of the instruction, and released again to the

free list.

1.5.7 Multithreading

Multithreading [Tullsen95] is another method to hide the latency endured by various instructions. More

than one chain, or thread, of execution is active at any one point. The states of different chains are saved

simultaneously [Lo97, Miller90] in their own state space. Modern programs are being written as a

collection of modules, either threads or objects. Because one of the main advantages of this form of

programming is data modulization, many of these modules could be ready to execute concurrently.

While the processor is waiting for one thread’s data (for example, a cache miss or even a cache access),

other threads, which have a full state in their dedicated space, can be executed. The compiler cannot

determine which modules will be active at the same time, that will have to be done dynamically. The

method is somewhat similar to the multiprogramming technique of changing context while waiting for

I=O; however, it is at a finer grain. Multiple access lines to memory are beneficial since many threads may

be waiting for I=O. The Tera machine [Smith90] is the prime example of this technique. This approach

should help lead to Teraflops performance.

1.5.8 Very Long Instruction Word (VLIW)

AVLIW will issue an instruction to multiple functional units in parallel. Therefore, if the compiler can

find one operation for each of the functional unit internal to a processor (these instructions are usually

RISC-like), which will be able to execute at the same time (that is, the data for their execution are

statically determined to be available in registers), and none of the instructions depend on an instruction

being issued in the same cycle, then you can execute them in parallel. All the sub-instructions will be

issued by one long instruction. The name VLSI comes from the need that the instruction be long enough

to hold multiple operation codes, one for each functional unit, which will be used, and the register

identifiers, which they need. Unlike the three methods described previously, the compiler is responsible

for finding instructions that do not interfere with each other and assigning the registers for these

instructions [Rau93, Park97]. The compiler packs these instructions statically into the VLIW. The Intel

iWarp can control a floating point multiplier, floating point adder, integer adder, memory loader, increment

unit, and condition tester on each cycle [Cohn89]. The instruction is 96 bits long and can, with compiler

support, execute nine instructions at once. The code for the following loop can be turned into a loop of

just one VLSI instruction as opposed to a loop of at least nine RISC size instructions.

for I :¼ 0 to N� 1 do

A(2 * I):¼ CþB(I) * D;

It is difficult for a compiler to find instructions that can fill all the fields statically, so frequently some of

the functional units go unoccupied. There are many techniques to find qualified instructions, and

frequently the long instruction can be filled. One technique is to mine separate threads [Lam88,

Bakewell91], another successful technique tries together several basic Oblocks into a hyperblock. The

hyperblock has one entrance but may have several exits. This creates a long stream of code, which would

normally be executed sequentially, and allows the compiler to choose instructions over this larger range.

Roll-back code must be added to the hyperblock’s exit to undo the affects of superfluous code that was

executed, but would not execute sequentially. Loops are frequently unrolled, several iterations considered

as straight code, to form hyperblocks. Branch prediction can also help create beneficial hyperblocks.

A newer approach is to dynamically pack the VLIW, using a preprocessor that accesses multiple

queues, one for each functional unit. Realize that using queues is similar to out of order execution.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 56 19.10.2007 9:11pm Compositor Name: BMani

1-56 Digital Systems and Applications

1.5.9 Interconnection Network

An interconnection network is a necessary component of all parallel processing systems. Several features

govern the choice of a network. A scalable interconnection network for parallel processor would be ideal

if it meets the following requirements for a large range of system sizes. For instance, it may be scalable by

reasonably small increments from 24 to perhaps 220 processors.

. Have a low average and maximum diameter (the distance between the furthest two nodes) to

avoid communication latency.

. Minimize routing constraints (have many routes from A to B).

. Have a constant number of I=O port (channels) per node to allow for expansion without retrofit.

. Have a simple wire layout to allow for expansion and to avoid wasting VLSI space.

. Be inherently fault tolerant.

. Be sub-dividable for disjoint multiuser applications.

. Be able to handle a large range of algorithms without undo overhead.

The most popular parallel networks—hypercube, quad tree, fat-tree, binary tree, mesh, and torus—

fail in one or more of these items.

Meshes have a major disadvantage: they lack support for long distance connections. Hypercubes have

excellent connectivity by guaranteeing a maximum distance between any two nodes of log N where N is

the number of nodes. Also, many paths exist between any two nodes making it fault tolerant and

amenable to low contention. However, the number of I=O ports per node is log N. As a system scales,

each node would need to be retrofit to add additional ports. In addition, the wire layout is complex,

making this network expensive in space. Tree structures are popular and have a maximum long distance

connection of O(2 log N). Communications on a tree, however, can be complicated by the fact that

although many neighbors are close, many can only communicate through the root. This causes

contention at the root. Fattrees reduce this contention by increasing the bandwidth, as the network

approaches the root [Leiserson92].

The extreme ideal network would allow all nodes to connect to all others. This is not practical for large

system. However, one class of networks, the multistage network, uses an internal switching system and

allows constant access time between any two nodes. Several arrangements are available for multistage

networks. All are similar. One such network, the baseline network, is shown in Fig. 1.18. It can be proved

that a N-by-N network can be totally connected with log N switches steps [Seigel89]. Each step is

through a row of switches, with N=2 switches in each row. This requires quite a bit of hardware and does

allow for a connection in log N steps. This is not very scalable.

Optical technology [Yuan97] has shown to be promising for the implementation of all networks.

Instead of a wire, an optical ‘‘beam’’ is used to make the connection. This is fast and has several

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

FIGURE 1.18 An 8 3 8 baseline network.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 57 19.10.2007 9:11pm Compositor Name: BMani

Computer Architecture and Design 1-57

advantages. One, a broadcast can be made from one node to many nodes at once (although, one node

cannot receive many inputs at once), and two, the transmission can be sent through clear space.

1.5.10 Conclusion

Parallel systems are going to become almost universal in computer systems. Desktop computers are now

frequently being delivered with more than one CPU and definitely with more than one functional unit.

The new models of SUN, MIPS, Intel, and Macintosh desktop computers currently are providing

parallel computing capabilities. This feature is no longer limited to just super computers. In order to

use these systems efficiently, the consumer should be aware of how their programs are going to utilize

the systems. Compilers, operating systems, and program design are all things that should be examined.

Most parallel processing is being aimed at hiding latency; however, embedded systems and

super computing implementations also need the ability to execute separate lines of control running

independently, whichmust communicate with each other. Embedded systems need this to assure the strict

adherence to real-time deadlines. Super computer applications need the additional processing power.

This section is only briefly discussed this field. A full addressing of the field is covered in large volumes

of books and journals. Topics, such as compiler techniques, dedicated languages, communication

techniques, multi-user facilities, algorithms, memory hierarchies, I=O facilities, programming tools,

fault tolerant, power consumption, and debugging technique, are only an abbreviated list of topics

which need to be examined. Plus, each of these subtopics has many aspects. All computer users should

certainly be aware of this field.

References

[Arvind90] Ardvin and Nikhil, ‘‘Executing a Program on the MIT Tagged Dataflow Architecture,’’ IEEE

Trans. Computer, 1990.

[Bakewell91] H. Bakewell, D. Quammen, and P. Wang, ‘‘Mapping Concurrent Programs to VLIW

Processors’’ Proc. Principles and Practices of Parallel Programming, Williamsburg, Virginia,

pp. 21–27, April 1991.

[Cintra00] M. Cintra, J. Martinez, and J. Torrellas, ‘‘Architectural Support for Scalable Speculative

Parallelism in Shared-Memory Multiprocessors,’’ Int. Symp. Computer Architecture, 2000.

[Cohn89] R. Cohn, T. Gross, M. Lam, and P. Tseng, ‘‘Architecture and Compiler Tradeoffs for a Long

Instruction Word Microprocessor,’’ Third Int. Conf. on Architectural Support for Programming

Languages and Operating Systems, 1989.

[Cray92] Cray, Cray=MPP Announcement, Cray Research, Inc. Eagan, MN, 1991.

[Dennis91] J. Dennis, ‘‘The Evolution of Static Dataflow Architecture,’’ in Gaudiot and Bic, Advanced

Topics in Dataflow Computing, Prentice-Hill, Englewood Cliffs, NJ, 1991.

[Flynn72] M.J. Flynn, ‘‘Some Computer Organization and their Effectiveness,’’ IEEE Trans. Computer, 21

(9): 948–960, 1972.

[Gupta91] A. Gupta, J. Hennessy, et al., ‘‘Comparative Evaluation of Latency Reducing and Tolerating

Techniques,’’ Proc. Int. Symp. Computer Architecture, May 1991.

[Hwang93] Kai Hwang, Advanced Computer Architecture, McGraw-Hill, Inc, New York, 1993.

[Intel97] Intel Corporation, Pentium(R) Pro Processor Developmer’s Manual, McGraw-Hill, New York,

June 1997.

[Kessler99] R.E. Kessler, ‘‘The Alpha 21264 Microprocessor,’’ IEEE Micro, 1999.

[Kirkman91] W. Kirkman and D. Quammen, ‘‘Packed Exponential Connections—A Hierarchy of 2D

Meshes,’’ Proc. 5th Int. Parallel Proceedings Symposium, Anaheim, pp. 464–470, California, April

1991.

[KSR91] KSR-1 Overview, Internal Report, Kendall Square Research Co.170 Tracer Lane, Waltham, MA

02154, 1991.

[Lam88] M. Lam Software Pipelining, ‘‘An Effective Scheduling Technique for VLIW Machines,’’ ACM

Sigplan 1088 Conf. or Programming Language Design and Implementation, 1988.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 58 19.10.2007 9:11pm Compositor Name: BMani

1-58 Digital Systems and Applications

[Leiserson92] C.E. Leiserson, ‘‘The Network Architecture of the Connection Machine, CM-5,’’ Proc.

ACM Symp. Computer Architecture, 1992.

[Lo97] J. Lo, S. Eggers, et al., ‘‘Tuning Compiler Optimization for Simultaneous Multithreading,’’ Int.

Symp. on Microarchitecture, 1997.

[MasPar91] MasPar, ‘‘The MasPar Family of Data Parallel Computer,’’ Technical summary, MasPar

Computer Corporation, Sunnyvale, CA, 1991.

[May88] D. Pountain and D. May, Occam Programming, INMOS, Oxford England, 1988.

[Miller90] D.R. Miller and D.J. Quammen. ‘‘Exploiting Large Register Sets,’’ Int. J. Microprocessors and

Microsystems, pp. 333–340, August 1990.

[Park97] S. Park, S. Shim, and S. Moon, Evaluation of Scheduling Techniques on a SPARC-Based VLIW

Testbed, Micro-30, 1997.

[Polychronopulos89] C.D. Polychronopulos, et al., ‘‘Paradrase 2: An Environment for Parallel Zing,

Partitioning, Synchronizing Programs on Multiprocessors,’’ Proc. Int. Conf. on Parallel Processing,

1989.

[Quammen96] D. Quammen, J. Stanley, and P. Wang, ‘‘The Packed Exponential Connection Network,’’

Pre. Int. Symp. Parallel Arch. Algorithms and Networks, 1996.

[Rau93] B. Rau and J. Fisher, ‘‘Instruction-Level Parallel Processing: History, Overview, and Perspective,’’

J. Supercomputing: Special Issue on Instruction-Level Parallelism, 1993.

[Saulsbury95] A. Saulsbury, T. Wilkinson, et al., ‘‘An Argument for a Simple COMA,’’ Symp. Int. on High

Perf. Computer Architecture, 1995.

[Siegel89] H.J. Siegel, ‘‘A model of SIMD Machines and a Comparison of Various Interconection

Networks,’’ IEEE Trans. Computer, 28(12) 1989.

[Smith90] J.E. Smith, ‘‘Future General-Purposes Supercomputer Architecture,’’ Proc. ACM Supercom-

puting Conf., 1990.

[Tullsen95] D. Tullsen, et al., ‘‘Simultaneous Multithreading: Maximizing On-Chip Parallelism,’’ Proc.

23rd Int. Symp. on Computer Architecture, 1995.

[Wolfe91] M.E. Wolfe and M. Lam, ‘‘A Loop Transformation Theory and an Algorithm to Maximize

Parallelism,’’ IEEE Trans. Parallel Distri Systems, 3(10), 1991.

[Yuan97] X. Yuan, R. Melhem, and R. Gupta, ‘‘Distributed Path Reservation Algorithms for Multiplexing

All-Optical Interconnection Networks,’’ Proc. Symp. High-Performance Comp. Architecture, 1997.

1.6 Virtual Memory Systems and TLB Structures

Bruce Jacob

1.6.1 Virtual Memory, a Third of a Century Later

Virtual memory was designed in the late 1960s to provide automated storage allocation. It is a technique

for managing the resource of physical memory that provides to the application an illusion of a very large

amount of memory—typically, much larger than is actually available. In a virtual memory system, only

the most often used portions of a process’s address space actually occupy physical memory; the rest of

the address space is stored on disk until needed. When the mechanism was invented, computer

memories were physically large (one kilobyte of memory occupied a space the size of a refrigerator),

they had access times comparable to the processor’s speed (both were extremely slow), and they came

with astronomical price tags. Due to space and monetary constraints, installed computer systems

typically had very little memory—usually less than the size of today’s on-chip caches, and far less

than the users of the systems would have liked. The virtual memory mechanism was designed to solve

this problem, by using a system’s disk space as if it were memory and placing into main memory only the

data used most often.

Since then, we have seen constant evolution (and revolution) in the computer industry. Typical

microprocessors today have more on-chip cache than the core memory found in multimillion-dollar

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 59 19.10.2007 9:11pm Compositor Name: BMani

Computer Architecture and Design 1-59

systems of yesterday and cost orders of magnitude less. Today, memory takes up very little space: you can

easily hold a gigabyte of DRAM in your hand. In recent decades, processor designers have focused on

improving speed while memory-chip designers have focused on improving storage size, and, as a result,

memory is now extremely slow compared to processor speeds. Due to rapidly decreasing memory prices,

it is usually possible to have enough memory in one’s machine to avoid using the disk as a backup

memory space. Many of today’s machines generate 64-bit addresses, some even larger; most modern

machines therefore reference 16 exabytes (16 giga-gigabytes) or more of data in their address space

directly. The list goes on. In fact, one of the few things that has not changed since the development of

virtual memory is the basic design of the virtual memory mechanism itself, and the one problem it was

invented to solve—too little memory—is no longer a factor in most systems. However, the virtual

memory mechanism has proven itself valuable in other areas besides extending the memory space. Today

it is used in nearly every modern operating system because of the convenience offered by its features: It

simplifies memory allocation and memory protection, and it provides an intuitive programming

interface to the application—the ‘‘virtual machine’’ interface—that simplifies program design and

provides a natural path to multitasking.

1.6.2 Caching the Process Address Space

A process operates in its own little world; this is the virtual machine paradigm, illustrated in Fig. 1.19.

Each running process generates addresses for loads and stores as if it has the entire machine to itself—as

if the computer offers an extremely large amount of memory and no other processes are executing or

consuming resources. This makes the job of the programmer and compiler much easier, because no

details of the hardware or memory organization are necessary to build a program.

The operating system divides the process address space into equal-sized portions for ease of manage-

ment; these divisions are called virtual pages. A page is usually a multiple of the unit of transfer that hard

disks use, and in most operating systems ranges from several kilobytes to several dozen kilobytes. A page

is never fragmented; if any data in a virtual page are in physical memory then all the data in that page

are, and if any of the data in a virtual page are nonexistent or being held on disk then all the data are.

When the word page is used in a verb form, it means to allow a section of memory to be virtual—to

Reality:

Process A’s view of the world:

Instructions Data Stack

A’s address space

Physical memory:

B’s address space

C’s address space

D’s address space

FIGURE 1.19 The virtual machine paradigm. A process operates in its own virtual environment, unaware that

other processes are executing and contending for the same limited resources. The operating system views each

process address space as a collection of pages that can be cached in physical memory, or left in backing store.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 60 19.10.2007 9:11pm Compositor Name: BMani

1-60 Digital Systems and Applications

allow it to move freely between physical memory and disk. This allows the physical memory to be used

more efficiently: When a region of memory has not been used recently, the space can be freed up for

more active pages, and pages that have been migrated to disk are brought back in as soon as they are

needed again.

How is this done? The ultimate home for the process’s address space is backing store, usually a disk

drive; this is where the process’s instructions and data come from and where all of its permanent changes

go to. Every hardware memory structure between the CPU and the backing store is a cache for the

instructions and data in the process’s address space. This includes main memory—main memory is

really nothing more than a cache for a process’s virtual address space. A cache operates on the principle

that a small, fast storage device can hold the most important data found on a larger, slower storage

device, effectively making the slower device look fast. The large storage area in this case is the process

address space, which can be many gigabytes in size. Everything in the address space initially comes from

the program file stored on disk or is created on demand and defined to be zero. Figure 1.20 illustrates:

CPU:

Address
space

Ideal physical model

L1/L2/etc. Cache hierarchy

CPU: Backing
store

Reality

Main memory

Dynamically
allocated data

space

Virtual memory system
L1/L2/etc. Cache hierarchy

FIGURE 1.20 Caching the process address space. In the first view, a process is shown referencing locations in its

address space. Note that all loads, stores, and fetches use virtual names for objects, and many of the requests can be

satisfied by a cache hierarchy. The second view shows that the address space is not a linear object stored on some

device, but is instead scattered across hard drives and dynamically allocated when necessary.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 61 19.10.2007 9:11pm Compositor Name: BMani

Computer Architecture and Design 1-61

There really is no linear array of data that houses the process address space. Its illusion is actually

manufactured by the operating system through the virtual memory mechanism.

When a program first begins executing, the operating system copies a small portion of the process

address space from the program file stored on disk into main memory. This typically includes the first

page of instructions in the program and possibly a small amount of data that the program needs at

startup. Then, as more instructions or data are needed, the operating system brings in pages from the

process’s address on demand. This process, called demand paging, is depicted in Fig. 1.21.

In step 1 of the figure, the operating system initializes a process address space and loads the first page

of instructions into physical memory. The operating system then sets the hardware program counter to

the first instruction in the program, which sets the process running. Assuming that one of the first few

instructions references the initialized data area, the uninitialized data area, or the (so far nonexistent)

stack, the operating system will have to bring in a page of data from the program file or create an

uninitialized-data page or stack page and link it into the process address space. This is shown in steps 2

and 3 of the figure. When a process references an item in its address space that is not currently in

physical memory, the reference causes a page fault, and the operating system loads the necessary pages

from backing store into main memory. Clearly, the term demand paging refers to the fact that pages are

allocated or brought into physical memory on demand. Step N of the figure shows a process that has

been executing for some time, as it has several pages of data in its stack area and several pages in its data

area that were not there when the process began executing. All of these pages were dynamically allocated

by the operating system as the process needed or asked for them.

As has been pointed out before, the process is unaware of the operating system activity that moves

pages in and out of main memory on its behalf. It typically does not know whether or not any given page

is memory-resident or where it is located if it is memory-resident. Figure 1.19 at the beginning of the

section illustrates this by showing a process address space from two points of view. The first point of

Text:

Data:

Stack:

Virtual
space

Physical
space

Virtual
space

Physical
space

Virtual
space

Physical
space

Virtual
space

Physical
space

Step 1 Step 2 Step 3 Step N

Text:

Data:

Stack:

Text:

Data:

Stack:

Text:

Data:

Stack:

FIGURE 1.21 Demand paging at process start-up. In step 1, the operating system loads the first page of the

process’s instructions into physical memory, and sets the program counter to the first instruction in the program.

This first instruction references a location in the process’s data area, so in step 2 the operating system brings the

corresponding data page into physical memory. The next instruction references a location on the process’s stack, so

in step 3 the operating system has allocated a stack page for the process and placed it into the process address space

and main memory. Succeeding instructions reference more locations in the stack area, jump to instructions that lie

outside of the initial page of instructions, and allocate extra data storage area on the heap. In step N (many steps

later), these pages have been brought into main memory.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 62 19.10.2007 9:11pm Compositor Name: BMani

1-62 Digital Systems and Applications

view is from the process itself; in most operating systems a process sees its address space as a contiguous

span of memory locations from minimum to maximum. Somewhere in the address space is the

program’s instructions, or text ; somewhere else is the program’s data. Most operating systems also

create a stack area, a heap area, and possibly one or more dynamically loaded libraries containing

system-supplied utilities such as input=output routines or networking functions. The advantage of the

virtual machine paradigm is that these can be arranged in physical memory, which is most convenient,

rather than having to fit things together like the pieces of a puzzle, as would be the case without address

translation.

The second point of view in the figure is from the operating system. In reality, the process address

space is not a large contiguous segment in physical memory but is partially cached by physical memory.

Portions of the process address space are scattered about physical memory and are likely to be not

contiguous at all. The process is unaware of where in the system any particular portion of its address

space is being held; some portions can be on disk (for example, the portions of the program that have

not been used yet), some can be in main memory, and some can be in hardware caches. The operating

system maintains a map for each address space so that, for every virtual page in the address space, it can

tell where in memory or on disk the page can be found. As the figure suggests, the virtual machine

paradigm allows each process to behave as if it owns the entire machine; each process is protected from

all others and does not even know that other processes exist—for example, a process cannot spoof the

identity of another process, and the resource-management mechanisms implemented by the operating

system to support the illusion that each process own all physical resources means that no process may

dominate system resources. One of the many benefits of this organization is that it makes facilities such

as multitasking very easy to implement, because process protection, resource sharing, and a clean

division of process identity are provided as side effects of the virtual machine paradigm by definition.

The mapping information that tells the location of pages in memory or on disk is organized into page

tables, which are collections of page table entries (PTEs). Virtual addresses (shown in Fig. 1.22) are

mapped at the granularity of pages; at its simplest, virtual memory is then a mapping of virtual page

numbers (VPNs) to page frame numbers (PFNs), shown in Fig. 1.23. ‘‘Frame’’ in this context means

‘‘slot’’—physical memory is divided into frames that hold pages. The page table holds one PTE for every

mapped virtual page; an individual PTE indicates whether its virtual page is in memory, on disk, or not

allocated yet. The logical PTE therefore contains the VPN and either the page’s location in memory

(a PFN), or its location on disk (a disk block number). Depending on the organization, some of this

information is redundant; actual implementations do not necessarily require both the VPN and the

PFN. Later developments in virtual memory added such things as page-level protections; a modern PTE

usually contains protection information as well, such as whether the page contains executable code,

whether it can be modified, and if so by whom.

The mapping is a function; any virtual page can have only one location. However, the inverse map

is not necessarily a function; it is possible and sometimes advantageous to have several virtual pages

mapped to the same page frame (to share memory between processes or threads, or to allow different

views of data with different protections, for example). Shared memory is one of the more commonly

used features of page tables. It is a mechanism whereby two address spaces that are protected from

each other are allowed to intersect at points, still retaining protection over the nonintersecting

regions. Several processes sharing portions of their address spaces are pictured in Fig. 1.24. The

shared memory mechanism only opens up a pre-defined portion of a process’s address space; the rest

Page offsetVirtual page number (VPN)

12 bits20 bits

FIGURE 1.22 Virtual addresses. A virtual address is divided into two components: the virtual page number and the

page offset. The virtual page number identifies the page’s location within the address space. The page offset identifies

a byte’s location within the page. Bit widths are shown for a 32-bit address and a 4 kbyte page size.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 63 19.10.2007 9:11pm Compositor Name: BMani

Computer Architecture and Design 1-63

of the address space is still protected, and even the shared portion is only unprotected for those

processes sharing the memory. For instance, in the figure, the region of A’s address space that is

shared with process B is unprotected from whatever actions B might want to take, but it is safe from

the actions of any other processes. Shared memory is therefore useful as a simple, secure means for

Virtual
space

Physical
space

00007

00005

00003

00001

00006

00004

00002

00000

FFFFF

FFFFD
FFFFE

FFFFC

00007

00005

00003

00001

00006

00004

00002

00000

0000F

0000D

0000B

00009

0000E

0000C

0000A

00008

Virtual
page

numbers

Page
frame

numbers

4A007

4A005

4A003

4A001

4A006

4A004

4A002

4A000

4A00D

4A00B

4A009

4A00E

4A00C

4A00A

4A008

FIGURE 1.23 Page numbers (for 32-bit virtual addresses). Every page in an address space is given a virtual page

number (VPN). Every page in physical memory is given a physical page number, called a page frame number (PFN).

Process D

Process A Process C

Process B

Shared by A & B Shared by
B & C

Shared by
C & D

Shared by
B & D

Shared by
B & C & D

FIGURE 1.24 Shared memory. Shared memory allows processes to overlap portions of their address space while

retaining protection for the nonintersecting regions; this is a simple and effective method for inter-process

communication. Pictured are four process address spaces that have overlapped. The darker regions are shared by

more than one process, while the lightest regions are still protected from other processes.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 64 19.10.2007 9:11pm Compositor Name: BMani

1-64 Digital Systems and Applications

inter-process communication. Shared memory also reduces requirements for physical memory; for

example, in most operating systems, the text regions of processes are shared whenever multiple

instances of a single program are run, or when multiple instances of a common library are used in

different programs.

The mechanism works by ensuring that shared pages map to the same physical page; this is done by

simply placing the same page frame number in the page tables of two processes sharing a page. A simple

example is shown in Fig. 1.25. Here, two very small address spaces are shown overlapping at several

places, and one address space overlaps with itself; two of its virtual pages map to the same physical page.

This is not just a contrived example; many operating systems allow this, and it is useful, for example, in

the implementation of user-level threads.

1.6.3 An Example Page Table Organization

So now the question is: How do page tables work? If we think of main memory as the data array of a

cache, then the page table is the cache’s corresponding tags array—it is a lookup table that tells one what

is currently stored in the data array. The traditional design of virtual memory uses a fully associative

organization for main memory: Any virtual object can be placed at (more or less) any location in main

memory, which reduces contention for main memory and increases performance. An idealized fully

associative cache is pictured in Fig. 1.26. A data tag is fed into the cache; the first stage compares the

input tag to the tag of every piece of data in the cache. The matching tag points to the data’s location in

the cache. The goal of the page table organization is to support this lookup function as efficiently as

possible.

To access a page in physical memory, it is necessary to look up the appropriate PTE to find where the

page resides. This lookup can be simplified if PTEs are organized contiguously so that a page number

can be used as an offset to find the appropriate PTE. This leads to two primary types of page table

organization: the forward-mapped or hierarchical page table, indexed by the virtual page number, and the

inverse-mapped or inverted page table, indexed by the physical page number (page frame number). Each

design has its strengths and weaknesses. The hierarchical table supports a simple lookup algorithm and

simple sharing mechanisms and can require a significant fraction of physical memory. The inverted table

supports efficient hardware table-walking mechanisms and requires less physical memory than a

hierarchical table but inhibits sharing by not allowing the mappings for multiple virtual pages to exist

in the table simultaneously, if those pages map to the same page frame. Detailed descriptions of these

can be found elsewhere (Jacob and Mudge 1998a).

Instead of describing all possible page table organizations, we will look in some detail at a concrete

example: the virtual memory implementation of one of the oldest and simplest virtual memory systems,

Process A’s address space Process B’s address space

A’s page table: B’s page table:

FIGURE 1.25 How page tables support sharedmemory. Two process address spaces are shown sharing several pages.

Their page tables maintain information onwhere virtual pages are located in physical memory. The darkened pages are

mapped to several locations; note that the darkest page is mapped at two locations in the same address space.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 65 19.10.2007 9:11pm Compositor Name: BMani

Computer Architecture and Design 1-65

4.3BSD Unix (Leffler et al. 1989). The intent is to show how mapping information is used by the

operating system and how the physical memory layout is organized. Version 4.3 of Berkeley Unix

provides support for shared text regions, address space protection, and page-level protection. There is

a separate page table for every process, and the page tables cannot be paged to disk. As we will see,

address spaces are organized to minimize memory requirements.

BSD defines segments to be contiguous regions of virtual space. A process address space is composed

of five primary segments: the text segment, holding the executable code; the initialized data segment,

containing those data that are initialized to specific nonzero values at process start-up; the bss segment,

containing data initialized as zero at process start-up; the heap segment, containing uninitialized data

and the process’s heap; and the stack. Beyond the stack is a region holding the kernel’s stack (used when

executing system calls on behalf of this process, for example) and the user struct, a kernel data structure

holding a large quantity of process-specific information. Figure 1.27 illustrates the layout of these

segments in a process’s address space: The initialized data segment begins immediately after the text

segment, the bss segment begins immediately after the initialized data segment, and the heap segment

begins immediately after the bss segment. This is possible because the text, initialized data, and bss

regions by definition cannot change size during the execution of a process. The heap segment can grow

larger, as can the stack. Therefore, these two begin at opposite ends of the address space and grow

towards each other. Beyond the 2 GB point, the address space belongs to the kernel; a user reference

causes an exception.

This design makes sense for a number of reasons. When the operating system was designed, memory

was at a premium. The choice was made to wire down the page tables. Given this, it makes most sense to

restrict an address space to be composed of a minimal number of contiguous regions; this would ensure

a compact page table (contiguous pages imply densely packed PTEs). The process model includes a

Tags array Data array

Input key Entry in
data array

Data
available

Tags array Data array

tag ---: invalid

tag WER: slot 3

tag ASD: slot 7

tag ---: invalid

tag KJH: slot 2

tag POI: slot 5

tag ZXC: slot 1

tag QWE: slot 4

data slot 7

data slot 6

data slot 5

data slot 4

data slot 3

data slot 2

data slot 1

data slot 0

Input key: ZXC
Entry in

data array Data
available

FIGURE 1.26 An idealized fully associative cache lookup. A cache is comprised of two parts: the tags array and the

data array. The tags act as a database; they accept as input a key (a virtual address) and output either the location of

the item in the data array, or an indication that the item is not in the data array. A fully associative cache allows an

item to be located at any slot in the data array, thus the input key is compared against every key in the tags array.

StackHeapBssInit. dataText Kernel stack,
u struct

0 2 GB

.

FIGURE 1.27 The 4.3BSD per-process virtual address space.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 66 19.10.2007 9:11pm Compositor Name: BMani

1-66 Digital Systems and Applications

single thread of execution per address space; 4.3BSD did not have multiple threads within an address

space, nor did it use dynamically loaded libraries. Therefore, there was no need to support sparsely

populated address spaces.

Figure 1.28 depicts the layout of process address spaces and the associated process page tables.

The page tables are kept in the kernel’s virtual address space and are relocatable even if wired down.

As shown in the figure, each user-process page table mirrors the process’s address space; the PTEs that

map the text, data, bss, and heap segments are at the bottom end of a contiguous range of PTEs (which

are held in the kernel’s virtual pages), and the PTEs that map the user’s stack are near the top of the

range of PTEs. A user page table is therefore as compact as it can be, with no more than a page of wasted

space; the empty space between the ranges of PTEs allows for expansion of the heap and stack segments.

When a process needs to expand its address space beyond the confines of its user page table, the

operating system adds an additional page to the page table and shifts all following process page tables up

by one virtual page. This is the advantage of placing the user page tables in virtual space; the displaced

data need not be recopied. The disadvantage is that there needs to be another level of mapping to

determine where in the physical memory the pages that comprise a process’s user page table are located.

The Usrptmap is a structure that mirrors the entire set of user page tables, and for every page in a

process’s user page table, there is one PTE in the Usrptmap.

When a user reference requires a lookup in the page table, the operating system first determines which

process caused the fault; this identifies the appropriate page table within the region of user page tables.

The operating system then determines whether the access was to the user’s stack or one of the text, bss,

or data segments. If the access is to the user’s stack, the operating system indexes backward from the top

of the appropriate user page table to find the PTE; if the access is to the text, data, bss, or heap segment,

the operating system indexes forward from the bottom of the user page table.

The usrptmap begins at a known location in physical memory; therefore, any process address space

can be mapped. The appropriate root PTE within the usrptmap can always be found, given a process ID,

and each root PTE points to a page of PTEs in physical memory, each of which then points to a page in

the user address space.

1.6.4 Translation Lookaside Buffers: Caching the Page Table

There is an obvious question of performance to consider: If every memory access by a user program

requires a lookup to the page table, how does anything ever get done? The answer is a familiar one: we

Kernel virtual
space:

Physical
memory:

User page tables (for seven processes)

Usrptmap maps directly
onto physical space and
maps user page tables

u.

Six PTEs that map
the six pages of PTEs

in the user page
table

Text, data, bss, and heap PTEs

Usrptmap

Stack PTEs

A user page table
containing six pages of
PTEs collectively maps

6 x 1024 user pages

Pages of user data mapped by
 PTEs in user page table

A root PTE

FIGURE 1.28 User-process page tables in 4.3BSD Unix.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 67 19.10.2007 9:11pm Compositor Name: BMani

Computer Architecture and Design 1-67

cache things. Rather than perform a page-table lookup on every memory reference (which returns a PTE

that gives us mapping information), we cache the most frequently used PTEs in hardware. The hardware

structure is called a translation lookaside buffer (TLB), and because it holds mapping information, the

hardware can perform the address translations of those PTEs that are currently cached in the TLB

without having to access the page table (see Fig. 1.29). If the appropriate PTEs are stored in hardware, a

memory reference completes at the speed of hardware, rather than being limited by the speed of looking

up PTEs in the page table.

Most architectures provide a TLB to support memory management; the TLB is a special-purpose

cache that holds only virtual-physical mappings. When a process attempts to load from or store to a

virtual address, the hardware searches the TLB for the virtual address’s mapping. If the mapping exists in

the TLB, the hardware can translate the reference to a physical address without the aid of the page table.

If the mapping does not exist in the TLB (an event called a TLB miss), the process cannot continue until

the correct mapping information is loaded into the TLB.

Translation lookaside buffers are fairly large; they usually have in the order of 100 entries, making

them several times larger than a register file. They are typically fully associative, and they are often

accessed every clock cycle. In that clock cycle they must translate both the I-stream and the D-stream.

Thus, they are often split into two halves, each devoted to translating either instruction or data

references. They can constrain the chip’s clock cycle as they tend to be fairly slow, and they are also

power hungry (both are a function of the TLB’s high degree of associativity).

In general, if the necessary translation information is on-chip in the TLB, the system can translate a

virtual address to a physical address without requiring an access to the page table. In the event that the

translation information is not found in the TLB, one must search the page table for the translation and

insert it into the TLB before processing can continue. This activity can be performed by the operating

system or by the hardware directly; a system is said to have a software-managed TLB if the OS is

responsible, or a hardware-managed TLB if the hardware is responsible. The classic hardware-managed

design, as seen in the DEC VAX, GE 645, PowerPC, and Intel 386 architectures (Clark and Emer 1985,

Organick 1972, IBM and Motorola 1993, Intel 1993), provides a hardware state machine to perform this

activity; in the event of a TLB miss, the state machine would walk the page table, locate the translation

information, insert it into the TLB, and restart the computation. Software-managed designs are seen in

the Compaq Alpha, the SGI MIPS processors, and the Sun SPARC architecture (Digital 1994, Kane and

Heinrich 1992, Weaver and Germand 1994).

The performance difference between the two is due to the page table lookup and the method of

operation. In a hardware-managed TLB a hardware state machine walks the page table; there is no

interaction with the instruction cache. By contrast, the software-managed design uses the general

TLBPage table
lookup

12

Virtual address

Physical address

Page table
lookup

20-bit virtual page number

12

Virtual address

Physical address

20-bit page frame number

Page offset

Page offset

20-bit virtual page number

20-bit page frame number

Page offset

Page offset

FIGURE 1.29 Address translation with and without a TLB. Address translation without a TLB is shown on the left;

translation with a TLB is shown on the right. The only difference is that the TLB caches the most recently used

entries in the page table, and the page table is only referenced when a lookup misses the TLB.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 68 19.10.2007 9:11pm Compositor Name: BMani

1-68 Digital Systems and Applications

interrupt mechanism to invoke a software TLB miss-handler—a primitive in the operating system

usually 10–100 instructions long. If this miss-handler is not in the instruction cache at the time of the

TLB miss-exception, the time to handle the miss can be much longer than in the hardware-walked

scheme. In addition, the use of the general-purpose interrupt mechanism adds a number of cycles to the

cost by draining the pipeline and flushing a possibly large number of instructions from the reorder

buffer; this can add up to something on the order of 100 cycles. This is an overhead that the hardware-

managed TLB does not incur; when hardware walks the page table, the pipeline is not flushed, and in

some designs (notably the Pentium Pro (Upton 1997)), the pipeline keeps processing, in parallel with

the TLB miss-handler, those instructions that are not dependent on the one that caused the TLB miss.

The benefit of the software-managed TLB design is that it allows the operating system to choose any

organization for the page table, while the hardware-managed scheme defines an organization for the

operating system. If TLB misses are infrequent, the flexibility afforded by the software-managed

scheme can outweigh the potentially higher per-miss cost of the design. For the interested reader, a

survey of hardware mechanisms is provided in (Jacob and Mudge 1998b), and a performance

comparison of different hardware=operating system combinations is provided in (Jacob and

Mudge 1998c).

Lastly, to put modern implementations in perspective, note that TLBs are not a necessary component

for virtual memory, though they are used in every contemporary general-purpose processor. Virtually

addressed caches would suffice because they are indexed by the virtual address directly, requiring address

translation only on the (hopefully) infrequent cache miss. Such a scheme is detailed and evaluated in

(Jacob and Mudge 2001).

References

D.W. Clark and J.S. Emer. ‘‘Performance of the VAX-11=780 translation buffer: Simulation and meas-

urement.’’ ACM Transactions on Computer Systems, 3(1), 1985.

Digital. DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware Reference Manual,

Digital Equipment Corporation, Maynard, MA, 1994.

IBM and Motorola. PowerPC 601 RISC Microprocessor User’s Manual. IBM Microelectronics and

Motorola, 1993.

Intel. Pentium Processor User’s Manual. Intel Corporation, Mt. Prospect, IL, 1993.

Bruce Jacob and Trevor Mudge. ‘‘Virtual memory: Issues of implementation.’’ IEEE Computer, 31(6),

pp. 33–43, June 1998a. <http:==www.ece.umd.edu=�blj=papers=computer31-6.pdf>.

Bruce Jacob and Trevor Mudge. ‘‘Virtual memory in contemporary microprocessors.’’ IEEE Micro, 18(4),

pp. 60–75, July=August 1998b. <http:==www.ece.umd.edu=�blj=papers=microl8-4.pdf>.

Bruce Jacob and Trevor Mudge. ‘‘A look at several memory management units, TLB-refill mechanisms,

and page table organizations.’’ In Proc. Eighth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’98), pp. 295–306. San Jose, CA, October

1998c.

Bruce Jacob and Trevor Mudge. ‘‘Uniprocessor virtual memory without TLBs.’’ IEEE Transactions on

Computers, 50(5), May 2001. <http:==www.ece.umd.edu=�blj=papers=ieeetc50-5.pdf>.

G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs, NJ, 1992.

Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Design and

Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley Publishing Company,

Reading, MA, 1989.

E.I. Organick. The Multics System: An Examination of its Structure. The MIT Press, Cambridge, MA,

1972.

M. Upton. Personal communication. 1997.

D.L. Weaver and T. Germand, editors. The SPARC Architecture Manual version 9. PTR Prentice-Hall,

Englewood Cliffs, NJ, 1994.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 69 19.10.2007 9:12pm Compositor Name: BMani

Computer Architecture and Design 1-69

1.7 Architectures for Public-Key Cryptography

Lejla Batina, Kazuo Sakiyama, and Ingrid Verbauwhede

1.7.1 Introduction

The importance of security keeps growing because our ever-increasing dependence on information.

Numerous examples of security applications are present in everyday life such as purchasing goods over

Internet, secure e-mail exchange, online banking, mobile phone communication, medical applications,

etc. More recent applications envision security protocols running even on RFID tags and sensor nodes.

For all these applications, there exists a range of algorithms that can provide basic cryptographic

services: confidentiality, data integrity, authentication, and nonrepudiation [MOV97]. Cryptographic

algorithms include stream and block ciphers, hash functions, digital signatures, public-key algorithms,

etc. These algorithms are usually divided into secret-key and public-key algorithms. Stream and block

ciphers are examples of the former and they allow for a fast encryption of a large amount of data.

However, effective information protection against eavesdropping and modifications in open systems as

well as advanced cryptographic service, e.g., digital signatures and key exchange, can only be achieved

using public-key algorithms.

The foundations of cryptography originate from Claude Shannon [Sha48] and the basic model is as

follows. Alice and Bob (or any two parties) want to exchange messages over an insecure channel in such

a way that an adversary Eve is not able to learn the contents of their communication (Fig. 1.30). For that

purpose they use a secret key that was a priori exchanged. In modern cryptography, Kerckhoffs’s

principle is assumed, which states that only the secret key k is not known to an adversary. This rule

was established already in the nineteenth century by A. Kerckhoffs.

In this system, a user Alice wants to send a message m to Bob, which is called the plaintext. It can be

any element of a finite set of messages and here we assume that it was converted to a bit string. Alice is

using the secret key k to encrypt the message by an injective mapping Ek to a string c, which is called the

ciphertext c. Therefore, one can write Ek(m)¼ c and this mapping Ek is called the encryption operation.

Since Ek is injection, the inverse of it exists, i.e., the mapping Dk which is called the decryption operation.

The same key k will be used by Bob for decryption of c, i.e., one can write Dk(c)¼Dk(Ek(m))¼m.

This system is the model for symmetric-key (or secret-key) cryptography. This scheme for two parties,

who want to communicate securely, is based on a shared secret key. Although symmetric cryptosystems

allow for large amounts of data to be transferred efficiently, key management and key distribution

problems do not scale well in the case of a large number of users.

1.7.1.1 History of Public-Key Cryptography

Diffie and Hellman introduced the idea of public-key cryptography [DH76] in the mid 1970s. They

showed that one can eliminate the need for prior agreement of a key, that is, an evident limiting factor in

Encryption
Ek(m) = c

Decryption
Dk(c) = m

m

Key k

Alice Bob

Eve

FIGURE 1.30 Basic model for a cryptosystem.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 70 19.10.2007 9:12pm Compositor Name: BMani

1-70 Digital Systems and Applications

the setting of private-key cryptography. The system is shown in Fig. 1.31. There exists a pair of keys

(Ee, Dd) for each user instead of the unique key that all of them should own.

Here E and D are, respectively, the encryption and decryption mappings and e and d are called the

public and the secret key, respectively. The pair (Ee, Dd) should be easy to generate. In order to achieve

secret communication, the condition, Dd (c)¼Dd (Ee(m))¼m, is required and it is hard to derive d

from e. The setting of a public-key cryptosystem also allows for the digital signatures; they were

introduced by Diffie and Hellman to uniquely bind a message to the sender. Until today numerous

public-key cryptosystems have been proposed. Most of the schemes used today base their security on a

small number of mathematical problems. The best-known and most commonly used public-key

cryptosystems are based on factoring (RSA) and on the discrete logarithm problem in a large prime

field (Diffie-Hellman, ElGamal, Schnorr, DSA) [MOV97]. The RSA public-key cryptosystem is named

after its inventors Rivest, Shamir, and Adelman [RSA78]. Elliptic curve cryptography (ECC), which was

proposed in the mid 1980s by Miller [Mil85] and Koblitz [Kob87], is based on a different algebraic

structure, i.e., on an abelian group of points on an elliptic curve.

1.7.1.2 Applications from High-End to Extremely Constrained
Devices (RFIDs and Sensor Nodes)

Public-key cryptosystems (PKC) are present today in almost all spheres of digital communication, e.g.,

for financial, governmental, and medical applications; they form an essential building block for network

security protocols (e.g., SSL=TLS, IPsec, SSH). These are often implemented on general-purpose

computers or high-end custom chips where the throughput is the function to optimize. However,

more recent embedded security applications such as mobile phones, PDAs, consumer electronics,

automotive, and wireless applications imply much more challenging design tasks for PKC implemen-

tations. In all these cases, there are firm constraints on area, power, energy, and so on. Therefore,

pervasive security is posing difficult demands on cryptography engineering. Especially extreme con-

straints as imposed by RFID technology and sensor networks present open problems for cryptographic

protocols as well as implementations.

1.7.1.3 Various Architectural Options for PKC

Algorithms for RSA and ECC are based on arithmetic in finite fields. RSA algorithm requires only

arithmetic in an integer ring where all operations are modulo N, where N is an integer (and a product of

two large prime numbers) at least 1024 bits long for security applications nowadays. On the other hand,

ECC exists over a prime and a binary field where elements are at least 160 bits long.

More precisely, recommended key-lengths for RSA are at least 1024 bits currently. This estimate

depends on the difficulty to factor integers and the current progress of factorization efforts, e.g.,

NFSNET (see www.nfsnet.org). The security of 1024-bit RSA is usually compared to 160-bit ECC and

with 80 bit of a symmetric key algorithm such as AES. However, Lenstra and Verheul estimated that with

respect to computationally equivalent security, 1024- and 1375-bit RSA are comparable to 139- and

Encryption

Keys

Ee(m) = c

Decryption

Dd(c) = m

e−public key
of Bob

m

Alice Bob

Eve

FIGURE 1.31 A public-key encryption algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 71 19.10.2007 9:12pm Compositor Name: BMani

Computer Architecture and Design 1-71

160-bit ECC, respectively [LV00]. On the other hand, for

cost equivalent security they suggested slightly different

corresponding bit-lengths. Within the ECRYPT project—

European Network of Excellence for Cryptology [ECRYPT-

AZT] the numbers as in Table 1.1 were suggested. Here, the

security level n means that Q(2n) operations are needed by

the best-known algorithms to break the system.

As both RSA and ECC rely on integer arithmetic

modulo, a large number, the crucial operation for imple-

mentations is modular multiplications. In the case of

RSA and ECC over a prime field, the algorithm of Montgomery [Mon85] appears to be the best

solution.

An architecture based on Montgomery’s algorithm is probably the best-studied architecture in

hardware. Differences appeared because of various approaches for avoiding long carry chains.

Most common ways to do so are systolic array and redundant representation, e.g., residue number

systems [PP98]. We discuss the former in more detail in the remainder of this chapter.

1.7.2 RSA Algorithm

The private key of a user consists of two large primes p and q and an exponent d. The public key consists

of a pair (N, e), where N¼ p � q is the modulus (at least 1024 bits) and an exponent e is such that e¼ d�1

mod l(N). Here, we denote l(N)¼ lcm (p� 1, q� 1), where lcm (a, b) is the least common multiple

of a and b. The corresponding p, q, and d are kept secret. To encrypt a message M, the user Alice

computes

C ¼ MemodN

and decryption is described by

M ¼ CdmodN � M (1þkw(N)) � MmodN

The previous equality follows by Fermat’s theorem [Kob94] and the fact that l is a divisor of w(N)¼
(p� 1)(q� 1). The RSA function is the modular exponentiation with the public exponent e and the

private exponent d is referred to as the trapdoor to invert the function.

Hence, modular exponentiation and also modular multiplication are the most important operations,

which have to be considered in detail.

1.7.2.1 The RSA Problem and Integer Factoring Problem

The RSA problem: Consider a positive integer N (that is a product of two distinct primes p and q), a

positive integer e such that gcd(e, l(N))¼ 1, and an integer C; find M such that Me � C mod N. So, the

RSA problem is the problem of finding e th roots modulo a composite number N. It is related to the

integer factoring problem, in this case, the problem of factoring a composite number N, which is

the product of two large primes, p and q. It can be shown that if the factors of N are known, the RSA

problem can be easily solved [MOV97]. The security of the RSA cryptosystem is based on the difficulty

of the RSA problem. It is still the most popular cryptosystem, especially for high-end devices that are

typically used in e-commerce and virtual private network (VPN) servers.

1.7.2.2 Chinese Remainder Theorem (CRT)

By means of the Chinese remainder theorem (CRT), the speed for the RSA decryption scheme can be

increased up to four times (Koblitz [Kob94]). This possibility is very attractive in practical applications

TABLE 1.1 Comparison of the Key-Lengths

for RSA and ECC

Security Level n

Symm. Key

Algorithms, e.g., AES RSA ECC

80 1248 160

112 2432 224

128 3248 256

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 72 19.10.2007 9:12pm Compositor Name: BMani

1-72 Digital Systems and Applications

especially for hardware implementations. Use of CRT for RSA was proposed in 1982 by Quisquater and

Couvreur [QC82].

If the factors of N, i.e., p and q are known to Bob, he can compute modular operations with moduli

p and q instead of N. He computes Mp � C1
d mod p and Mq � C2

d mod q, (where C1 � C mod p and

C2 � C mod q. All these calculations are performed modulo integers p and q that are typically half the

length of N. The original message M is recovered as the linear combination of Mp and Mq. The

methods to reconstruct the message M are known in the literature as the algorithms of Gauss and

Garner [MOV97]. These computations can be performed in Q([lg n]2) bit operations. (Here, lg

denotes the base 2 logarithm.) Altogether, this way of decryption can reduce the workload by a factor

of four if cubic complexity of exponentiation is assumed. For hardware implementations that results in

a substantial speed-up in performance in the case where two multiplication units are available.

More precisely, increase of the area with a factor of two can result in the speed-up in performance

of a factor 4.

1.7.2.3 RSA Operations

In Fig. 1.32, the structure of operations required for any RSA protocol is depicted. The basic building

block consists of modular exponentiation that is based on a number of modular multiplications and

squarings. On the bottom level are modular addition, subtraction, and inversion. We remind the reader

that all calculations are performed either modulo the composite RSA modulus N, or modulo some

prime (p or q, in the case of CRT). We explain the operations and their realizations in hardware in

more detail.

1.7.2.3.1 Modular Exponentiation

The dominant cost operation in the RSA cryptosystem is modular exponentiation, namely computing

Me mod N. The basic technique for exponentiation is based on repeated squaring and multiplications

(see Knuth [Knu98], p. 461). In [MOV97], this method is called left-to-right binary exponentiation

(Algorithm 1). An exponent e is given here in the MSB form and by the radix 2 representation. A similar

algorithm is also used for point=divisor multiplication in ECC. In this case the analogous scheme is

called double-and-add or the binary method (Algorithm 2) [BSS99].

RSA

Modular
exponentiation:

Me mod N

Modular arithmetic: multiplication, squaring,
addition, subtraction, and inversion

FIGURE 1.32 Hierarchy of RSA operations.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 73 19.10.2007 9:12pm Compositor Name: BMani

Computer Architecture and Design 1-73

Algorithm 1: Modular exponentiation

Input: 0 � M<N and 0< e<N, e¼ (et�1, . . . , e1, e0), ei 2 {0,1}, et�1¼ 1, and N

Output: R¼Me mod N

1. R M

2. for i from t� 2 down to 0 do

3. R R � R mod N

4. if ei¼ 1 then R R �M mod N

5. end for

6. return R

Algorithm 2: Point multiplication (binary method)

Input: A point P, a t-bit integer k¼ (kt�1, . . . ,k1,k0), ki 2 {0,1}

Output: Q¼ kP

1. Q 1
2. for i from t� 1 down to 0 do

3. Q 2Q

4. if ki¼ 1 then Q QþP

5. end for

6. return Q

Numerous methods for speeding-up exponentiation and scalar multiplication have been proposed in

the literature; for a survey, see Gordon [Gor98]. Recently, side-channel security is also considered to be

an important factor for the choice of a suitable exponentiation algorithm. As this became an important

research area in the last decade that is closely related to implementations, we explain about side-channel

attacks in more detail.

In general, attacks on cryptography can be divided into two groups: mathematical attacks (more

traditional type of attacks that are usually purely theoretical) and implementation attacks (more

practical type that pose a growing threat today). Implementation attacks exploit weaknesses in specific

implementations of a cryptographic algorithm. Sensitive information, such as secret keys or a plaintext

can be obtained by observing the time consumed, the power consumption, the electromagnetic

radiation, etc. This class of attacks is called side-channel attacks. In 1996, Paul Kocher introduced the

concept of timing attacks by showing that secret information can be extracted through measurements of

the execution time of cryptographic algorithms [Koc96]. Timing attacks are applicable to all imple-

mentations that have a nonconstant execution time, which depends on the bits of the secret key. Two

years later, Kocher et al. performed successful attacks by measuring the power consumption while the

cryptographic circuit is executing the implemented algorithm [KJJ99]. For example, conditional oper-

ations that are key-dependent (such as step 4 in Algorithms 1 and 2) can leak bits of the secret key by

merely observing power consumption graphs of algorithms being performed. It is evident that constant

time-implementations should remove all vulnerabilities of cryptographic applications with respect to

timing attacks, and algorithms should always perform the same sequence of operations to counteract

simple side-channel attacks.

1.7.2.3.2 Montgomery’s Arithmetic

Modular multiplication forms the basis of modular exponentiation, which is the core operation of

the RSA cryptosystem. It is also present in many other cryptographic algorithms, including those based

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 74 19.10.2007 9:12pm Compositor Name: BMani

1-74 Digital Systems and Applications

on ECC. Themost popular algorithm formodular multiplication isMontgomery’s method [Mon85]. The

approach of Montgomery avoids the time-consuming trial division, the common bottleneck of other

algorithms. Montgomery’s algorithm is especially suitable for hardware implementations because the

division with a large number (the modulus or some prime) is replaced by reduction with a power of 2.

We give here all details for Montgomery’s arithmetic as commonly used for RSA implementations. Let

N be a modulus. For a word base b¼ 2r, the Montgomery radix (or parameter) R is typically chosen such

that R¼ (2r)n>N. Let x be an odd integer represented by its radix b representation x ¼Pn�1
i¼0 xib

i .

There is a one-to-one correspondence between each x and its representation X¼ xR mod N. This

representation is usually referred to as the Montgomery representation. Addition and subtraction of two

elements in Montgomery representation is again an element in Montgomery representation. For

efficient implementation of modular multiplication, the crucial operation is modular reduction,

which is replaced by reduction by a number that is a power of 2, as previously mentioned.

In the original algorithm of Montgomery, the requirements are given on the parameters R and N 0

such that R>N and R�1 and N0 are satisfying 0<R�1<N, 0<N 0<R and RR�1�NN 0 ¼ 1. For the

computation of the Montgomery product T¼XYR�1 mod N, Algorithm 3 was proposed by Montgo-

mery [MOV97].

Algorithm 3: Montgomery’s modular multiplication

Input: N, N 0 ¼�N�1 mod 2r, X¼ (xn�1 . . . x1x0)2r , Y¼ (yn�1 . . . y1y0)2r with 0<X, Y<N, R¼ 2rn

gcd(N, 2)¼ 1

Output: T¼XYR�1 mod N

1. T¼ 0

2. for i¼ 0 up to n� 1 do

3. mi¼ (t0þ xiy0) N
0 mod 2r

4. T ¼ (Tþ xiYþmiN)=2
r

5. end for

6. if (T>N) then T¼T�N

7. return T

In the original algorithm of Montgomery, a modular reduction is needed in step 6. The reason is in

inputs being bounded by N, e.g., X, Y<N and the output Twas bounded by 2N, so T< 2 N. Hence, if

T >N, N must be subtracted so that the output can be used as input to the next multiplication. This

extra reduction slows down modular exponentiation and it also introduces a vulnerability to side-

channel attacks. To avoid this subtraction, a bound for R is given by Walter [Wal02] such that for inputs

X, Y< 2 N also the output is bounded: T< 2 N.

One possible way to calculate the Montgomery’s modular multiplication (MMM) is to use a digit-

serial multiplier. The corresponding idea is given by Algorithm 4 (bit-serial version). It computes bit-

serial MMM with only additions and right-shift operations without the final subtraction. As shown in

Fig. 1.33, during multiplication of X and Y, modulus N is added to the intermediate product of XY so

that the LSB becomes 0, which allows for division with 2 (i.e., the right-shift operation).

Algorithm 4: Bit-serial Montgomery’s modular multiplication

Input: A k-bit integer N, X¼ (xk . . . x1x0)2, Y¼ (yk . . . y1y0)2 with 0<X, Y< 2N�1, R¼ 2kþ 2,

gcd(N,2)¼ 1

Output: T¼XYR�1 mod N

1. T ¼ 0

2. for i ¼ 0 up to kþ 2 do

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 75 19.10.2007 9:12pm Compositor Name: BMani

Computer Architecture and Design 1-75

3. mi ¼ t0þ xiy0

4. T¼ (T þ xiyþmiN)=2

5. end for

6. return T

Step 4 is the most critical computation in Algorithm 4, and it can be implemented with adders and

1-bit right-shift logic (Fig. 1.34). The adder can be implemented with a carry-save adder (CSA) avoid

long carry propagation (Fig. 1.35). We explain more about ways to implement modular addition below.

For further speedup, one can use a higher radix instead of the radix 2. In that case an r3 r-bit

multiplier is used, where r is an arbitrary power of 2.

1.7.2.3.3 Modular Addition and Subtraction

Modular addition and subtraction are usually performed as in Algorithm 5 and Algorithm 6, respect-

ively [Koc95].

Algorithm 5: Modular addition

Input: Integers A and B and modulus N

Output: C¼AþB mod N

1. S 0 ¼AþB

2. S 00 ¼ S 0 �N

3. if S 00< 0, then C¼ S 0

4. else C¼ S 00

5. return C

00 0 0 0 0 0

= x0Y

= x1Y

= x2Y

= xkY

= N or 0

= N or 0

= N or 0

= N or 0

+

+

+

+

+

+

+

.....

X

= X

= Y

X.Y.2−k−2 mod N

x0x1x2x3...xk

......

y0y1y2y3...yk

= N or 0+

0

FIGURE 1.33 Computation flow of the bit-serial Montgomery’s modular multiplication.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 76 19.10.2007 9:13pm Compositor Name: BMani

1-76 Digital Systems and Applications

Algorithm 6: Modular subtraction

Input: Integers A and B and modulus N

Output: C¼A�B mod N

1. S 0 ¼A�B

2. S 00 ¼ S 0 þN

N

Y

>>1

4-to-2 Carry
save adder

T inN Y Xi

k + 2

k + 1

T

T

Data in/out

Controller
Shift controlData control

k

k + 1

k + 1

k

k + 1

1

X

FIGURE 1.34 Schematic representation of the hardware block that performs MMM.

FA ANDFAFA

FAFAFAFA

xiY
VS

VC

miN

Register for VS

Register for VC

FA

FA

HA

FIGURE 1.35 Four-to-two CSA-based MMM corresponding to Algorithm 4. The intermediate result, T is

represented in carry-save form with VS and VC (T ¼ VS þ VC).

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 77 19.10.2007 9:13pm Compositor Name: BMani

Computer Architecture and Design 1-77

3. if S 0< 0, then C¼ S 00

4. else C¼ S 0

5. return C

The numbers are represented in two’s complement representation and in this way both the addition

and subtraction operation can be combined into one circuit as explained by Mano and Kime [MK01].

One can use a serial adder=subtractor that consists of one full adder, two shift-registers (one for A and C

and the other for B), one flip-flop (for a carry bit), a counter, and a controller (Fig. 1.36). In this figure,

a digit-serial addition is shown that calculates a 32-bit addition by means of ripple carry adder (RCA)

[MK01].

1.7.2.4 Hardware Architectures for RSA

Soon after its invention, the first proposals for RSA hardware implementations appeared and different

architectures were proposed in the past two decades. The systolic array architecture still appears to be the

best solution for modular multiplication with very long integers. This architecture has been studied

intensively, both from a theoretical and a practical viewpoint.

1.7.2.5 Systolic Array Architectures

A systolic array is typically defined as a grid-like structure of special processing elements (PEs) that

processes data like an n-dimensional pipeline (see Johnson et al. [JHS93]). Each line indicates a

communication path and each intersection represents a cell or a systolic element.

A

B

>>32

>>32 0
32

32-bit Ripple
carry adder

A

Sum

B Carry in

Carry out

32 1

1

CarrySum

1

Data in/out

Controller
Shift control Carry controlData control

FIGURE 1.36 Schematic representation of the hardware block that performs modular addition and subtraction.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 78 19.10.2007 9:13pm Compositor Name: BMani

1-78 Digital Systems and Applications

The main advantage of this architecture is that it can easily be scaled. Scalability is one of the most

important requirements of cryptographic applications nowadays. This results in increased flexibility

especially when implemented on FPGA platforms. According to Tenca and Koç [TK99], an arithmetic

unit is called scalable if the unit can be reused or replicated in order to generate long-precision results

independently of the data path precision for which the unit was originally designed. More precisely, the

longest path should be ‘‘short’’ and independent of operands’ length and designed such that it fits even

in restricted hardware regions [GTK02]. This means that the arithmetic unit can handle arbitrary bit-

lengths with the exception of memory limitations. The number of clock cycles per operation depends

only on the actual size of the operands. A typical scalable architecture based on a systolic array

implementing Montgomery multiplication is shown in Fig. 1.37 [BM02].

The design shows a large number arithmetic unit (LNAU), which is designed as a systolic array. If two

such units are available CRT computation can be performed fully in parallel. This array is one

dimensional and consists of a fixed number of PEs. A FIFO memory is added to the design to achieve

scalability. A PE contains some adders and multipliers that can process a bits of X, and b bits of Y in one

clock cycle. So, in one clock cycle a number of additions and multiplications can be performed, e.g., to

execute step 4 in Algorithm 4. More precisely, in each PE, within this architecture, one loop of the

Montgomery’s algorithm can be performed in one cycle. The architecture shown in Fig. 1.37 is also

scalable according to the previous definition. If the operands are too large to fit in the available number

of PEs the intermediate result of the last PE is fed into the first PE. These intermediate results are

temporarily stored in a FIFO memory, if necessary. The operands of the multiplication are divided into

words. The words of X are divided over the PEs. When there are not enough PEs more rounds are

needed. In one round, each word of Y has to pass all PEs. Each PE calculation takes one clock cycle

within which is computed
TjþxiyjþmiNj

2a
. So, in P clock cycles a word of Y passes all PEs in the array. Here

P denotes the number of PEs. When the number of words of Y is larger than the number of PEs the FIFO

memory is used to store the intermediate results of the last PE.

PE
#0

PE
#(p −1)

N

Y
>>b

>>b

X
>>a

FIFO

a

b

b

b

T 0 Tp −1

bb
mp −1

Data in/out

Controller
Data controlShift control

a
PE
#3

T3

b
m3

a
PE
#2

T2

b
m2

a
PE
#1

T1

b
m1

a

FIGURE 1.37 Example of a systolic array.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 79 19.10.2007 9:13pm Compositor Name: BMani

Computer Architecture and Design 1-79

Other related work on systolic array architectures for modular multiplication includes the work of

Iwamura et al. [IMI94] and of Eldridge and Walter [EW93].

1.7.3 Elliptic Curve Cryptography

Another important public-key cryptosystem is the one based on elliptic curves. It is important to point

out that ECC offers equivalent security as RSA for much smaller key sizes as mentioned previously.

Other benefits include higher speed, lower power consumption, and smaller certificates, which is

especially useful in constrained environments.

1.7.3.1 Mathematical Background

Most of the public-key algorithms require the structure of an algebraic group. In the case of ECC, the

group of points on an elliptic curve is used. Public and private keys are defined as points on a curve and

the one-way function is the multiplication of a point with a scalar. Therefore, Alice having a private key

as some integer eA can send Bob a multiple of a point P, so eAP, which is also a point on the same curve as

P lies on, due to the properties of a group. The problem of finding the logarithm in this group, e.g.,

finding e for given P and eP is called the elliptic curve discrete logarithm problem (ECDLP). So, nobody

can recover the key of Alice eA in the example above, by knowing eAP and P due to the difficulty of

the ECDLP.

1.7.3.2 Elliptic Curves over Finite Fields

For cryptography, we need a finite cyclic group in which the group operation is efficiently computable,

but the discrete logarithm problem is very difficult to solve. Elliptic curve groups appear to meet these

criteria when the underlying field is finite. Elliptic curves that are used in most applications are defined

over Fq with q¼ pm where p is a prime number. In standards such as IEEE [IEE99] and ANSI [ANS],

fields for q¼ p and q¼ 2nwhere p� 2n and n� 160 are recommended. Also, it appears that elliptic curve

systems over both prime (Fp) and binary (F2
n) fields provide the same level of security but fields F2

n have

some implementation advantages. Namely, arithmetic in F2
n can be implemented more efficiently than

arithmetic in Fp, at least on platforms without specialized arithmetic coprocessors. With respect to

theoretical security, it is typically recommended to use fields F2
p where p is a prime. The reason is that it

was shown that if p is not a prime, ECDLP is sometimes easier than in a general case.

A set of points on an elliptic curve together with the point at infinity, denoted by1, and with point

addition as binary operation has the structure of an Abelian group. The following equation

y2 þ a1xy þ a3y ¼ x3 þ a2x
2 þ a4x þ a6

is called the Weierstrass equation for an elliptic curve. An elliptic curve E is the set of solutions to the

Weierstrass equation, together with the extra point at1.

First we consider finite fields of characteristic two.

A nonsupersingular elliptic curve E over F2
n is defined as the set of solutions (x ,y) 2 F2

n3 F2
n to the

following equation:

y2 þ xy ¼ x3 þ ax2 þ b

where a, b 2 F2
n, b 6¼ 0, together with 1.

In the case of a field Fp, we get the following equation:

y2 ¼ x3 þ ax2 þ b

where a , b 2 Fp .

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 80 19.10.2007 9:13pm Compositor Name: BMani

1-80 Digital Systems and Applications

1.7.3.3 Algorithms for ECC

The main operation in any curve-based primitive is the scalar multiplication. The hierarchical structure

for operations required for implementations of curve-based cryptography is given in Fig. 1.38. Point

multiplication is at the top level. It can be implemented using Algorithm 1 which is usually called point

double-and-add. At the next (lower) level are the point group operations. The lowest level consists of

finite field operations such as addition, subtraction, multiplication, and inversion required to perform

the group operations.

1.7.3.3.1 ECC Point Operations in Fp
When E is a curve defined with the Weierstrass equation, inverse of the point P¼ (x1, y1) is �P¼
(x1, �y1). The sum PþQ of points P¼ (x1, y1) and Q¼ (x2, y2) (assume that P, Q 6¼ 1) is point

R¼ (x3, y3) where

x3 ¼ l2 � x1 � x2

y3 ¼ l(x1 � x3)� y1

l ¼
y2�y1
x2�x1 if P 6¼ Q

3x21þa
2y1

if P ¼ Q

()

The point at 1 plays a role analogous to that of the number 0 in ordinary addition. Thus, Pþ1¼ P

and Pþ (�P)¼1 for all points P. As mentioned above, this operation is an abelian group and Fig. 1.39

shows the group law for the case of an elliptic curve over the set of real numbers. Here P and Q are

arbitrary two points on an elliptic curve. Let p be the line through P and Q and �R is the third point on

p. The sum of P and Q is defined as the point R that is the mirror of �R with respect to x-axis. For a

point double operation of a given point P, one has to draw the tangent line in P.

There are many types of coordinates in which an elliptic curve may be represented. In the equations

above, affine coordinates are used but the so-called projective coordinates have some implementation

advantages. The main advantage is that point addition can be done in projective coordinates using

only field multiplications, with no inversions required. Thus, inversions become almost irrelevant

as only one inversion needs to be performed at the end of a point multiplication operation. A projective

point (X, Y, Z) on the curve satisfies the homogeneous Weierstrass equation:

ECC

Point
multiplication:

kP

Group operation:
point add/double

Finite field arithmetic: multiplication,
addition, subtraction, and inversion

FIGURE 1.38 Hierarchical structure of ECC.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 81 19.10.2007 9:13pm Compositor Name: BMani

Computer Architecture and Design 1-81

Y 2Z ¼ X3 þ aX2 þ bZ3

and, when Z 6¼ 0, it corresponds to the affine point (X=Z, Y=Z). It was shown that other projective

representations result in more efficient implementations of the group operation [CMO98]. In particular,

a weighted projective representation (also referred to as Jacobian representation) is preferred in the

sense of faster arithmetic on elliptic curves [BSS99, IEEE]. In this representation, a triplet (X, Y, Z)

corresponds to the affine coordinates (x,y)¼ (X=Z2, Y=Z3) for Z 6¼ 0. In this case, we have a weighted

projective curve equation of the form:

Y 2 ¼ X3 þ aXZ4 þ bZ6

Weighted projective coordinates provide faster arithmetic than the ‘‘normal’’ projective coordinates.

Conversion from projective to affine coordinates costs one inversion (I) and four multiplications (M),

while vice versa is trivial. If one implements addition and doubling in a way specified in the IEEE

standard [IEEE], the total costs for general addition is Iþ 3M in affine coordinates and 16M in

projective coordinates. Here, I andM are denoting the modular inversion and multiplication operations,

respectively. In the case of doubling (with a¼ p� 3), this relation is Iþ 4M in affine coordinates against

8M in projective coordinates. Thus, the choice of coordinates is determined by the ratio I:M. Therefore,

multiplication in finite field is the most important operation to focus on when working with projective

coordinates. On the other hand, the extra inverter is required for the affine coordinates’ representation

because one inversion has to be performed for every point operation.

1.7.3.3.2 ECC Point Operations in F2
n

Here we consider a finite field of characteristic 2, i.e., F2
n. For this case, we are only interested in curves

that are nonsupersingular. A nonsupersingular elliptic curve E over F2
n is defined as the set of solutions

(x,y) 2 F2
n3 F2

n of the equation y2þ xy¼ x3þ ax2þ b, where a, b 2 F2
n, b 6¼ 0, together with 1.

The point addition in affine coordinates is performed according to the following formulae. Let

P1¼ (x1, y1) and P2¼ (x2, y2) be two points on an elliptic curve E. Assume P1, P2 6¼ 1 and P1 6¼ �P2.
The sum P3¼ (x3, y3)¼P1þ P2 is computed as follows [BSS99], p. 57:

If P1 6¼ P2

l ¼ y2 þ y1

x2 þ x1

x3 ¼ l2 þ lþ x1 þ x2

y3 ¼ l(x1 þ x3)þ x3 þ y1

x

y

P

Q
−R

R

−R�

R�

P�

FIGURE 1.39 Group law for an elliptic curve over the set of real numbers R.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 82 19.10.2007 9:13pm Compositor Name: BMani

1-82 Digital Systems and Applications

If P1¼ P2

l ¼ y1

x1
þ x1

x3 ¼ l2 þ lþ a

y3 ¼ l(x1 þ x3)þ x3 þ y1

Projective coordinates can be used also in this case to avoid the inversion in a binary field.

1.7.3.4 Finite Field Arithmetic for ECC

1.7.3.4.1 Modular Multiplication and Addition

Simply reducing the operation size of modular arithmetic, ECC over Fp can be implemented with the

same hardware algorithm as discussed for RSA implementations. Therefore, this section focuses on

hardware architecture over F2
n. The hardware complexity is simpler than modular operations in Fp

because binary field arithmetic is carry free.

There are many types of basis in which elements of F2
n can be represented. A usual choice is the

polynomial basis. In this basis, the basis elements have the form 1, a, a2, . . . , an�1 where a is a root in

F2
n of an irreducible polynomial f of degree n over F2. In this basis, the elements of F2

n are polynomials

of degree at most n�1 over F2
n, and arithmetic is carried out modulo an irreducible polynomial f of

degree n over F2. According to this representation, an element of F2
n is a polynomial of length n and can

be written as

A(x) ¼
Xn�1
j¼0

ajx
j , where ai 2 F2

The standard way to compute the product of two elements in this field is the one that is using convolution

(Algorithm 7) [BG89]. On the other hand, addition can be implemented by means of XOR gate.

Algorithm 7: Bit-serial MSB-first polynomial-basis modular multiplication

Input: Irreducible polynomial P(x) ¼ xn þ Pn�1
j¼0

pjx
j , A(x) ¼ Pn�1

j¼0
ajx

j , B(x) ¼ Pn�1
j¼0

bjx
j , with A(x),

B(x) 2 F2
n

Output: T(x)¼A(x)B(x) mod P(x)

1. T(x)¼ 0

2. for i¼ n� 1 down to 0 do

3. T(x)¼ (T(x) � aiB(x) � tnP(x))x

4. end for

5. return T(x)

Algorithm 7 computes bit-serial MSB-first polyomial-basis modular multiplication. Different from

the MMM, the irreducible polynomial P(x) is XORed to the intermediate result, so that the MSB (the

coefficient of xn in the polynomial T(x)) becomes 0 (Fig. 1.40).

1.7.3.4.2 Modular Inversion

As observed above for implementations of ECC one has to implement the inversion operation. For

curves over prime fields the easiest solution is to use Fermat’s theorem [Kob94]. In that case inversion is

performed by means of repeated multiplications and squarings. More precisely, if p is a prime, it holds

ap � a(mod p). Furthermore, if p is not a divisor of a we have ap� 1 � 1(mod p). This fact is usually

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 83 19.10.2007 9:14pm Compositor Name: BMani

Computer Architecture and Design 1-83

known as Fermat’s little theorem. Then, it follows: ap� 2 � a�1 (mod p), which means that one can

compute an inverse via a number of modular exponentiations.

In the case of affine coordinates, where many inversions have to be computed (i.e., one for each point

operation) a dedicated inverter is often necessary to improve the performance. Some prominent

examples from literature include [GTK02], where authors also used the idea of Montgomery. On the

other hand, if projective coordinates are deployed, only one inversion is required for the whole point

multiplication. In this case, using exponentiation is the most common choice.

For ECC over binary fields, the most efficient algorithm for inversion is extended Euclidean algorithm

[MOV97]. The drawback is that it is very difficult to implement it in hardware. Hence, for hardware

implementations one also uses Fermat’s little theorem, i.e., the following equation a�1¼ a2n� 2, for all

a 2 F2
n. The technique to compute this in an optimal way is based on the idea of Itoh and Tsujii [IT88].

1.7.4 Architectures Supporting Both RSA and ECC

It can be concluded that elliptic curve cryptosystems also rely on efficient finite field arithmetic,

especially on field multiplication. As already mentioned, typical fields are not only prime field as in

the case of RSA but also binary fields. The latter is often recommended as the binary fields arithmetic is

easier to implement and area and power consumption are smaller than in the case of prime fields. This is

believed to be true, but only for platforms where specialized arithmetic coprocessors for finite field

arithmetic are not available. On the other hand, an advantage of prime fields is in their suitability for

both RSA and ECC with sharing of hardware resources. This trend can be observed mainly for some

recent works as ECC has only recently proved its potential and started replacing RSA in some applica-

tions. The work of Crowe et al. [CDM05] also proposed a single architecture for RSA and ECC.

A hardware optimized version of Montgomery multiplication method is used for modular multiplica-

tion. The so-called dual processor could operate in parallel for ECC or in a pipelined series for RSA.

The contribution presented in [BBÖ04] deals with an FPGA implementation of RSA and ECC

cryptosystems over a field of prime characteristic. The authors used a systolic array to achieve arbitrary

precision in bits; hence easily bridging the gap between the bit-lengths for ECC from 160-bit to 2048-(or

higher) bit long moduli for RSA. There exists also some related work on so-called dual field ECC, which

deals with processors that can support both type of fields for ECC. Wolkerstorfer [Wol02] proposed the

unique arithmetic unit that supports addition and multiplication for prime and binary fields. A scalable

dual-field ECC processor is described in the work by Satoh and Takano [ST03]. They proposed a high-

speed version of the processor and another, compact one.

aiB(x)

T(x)x

n -bit register for T (x)T(x)

tn−1P(x)

FIGURE 1.40 Bit-serial MSB-first polynomial-basis modular multiplier.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 84 19.10.2007 9:14pm Compositor Name: BMani

1-84 Digital Systems and Applications

1.7.5 Concluding Remarks

Owing to not only all the previously mentioned threats but also as a result of various constraints that are

imposed by security applications, special care is required when implementing a cryptographic algo-

rithm. Especially, implementations of public-key cryptography present a challenge for most application

platforms varying from software to hardware. The reason is that one has to deal with very long numbers

(up to 2048 bits) in conditions that can be quite severe in costs, area, and power. Emerging examples are

RFID tags and sensor networks. For implementations of cryptographic protocols to achieve various

security applications, it is not enough to come up with an efficient implementation but it also has to be

secure against side-channel attacks. With respect to this, it is well known that although software

platforms offer a cost-effective and flexible solution, only hardware implementations provide a suitable

level of security related to side-channel attacks.

Acknowledgments

Kazuo Sakiyama and Lejla Batina are funded by a research grant from the Katholieke Universiteit (KU)

Leuven and Fund for Scientific Research-Flanders (FWO) projects G.0450.04 and G.0475.05. This work

was supported in part by the Interuniversity Attraction Pole (IAP) program P6=26 Belgian Fundamental

Research on Cryptology and Information Security (BCRYPT) of the Belgian State (Belgian Science

Policy), by the European Union Information Society Technologies (EU IST) FP6 projects security for

embedded systems on chip (SESOC) and European Network of Excellence for Cryptology (ECRYPT), by

KU Leuven, and by the Interdisciplinary Institute for Broadband Technology Quality of Experience

(IBBT-QoE) project of the IBBT.

References

[ANS] ANSI. ANSI X9.62 the elliptic curve digital signature algorithm (ECDSA). http:==www.ansi.org.

[BBÖ04] L. Batina, G. Bruin-Muurling, and S.B. Örs. Flexible hardware design for RSA and elliptic

curve cryptosystems. In T. Okamoto (Ed.), Topics in Cryptology-CT-RSA—The Cryptographers’

Track at the RSA Conference, No. 2964 in LNCS, pp. 250–263, Springer-Verlag, Berlin, Heidelberg,

2004.

[BDK98] J.C. Bajard, L.S. Didier, and P. Kornerup. An RNS Montgomery’s modular multiplication. IEEE

Transactions on Computers, 19(2): 167–178, 1998.

[BG89] T. Beth and D. Gollmann. Algorithm engineering for public key algorithm, IEEE Journal on

Selected Areas in Communications, 7(4): 458–465, 1989.

[BM02] L. Batina and G. Muurling. Montgomery in practice: How to do it more efficiently in hardware.

In B. Preneel (Ed.), Topics in Cryptology-CT-RSA—The Cryptographers’ Track at the RSA Confer-

ence, No. 2271 in LNCS, pp. 40–52, Springer-Verlag, Berlin, Heidelberg, 2002.

[BSS99] I. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography. London Mathematical

Society Lecture Note Series. Cambridge University Press, Cambridge, 1999.

[CDM05] F. Crowe, A. Daly, and W. Marnane. A Scalable Dual Mode Arithmetic Unit for Public Key

Cryptosystems, Proceedings of IEEE International Conference on Information Technology—

ITCC’05, pp. 568–573, 2005.

[CMO98] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed

coordinates. In K. Ohta and D. Pei (Eds.), Proceedings of ASIACRYPT 1998, No. 1514 in LNCS,

pp. 51–65, Springer-Verlag, Berlin, Heidelberg, 1998.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Information

Theory, 22: 644–654, 1976.

[ECRYPT-AZT] ECRYPT Yearly Report on Algorithms and Keysizes (2004), Document D.SPA.10,

available at www.ecrypt.eu.org.

[EW93] S.E. Eldridge and C.D. Walter. Hardware implementation of Montgomery’s modular multipli-

cation algorithm. IEEE Transactions on Computers, 42: 693–699, 1993.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 85 19.10.2007 9:14pm Compositor Name: BMani

Computer Architecture and Design 1-85

[Gor98] D.M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27: 129–146,

1998.

[GTK02] A. Gutub, A.F. Tenca, and Ç.K. Koç. Scalable VLSI architecture for GF(p) Montgomery

modular inverse computation, Proceedings of IEEE Computer Society Annual symposium on

VLSI, pp. 53–58, 2002.

[IEE99] IEEE P1363. Standard specifications for public-key cryptography, 1999.

[IT88] T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative inverses in GF

(2m). Electronics Letters, 24(6): 334–335, 1988.

[IMI94] K. Iwamura, T. Matsumoto, and H. Imai. Montgomery modular multiplication method and

systolic arrays suitable for modular exponentiation. Electronics and Communications in Japan,

77(3): 40–50, 1994.

[JHS93] K.T. Johnson, A.R. Hurson, and B. Shirazi. General-purpose systolic arrays. IEEE Computer,

26(11): 20–31, 1993.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener (Ed.), Advances in

Cryptology: Proceedings of CRYPTO’99, No. 1666 in LNCS, pp. 388–397, Springer-Verlag, Berlin,

Heidelberg, 1999.

[Knu98] D.E. Knuth. The Art of Computer Programming-Vol. 2—Seminumerical Algorithms. Addison-

Wesley, 3rd ed., 1998.

[Kob87] N. Koblitz. Elliptic curve cryptosystem. Mathematics of Computation, 48: 203–209, 1987.

[Koc95] Ç.K. Koç. RSA Hardware implementation, Technical Report, RSA Laboratories, 1995.

[Kob94] N. Koblitz. A Course in Number Theory and Cryptography, Graduate Text in Mathematics, Vol.

114, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, 1994.

[Koc96] P. Kocher. Timing attack on implementations of Diffie-Hellman, RSA, DSS, and other systems.

In N. Koblitz (Ed.), Advances in Cryptology: Proceedings of CRYPTO’96, No. 1109 in LNCS,

pp. 104–113, Springer-Verlag, Berlin, Heidelberg, 1996.

[LV00] A. Lenstra and E. Verheul. Selecting cryptographic key sizes. In H. Imai and Y. Zheng (Eds.),

Proceedings of Third International Workshop on Practice and Theory in Public Key Cryptography

(PKC 2000), No. 1751 in LNCS, pp. 446–465, Springer-Verlag, Berlin, Heidelberg, 2000.

[MK01] M.M. Mano and C.R. Kime. Logic and Computer Design Fundamentals, 2nd ed., Prentice Hall,

Englewood Cliffs, NJ, 2001.

[Mil85] V. Miller. Uses of elliptic curves in cryptography, In H.C. Williams (Ed.), Advances in Cryptology:

Proceedings of CRYPTO’85, No. 218 in LNCS, pp. 417–426, Springer-Verlag, Berlin, Heidelberg,

1985.

[Mon85] P. Montgomery. Modular multiplication without trial division. Mathematics of Computation,

44(170): 519–521, 1985.

[MOV97] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,

Boca Raton, FL, 1997.

[PP98] K.C. Posch and R. Posch. Modulo reduction in residue number systems. IEEE Transactions on

Parallel and Distributed Systems, 6(5): 449–454, 1998.

[QC82] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key cryptosys-

tem. Electronics Letters, 18: 905–907, 1982.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM, 21(2): 120–126, 1978.

[Sha48] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:

379–423, 1948. Reprinted with corrections.

[ST03] A. Satoh and K. Takano. A scalable dual-field elliptic curve cryptographic processor. In C. Paar

and C.K. Koc (Eds.), IEEE Transactions on Computers, 52: 449–460, 2003, Special Issue on

Cryptographic Hardware and Embedded Systems.

[TK99] A.F. Tenca and Ç.K. Koç. A scalable architecture for Montgomery multiplication. In C.K. Koc

and C. Paar (Eds.), Proceedings of 1st International Workshop on Cryptographic Hardware and

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 86 19.10.2007 9:14pm Compositor Name: BMani

1-86 Digital Systems and Applications

Embedded Systems (CHES), No. 1717 in LNCS, pp. 94–108, Springer-Verlag, Berlin, Heidelberg,

1999.

[Wal02] C.D. Walter. Precise bounds for Montgomery modular multiplication and some potentially

insecure RSA moduli. In B. Preneel (Ed.), In Topics in Cryptology-CT-RSA—The Cryptographers’

Track at the RSA Conference, No. 2271 in LNCS, pp. 30–39, Springer-Verlag, Berlin, Heidelberg,

2002.

[Wol02] J. Wolkerstorfer. Dual-field arithmetic unit for GF (p) and GF(2m). In B.S. Kaliski Jr., C. Koc,

and C. Paar (Eds.), Proceedings of 4th International Workshop on Cryptographic Hardware and

Embedded Systems (CHES), No. 2523 in LNCS, Springer-Verlag, Berlin, Heidelberg, 2002.

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 87 19.10.2007 9:14pm Compositor Name: BMani

Computer Architecture and Design 1-87

Vojin Oklobdzija/Digital Systems and Applications 6195_C001 Final Proof page 88 19.10.2007 9:14pm Compositor Name: BMani

2
System Design

Mark Smotherman
Clemson University

Dezsö Sima
Budapest Polytechnic

Kevin Skadron
David Tarjan
University of Virginia

Tzi-cker Chiueh
State University of New York at

Stony Brook

Binu Mathew
Apple Inc.

Ali Ibrahim
Advanced Micro Devices

2.1 Superscalar Processors... 2-1
Introduction . Instruction-Level Parallelism . Superscalar

Terminology . Example Machines

2.2 Register Renaming Techniques 2-10
Introduction . Overview of the Rename Process . Design

Space of Register Renaming Techniques . Layout of the

Rename Buffers . Layout of the Register Mapping .

Basic Alternatives and Possible Implementation Schemes

of Register Renaming

2.3 Predicting Branches in Computer Programs 2-38
What Is Branch Prediction and Why Is It Needed? . Software

Techniques . Hardware Techniques . Sources of

Mispredictions . Comparison of Hardware Prediction

Strategies . Summary

2.4 Network Processor Architecture................................. 2-60
Introduction . Design Issues . Architectural Support for

Network Packet Processing . Example Network Processors .

Conclusion

2.5 Stream Processors and Their Applications
for the Wireless Domain... 2-66
Introduction . Stream Virtual Machine . Time and

Space Multiplexing . Stream Processor Implementations .

Stream Processing for Wireless Systems . WCDMA Physical

Layer . 4G . Computational Complexity and Power

Consumption . Current Solutions . Stream Processor

Based Wireless SoCs . Conclusions

2.1 Superscalar Processors

Mark Smotherman

2.1.1 Introduction

A superscalar processor is designed to fetch, decode, execute, and complete multiple instructions each

clock cycle from a single instruction stream. The term superscalar originated in the 1980s to distinguish

it as a form of parallelism set apart from vector and array processors as well as an advance beyond

pipelined scalar processors. The rationale for such a design can be illustrated by considering the basic

computer performance equation, IC3CPI3CCT, that is, execution time is a function of the instruc-

tion count (IC) multiplied by the cycles per instruction (CPI) multiplied by the clock cycle time (CCT).

The goal of a pipelined scalar processor is to strive toward a minimum CPI of 1.0, while simultaneously

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 1 4.10.2007 2:55pm Compositor Name: BMani

2-1

reducing, or at least limiting any expansion of, the instruction count and the clock cycle time. The result

is reduced overall execution time. The goal of a superscalar design is to attain a fractional CPI, or, stated

as the reciprocal, the goal is to attain a throughput measured in instructions per cycle (IPC) greater than

1.0. With similar reductions, or at least limits on the expansion, of the instruction count and the clock

cycle time, the result is an even larger reduction in the execution time than for scalar pipelining alone.

AVLIW (very long instruction word) processor is also designed for fetching, decoding, executing, and

completing multiple operations each clock cycle. The difference between a superscalar processor and a

VLIW processor is one of implementation and architecture. Superscalar design can be applied as an

implementation technique to an existing sequential instruction set, while VLIWdesign requires that the

instruction set architecture, the implementation, and the compilers be specifically designed to support

the packaging of multiple independent operations into long instruction words.

Proponents of the VLIW approach rightly contend that VLIW design reduces the control complexity

within a processor; however, the corresponding drawbacks are a loss of wide-scale program portability at

the binary level and a lack of flexibility. With regard to portability, the control logic added by a

superscalar processor is used to dynamically determine opportunities for parallel execution within a

conventional instruction stream. Thus, superscalar processors dynamically schedule parallel execution of

the instructions of existing executable program files, whereas recompilation into a static representation

of parallel execution is a requirement for programs to run on VLIW processors. With regard to

flexibility, superscalar processors can easily respond to dynamic events, such as cache misses. Dynamic

events present a difficulty for VLIW designs. For example, early VLIW designs avoided data caches so

that memory access time would be a known quantity for use in compiler scheduling.

A hybrid approach, called EPIC (explicitly parallel instruction computing), is exemplified in the Itanium

Processor Family (IPF, also known as the IA-64) and is an attempt to gain the best of both approaches.

Explicit dependence information is incorporated into the instruction formats to reduce the control logic

complexity, and some scheduling of dynamic behavior is incorporated to provide flexibility.

2.1.2 Instruction-Level Parallelism

Superscalar processors attempt to identify and exploit parallelism in the instruction stream. That is,

instructions that are independent should be executed in parallel. We briefly review the concept of

dependencies. More details can be found in the Shen and Lipasti text on superscalar processor design [1].

2.1.2.1 Dependencies

Dependencies limit the parallelism between instructions because they must be enforced so that the results of

program executionwill be correct. Indeed, much of the control logic in a superscalar processor is devoted to

identifying dependencies, so that execution will produce the same results as if the instruction stream was

being executed on a purely sequential computer. Dependencies can be categorized in three ways.

2.1.2.2 Data Dependencies

Data dependencies exist between two instructions when the order between the two instructions must be

maintained for execution to be correct. The most obvious data dependency is the true data dependency

(or RAW: read-after-write dependency) in which the result of one instruction is used as an input

operand for the second instruction. To preserve correctness, the first instruction must be executed

before the second. The storage location in which the operand is passed can be either a memory location

or a CPU register. A forwarding path can also be used to provide the operand to the second instruction

without having to wait on the storage update.

Two other cases arise when the second instruction writes to the common storage location. An output

dependency (or WAW: write-after-write dependency) occurs when both instructions write to the same

storage. To preserve correctness, the result of the second instruction must be the final value of the

storage. An anti-dependency (or WAR: write-after-read dependency) occurs when the first instruction

reads an input operand from the storage location that will be written with the result of the second

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 2 4.10.2007 2:55pm Compositor Name: BMani

2-2 Digital Systems and Applications

instruction. To preserve correctness, the first instruction must obtain its input operand before that value

is overwritten by a new value from the second instruction. Both these cases are called false data

dependencies because they arise from the reuse of storage locations.

See Fig. 2.1 for examples of data dependencies based on register storage. Similar examples using load

and store instructions could be given based on memory storage.

2.1.2.3 Control Dependencies

A control dependency occurs when an instruction depends on a conditional branch instruction. It is not

known whether the instruction is to be executed or not until the branch is resolved. Thus, the branch

must be executed (or predicted) before the instruction execution.

2.1.2.4 Structural Dependencies

A structural dependency occurs when two instructions need the same resource. If the resource is not

duplicated, the instructions must execute sequentially, one after the other, rather than in parallel. The

resource for which the instructions contend might be an adder, a bus, a register file port, or some other

component.

2.1.2.5 Studies of Instruction-Level Parallelism

In the early 1970s, two studies on decoding and executing multiple instructions per cycle were published,

one by Tjaden and Flynn on a design of a multiple-issue IBM 7094 [2] and the other by Riseman and

Foster on the effect of branches in CDC 3600 programs [3]. The conclusion in both papers was that only

a small amount of instruction-level parallelism existed in sequential programs—1.86 and 1.72 instruc-

tions per cycle on average, as determined by the respective studies. Thus, these studies clearly demon-

strated the limiting effect of data and control dependencies on instruction-level parallelism, and the

result was to encourage researchers to look for parallelism in other arenas, such as vector processors and

multiprocessors. However, the study by Riseman and Foster did examine the effect of relaxing the

control dependencies and found increasing levels of parallelism, up to 51 instructions per cycle, as the

number of branches were eliminated (albeit in an impractical way). Later studies, in which false data

dependencies as well as control dependencies were eliminated, found much more available parallelism,

with the highest published estimate being 90 instructions per cycle by Nicolau and Fisher as part of their

VLIW research [4].

2.1.2.6 Techniques to Increase Instruction-Level Parallelism

Just as the limit studies indicated, performance can be increased if dependencies can be eliminated or

reduced. Let us consider the dependencies in the reverse order from their enumeration above. First, many

structural dependencies can be avoided by providing duplicate copies of necessary resources. Even scalar

pipelines provide two paths for memory access (separate instruction and data caches) andmultiple adders

(branch target adder and main ALU). Superscalar processors have even more resource requirements, and

it is not unusual to find duplicated function units and even multiple ports to the data cache (e.g., true

multiporting, multiple banks, or accessing a single-ported cache multiple times per cycle).

True dependency: add r1, r2, r3 ; r3 ← r1 + r2

sub r3, r4, r5 ; r5 ← r3 – r4

Anti-dependency: add r1, r2, r3 ; r3 ← r1 + r2

sub r4, r5, r1 ; r1 ← r4 – r5

Output dependency: add r1, r2, r3 ; r3 ← r1 + r2

sub r4, r5, r3 ; r3 ← r4 – r5

FIGURE 2.1 Example data dependencies.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 3 4.10.2007 2:55pm Compositor Name: BMani

System Design 2-3

Control dependencies are eliminated by compiler techniques of unrolling loops and performing

optimizations such as ‘‘if conversion’’ (using conditional or predicated execution of instructions so

that a control-dependent instruction is transformed into a data-dependent instruction). However, the

main approach to reducing the impact of control dependencies is the use of sophisticated branch

prediction. For example, the Pentium 4 keeps the history of over 4000 branches [5]. Branch prediction

techniques allow instructions from the predicted path to begin before the branch is resolved and execute

in a speculative manner. Of course, if a prediction is incorrect, there must be a way to recover and restart

execution along the correct path.

False data dependencies can be eliminated or reduced by better compiler techniques (e.g., register and

memory allocation algorithms that avoid reuse) or by the use of register and memory renaming

hardware on the processor. Register renaming can be accomplished in the hardware by incorporating

a larger set of physical registers than are available in the instruction set architecture. Thus, as each

instruction is decoded, that instruction’s architectural destination register is mapped to a new physical

register, and future uses of that architectural register will be mapped to the assigned physical register.

Hardware renaming is especially important for older instruction sets that have few architectural registers

and for legacy and shrink-wrapped programs that for one reason or another will not be recompiled.

True data dependencies have been viewed as the fundamental limit for program execution; however,

value prediction has been proposed in the past few years as somewhat of an analog of branch prediction,

in which paths within the instruction stream that depend on easily predicted source values or addresses

can be started earlier. As with branch prediction, there must be a way to recover from mispredictions.

Another method to reduce the impact of true data dependencies is the use of some form of multi-

threading in which instructions from multiple threads are interleaved on a single processor; of course,

instructions from different threads are independent by definition.

2.1.3 Superscalar Terminology

2.1.3.1 Program Order

Figure 2.2 illustrates various terms used in describing superscalar processors. The adjectives in-order and

out-of-order refer to the ordering of instructions as compared to the program. Figure 2.2a shows a simple

scalar processor with four stages, and the actions of moving an instruction from one stage to the next

are named fetch, issue, and complete, respectively. Instructions are decoded and issued in program

order. A simple extension to the scalar pipeline is the use of multiple pipelines, as shown in Fig. 2.2b.

This can allow a scalar processor to specialize its execution pipelines (or function units; e.g., integer vs.

floating point), or, as of interest here, it can produce an in-order superscalar, in which multiple

instructions are fetched, decoded, and issued in program order. The stage-to-stage terminology is the

same as for the simple in-order scalar processor.

2.1.3.2 Instruction Completion and Precise Exceptions

All processors that attempt to execute instructions in parallel must deal with variations in instruction

execution times. That is, some instructions, such as those involving simple integer arithmetic or logic

operations, will need only one cycle for execution, while others, such as floating-point instructions, will

need multiple cycles for execution. If these different instructions are started at the same time, as in a

superscalar processor, or even in adjacent cycles, as in a scalar pipelined processor with separate function

units or execution pipelines, a simple instruction can complete earlier than a longer running instruction

that appears earlier in the instruction stream. This is called out-of-order completion. We can, of course,

prevent out-of-order completion by techniques such as adding delay stages so that all execution paths

have the same number of stages.

If we choose to allow a subsequent, simple instruction to write its result to storage before a longer

running instruction completes, we may violate a data dependency. Dependency checking hardware can

eliminate this problem while still allowing some out-of-order completions; however, dependency check-

ing will not solve the problem of an inconsistent state of storage (registers or memory) if the longer

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 4 4.10.2007 2:55pm Compositor Name: BMani

2-4 Digital Systems and Applications

running instruction causes an exception. To handle this exception and to be able to resume the program,

we must know the precise state of the storage, that is, we must know which instructions, before the one

causing the exception, have not been completed and which instructions, after the one causing the

exception, have been completed. To resume at a given point in program order, the processor must restore

a consistent state with all previous instructions completed and no subsequent instructions completed. A

standard technique to handle this is to provide a form of buffering for the results of instructions, usually

called a reorder buffer. This method is depicted in Fig. 2.2c. Instructions completing out-of-order can

place their results in preassigned entries in this buffer (assignments are made when instructions are in the

decode stage); and, when available, the results are retired out of this buffer in program order. (This action

is alternatively called commit, completion, or graduation in some processors.) If an exception occurs, or

for that matter, a branch or value misprediction occurs, instructions before the one causing the exception

or misprediction are allowed to retire and then the contents of the reorder buffer beyond that instruction

are flushed. Execution can then be resumed with a consistent state of storage.

Other techniques for dealing with exceptions include the use of a run slow mode bit to switch between

in-order and out-of-order instruction completion (IBM RS=6000), the use of a history buffer (Motorola

88110), the use of exception barrier instructions (DEC Alpha), delaying instruction issue until excep-

tions from previous instructions are guaranteed not to occur (called safe instruction recognition in the

Intel Pentium), and the use of a future file (UltraSPARC-III).

2.1.3.3 Instruction Issue

Up to this point, instructions have been described to issue, that is, start execution, in program order.

Consider the case of a long-running dependent instruction pair followed by independent instructions.

It would be advantageous if the compiler would statically schedule independent instructions between the

two instructions of the dependent pair; however, not all programs will be so scheduled. An alternative

is to provide dynamic instruction scheduling in the hardware, also known as out-of-order execution.

Icache Decode Execute Write back

Icache Decode

Execute

Execute

Execute Write back

Write back

Icache Decode Reorder
buffer

Fetch Issue Complete

Fetch Issue

Write back

Complete Retire

(c) Out-of-order-
 completion
 for scalar or
 superscalar

(b) In-order-issue
 superscalar

(a) In-order scalar

Execute

Icache Decode Inst.
window

Reorder
buffer

Fetch IssueDispatch

Write back

Complete Retire

(d) Out-of-order-
 issue scalar or
 superscalar

Execute

Execute

FIGURE 2.2 Superscalar terminology.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 5 4.10.2007 2:55pm Compositor Name: BMani

System Design 2-5

This requires providing some form of buffering for instructions subsequent to decode, as depicted

in Fig. 2.2d, and the necessary control logic to identify and issue instructions that are ready to execute.

The execution of ready instructions in an out-of-order processor is a form of data flow execution, and

the dynamic scheduling of the portion of the instruction stream held in the instruction buffer has been

called restricted data flow. The buffer for the instructions can take the form of a centralized instruction

window or a decentralized set of reservation stations, in which a subset of the instruction buffers are

located at each function unit. In Fig. 2.2d, the action of placing a decoded instruction into this buffer is

called dispatch and the term for the start of execution (i.e., choosing and routing instructions from the

instruction buffer to execution units) remains issue. Unfortunately, some authors and processor

manuals make the issue and dispatch terms synonymous and some even reverse the above meanings,

so the reader is advised to always read the context carefully when encountering these two terms.

Figures 2.3 and 2.5 illustrate superscalar processing with in-order execution and out-of-order execu-

tion, respectively, for two iterations of a short loop that adds a value to each element in an array of floating-

point values. Throughput rates of two instructions per cycle are assumed for each stage-to-stage

action, and branch prediction and operand forwarding are assumed. Loads and stores have two-cycle

execution, floating-point add has four-cycle execution, and integer add and branch have single-cycle

execution each. The stages for the in-order processor in Fig. 2.3 are FDEW: fetch, decode, execute, and

write back. The stages for the out-of-order processor in Fig. 2.5 are FDIECR: fetch, decode, issue (or inst.

window), execute, complete (or reorder buffer), and retire (or write back). Renaming is assumed for the

out-of-order processor.

Without the ability to dispatch dependent instructions into an instruction window or to reservation

stations, the decoder in the in-order processor in Fig. 2.3 stalls from cycle 3 to cycle 5, at which point the

floating-point add can be issued. Similar decoder stalls can be observed at cycles 6, 13, and 16. Because of

the data dependencies within the loop body, the throughput is less than one instruction per cycle. The

overall effect is that the two iterations cannot be finished within 20 cycles. To take better advantage of the

in-order processor, a compiler or assembly language programmer would need to unroll the loop. For

example, unrolling by a factor of two would lead to the execution diagram in Fig. 2.4. In this case,

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
load 0(r1), f0 F D E E W
addf f0, f2, f4 F D E E E E W
store f4, 0(r1) F D E E W
add r1, #4, r1 F D E W
bne r1, r2, loop F D E W
load 0(r1), f0 F D E E W
addf f0, f2, f4 F D E E E E W
store f4, 0(r1) F D E E
add r1, #4, r1 F D
bne r1, r2, loop F

FIGURE 2.3 Superscalar execution with in-order execution.

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
load 0(r1), f0 F D E E W
load 4(r1), f2 F D E E W
addf f0, f4, f6 F D E E E E W
addf f2, f4, f8 F D E E E E W
store f6, 0(r1) F D E E W
store f8, 4(r1) F D E E W
add r1, #8, r1 F D E W
bne r1, r2, loop F D E W

FIGURE 2.4 Superscalar execution with in-order execution and compiler loop unrolling.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 6 4.10.2007 2:55pm Compositor Name: BMani

2-6 Digital Systems and Applications

one iteration of the unrolled loop, with two element updates, finishes in cycle 12. There is still some

minor stalling at the decoder, as seen in cycles 4 and 6, but the overall performance has improved greatly.

For the out-of-order superscalar processor illustrated in Fig. 2.5, each instruction has to traverse more

stages, but dependent instructions can be buffered so that the decoder and execution units can bypass

these instructions and uncover independent instructions that will be ready to execute. This can be

observed in cycle 4, in which the integer add is issued before any of the three previous instructions

complete. (The WAR dependency between the add and store instructions is handled by register

renaming.) The integer add completes in cycle 6 but the result has to wait in the reorder buffer until

it can retire in-order in cycle 15. Even without compiler unrolling, the two iterations finish by cycle 20.

In fact, the use of renaming and dynamic scheduling allows the processor to do hardware unrolling of the

loop, as seen in cycle 7 in which the load instruction of the second iteration is issued before the first

iteration is finished. (The data dependency arising from the write to register f0 in this second load is

handled by register renaming.) If the loop has enough iterations, throughput for the out-of-order

superscalar will continue to increase as more hardware overlap of iterations occurs and will become

more competitive with the unrolled, in-order superscalar throughput. The out-of-order superscalar will

also be more tolerant of cache misses than the in-order superscalar.

A scalar processor typically has decode and issue rates of one instruction per cycle. As compared to a

scalar design, a superscalar design must provide a greater than one throughput for each action—fetch,

dispatch, issue, complete, and retire. Note that while the throughputs rates do not have to be equal, the

overall throughput rate for a processor is limited by the smallest throughput rate across the individual

stage-to-stage actions. In fact, a processor in the style of Fig. 2.2d that fetched, decoded, and executed

multiple instructions per cycle but that could only retire one instruction per cycle would be in effect a

scalar processor.

2.1.4 Example Machines

2.1.4.1 Historical Designs

Dynamic instruction scheduling has been implemented in scalar processors as well as in superscalar

processors. For example, the Zuse Z4 (developed in the 1940s) had a limited ability to switch the order

of execution for two instructions. The CDC 6600 (announced in 1963) and the IBM S=360 Model 91

(announced in 1964) are the two most well-known scalar processors that use dynamic instruction

scheduling. The 6600 had 10 functional units that could execute simultaneously. One instruction was

decoded at a time and dispatched (issued in CDC terminology) to the scoreboard, but up to three

instructions could start execution, out-of-order, at a time. (The issue rate limit of three instructions per

cycle was due to a structural limitation of three sets of read port pairs, called data trunks, provided for

the register file in the 6600.) The Model 91 also decoded one instruction at a time but used out-of-order

execution in its floating-point unit. The Model 91 technique was called the Tomasulo algorithm, named

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
load 0(r1), f0 F D I E E C R
addf f0, f2, f4 F D I E E E E C R
store f4, 0(r1) F D I E E C R
add r1, #4, r1 F D I E C R
bne r1, r2, loop F D I E C R
load 0(r1), f0 F D I E E C R
addf f0, f2, f4 F D I E E E E C R
store f4, 0(r1) F D I E E C R
add r1, #4, r1 F D I E C R
bne r1, r2, loop F D I E C R

FIGURE 2.5 Superscalar execution with out-of-order execution and register renaming.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 7 4.10.2007 2:55pm Compositor Name: BMani

System Design 2-7

after inventor Robert Tomasulo, and provided register renaming by tagging. Up to two instructions, one

add and one multiply, could start execution at the same time within the Model 91 FPU. The Model 91

was also infamous among programmers for not providing precise exceptions.

The idea of a superscalar computer originated with John Cocke at IBM in the 1960s. Cocke has said

that Gene Amdahl, architect of the IBM 704 and one of the architects of the IBM S=360, postulated a

bound on computer performance that included an assumption of a maximum decoding rate of one

instruction per cycle on a single processor. Cocke felt that this was not an inherent limit for a single

processor. His ideas about multiple instruction decoding became an important part of the IBM ACS-1

supercomputer design, which was started in 1965 but ultimately cancelled in 1969. In this design, up to

16 instructions would be decoded and checked for dependencies of each cycle and up to seven

instructions would be issued, out-of-order, to function units [6].

After the ACS cancellation and the publication of the early ILP studies [2,3], the idea of superscalar

processing lay dormant until the early 1980s when further research at IBM revived the notion of multiple

decoding and multiple issue. John Cocke teamed with Tilak Agerwala at IBM and worked on a series of

designs that finally led to the IBM POWER (performance optimized with enhanced RISC) instruction

set architecture and the IBM RS=6000 workstation, which was announced in late 1989 and delivered in

1990. Agerwala is credited with coining the term superscalar during a series of talks in 1983–1984. These

talks and the related IBM technical report [7] were influential in kindling interest in the approach. In

1989, Intel introduced the first single-chip superscalar microprocessor, the i960CA. Also around this

time, LIW efforts, such as H.T. Kung’s Warp project, the Intel i860, the Apollo DN10000, and the

National Semiconductor Swordfish, and VLIWefforts, such as the Multiflow TRACE computers and the

Cydrome Cydra-5, were under way.

2.1.4.2 Modern Designs

Most high-performance processors now incorporate some form of superscalar processing. Even many

simple processors can decode and execute one integer instruction along with one floating-point

instruction per cycle. We briefly survey three representative processors in the following subsections.

Other notable superscalar designs include the Compaq Alpha 213 64 series, HP 83 00 series, and MIPS

R13 000 series. It should be noted that designers of IBM mainframes developed a superscalar imple-

mentation, the IBM ES=9000 Model 520, in 1992, but more recent implementations have reverted to

scalar pipelines.

2.1.4.2.1 UltraSPARC-I, 1995

The UltraSPARC-I [8] is an example of an in-order superscalar processor Fig. 2.2b. It provides four-way

instruction issue to nine functional units. The design team extensively simulated many alternatives and

concluded that an out-of-order approach would have required a 20% penalty in clock cycle time and

increased the time to market by up to half a year. The final design involves a nine-stage pipeline. This

includes a decoupled front-end pipeline (fetch and decode stages) that performs branch prediction

and places decoded instructions in a 12-entry buffer. A grouping stage then selects up to four

instructions in-order from the buffer to be issued in the next cycle. Precise exceptions are supported

by padding out most function unit pipelines to four stages each (the required length for the floating-

point pipelines) so that most four-instruction groups complete in-order. The final two stages resolve any

exceptions in the groups and write back the results.

2.1.4.2.2 PowerPC 750, 1997

The PowerPC 750 [9] is an example of an out-of-order processor with distributed reservation stations

and a reorder buffer (called the completion buffer in the 750). The 750 has six function units, including

two integer units. Each unit has one reservation station, except the load=store unit, which has two.

Instructions can be issued, when ready, from these reservation stations. (This limited form of out-of-

order execution is sometimes called function unit slip.) The 750 also includes six rename registers for

renaming the 32 integer registers and six rename registers for renaming the 32 floating-point registers.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 8 4.10.2007 2:55pm Compositor Name: BMani

2-8 Digital Systems and Applications

The overall pipeline works as follows. A decoding stage is not needed since instructions are pre-

decoded into a wider representation as they are filled into the instruction cache. Up to four instructions

are fetched per cycle into a six-entry instruction buffer. Logic associated with the instruction buffer

removes any nops or predict-untaken branches and overwrites predict-taken branches with target-path

instructions so that no instruction buffer entries are required for nops or branches. (However, predicted

branches are kept in the branch unit until resolution to provide for misprediction recovery.) Up to two

instructions can be dispatched per cycle to the reservation stations and are allocated entries in the six-

entry completion buffer. The integer units require a single cycle for execution, while the load=store unit

and the floating-point unit require two and three cycles, respectively. After execution, results are placed

into the assigned entries in the completion buffer. Up to two entries per cycle can be written back from

the completion buffer to the register files.

2.1.4.2.3 Pentium 4, 2000

The Pentium 4 [5] is an example of an out-of-order processor with a centralized instruction window

and a reorder buffer. The original Pentium combined two integer pipelines, each similar in design to

the pipeline of the 486, and could decode and execute up to two instructions in-order per cycle (similar

to Fig. 2.2b). Intel then developed the P6 core microarchitecture, which serves as the basis for the

Pentium Pro, Pentium II, Pentium III, and Pentium-M. (A detailed case study of the P6 core appears in

Shen and Lipasti [1].) After branch prediction and instruction fetch, the P6 core decodes up to three

variable-length Intel IA-32 instructions each cycle and translates them into up to six fixed-length mops

(microoperations). Up to three mops are processed by register renaming logic each cycle, and these are

placed into the 20-entry centralized instruction window along with being allocated entries in the

40-entry reorder buffer (similar to Fig. 2.2d). The window is scanned each cycle in a pseudo-FIFO

manner in an attempt to issue up to four mops. Preference is given to back-to-back mops to reduce the

amount of operand forwarding among the execution units. The actual scanning and issue requires two

cycles, while most instructions require single-cycle execution. At maximum, the reorder buffer can

receive up to three results per cycle and can start retirement of up to three mops per cycle. Retirement

requires three cycles. Thus, the overall pipeline has some 14 stages; but, because some of these stages can

overlap, the effect is a minimum latency of 12 cycles per instruction.

The Pentium 4 is a redesign of the P6 core microarchitecture. The translation of IA-32 instructions

into mops is retained, but instead of repeatedly fetching, decoding, and translating recurring IA-32

instruction sequences, the mops are stored in a separate trace cache for repeated access. The trace cache

can hold up to 12 K mops and stores frequently traversed sequences (i.e., traces) of mops with any

predict-taken branches followed by instructions from the predicted path. The trace cache can provide up

to three mops per cycle, which are then routed through reorder-buffer allocation logic, register-renaming

logic, and then into mop queues for scheduling. Up to six mops can be issued per cycle, and up to three

mops can be retired per cycle. The reorder buffer size is increased from 40 entries in the P6 core to 126

entries for the Pentium 4. The clock rate was also increased on the Pentium 4, with approximately twice

the number of pipeline stages as compared to the P6 core. Also by cascading ALUs, two dependent

addition or subtraction operations can be performed in each cycle in the Pentium 4.

2.1.4.2.4 POWER4, 2001

The POWER4 [10] is one of the most aggressive superscalar designs to date with an issue rate of up to

eight instructions per cycle per core and two cores on a single chip. Up to 200 instructions can be in

flight at any one time on each core. The two cores share a second-level cache, a third-level cache

directory and controller, and a communication (fabric) controller.

To limit complexity within a core, instruction groups of up to five instructions each (with a limit of at

most one branch per group) are formed after four stages of decoding and are then used to track

dispatch, completion, and exceptions through a global completion table. Thus, each core is limited to a

throughput of one group (up to five instructions) per cycle. The eight function units per core are two

integer units, two floating-point units, two load-store units, a branch unit, and a condition register unit.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 9 4.10.2007 2:55pm Compositor Name: BMani

System Design 2-9

These units are fed by a total of 11 issue queues, and instruction-level parallelism is supported by a total

of 244 rename resources.

Because of the grouping structure, individual instructions are said to finish (or write back), and

groups are said to complete (i.e., retire). Complex instructions are cracked into multiple internal

operations (called IOPS), each of which requires one instruction slot in a group. If an instruction in a

multi-instruction group causes an exception, the instructions are reformed into multiple single-instruc-

tion groups and redispatched. Integer instructions traverse 15 pipeline stages, and floating-point

instructions traverse 20 pipeline stages. The PowerPC 970 (G5) uses an almost identical core pipeline

structure, and the recent POWER5 (available in 2005) uses the same core pipeline structure of the

POWER4.

References

1. Shen, J. and Lipasti, M., Modern Processor Design: Fundamentals of Superscalar Processors, McGraw-

Hill, New York, 2005.

2. Tjaden, G. and Flynn, M., Detection of parallel execution of independent instructions, IEEE

Transactions on Computers, C-19, 889, 1970.

3. Riseman, E. and Foster, C., The inhibition of potential parallelism by conditional jumps, IEEE

Transactions on Computers, C-21, 1405, 1972.

4. Nicolau, A. and Fisher, J., Measuring the parallelism available for very long instruction word

architectures, IEEE Transactions on Computers, C-33, 968, 1984.

5. Hinton, G. et al., The microarchitecture of the Pentium 4 processor, Intel Technology Journal,

available on-line, 2001.

6. Schorr, H., Design principles for a high-performance system, in Proceedings of the Symposium on

Computers and Automata, New York, 1971, 165.

7. Agerwala, T. and Cocke, J., High performance reduced instruction set processors, Technical Report

RC12434, IBM Thomas Watson Research Center, 1987.

8. Tremblay, M., Greenly, D., and Normoyle, K., The design of the microarchitecture of the Ultra-

SPARC-I, Proceedings of IEEE, 83, 1653, 1995.

9. Kennedy, A. et al., A G3 PowerPC superscalar low-power microprocessor, in Proceedings COMP-

CON, San Francisco, 1997, 315.

10. Tendler, J. et al., POWER4 system microarchitecture, IBM Journal of Research and Development, 46,

5, 2002.

2.2 Register Renaming Techniques*

Dezsö Sima

2.2.1 Introduction

Register renaming (or renaming for short) is a widely used technique in advanced instruction level

processors (ILP-processors) to remove false data dependencies between register operands of subsequent

instructions in a straight line code sequence [1–3]. False data dependencies are write-after-read (WAR)

or write-after-write (WAW) dependencies (see Appendix A). After removing false data dependencies by

register renaming, on average more instructions are available for parallel execution per cycle, this

increases processor performance.

*Portions of this chapter reprinted with permission from Sima, D., The design space of register renaming

techniques, IEEE Micro, 20, Sept.=Oct., 70, 2000, [35] � IEEE.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 10 4.10.2007 2:55pm Compositor Name: BMani

2-10 Digital Systems and Applications

The principle of register renaming is straightforward. The processor removes false data dependencies

by writing the results of the instructions first into dynamically allocated buffers, called rename buffers,

rather than into the specified destination registers and forwards these result into the originally specified

architectural registers in a later stage of instruction execution. For instance, in the case of the following

WAW dependency:

i1: add r1, r2, r3; [r1 (r2)þ (r3)]

i2: mul r1, r4, r5; [r1 (r4)3 (r5)]

the processor renames the destination register of i2 that is r1, say to r33. Then after renaming register r1,

the instruction i2 becomes

i02: mul r33, r4, r5; [r33 (r4) 3 (r5)]

and the processor writes the result of i2
0 into r33 instead of r1. This resolves the previous WAW

dependency between i1 and i2. In subsequent instructions, however, references to the source register

r2 must be redirected to the rename buffer r33 as long as the renaming remains valid. In the next section

we give a detailed description of the whole rename process.

A precursor to register renaming was introduced in 1967 by Tomasulo in the IBM 360=91 [4], a scalar

supercomputer of that time, which pioneered both pipelining and shelving. The 360=91 renamed

floating-point registers in order to preserve the logical consistency of the program execution, rather

than to increase processor performance by removing false data dependencies.

Tjaden and Flynn [5] were the first to suggest the use of register renaming for removing false data

dependencies in 1970. They proposed to rename load type instructions, without using the term ‘‘register

renaming.’’ This specific term was introduced a few years later, in 1975, by Keller [6] who extended

renaming to cover all instructions including a destination register. He also described a possible hardware

implementation of this technique. Because of the complexity of its implementation, however, about two

decades passed until register renaming came into widespread use in superscalars in the middle of

the 1990s.

Early superscalar models of significant processor lines, such as the PA 7100, SuperSPARC, Alpha

21064, R8000, and the Pentium, typically did not yet use renaming as indicated in Fig. 2.6.

Renaming appeared gradually, first in a restricted form, called partial renaming, in the beginning of

the 1990s, in the IBM RS=6000 (POWER1), POWER2, PowerPC 601, and in NextGen’s Nx586

processors, as depicted in Fig. 2.6. Partial renaming restricts renaming to one or to a few data types,

such as floating-point loads or floating-point instructions, as detailed in Section 2.2.3.2. Full renaming

emerged later, beginning in 1992, first in the high-end models of the IBM mainframe family ES=9000,

then in the PowerPC 603. Subsequently, renaming spread into virtually all superscalar processors with

the notable exception of Sun’s UltraSPARC line. At present, register renaming is considered to be a

standard feature of superscalar processors.

2.2.2 Overview of the Rename Process

The rename process itself is considerably complex. It consists of a number of rename specific tasks—

renaming the destination and the source registers, fetching renamed source operands, updating the

rename buffers, releasing allocated rename buffers, recovery of the rename process from faultily executed

speculative execution, etc. In addition, each of the rename-specific tasks may be implemented in a

number of different ways. Furthermore, also specific features of the underlying microarchitecture affect

the rename process. Therefore, each concrete description of the rename process is related to a particular

renaming technique employed and the underlying microarchitecture. Thus, before describing the

rename process we need to be specific about both possible renaming techniques and types of micro-

architectures considered.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 11 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-11

M
C

 8
80

00

G
m

ic
ro

M

S
P

A
R

C

P
ow

er
P

C

P
A R

N
x/

K

80
x8

6

P
O

W
E

R

E
S

M
C

 6
80

00

M
ot

or
ol

a

C
Y

R
IX

S
un

/H
al

M
IP

S

A
M

D

In
te

l

IB
MH
P

T
R

O
N

C
om

pa
q

P
ow

er
P

C
A

lli
an

ce

A
lp

ha

R
IS

C
 p

ro
ce

ss
or

s

IB
M

M
ot

or
ol

a

C
IS

C
 p

ro
ce

ss
or

s

T
he

 N
x5

86
 h

as
 s

ca
la

r
is

su
e

fo
r

C
IS

C
 in

st
ru

ct
io

ns
 b

ut
 a

 th
re

e-
w

ay
 s

up
er

sc
al

ar
 c

or
e

fo
r

co
nv

er
te

d
R

IS
C

 in
st

ru
ct

io
ns

.
∗∗

—
P

ar
tia

l r
en

am
in

g

—
F

ul
l r

en
am

in
g

P
P

C
 d

es
ig

na
te

s
P

ow
er

P
C

.
∗ ∗∗

∗
T

he
 d

is
pa

ct
h

ra
te

 o
f t

he
 P

O
W

E
R

2
an

d
P

2S
C

 is
 6

 a
lo

ng
 th

e
se

qu
en

tia
l p

at
h

w
hi

le
 o

nl
y

4
im

m
ed

ia
te

ly
 a

fte
r

a
br

an
ch

.

G
m

ic
ro

/5
00

 (
2)

A
lp

ha
 2

10
64

 (
2)

 A
lp

ha
 2

11
64

 (
4)

S
up

er
S

P
A

R
C

 (
3)

P
A

71
00

 (
2)

P
en

tiu
m

 (
2)

M
C

 6
80

60
 (

3)

R
 8

00
0

(4
)

P
O

W
E

R
1

(4
)12

(R
S

/6
00

0)

E
S

/9
00

0
(2

)28

P
O

W
E

R
2(

6/
4)

**
*13

P
en

tiu
m

P
ro

 (
3)

24

A
lp

ha
 2

12
64

(4
)7

P
A

80
00

 (
4

)9

P
M

1
(4

)
(S

P
A

R
C

64
)

K
5

(4
)32

N
x5

86
 (

1/
3)

31
∗∗

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

P
en

tiu
m

 II
I (

3)
26

P
A

82
00

(4
)10

U
ltr

aS
P

A
R

C
-2

 (
4)

K
6

(3
)33

M
II

(2
)30

P
O

W
E

R
3

(4
)20

P
A

 8
50

0
(4

)11

R
 1

20
00

 (
4)

22

K
7

(3
)34

U
ltr

aS
P

A
R

C
-3

 (
4)

M
C

 8
81

10
 (

2)

U
ltr

aS
P

A
R

C
 (

4)

P
P

C
 6

01
 (

3)
15

*
P

P
C

 6
04

 (
4)

17
∗

P
en

tiu
m

/M
M

X
 (

2)

P
en

tiu
m

 II
 (

3)
25

P
P

C
 6

20
 (

4)
19

∗

P
P

C
 6

03
 (

3)
16

*

R
 1

00
00

 (
4)

21
P

P
C

 6
02

 (
2)

18
∗

P
A

72
00

 (
2)

8

M
1

(2
)29

14
P

2S
C

 (
6/

4)
∗∗

∗

P
en

tiu
m

 4
 (

3)
27

20
00

23

F
IG

U
R
E
2
.6

C
h
ro
n
o
lo
gy

o
f
th
e
in
tr
o
d
u
ct
io
n
o
f
re
n
am

in
g
in

co
m
m
er
ci
al
su
p
er
sc
al
ar

p
ro
ce
ss
o
rs
.A

s
d
at
e
o
f
in
tr
o
d
u
ct
io
n
w
e
in
d
ic
at
e
th
e
fi
rs
t
ye
ar

o
f
vo
lu
m
e
p
ro
d
u
ct
io
n
.F
o
ll
o
w
in
g

th
e
m
o
d
el
d
es
ig
n
at
io
n
w
e
al
so

sh
o
w

th
e
d
is
p
at
ch

ra
te

o
f
th
e
p
r o
ce
ss
o
rs

(i
n
b
ra
ck
et
s)
.
C
o
n
ce
rn
in
g
th
e
d
is
p
at
ch

ra
te

o
f
C
IS
C
p
ro
ce
ss
o
rs

w
e
n
o
te

th
at

o
n
e
x8
6
in
st
ru
ct
io
n
ca
n
b
e

co
n
si
d
er
ed

to
b
e
eq
u
iv
al
en
t
o
f
1
.3
–
1
.9
R
IS
C
in
st
ru
ct
io
n
s.
In

th
is
fi
gu
re

w
e
gi
ve

re
fe
re
n
ce
s
to

th
e
p
ro
ce
ss
o
rs
w
h
ic
h
m
ak
e
u
se

o
f
re
n
am

in
g.
(F
ro
m

G
w
en
n
ap
,
L
.,
M
ic
ro
p
ro
ce
ss
or

R
ep
or
t,

9
,
1
4
,
1
,
1
9
9
5
.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 12 4.10.2007 2:56pm Compositor Name: BMani

2-12 Digital Systems and Applications

Concerning renaming techniques, in a subsequent section, we show that there are nine basic alternatives

available. In our description of the rename process, we need to presume one of them. Our choice is the one

where (1) renaming is implemented by using rename register files (RRF) and (2) architectural registers are

mapped to rename registers by means of mapping tables. Although both terms are explained later in the

subsequent section, beforehand we note that RRFs, split to separate fixed-point (FX) and floating-point

(FP) RRFs, store the instruction results produced by the execution units temporarily, while the FX- and

FP-mapping tables hold the actual mappings of the FX- and FP-architectural registers to the associated

rename registers, as indicated in the section on Layout of Register Mapping.

As far as the underlying microarchitecture is concerned, there are two design aspects that affect the

implementation of the rename process: (1) whether or not the processor uses shelving (indirect issue,

dynamic instruction scheduling, queued issue; see related box) and (2) assuming the use of shelving,

what kind of operand fetch policy is employed (see related box). As recent superscalars predominantly

make use of shelving, we take this design option for granted throughout this section. Regarding the

operand fetch policy, which is one design aspect of shelving, we take into account both alternatives, since

superscalar processors make use of both policies. Thus, while we describe the rename process in the

subsequent two sections, we do it in two scenarios, first assuming the dispatch-bound fetch policy and

then the issue-bound fetch policy. In both the scenarios mentioned, we describe the rename process by

focusing only on a small part of the microarchitecture, which is just enough to highlight the imple-

mentation of specific tasks of the rename process.

2.2.2.1 Process of Renaming, Assuming Dispatch-Bound Operand Fetching

The considered part of the microarchitecture executes FX-instructions and consists of an architectural

register file (ARF) and an execution unit (EU), as shown in Fig. 2.7.

Our subsequent description of the rename process is embedded into the general framework

of instruction processing. Here, we distinguish the following four processing phases: (1) decoded

instructions are dispatched into the RSs, (2) executable instructions are issued from the RSs to the EUs,

(3) the EUs perform the prescribed operations and generate the result of the instructions. At this time the

instructions are said to be finished, and finally, (4) the processor completes (commits, retires) instructions

in an in-order fashion, irreversibly updating the program state with the results of the instructions.

Assuming the processor core as shown in Fig. 2.7 and dispatch-bound operand fetching, the rename

process is carried out as follows:

I. During instruction dispatch, three rename-related tasks must be performed:

a. Destination registers of dispatched instructions (Rd) need to be renamed.

b. Source registers (Rs1 and Rs2) should be renamed in order to redirect the source references to the

associated rename registers.

c. Required source operands need to be fetched.

1. Renaming the destination registers of dispatched instructions: To rename the destination register of

a dispatched instruction, first a free rename register needs to be allocated to the dispatched

instruction. This task is accomplished by means of the mapping table. The mapping table keeps

track of the actual mappings of the architectural registers to the rename registers. Renaming of the

destination register results in writing the identifier of the allocated rename register (Rd0) into the

corresponding mapping table entry, and forwarding this identifier also into the corresponding

field of the RS. Typically, the processor uses the index of the allocated rename register as Rd0.
2. Renaming the source registers: Source registers, for which a valid renaming exists, also need to

be renamed. This is carried out by accessing the mapping table with the source register identifiers

(Rs1, Rs2) as indices, and fetching the identifiers of the allocated rename registers (designated as

Rs
0
1, Rs

0
2). If, for a particular source identifier there is no valid renaming, the required source

operand will be accessed from the ARF by using the original source register identifier (Rs1 or Rs2).

3. Fetching the source operands: Finally, the referenced source operands need to be fetched. However,

with renaming, requested source operands may be in one of two possible locations. If there is a

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 13 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-13

valid renaming, the requested operand needs to be fetched from the RRF, else from the ARF. To

fetch a requested operand, usually the processor accesses both the RRF and the ARF simultane-

ously to shorten the access time. If only the ARF hits, the referenced source register is actually not

renamed and the accessed value is the required one. If, however, for a particular source register a

valid renaming exists, both register files hit and the processor will give preference to the operand

fetched from the RRF. In this case, the RRF may deliver either a valid operand value (Op1=Op2), if

it has already been produced by a preceding instruction, or the index of that rename register, which

will hold the requested value after its generation (Rs
0
1=Rs

0
2), if the required result has not yet been

calculated. Thus, for each referenced source register either the requested operand value

(Op1=Op2) or the appropriate rename register identifier (Rs
0
1=Rs

0
2) will be written into the RS.

The valid bits associated with the source operand fields (V1=V2) indicate whether the related

operand field holds a valid source operand value (Op1=Op2) or a rename register identifier

(Rs
0
1=Rs

0
2).

II. Issuing is not at all rename specific. Assuming in-order issuing, the processor inspects the valid bits

of the source operands (V1 and V2) of the oldest instruction kept in the RS. If both valid bits of this

instruction are set and the EU is also free, the instruction is forwarded to the EU for execution.

III. After the EU has finished the execution of an instruction, both the RS and the RRF need to be

updated with the generated result. To update the RS, the generated results and their identifiers (Rd0) are

Mapping
table

Architectural register
file (ARF)

Rs1�

Rs2�

Update
arch. rf.

Op1

Op2

Rd�

OC

Rd, Rs1, Rs2

Decoded instructions

Update RRF

Update RS

Result, Rd�

OC, Rd�, Op1, Op2

Rename register
file (RRF)

OC Rd� Op2/Rs2�V2Op1/Rs1� V1

EU

Check valid bits

Rs1, Rs2

V

Bypassing

Op1/Rs1�

Op2/Rs2�

Dispatch

Issue
Reservation station

(RS)

FIGURE 2.7 Processor core providing shelving with dispatch-bound operand fetching and renaming.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 14 4.10.2007 2:56pm Compositor Name: BMani

2-14 Digital Systems and Applications

broadcasted to all the source register entries held in the RS. Through an associative search, all source

register identifiers (Rs
0
1, Rs

0
2), which are waiting for the new result, are located. The processor

substitutes matching identifiers with the result value and sets the associated valid bits (V1 or V2) to

indicate availability. We note that this task is performed basically in the same way with and without

renaming. There is, however, a slight difference with renaming, as in this case the search key is the

renamed destination register identifier (Rd0) rather than the original destination register identifier (Rd)

that is used without renaming. The second task is to update the rename register file. This is done simply

by writing the new result into the RRF using the identifier accompanying the result produced (Rd0) and
setting the associated valid bit (V) to signal availability.

IV. When an instruction completes, the processor permanently updates the ARF, and thus the

program state, with the content of the associated rename register. This is done by writing the result of

the completed instruction from the associated rename register to the addressed destination register. At

this stage of the instruction execution, resources bound to the established renaming becomes free.

Therefore, the related entry in the mapping table needs to be deleted and the rename register involved

can be reclaimed for further use. This is so since (i) after completion, the result of the instruction, that is,

the content of the rename register, has already been written into the addressed destination register, and

(ii) after finishing the instruction, the generated result has already been transferred to all instructions

waiting for this operand in the RS.

During renaming, rename registers take on a sequence of states, as indicated in Fig. 2.8.

During initialization, the processor sets all rename registers into the ‘‘available’’ state. When the

processor allocates a rename register to a dispatched instruction, the state of the allocated register will be

changed to allocated, not valid and its valid bit will be reset. When this instruction becomes finished, the

newly produced result is written into the associated rename register, and its state is set to allocated, valid.

Finally, while the instruction completes, the result held temporarily in the rename register is written into

the specified architectural register. Thus, the allocated rename register can be reclaimed. Its state is then

changed to available. Nevertheless, it can happen that an exception or faulty speculative execution gives

rise to flush not yet completed instructions. In this case, a recovery procedure is needed, and the state of

the concerned rename registers will be changed from the allocated, not valid or allocated, valid state to

the available state and the corresponding mappings between architectural and rename registers will be

deleted.

Allocated,
valid

Available Allocated,
not valid

Initialized

Reclaim,
if instruction is

canceled

Allocate, if instruction
is dispatched

Reclaim, if instruction
is completed

Update, if instruction
is finished

FIGURE 2.8 State transition diagram of the rename registers, assuming the use of a rename register file (RRF).

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 15 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-15

2.2.2.2 Process of Renaming, Assuming Issue-Bound Operand Fetching

Assuming basically the same processor core as before, but using the issue-bound operand fetching, the

rename process is carried out as follows (see Fig. 2.9):

1. During instruction dispatch, both the destination register (Rd) and the source registers (Rs1 and

Rs2) are renamed in the same way as described for dispatch-bound operand fetching. But now,

beyond the operation code (OC) and the renamed destination register identifier (Rd0), the
renamed source register identifiers (Rs

0
1 and Rs

0
2) are written into the RS rather than the

operand values (Op1, Op2, if available) as with dispatch-bound operand fetching.

2. During issuing, two tasks need to be performed: (a) the instruction held in the last entry of the RS

needs to be checked to see whether it is executable. If so and if the EU is also free, this instruction

needs to be forwarded for execution to the EU. (b) During forwarding of the instruction, its

operands need to be fetched either from the RRF or from the ARF in the same way as described in

connection with the dispatch-bound operation.

3. When the EU finishes its operation, the generated result is used to update the RRF. Updating is

performed by writing the result into the allocated rename register using the supplemented register

identifier (Rd0) as an index into the RRF and setting the associated valid bit (V-bit).

Mapping
table

Rename register
file (RRF)

Architectural register
file (ARF)

EU

Result, Rd�

Update RRF

Rs1�, Rs2�

Checking for availability
of (Rs1�), (Rs2�)

Op1

Op2

OC, Rd�

Decoded instructions

OC Rd, Rs1, Rs2

OC Rd Rs1� Rs2�

V

Rd� Rs2�

Rs1�

Reservation
station (RS)

Bypassing

Dispatch

Issue

FIGURE 2.9 Processor core providing shelving with issue-bound operand fetching and renaming.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 16 4.10.2007 2:56pm Compositor Name: BMani

2-16 Digital Systems and Applications

4. Finally, while the processor completes an instruction, the temporary result held in the associated

rename register is written into the architectural register, which is specified in the destination field

of the instruction. The only tasks remaining are to delete the corresponding entry in the mapping

table and to reclaim the rename register associated with the completed instruction. Reclaiming of

the rename register is, however, a far more complex task now than with dispatch-bound operand

fetching. Notice that if operands are fetched dispatch bound (a) dispatched instructions imme-

diately access their operands and (b) missing operands are, after their generation, immediately

forwarded from the EU to the instructions waiting for these operands in the RS. In this case, after

completing an instruction, the allocated rename register can immediately be reclaimed. However,

if operands are fetched during issuing, the RS is not automatically updated with the produced

results. As a consequence, after an instruction completes, the RS may still contain instructions,

which will require the contents of the rename register, that are allocated to the just-completed

instruction. Thus, while instructions complete, their allocated rename registers cannot be

reclaimed immediately as in the case of the dispatch-bound operand fetching. To resolve this

problem, one possible solution is to maintain a counter for each rename register, which keeps

track of the number of references made to this register. The counter will be incremented each time

if one of the source operands of a dispatched instruction addresses this particular rename register,

and will be decremented during issuing of the instructions each time when a source operand is

fetched from this register. After all outstanding fetch requests for a particular rename register are

satisfied, as indicated by the counter score of zero, and the associated instruction has been

completed, the related register becomes eligible for reclaiming. At the first sight, it may seem

that this intricate reclaim process can be avoided if during completion the RS would have been

searched for all renamed source operand identifiers (Rs
0
1, Rs

0
2), which refer to the rename buffer,

allocated to the completing instruction (Rd0), and matching renamed source register identifiers

would have been remapped to the associated architectural register (Rd). Unfortunately, this idea

is not applicable since there is no guarantee that the addressed architectural register would not be

rewritten until instructions needing its content are issued.

During the rename process, rename registers will take the same states and the same state transitions will

also occur as described earlier in connection with Fig. 2.8. The only difference is that now rename

registers are reclaimed according to modified conditions, as discussed previously.

We emphasize that other basic alternatives of register renaming differ mainly in two aspects: (1) the

processor can hold renamed values in other structures than rename register files and (2) the processor

can use a different scheme for mapping the architectural registers to rename registers as assumed above.

In addition, the processor should be able to rename not just one instruction per cycle but all dispatched

instructions. Nevertheless, despite these differences, the previous descriptions in the two characteristic

scenarios give a good background about how the rename process is carried out in any of the possible

implementation schemes.

2.2.3 Design Space of Register Renaming Techniques

2.2.3.1 Overview

The design space of register renaming has four main dimensions: the scope of register renaming, the

layout of the rename registers, the implementation technique of register mapping, and the rename rate,

as indicated in Fig. 2.10. These aspects are discussed in the subsequent sections. For the presentation of

the design space we make use of DS trees [3,36].

2.2.3.2 Scope of Register Renaming

The scope of register renaming indicates how extensively the processor makes use of renaming. In this

respect, we distinguish between partial and full renaming. Partial renaming is restricted to one or to only

a few instruction types, for instance only to FP-instructions. This incomplete form of implementation

was typical for the introductory phase of renaming, at the beginning of the 1990s (see Fig. 2.6).

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 17 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-17

Examples of processors using partial renaming are the POWER1 (RS=6000), POWER2, PowerPC 601, and

the Nx586, as shown in Fig. 2.11. Of these, the POWER1 (RS=6000) renames only FP-loads. As the

POWER1 has only a single FP-unit, it executes FP-instructions in sequence, so there is no need to rename

floating-point register instructions. POWER2 introduces multiple FP-units, consequently it extends

renaming to all FP-instructions, whereas the PowerPC 601 renames only the Link and count register. In

the Nx586, which includes an integer core, renaming is restricted obviously only to FX-instructions.

Full renaming covers all instructions including a destination register. As Fig. 2.11 demonstrates,

virtually all recent superscalar processors employ full renaming. Noteworthy exceptions are Sun’s

UltraSPARC line and Alpha processors preceding the Alpha 21264.

Register renaming

Rename rateLayout of the
rename buffers

Layout of the
register mapping

Scope of
register renaming

FIGURE 2.10 Design space of register renaming.

Scope of register renaming

Full renaming

Renaming comprises
all eligible

instruction types

Partial renaming

Renaming is restricted
to particular

instruction types

The indicated superscalar
lines beginning with

POWER11 (RS/6000, 1990)
POWER2 2 (1993)

PowerPC 3601 (1993)
Nx586 4 (1994)

A few early superscalar
processors, such as

Most notable exceptions
are former

Alpha processors and
Sun's UltraSparc line

Comments:
Trend

1 The POWER1 renames only FP-loads.
2 The POWER2 extends renaming to all FP-instructions.
3 The PowerPC 601 renames only the Link and count register.
4 Since the Nx586 has an integer core, it renames only FX-instructions.

PowerPC 603 (1993)
PA 7200 (1995)

Pentium Pro (1995)
R10000 (1996)

K5 (1995)
MII (1997)

FIGURE 2.11 Scope of register renaming.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 18 4.10.2007 2:56pm Compositor Name: BMani

2-18 Digital Systems and Applications

2.2.4 Layout of the Rename Buffers

2.2.4.1 Overview

Rename buffers establish the actual framework for renaming. From their layout we point out three

essential design aspects—the type and the number of the rename buffers provided as well as the number

of the read and write ports, as shown in Fig. 2.12.

2.2.4.2 Types of Rename Buffers

The choice of the type of rename buffers to use in a processor has far-reaching impact on the

implementation of the rename process. Given its importance, we will outline the various design options.

To simplify our presentation, we initially assume a common architectural register file for all data types

processed. We later extend our discussion to the split register scenario that is commonly employed.

As Fig. 2.13 illustrates, there are four fundamentally different ways to implement rename buffers. The

range of choices include (1) using a merged architectural and rename register file, (2) employing a

stand-alone rename register file, (3) keeping renamed values in the reorder buffer (ROB), or (4) keeping

the renamed values in the shelving buffers.

I. In the first approach, rename buffers are implemented along with the architectural registers in the

same physical register file, called the merged architectural and rename register file or the merged register

file for short. Here, both architectural and rename registers are dynamically allocated to particular

registers of the same physical file.

Each physical register of the merged architectural and rename register file is at any time in one of four

possible states [28]. These states reflect the actual use of a physical register as follows:

a. Not committed (available state)

b. Used as an architectural register (architectural register state)

c. Used as a rename buffer, but this register does not yet contain the result of the associated

instruction (rename buffer, not valid state)

d. Used as a rename buffer, and this register already contains the result of the associated instruction

(rename buffer, valid state)

As part of the instruction processing, the states of the physical registers are changed as described

below and indicated in the state transition diagram in Fig. 2.14.

During initialization, all available physical registers (n) are set to the ‘‘available’’ state. When a

dispatched instruction needs a new rename buffer, one physical register is selected from the pool of the

available registers and is allocated to the destination register concerned. Accordingly, its state is set to

the ‘‘rename buffer, not valid’’ state and its valid bit is reset. After the associated instruction finishes

its execution, the produced result is written into the allocated rename buffer. Its valid bit is then set and its

state is changed to ‘‘rename buffer, valid’’ state. Later, when the associated instruction completes, the

rename buffer, which is allocated to it will be declared to be the architectural register, which implements

the destination register specified in the just-completed instruction. Its state then changes to the ‘‘archi-

tectural register’’ state to reflect this. Finally, when an old architectural register is reclaimed, its state

becomes again ‘‘available.’’ Possible schemes for reclaiming old architectural registers are described for

both dispatch-bound and issue-bound operand fetching in Section 2.2.2. It can also happen that not yet

Layout of the rename buffers

Number of read
and write ports

Number of
rename buffers

Type of
rename buffers

FIGURE 2.12 Layout of the rename buffers.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 19 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-19

Merged
rename and
architectural

reg. file

Architectural
reg. file

Architectural
reg. file

Architectural
reg. file

Merged
architectural and

rename register file

Stand-alone rename
register file

Holding renamed
values in the

ROB

Holding renamed
values in the

shelving buffers

(The basic approach of how rename buffers are implemented)

Type of rename buffers

Rename
reg. file ROB Shelving

Method of
operands fetching

buffers
Method of updating
the program state

POWER1 (1990)
POWER2 (1993)
ES/9000 (1992)

PM1 (SPARC64, 1995)
R10000 (1996)

Nx586 (1994)

PowerPC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)

M1 (1995)
K5 (1995)

Am29000 sup (1995)

K7 (FX) (1999)

R12000 (1999)

POWER3 (1998)
PA 8000 (1996)
PA 8200 (1997)
PA 8500 (1999)

K6 (1997)

K8 (FX) (2003)
Pentium Pro (1995)

Alpha 21264 (1998)
Pentium 4 (2000)

PentiumII (1997)
PentiumIII (1999)
Pentium M (2003)

Core (2006)
K7 (FP) (1999)
K8 (FP) (2003)

POWER4 (2001)
POWER5 (2004)

FIGURE 2.13 Generic types of rename buffers (rename buffers are indicated by shaded boxes).

Instruction is
canceled

Available
not valid

Instruction
is completed

Initialized

RB,

AR
RB,
valid

Architectural register
is reclaimed

Entry is allocated
to a dispatched instruction

Instruction
is finished

FIGURE 2.14 State transition diagram of a particular register of themerged architectural and rename register file (AR:

architectural register, RB: rename buffer). (From Liptay, J.S., IBM Journal of Research and Development, 36, 4, 713, 1992.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 20 4.10.2007 2:56pm Compositor Name: BMani

2-20 Digital Systems and Applications

completed instructions should be canceled because of exceptions or faultily executed speculative instruc-

tions. In this case, allocated rename buffers in the states ‘‘rename buffer, not valid’’ and ‘‘rename

buffer, valid,’’ are deallocated and their states are changed to ‘‘available.’’ In addition, the corresponding

mappings, kept either in the mapping table or in the rename buffer (as discussed later), need to be

canceled.

Note that merged architectural and rename register files do not require a physical data transfer to

update architectural registers. All that is needed for updating is to change the status of the related

registers. By contrast, separate rename register implementations need, for updating the architectural

registers, a physical data transfer from the rename buffer file to the architectural register file.

This requires additional read and write ports on the rename register file and on the architectural register

file, respectively, as well as a dedicated data path. For this reason, recent processors make increasing use

of merged architectural and rename register files, e.g., the Alpha 21264, Pentium 4, or the K7, K8 (for

renaming floating-point instructions).

Merged architectural and rename register files are employed furthermore, in the high end models

(520-based models) of the IBM ES=9000 mainframe family, the POWER and R1x000 lines of processors.

All other alternatives separate rename buffers form architectural registers. Their respective state

transition diagram is depicted in Fig. 2.8 and has already been discussed in connection with the overview

of the rename process.

II. In the first separated variant, a stand-alone rename register file (or rename register file for short) is

used exclusively to implement rename buffers. The PowerPC 603–PowerPC 620 and the PA8x00 line of

processors are examples for using rename register files.

III. Alternatively, renaming can also be based on the reorder buffer (ROB); see related box. The ROB

has recently been widely used to preserve the sequential consistency of the instruction execution. When

using a ROB, an entry is assigned to each dispatched instruction for the duration of its execution.

Therefore, it is quite natural to use this entry for renaming as well, basically by extending it with a new

field, which will hold the result of that instruction. Examples of processors, which use the ROB for

renaming, are the Am 29000 superscalar, the K5, K6, the Pentium Pro, Pentium II, Pentium III, Pentium

M, and the Core line.

The ROB can even be extended further to serve as a central shelving buffer. In this case, the ROB is

also occasionally designated as the DRIS (deferred scheduling register renaming instruction shelve). The

lightning processor proposal [37] and the K6 made use of this solution. As the lightning proposal, which

dates back to the early 1990s, was too ambitious in the light of the technology available at that time, it

could not be economically implemented and never reached the market.

IV. The last conceivable implementation alternative of rename buffers is to use the shelving buffers

for renaming. In this case, each shelving buffer needs to be extended functionally to perform the task of a

rename buffer as well. But this alternative has a significant drawback resulting from the different

deallocation mechanisms of the shelving and rename buffers. While shelving buffers can be reclaimed

as soon as the instruction has been issued, rename buffers can be deallocated only at a later time, not

earlier than the instruction has been completed. To date, no processor has chosen this option, so,

subsequently we will neglect this alternative.

For the sake of simplicity, we have so far assumed that all data types are stored in a common

architectural register file. But usually, processors provide distinct architectural register files for

FX- and FP-data; consequently, they typically employ distinct rename register files, as shown in Fig. 2.15.

As depicted in Fig. 2.15, when the processor employs the split register principle, distinct FX- and FP-

register files are needed for both the merged files and the stand-alone rename register files. In these cases,

separate data paths are also needed to access the FX- and the FP-registers. Recent processors typically

incorporate split rename registers with one exception. When renaming takes place within the ROB,

usually a single mechanism is maintained for the preservation of the sequential consistency of instruc-

tion execution. Then all renamed instructions are kept in the same ROB queue, despite using split

architectural register files for FX- and FP-data. In this case, clearly, each ROB entry is expected to be long

enough to hold either FX- or FP-data.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 21 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-21

2.2.4.3 Number of Rename Buffers

Rename buffers keep register results temporarily until instructions complete. Assuming not more than a

single data result per instruction, a processor needs up to as many rename buffers as the maximum

number of instructions in-flight (instructions that have been dispatched but not yet completed).

Dispatched but not yet completed instructions are (1) held in shelving buffers waiting for issuing (if

shelving is employed) or (2) just in processing in any of the execution units or (3) in the load queue

waiting for cash access (if there is a load queue) or finally (4) in the store queue waiting for completion

and later for forwarding them into the cache to execute the required store operation (if there is a store

queue). Thus, the maximal number of instructions that may have been dispatched but have not yet been

completed in the processor (npmax) is given by

npmax ¼ wdw þ nEU þ nLq þ nSq (2:1)

where

wdw is the width of the issue window (total number of shelving buffers)

nEU is the number of the execution units, which may operate in parallel

nLq is the number of the entries in the load queue

nSq is the number of the entries in the store queue

Assuming a worst case design approach, from Eq. 2.1, we determine the total number of rename

buffers required (nrmax) as the instructions held in the store queue that do not require rename buffers.

nrmax ¼ wdw þ nEU þ nLq (2:2)

Furthermore, if the processor includes a ROB, the ROB needs to maintain an entry for every dispatched

but not yet completed instruction. So, on the basis of Eq. 2.1, the total number of ROB entries required

(nROBmax) is

nROBmax ¼ npmax (2:3)

Nevertheless, if the processor has fewer rename buffers or fewer ROB entries than expected to have

according to the worst case approach (as given by Eqs. 2.2 and 2.3, respectively), missing free rename

buffers or ROB entries can cause dispatch blockages. With a decreasing number of entries provided, we

expect a smooth and slight performance degradation. Hence, a stochastic design approach is also

feasible, where the required number of entries is derived from the tolerated level of performance

degradation.

architectural
reg. filereg. file

Merged FX-
architectural

Merged FP-
FX-rename

reg. file reg. file
FX-arch.

reg. file
FP-rename

reg. file
FP-arch.

(a) (b)

FIGURE 2.15 Using split registers in the case of (a) merged register files, and (b) stand-alone rename register file.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 22 4.10.2007 2:56pm Compositor Name: BMani

2-22 Digital Systems and Applications

On the basis of Eqs. 2.1 through 2.3, the following relations are typically valid concerning the width of

the processor’s issue window (wdw), the total number of the rename buffers (nr), and the reorder width

(nROB), which equals the total number of ROB entries available:

wdw < nr � nROB (2:4)

In Table 2.1, we summarize the type and the number of rename buffers provided in recent RISC and

x86 superscalars. In addition, we give four key parameters of the enlisted processors: (1) the dispatch

rate, (2) the width of the issue window (wdw), (3) the total number of rename buffers provided (nr), and

(4) the reorder width (nROB).

As the data in Table 2.1 shows, the interrelations (Eq. 2.4) have been taken into account in the design

of most processors; however, two obvious exceptions arise. First, the PowerPC 604 provides 20 rename

buffers, four more buffers than the reorder width of the processor, which is 16. In the subsequent

PowerPC 620, Intel corrected this by decreasing the number of rename buffers to 16. Second, the R10000

TABLE 2.1 Type and Available Number of Rename Buffers in Recent Superscalars

Processor Type=Year

of Volume

Type of

Rename

Buffer

Number of

Rename

Buffers

Dispatch

Rate

Width of

the Issue

Window

Total

Number of

Rename

Buffers

Reorder

Width

Shipment FX FP (wdw) (nr) (nROB)

RISC processors

PowerPC 603 (1993) ren. reg. file n.a. 4 3 3 n.a. 5

PowerPC 604 (1995) ren. reg. file 12 8 4 12 20 16

PowerPC 620 (1996) ren. reg. file 8 8 4 15 16 16

POWER3 (1998) ren. reg. file 16 24 4 23 40 32

POWER4 (2001) Merged 80 72 5 78 152 20*5

POWER5 (2004) Merged 120 120 5 82 240 20*5

R10000 (1996) Merged 32 32 4 48 64 32

R12000 (1998) Merged 32 32 4 48 64 48

Alpha 21264 (1998) Merged 48 41 4 35 89 80

PA 8000 (1986) ren. reg. file 56 56 4 56 112 56

PA 8200 (1987) ren. reg. file 56 56 4 56 112 56

PA 8500 (1989) ren. reg. file 56 56 4 56 112 56

PM1 (1996) Merged 38 24 4 36 62 62

CISC (x86) processors

Pentium Pro (1995) In the ROB 40 32 201 40 401

Pentium II (1997) In the ROB 40 32 201 40 401

Pentium III (1999) In the ROB 40 32 201 40 401

Pentium 4 (2000) (Willamette) Merged 128 32 n.a. 128 1261

Core (2006) In the ROB 96 4 32 96 96

Pentium 4 (2002) Northwood Merged 128 3 n.a. 256? 2*126?

Pentium 4 (2004) Prescott Merged 256 3 n.a. 512? 4*128?

Pentium M (2003) In the ROB 40 3 24 40 40

K5 (1995) In the ROB 16 42 111(?) 16 161

K6 (1996) In the ROB 24 32 241 24 241

K7 (1999) In the ROB=merged3 72 n.a. 32 54 88 24*3

K8 (2003) In the ROB=merged 72 120 32 60 192 24*3

Note: In this table we also indicate four related parameters of the enlisted processors.

1 RISC operations.

2 x86 instructions (On average x86 instructions produce 1.3–1.9 RISC operations).38

3 The K7 renames FX operands in the ROB but FP operands in a merged architectural and rename register file,

respectively.

? Designates questionable data.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 23 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-23

provides only 32 ROB entries. This number is far too low compared to the issue width (48) and to the

number of available rename buffers (64). MIPS addressed this disproportion in its following model, the

R12000, by increasing the reorder width of the processor to 48.

A further remark relates to multithreading. When the processor makes use of multithreading, each

thread represents a different instruction flow and, thus, each thread needs separate rename resources,

such as rename registers. As the Northwood and the Prescott cores of the Pentium 4 line are designed to

support SMT (symmetrical multithreading, called hyperthreading in Intel’s terminology), these cores are

assumed to provide multiple sets of rename resources as well [57]. According to the cited publication,

the Northwood core provides two sets and the Preston core even four sets of rename registers,

presumably to support twofold and fourfold multithreading, respectively. Nevertheless, Intel did not

reveal the exact number of rename registers implemented in these cores.

2.2.4.4 Number of Read and Write Ports

By taking into account prevailing practice, in our subsequent discussion we assume split register files.

First, let us focus on the required number of read ports (output ports). Clearly, rename buffers need as

many read ports as there are data items to be supplied by the rename buffers in any one cycle. In this

respect, we should take into account that rename buffers supply the required operands for the

instructions to be executed and also forward the results of the completed instructions to the addressed

architectural registers.

The number of operands, which need to be delivered in the same cycle, depends first of all on whether

the processor fetches operands during instruction dispatch or during instruction issue.

If operands are fetched dispatch bound, the rename buffers need to supply the operands for all

instructions, which are dispatched in the same cycle into the shelving buffers. If there are no dispatch

restrictions, both the FX- and the FP-rename buffers are expected to deliver in each cycle all required

operands for up to as many instructions as the dispatch rate. For instance, this means that in recent four-

way superscalar RISCs, the FX- and the FP-rename buffers typically need to supply 8 and 12 operands,

respectively, assuming up to two FX- and three FP-operands for each FX- and FP-instruction, respect-

ively. If, however, there are some dispatch restrictions, obviously less read ports are required.

By contrast, if the processor employs the issue-bound fetch policy, the rename buffers should provide

the operands for all instructions, which are forwarded from the issue window (instruction window) for

execution in the same cycle. In this case, the FX-rename buffers need to supply the required

FX-operands for the integer units and for the load=store units (including register operands for the

specified address calculations and FX-data for the FX-store instructions). As far as the FP-rename buffers

are concerned, they need to deliver operands for the FP- and MM-units (FP-register data) and also for

the load=store units (FP-operands for the FP-store instructions). In the POWER3, for instance, this

implies the following read port requirements. The FX-rename buffers need to have 12 read ports (up to

33 2 operands for the three integer units as well as 23 2 address operands and 23 1 data operands for

the two load=store units). On the other hand, the FP-rename registers need to have eight read ports (up

to 23 3 operands for the two FP-units and 23 1 operands for the two load=store units).

In addition, if rename buffers are implemented separately from the architectural registers, the rename

buffers need to be able to forward in each cycle as many result values to the architectural registers as the

completion rate (retire rate) of the processor. As recent RISCs usually complete up to four instructions

per cycle, this task increases the required number of read ports in the rename buffers in these processors

by four.

We note here that too many read ports in a register file may unduly increase the physical size of the

data path and thus the cycle time as well. To avoid this problem, a few high-performance processors

(such as the POWER2, POWER3, and the Alpha 21264) implement two copies of particular register files.

The POWER2 duplicates the FX-architectural register file, the POWER3 doubles both the FX-rename

and the FX-architectural files, and the Alpha 21264 has two copies of the FX-merged architectural and

rename register file. As a result, fewer read ports are needed in each of the copies. For example, with two

copies of the FX-merged register file, the POWER3 needs only 10 read ports in each file, instead of

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 24 4.10.2007 2:56pm Compositor Name: BMani

2-24 Digital Systems and Applications

16 read ports in one FX-register file. A drawback of this approach is, however, that a scheme is also

required to keep both copies coherent.

Now let us turn to the required number of write ports (input ports). Since rename buffers need to

accept in each cycle all results produced by the execution units, they need to provide as many write ports

as many results the execution units may produce per cycle. The FX-rename buffers receive results from

the available integer-execution units and from the load=store units (fetched FX-data), whereas the

FP-rename buffers hold the results of the FP-execution units and of the load=store units (fetched

FP-data). Most results are single data items requiring one write port. However, there are a few

exceptions. When execution units generate two data items they require two write ports as well; like

the load=store units of PowerPC processors. For instance, after execution of the LOAD-WITH-UPDATE

instruction, these units return both the fetched data value and the updated address value.

2.2.5 Layout of the Register Mapping

2.2.5.1 Overview

Register mapping includes three main tasks, as depicted in Fig. 2.16:

1. The processor needs to allocate rename buffers to the destination registers of the dispatched

instructions.

2. It also must keep track of the valid mappings for two reasons:

a. To forward generated results to the right rename buffers.

b. To deliver the correct operand values when they are needed in the course of instruction

processing.

3. It needs to deallocate no longer needed rename buffers.

2.2.5.2 Allocation Scheme of Rename Buffers

Processors usually allocate rename buffers to every dispatched instruction rather than only to those

including a destination register in order to simplify logic. Although rename buffers are not needed until

the instruction results are generated in the last execution cycle, rename buffers are typically allocated to

the instructions as early as during instruction dispatch. This kind of register allocation leads to wasted

rename register space. Delaying the allocation of rename buffers to the instructions until instructions

finish [39] saves rename register space. Various schemes have been proposed for this, such as virtual

renaming [39–42] and others [43]. In fact, a virtual allocation scheme has already been introduced in the

POWER3 [39].

2.2.5.3 Method of Keeping Track of Actual Register Mapping

There are three possibilities for keeping track of the actual mapping of the architectural registers to the

allocated rename buffers: (1) The processor can use a mapping table for this, (2) it can simplify the

tracking task by means of a future file, or (3) it can track register renames within the rename buffers

themselves. In the following section we outline these methods, which are illustrated in Fig. 2.17.

A mapping table has as many entries as there are architectural registers in the instruction set

architecture (ISA), usually 32 for RISCs. Each entry holds a status bit (called the entry valid bit in the

figure), which indicates whether the associated architectural register is renamed. Operands from

Layout of the register mapping

Deallocation scheme
of rename buffers

Method of keeping track
of actual mappings

Allocation scheme of
the rename buffers

FIGURE 2.16 Layout of the register mapping.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 25 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-25

renamed registers will be accessed from the rename buffers, whereas operands from not renamed

registers from the architectural register file. Each valid entry supplies the index of the rename buffer,

which is allocated to the architectural register belonging to that entry (called the RB-index). For

instance, the left-hand side of Fig. 2.17 shows that the mapping table holds a valid entry for architectural

register r7, which contains the RB-index of 12, indicating that the architectural register r7 is actually

renamed to rename buffer number 12 or vice versa; rename buffer RB 12 will hold or already holds the

generated value for r7, depending on the value of the value-valid bit of the associated rename buffer. To

prepare operand access, source registers of dispatched instructions are renamed simply by accessing the

mapping table with the register numbers as indices and fetching the associated rename buffer identifiers

(RB-indices), assuming that there is a valid renaming for that particular register, indicated by the ‘‘entry

valid’’ field of the entry, as shown in Fig. 2.17.

As already mentioned in the previous section, usually each entry is set up during instruction dispatch

when new rename buffers are allocated to the destination registers of the dispatched instructions. A new

entry is created by setting the ‘‘entry valid’’ bit and writing the index of the allocated rename buffer into

the field ‘‘RB index.’’ A valid mapping is updated when the architectural register belonging to that entry

is renamed again, and it will be invalidated when the instruction associated with the actual renaming

completes. In this way, the mapping table continuously holds the latest allocations.

We note that for split architectural register files obviously separate FX- and FP-mapping tables are

needed. Mapping tables should provide one read port for each source operand that may be fetched in

any one cycle, and one write port for each rename buffer that may be allocated in any one cycle (as

discussed earlier in the Section 2.2.4.4).

The second option for tracking register allocations is based on the future file concept. Originally

introduced for implementing precise interrupts in pipelined processors in the middle of the 1980s [46],

the future file has the same number of entries as the architectural register file and holds the most recent

values produced for the architectural registers so far. In connection with renaming, the future file is

used for holding the latest values of the renamed (temporarily buffered) register values and delivering

those values (if available else their tags) when the operands are accessed. Subsequently, with reference to

Fig. 2.18, we describe the operation of the future file in more detail, assuming that the processor makes

use of shelving, accesses operands dispatch-bound, and holds instruction results (that is renamed values)

in the ROB.

As instructions are dispatched to the reservation stations (RS) in the future file, the processor clears

the ‘‘value-valid’’ bits belonging to the destination registers (Rd) of the instructions dispatched in order

Method for keeping track of the
actual register mapping

Using a
mapping table

Mapping within
the rename buffers

Assoc.
lookup
for r7

Entry
valid

Dest.
reg.no.

Value Value-
valid

Latest
bit

Rename buffers

9
10
11
12

1
1
1
1

8

7
9
7

801
0
1
1

7
-

70

1
1
0
1

0

“12”/“70”
(RB index = 12)/(Value = 70)

Entry
valid

RB
index

Mapping
table

Lookup
for r7

Lookup
for r7

6
7

8

0
1

1

12
14

“12”
(RB index = 12)

0

Using a
future file

Value VTag

Rename buffers

70

“70”
(Value = 70)

n −1

6
7

8

0

n −1

1

FIGURE 2.17 Methods for keeping track of the actual mapping of architectural registers to rename buffers.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 26 4.10.2007 2:56pm Compositor Name: BMani

2-26 Digital Systems and Applications

to indicate a not yet available value and marks a missing value by the tag (Tag) of the instruction to

prepare a later updating when one of the available execution units generates the result. Furthermore, the

future file is accessed by the referenced source operand identifiers (Rs1, Rs2) and delivers the requested

operand values if they are available (i.e., their value-valid bits are set), else is accessed by their tags to the

RS. Dispatched instructions remain in the RS and wait for their missing operands. The scheduler checks

the instructions held in the RS in each clock cycle and issues the oldest instruction that owes all required

operand values to the associated execution unit. The generated result is then written into the ROB into

the associated entry, that is, into the entry carrying the same tag as the result. In addition, both the

future file and the RS will be updated by the generated result. The RS needs an associative access to

update all operands waiting for the particular result that is holding the matching tag. The future file is

updated only if the referenced register entry has the same tag as the forwarded result; else the forwarded

result is not the latest one belonging to the referenced register since a subsequent instruction has already

rewritten its value.

Update

Value

Reg. nr, result
of completed instructions

OC Rd� Value V

Update

0

RS

Restore

Op1 Op2

Tag Value VTag

Execution
Unit

Tag, result

Architectural
reg. file

Future
file

Value VTag

Update

Reg. nr, tag, result

OC, Rd

ROB

n -1

by exceptions
misspeculations

0

n -1

Scheduler

Update
Tag, result

Tag

Tag, Rd�, Rs1, Rs2
Dispatched instructions

FIGURE 2.18 Principle of using a future file for keeping track of actual register mappings, assuming shelving with

issue-bound operand fetching and a ROB for holding instruction result temporarily.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 27 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-27

When instructions complete in program order their results are written into the architectural register

file to update the program state. In case of mispredicted branches, misspeculated loads, etc., or accepted

exceptions, the future file is flushed and restored with the content of the architectural register file.

The third fundamentally different alternative for keeping track of the actual register mappings relies

on an associative mechanism (see the right-hand side of Fig. 2.17) and is called mapping within the

rename buffers. In this case, no mapping table exists but each rename buffer holds the identifier of the

associated architectural register (usually the register number of the renamed destination register) and

additional status bits as well. These entries are set up usually during instruction dispatch when a

particular rename buffer is allocated to a specified destination register. As Fig. 2.17 shows, in this case

each rename buffer holds five pieces of information: (1) a status bit, which indicates that this rename

buffer is actually allocated (called the entry valid bit in the figure); (2) the identifier of the associated

architectural register (Dest. reg. no.); (3) a further status bit, called the ‘‘latest bit,’’ whose role will be

explained subsequently; (4) another status bit, called the ‘‘value-valid’’ bit, which shows whether the

actual value of the associated architectural register has already been generated; and finally (5) the value

itself (value), provided that the value-valid bit signifies an already produced result. The latest bit is

needed to mark the last allocation of a given architectural register if it has more than one valid allocation

due to repeated renaming. For instance, in our example, architectural register r7 has two subsequent

allocations. From these, entry number 12 is the latest one as its latest bit has been set. Thus, in our figure,

renaming of the source register r7 would yield the RB-index of 12. We point out that in this method

source registers are renamed by an associative lookup for the latest allocation of the given source register.

If operands are fetched dispatch bound, source registers are both renamed and accessed during the

dispatch process. Then processors usually integrate renaming and operand accessing, and therefore

maintain register mapping within the rename buffers or use a future file. For issue-bound operand

fetching, however, these tasks are separated. Source registers are usually renamed during instruction

dispatch, whereas the source operands are accessed while the processor issues the instructions to the

execution units. Therefore, in this case, processors typically use mapping tables.

2.2.5.4 Deallocation Scheme of Rename Buffers

If rename buffers are no longer needed, they should be reclaimed (deallocated). The actual scheme of

reclaiming depends on key aspects of the overall rename process. In particular, it depends on the

allocation scheme of the rename buffers, the type of rename buffers used, the method of keeping

track of actual allocations, and even whether operands are fetched dispatch bound or issue bound. Here,

we do not go into details, but refer to Section 2.2.6.1 for a few examples on how processors reclaim

rename registers.

2.2.5.5 Rename Rate

As its name suggests, the rename rate stands for the maximum number of renames that a processor is

able to perform in a cycle. Basically, the processor should be able to rename all instructions dispatched in

the same cycle to avoid performance degradation. Thus, the rename rate should equal the dispatch rate.

This is easier said than done because it is not at all an easy task to implement a high rename rate (four or

higher). This is true for two reasons. First, for higher rename rates, the detection and handling of inter-

instruction dependencies during renaming (as discussed later in Section 2.2.6.1) becomes a more

complex task. Second, higher rename rates require a larger number of read and write ports on register

files and on mapping tables. For instance, the four-way superscalar R10000 can dispatch any combin-

ation of 4 FX- and FP-instructions. Accordingly, its FX-mapping table needs 12 read and 4 write ports,

and its FP-table requires 16 read and 4 write ports. This number of ports is needed since

FX-instructions can refer up to three and FP-instructions up to four source operands in this processor.

Another example worth looking at is the PM1, also called SPARC64. This four-way superscalar

processor can dispatch any combination of 4 FX- and 2 FP-instructions, up to a maximum of four

instructions. In this case, both the FX-mapping table and the merged register file have 10 read and

4 write ports while its FP-counterpart has 6 read and 3 write ports. According to Asato et al. [44],

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 28 4.10.2007 2:56pm Compositor Name: BMani

2-28 Digital Systems and Applications

this 14-port 116 word 64-bit merged register file needs 371 K transistors, far more than the entire Intel

8086 processor (about 30 K transistors) or slightly more than the i386 (about 275 K transistors) [45].

2.2.6 Basic Alternatives and Possible Implementation Schemes
of Register Renaming

In the design space of register renaming, theoretically each possible combination of the available design

choices yields one possible implementation alternative. Instead of considering all possible implementa-

tion alternatives, it makes sense to focus only on those, which differ in relevant qualitative aspects from

each other. We designate these alternatives the basic alternatives. Possible basic alternatives can be

derived from the design space in two steps—first by identifying the relevant qualitative design aspects

and then by composing their possible combinations. Concerning the selection of the relevant qualitative

design aspects, we recall the design space of renaming, shown in Fig. 2.10. First, we can ignore two main

aspects, the scope of register renaming, as recent processors typically implement full renaming, and the

rename rate, because of its quantitative character. Thus, two main design aspects remain; the layout of

the rename buffers and the implementation of register mapping. Furthermore, as Fig. 2.12 indicates, the

layout of the rename buffers itself covers three design aspects: the type of rename buffers, the number of

rename buffers, and the number of the read and write ports. Of these, only the type of the rename

buffers is of qualitative character. From the design aspect layout of the register mapping (Fig. 2.16), we

consider the method of keeping track of actual mappings the only relevant aspect. It follows that the

design space of register renaming includes only two relevant qualitative aspects: the type of the rename

buffers and the method of keeping track of actual mappings.

The design choices available for these two relevant design aspects result in nine possible combinations,

called the basic alternatives for register renaming (as shown in Fig. 2.19), if we neglect the unpromising

possibility to implement rename buffers in the shelving buffers. In addition, as the operand fetch policy

of the processor, which is a design aspect of shelving, significantly affects how the rename process is

carried out, in this figure we also take into account this aspect. This splits the nine basic renaming

alternatives into 18 feasible implementation schemes. In this figure, we also indicate the implementation

schemes that are used in relevant superscalar processors, as well as give some hints about their origins.

As Fig. 2.19 indicates, out of the nine possible basic alternatives of renaming, relevant superscalar

processors make use only of five. Moreover, latest processors employ mostly the following four basic

alternatives of renaming:

1. Use of merged architectural and rename register files and of mapping tables (POWER4,

POWER5, Pentium 4, as well as K7 (Athlon) and K8 (Hammer) for floating-point processing)

2. Use of separate rename register files and mapping registers within the rename buffers (PA8x00

line, Power3)

3. Renaming within the ROB and using mapping tables (Pentium Pro, Pentium II, Pentium III,

Pentium M, Core)

4. Renaming within the ROB and using a future file (K7 (Athlon) and K8 (Hammer) for fixed point

processing)

We emphasize that a few processors use different basic alternatives for renaming FX- and FP-instruc-

tions, as is manifested for instance in the K7 and K8 processors. These processors use the ROB for

renaming FX-instructions and a merged architectural and rename register file for renaming floating-

point ones.

2.2.6.1 Implementation of the Rename Process

With reference to Section 2.2.2, we emphasize that the rename process can be broken down into the

following subtasks:

1. Renaming the destination registers

2. Renaming the source registers

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 29 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-29

B
as

ic
 a

lte
rn

at
iv

es
 o

f r
eg

is
te

r
re

na
m

in
g

R
en

am
in

g
w

ith
in

th
e

R
O

B
M

er
ge

d
ar

ch
ite

ct
ur

al
an

d
re

na
m

e
re

gi
st

er
 fi

le
S

ep
ar

at
e

re
na

m
e

re
gi

st
er

 fi
le

s

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

P
ro

po
sa

ls
:

P
ro

ce
ss

or
s:

P
M

1
(1

99
5)

(S
P

A
R

C
 6

4)

∗ T
he

 s
he

lv
in

g
bu

ffe
rs

 a
re

 a
ls

o
im

pl
em

en
te

d
in

 th
e

R
O

B
. T

he
 r

es
ul

tin
g

un
it

is
 o

cc
as

io
na

lly
 c

al
le

d
th

e
D

R
IS

E
S

/9
00

0
(1

99
2)

P
O

W
E

R
1

(1
99

0)
P

O
W

E
R

2
(1

99
3)

N
x5

86
 (

19
94

)
R

10
00

0
(1

99
6)

P
2S

C
 (

19
96

)

R
12

00
0

(1
99

9)

P
ow

er
P

C
 6

03
 (

19
93

)
P

ow
er

P
C

 6
04

 (
19

95
)

P
ow

er
P

C
 6

20
 (

19
96

)

P
O

W
E

R
3

(1
99

8)
P

A
 8

00
0

(1
99

6)
P

A
 8

20
0

(1
99

7)
P

A
 8

50
0

(1
99

9)

K
el

le
r

(1
97

5)
6

B
as

ic
al

te
rn

at
iv

es
:

Im
pl

.
sc

he
m

es
:

A
m

29
00

0
(1

99
5)

K
5

(1
99

5)S
oh

i,
V

aj
ap

ay
em

∗4
8

(1
98

7)

Li
gh

tn
in

g∗
 (

19
91

)
K

6∗
 (

19
97

)

Jo
hn

so
n

(1
98

7)
47

P
en

tiu
m

 4
 (

20
00

)

M
ap

pi
ng

w
ith

in
 th

e
R

B
s

U
si

ng
 a

m
ap

pi
ng

 ta
bl

e
U

si
ng

 a
fu

tu
re

 fi
le

M
ap

pi
ng

w
ith

in
 th

e
R

B
s

U
si

ng
 a

m
ap

pi
ng

 ta
bl

e
U

si
ng

 a
fu

tu
re

 fi
le

M
ap

pi
ng

w
ith

in
 th

e
R

B
s

U
si

ng
 a

m
ap

pi
ng

 ta
bl

e
U

si
ng

 a
fu

tu
re

 fi
le

P
O

W
E

R
4

(2
00

1)
51

P
O

W
E

R
5

(2
00

4)
52

K
7

(F
P

)
(1

99
9)

K
8

(F
P

)
(2

00
3)

53

P
en

tiu
m

 P
ro

 (
19

95
)

P
en

tiu
m

 II
 (

19
97

)
P

en
tiu

m
 II

I (
19

99
)

P
en

tiu
m

 M
 (

20
03

)54
,5

5

C
or

e
(2

00
6)

55
,5

6

S
m

ith
, P

le
sz

ko
n46

(1
98

5)

K
7

(F
X

)
(1

99
9)

K
8

(F
X

)
(2

00
3)

53

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

Is
su

e-
bo

un
d

op
er

an
d

fe
tc

hi
ng

D
is

pa
tc

h-
bo

un
d

op
er

an
d

fe
tc

hi
ng

F
IG

U
R
E
2
.1
9

B
as
ic
im

p
le
m
en
ta
ti
o
n
al
te
rn
at
iv
es

o
f
re
gi
st
er

re
n
am

in
g
(R

B
d
es
ig
n
at
es

re
n
am

e
b
u
ff
er
).

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 30 4.10.2007 2:56pm Compositor Name: BMani

2-30 Digital Systems and Applications

3. Fetching the renamed source operands

4. Updating the rename buffers

5. Updating the architectural registers with the content of the rename buffers

6. Reclaiming of the rename buffers

7. Recovery from wrongly performed speculative execution and handling of exceptions

These subtasks are carried out more or less differently in the 18 distinct implementation schemes of

renaming.

Of these, in Section 2.2.2 we described the rename process presuming one particular basic alternative

(assuming the use of rename register files and mapping tables) in both operand-fetch scenarios that is in

two implementation schemes. Below, instead of pointing out all differences in all further implementa-

tion schemes of register renaming, we focus only on three particular tasks of renaming and point out

significant differences encountered in different implementation schemes. In addition, we briefly discuss

how inter-instruction dependencies are dealt with during renaming, how the processor recovers from

misspeculations, and how it handles exceptions.

2.2.6.1.1 Remarks on Renaming Destination Registers

The way how the processor allocates new rename buffers depends on the type of rename buffers used. If

rename buffers are realized in the ROB, a new ROB entry, and thereby a new rename buffer will

automatically be allocated to each dispatched instruction. Else rename buffers need to be allocated

only to those dispatched instructions, which include a destination register.

2.2.6.1.2 Remarks on Updating the Architectural Registers

As discussed previously, when instructions complete, their results need to be forwarded from the

associated rename buffers into the originally addressed architectural registers. In cases where rename

buffers are implemented separately from the architectural register file (as a stand-alone rename register

file, or they are in the ROB or in the shelving buffer file), this task instructs the processor to physically

transfer the contents of the related rename buffers into the referenced architectural registers. By contrast,

if the processor uses a merged architectural and rename file, no physical data transfer is required; instead

only the status of the related registers needs to be changed, as indicated before and shown in Fig. 2.15.

2.2.6.1.3 Remarks on Reclaiming Rename Buffers

The conditions for reclaiming no longer used rename buffers vary with the rename scheme employed.

Thus, when operands are fetched dispatch bound, associated rename buffers may immediately be

reclaimed after an instruction has been completed. On the other hand, if the processor fetches operands

issue bound, associated rename buffers may only be reclaimed after the related instruction has been

completed and, in addition, if it is also sure that no outstanding operand fetch requests are available to

that rename buffer. The latter condition can be checked in different ways. One possibility is to use a

counter for each rename buffer for checking outstanding fetch requests, as described in Section 2.2.2.

Another option is applicable with merged architectural and rename register files. In this case, however,

during instruction execution, a rename buffer becomes an architectural register and reclaiming is related

to no longer used architectural registers, as discussed in Section 2.2.4.2. This method relies on keeping

track of the most recent earlier instance of the same architectural register, and on reclaiming it when the

instruction giving rise to the new instance completes [28].

2.2.6.1.4 Renaming of Destination and Source Registers if Inter-Instruction Dependencies Exist

between the Instructions Dispatched in the Same Cycle

As we know, shelving relieves the processor of the need to check for data and control dependencies as

well as for busy EUs during instruction dispatch. Nevertheless, despite shelving, instructions dispatched

in the same cycle must still be checked for inter-instruction dependencies, and, in the case of depend-

encies, the rename logic must be modified accordingly. Let us assume, for instance, that there are RAW

dependencies between two subsequent instructions dispatched in the same cycle, as in the following

example:

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 31 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-31

i1: mul r2, . . . , . . .

i2: add . . . , r2, . . .

Here, i2 needs the result of i1 as r2 is one of its source operands. We will also assume that the

destination register of i1 (r2) will be renamed to r33 as follows:

i01: mul r33, . . . , . . .

In this case, the RAW-dependent source operand of i2 (r2) has to be renamed to r33 rather than to the

rename buffer allocated before renaming of i1 to r2.

Similarly, if WAW dependencies exist among the instructions dispatched in the same cycle, as for

instance, between the instructions

i1: mul r2, . . . , . . .

i2: add r2, . . . , . . .

Obviously, different rename buffers need to be allocated to the destination registers of i1 and i2, as

shown below:

i01: mul r34, . . . , . . .

i02: add r35, . . . , . . .

2.2.6.1.5 Recovery of the Rename Process from Wrongly Executed Speculation and Handling

of Exceptions

If the processor performs speculative execution, for instance, due to branch prediction, it may happen

that the speculation turns out to be wrong. In this case, the processor needs to recover from the

misspeculation. This involves essentially two tasks: (i) to undo all register mappings setup, and (ii) to

reclaim rename buffers allocated, as already discussed. To invalidate established mappings there are two

basic methods to choose from, independent of the actual implementation of renaming. The first option

is to roll back all register mappings made during speculative execution, by using the identifiers of the

faulty instructions, supplied by the ROB. While using this alternative, the recovery process lasts several

cycles, since the processor can cancel only a small number of instructions (two to four) per cycle.

A second alternative is based on checkpointing. In this method, before the processor begins with

speculative execution, it saves the relevant machine state, including also the actual mapping, in shadow

registers. If the speculative execution turns out to be wrong, the processor restores the machine state in a

single cycle by reloading the saved state. For instance, both the PM1 (SPARC64) and the R10000 use

checkpointing for recovery. Both processors incorporate mapping tables for register mapping, while the

R10000 provides four sets of shadow registers and the PM1 16 for subsequent speculations.

We note that beyond the two basic methods discussed above, there is also a third option in the case

when the processor uses mapping tables and issue-bound operand fetching. This method relies upon

shadow mapping tables, which keep track of the actual mappings of the completed instructions. The

entries of the shadow tables are set up when instructions complete and are deleted when allocated

rename buffers are reclaimed. In the case of misspeculation, the correct state of the mapping table can be

restored by loading the content of the shadow table. For example, Cyrix’s M3 makes use of this recovery

mechanism.

The second task to be done during misspeculation is to reclaim rename buffers, which are allocated to

the faulty instructions. This task can easily be performed by changing the state of the rename buffers

involved to available, as indicated in Figs. 2.8 and 2.14.

A similar situation to the above described misspeculation arises when exceptions occur. In this case,

the exception request must wait until the associated instruction comes to completion to provide precise

exceptions [46]. At this time, the processor accepts the exception and cancels all instructions, which have

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 32 4.10.2007 2:56pm Compositor Name: BMani

2-32 Digital Systems and Applications

been dispatched after the failing one. For cancellation of the rename process, the same methods can be

used as discussed above. For example, in the event of an exception the R10000 rolls back all younger

register mappings made, whereas the PM1 first restores the mapping state to the first checkpoint after

the failing instruction in one cycle, and then rolls back the remaining mappings until the failing

instruction is reached.

Appendix A Types of Data Dependencies

Data dependencies [1–3] are precedence requirements between operands of subsequent instructions. Data

dependencies may occur in two different situations: either in straight line code segments called inter-

instruction dependencies, or between operands of instructions occurring in subsequent loop iterations,

designated as recurrences (see Fig. A.1). In both situations, either register operands or memory operands

may be involved.

Inter-instruction dependencies may be broken down into read-after-write (RAW), write-after-read

(WAR), and write-after-write (WAW) dependencies, as depicted in Fig. A.2. In the following overview of

these types of dependencies, we confine ourselves to register operands, but the given interpretation can

be applied to memory operands as well.

RAW dependencies, designated also as flow dependencies, are producer–consumer relations between

operands, which can be bisected into load-use and define-use dependencies (see Fig. A.2). Load-use

dependencies arise in scenarios when an instruction uses a register operand, which needs to have been

loaded by a preceding load instruction from the memory, as shown in the example in Fig. A.2. If,

however, the requested operand is produced by a preceding operational instruction, the arising depend-

ency is called define-use dependency, as illustrated in Fig. A.2.

WAR dependencies or anti-dependencies arise between instructions if a given instruction reads

an operand from a particular register and a subsequent instruction writes the same register, as depicted

in Fig. A.2. If, for any reason, the subsequent instruction (i2) would have written this register before it is

read by the previous one (i1), then the subsequent instruction would pick up an erroneous operand value.

Data dependency

Inter-instruction
dependencies

Recurrences Register
operands

Memory
operands

They exist in a straight line
code segment

between subsequent
instructions

They exist in a loop between
instructions belonging to

subsequent iterations

e.g., x (I) = A (I) � X (I−1) + B (I)
is a first-order linear recurrence

Data involvedType

FIGURE A.1 Main aspects of data dependencies. (In this and in subsequent figures relevant aspects and possible

alternatives are illustrated by using DS-trees.) (From Sima, D., Fountain, T., and Kacsuk, P., Advanced Computer

Architectures, Addison Wesley Longman, Harlow, 1997; Sima, D., IEEE Micro, 17, Sept./Oct., 29, 1997.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 33 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-33

Finally, two instructions are said to be WAW dependent, or output dependent, if they both write the

same destination. WAR and WAW dependencies are designated as false dependencies, since they can be

removed by appropriate techniques (i.e., register renaming in the case of register operands). By contrast,

RAW dependencies are true dependencies, since they cannot be eliminated.

Data dependencies may also occur in loops. This is the case if an instruction of the loop body is

dependent on an instruction belonging to a previous loop iteration, as exemplified in Fig. A.1. This type

of dependency is called recurrence, designated also as inter-iteration data dependency or loop-carried

dependency. In the above example, the value of X(I) depends on the value that is computed in the

previous iteration. The recurrence shown is a first-order linear one.

Appendix B Principle of Instruction Shelving

Instruction shelving (also known as indirect dispatch or dynamic instruction scheduling) [1–3,49]

removes the dispatch bottleneck caused by control and data dependencies and by busy execution

units. Its main idea is to shelve dispatched instructions and defer dependency checking until a

subsequent processing step, designated as issuing.

Without shelving (see Fig. B.1) the processor dispatchs instruct ions from the so-called dispatch

window (instruction window), to the execution units (EU). Actually, the dispatch window comprises the

last n entries of the instruction buffer (I-buffer), where n is the dispatch rate. The processor decodes the

instructions kept in the window and checks for dependencies between the instructions in the window and

those in execution, and also among the instructions held in the window. Dependent instructions are not

dispatched; moreover, depending on the dispatch policy of the processor [36], they can even block the

dispatch of subsequent not dependent instructions. Occurring blockages heavily restrict the average

number of instructions dispatched per cycle and thus also processor performance.

Inter-instruction
data dependencies

RAW
read-after-write

dependency

WAR
write-after-read

dependency

WAW
write-after-write

dependency

(Flow dependency) (Anti-dependency) (Output dependency)

Define-use
dependency

i1: mul r1, r2, r3
i2: add r2, r4, r5

i1: mul r1, r2, r3
i2: add r1, r4, r5

Load-use
dependency

i1: load r1, var
i2: add r3, r1, r2

i1: mul r1, r2, r3
i2: add r5, r1, r4

False dependenciesTrue dependencies

Cannot be
abandoned

Can be eliminated
by register renaming

FIGURE A.2 Terms relating to data dependencies occurring in straight line code. (Instruction semantics is r1
r2*r3 etc.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 34 4.10.2007 2:56pm Compositor Name: BMani

2-34 Digital Systems and Applications

Shelving removes the dispatch bottleneck by

decoupling instruction dispatch and dependency

checking through buffering dispatched instruc-

tions, as indicated in Fig. B.2. There are various

possibilities as to how shelving buffers can be

implemented [49]. Of these, in Fig. B.2 we

show shelving buffers provided in front of each

execution unit (EU), also called individual reser-

vation stations or simply reservation stations.

With shelving, instructions are dispatched first

to the shelving buffers, with no checks for data

dependencies or busy execution units. In the

second step, instructions held in the shelving

buffers are issued for execution. During issuing,

instructions are checked for dependencies and

not dependent instructions are forwarded to

free execution units. Concerning terminology

we note that at the time being there is no

consensus on the use of the terms instruction

dispatch and instruction issue. Both terms are used in both possible interpretations.

Shelving not only removes the dispatch bottleneck but substitutes the dispatch window with the

much wider issue window (instruction window), which is made up of all shelving buffers. Because

the total number of the shelving buffers is usually an order of magnitude higher than the dispatch rate,

Issue

EU EU

Decode/check/
issue

4

4

I-buffer

Issue window
(equals the issue rate)

FIGURE B.1 Principle of direct dispatch.

Dispatch
Decode/ issue

4

4

Issue

Check/forward

EU

Check/forward

EU

Shelving
buffers

Shelving
buffers

Issue
window

I-buffer

Dispatch window
(equals the issue rate)

FIGURE B.2 Principle of shelving (indirect dispatch).

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 35 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-35

with shelving the processor will find in each clock cycle on the average far more executable instructions

than without shelving. Thus, shelving substantially raises the sustained instruction throughput rate

of the processor. Although conceived as early as in the middle of the 1960s for the first instruction

level parallel (ILP) processors (the CDC6600 [50] and the IBM 360=91) [4], because of the complexity

of its implementation, shelving only came into widespread use more than two decades later in

superscalars.

Appendix C Operand Fetch Policies

If the processor uses the dispatch-bound fetch policy [3] it fetches referenced register operands during

instruction dispatch, that is while it forwards decoded instructions into the shelving buffers [3,36]. In

contrast, the issue-bound fetch policy defers operand fetching until executable instructions are for-

warded from the shelving buffers to the execution units. When the processor fetches operands dispatch

bound, shelving buffers hold the source operand values. In contrast, in the case of issue-bound operand

fetching, shelving buffers have much shorter entries, as they contain only the register identifiers. Here we

note that the terms instruction dispatch and issue are not used unanimously in the literature, both terms

are used for both tasks.

Appendix D Principle of the Reorder Buffer (ROB)

It is implemented basically as a circular buffer whose entries are allocated and deallocated by means of

two revolving pointers [46]. The ROB operates as follows. When instructions are dispatched, a ROB

entry is allocated to each instruction strictly in program order. Each ROB entry keeps track of the

execution status of the associated instruction. The ROB allows instructions to complete (commit, retire)

only in program order by permitting an instruction to complete only if it has finished its execution and

all preceding instructions are already completed. In this way, instructions update the program state in

exactly the same way as a sequential processor would have done. After an instruction has completed, the

associated ROB entry is deallocated and becomes eligible for reuse.

References

1. Rau, B.R. and Fisher, J.A., Instruction level parallel processing: History, overview and perspective,

The Journal of Supercomputing, 7, 9, 1993.

2. Smith, P.E. and Sohi, G.S., The microarchitecture of superscalar processors, Proceedings of the IEEE,

83, 1609, 1995.

3. Sima, D., Fountain, T., and Kacsuk, P., Advanced Computer Architectures, Addison Wesley Longman,

Harlow, 1997.

4. Tomasulo, R.M., An efficient algorithm for exploiting multiple arithmetic units, IBM Journal of

Research and Development, 11, 1, 25, 1967.

5. Tjaden, G.S. and Flynn, M.J., Detection and parallel execution of independent instructions, IEEE

Transactions on Computers, C-19, 889, 1970.

6. Keller, R.M., Look-ahead processors, Computing Surveys, 7, 177, 1975.

7. Leibholz, D. and Razdan, R., The Alpha 21264: A 500 MIPS out-of-order execution microprocessor,

in Proceedings of COMPCON, 1997, 28.

8. Kurpanek, G., Chan, K., Zheng, J., CeLano, E., and Bryg, W., PA-7200: A PA-RISC processor with

integrated high performance MP bus interface, in Proceedings of COMPCON, 1994, 375.

9. Hunt, D., Advanced performance features of the 64-bit PA-8000, in Proceedings of COMPCON,

1995, 123.

10. Scott, A.P. et al., Four-way superscalar PA-RISC Processors, Hewlett-Packard Journal, Aug., 1, 1997.

11. Lesartre, G. and Hunt, D., PA-8500: The continuing evolution of the PA-8000 Family, PA-8500

Document, Hewlett-Packard Company, 1998.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 36 4.10.2007 2:56pm Compositor Name: BMani

2-36 Digital Systems and Applications

12. Grohoski, G.F., Machine organization of the IBM RISC System=6000 processor, IBM Journal of

Research and Development, 34, 1, 37, 1990.

13. White, S. and Reysa, J., PowerPC and POWER2: Technical Aspects of the New IBM RISC System=

6000, IBM Corporation, 1994.

14. Gwennap, L., IBM crams POWER2 onto single chip, Microprocessor Report, 10, 11, 14, 1996.

15. Becker, M. et al., The PowerPC 601 microprocessor, IEEE Micro, 13, Oct., 54, 1993.

16. Burgess, B. et al., The PowerPC 603 microprocessor, Communications of the ACM, 37, 6, 34, 1994.

17. Song, S.P. et al., The PowerPC 604 RISC microprocessor, IEEE Micro, 141, 8, 1994.

18. Ogden, D. et al., A new PowerPC microprocessor for low power computing systems, in Proceedings

of COMPCON, 1995, 281.

19. Levitan, D. et al., The PowerPC 620 microprocessor: A high performance superscalar RISC micro-

processor, in Proceedings of COMPCON, 1995, 285.

20. Song, S.P., IBM’s POWER3 to replace P2SC, Microprocessor Report, 11, 15, 23, 1997.

21. Gwennap, L., MIPS R10000 uses decoupled architecture, Microprocessor Report, 8, 18, 14, 1994.

22. Gwennap, L., MIPS R12000 to hit 300 MHz, Microprocessor Report, 11, 13, 1, 1997.

23. Patkar, N. et al., Microarchitecture of HaL’s CPU, in Proceedings of COMPCON, 1995, 259.

24. Gwennap, L., Intel’s P6 uses decoupled superscalar design, Microprocessor Report, 9, 2, 9, 1995.

25. Gwennap, L., Klamath extends P6 family, Microprocessor Report, 11, 2, 1, 1997.

26. Pentium III Processor, Product Overview, Intel Corp., 1999.

27. Hinton, G. et al., The microarchitecture of the Pentium IV processor, Intel Technology Journal, 1.Q.,

1, 2001.

28. Liptay, J.S., Design of the IBM Enterprise Sytem=9000 high-end processor, IBM Journal of Research

and Development, 36, 4, 713, 1992.

29. Burkhardt, B., Delivering next-generation performance on today’s installed computer base, in

Proceedings of COMPCON, 1994, 11.

30. ‘‘Cyrix 686MX,’’ Cyrix Corporation, Order No. 94329-00, 1997.

31. Gwennap, L., NexGen enters market with 66-MHz Nx586, Microprocessor Report, 8, 4, 12, 1994.

32. Slater, M., AMD’s K5 designed to outrun Pentium, Microprocessor Report, 8, 14, 1, 1994.

33. Shriver, B. and Smith, B., The Anatomy of a High-Performance Microprocessor, IEEE Computer

Society Press, Los Alamitos, 1998.

34. Golden, M. et al., A seventh-generation x86 microprocessor, IEEE Journal of Solid-State Circuits, 34,

11, 1999, 1466.

35. Sima, D., The design space of register renaming techniques, IEEE Micro, 20, Sept.=Oct., 70, 2000.

36. Sima, D., Superscalar instruction issue, IEEE Micro, 17, Sept.=Oct., 29, 1997.

37. Popescu, V., Schultz, M., Spracklen, J., Gibson, G., Lightner, B., and Isaman, D., The Metaflow

architecture, IEEE Micro, 11, June, 10, 1991.

38. Gwennap, L., Nx686 goes toe-to-toe with Pentium Pro, Microprocessor Report, 9, 14, 1, 1995.

39. Monreal, T. et al., Delaying physical register allocation through virtual-physical registers, in

Proceedings of MICRO-32, 1999, 186.

40. Wallace, S. and Bagheryadeh, N., A scalable register file architecture for dynamically scheduled

processors, in Proceedings of the Conference on Parallel Architectures and Compilation Techniques,

1996, 179.

41. González, A. et al., Virtual registers, in Proceedings of the Third International Symposium on High-

Performance Computer Architecture, IEEE CS Press, 1997, 364.

42. González, A., González, J., and Valero, M., Virtual-physical register, in Proceedings of the Fourth

International Symposium on High-Performance Computer Architecture, IEEE CS Press, 1998, 175.

43. Jourdan, S. et al., A novel renaming scheme to exploit value temporal locality through physical

register reuse and unification, in Proceedings of MICRO-31, IEEE CS Press, 1998, 216.

44. Asato, C. et al., A 14-port 3.8 ns 116 word 64b read-renaming register file, in Proceedings of ISSC,

1995, 104.

45. Crawford, H., The I486 CPU: executing instructions in one clock cycle, IEEEMicro, 10, Feb., 27, 1990.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 37 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-37

46. Smith, J.E. and Pleszkon, A., Implementation of precise interrupts in pipelined processors, in

Proceedings of ISCA, IEEE CS Press, 1985, 36.

47. Johnson, M., Superscalar Microprocessor Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

48. Sohi, G.S. and Vajapayem, S., Instruction dispatch logic for high performance, interruptable

pipelined processors, in Proceedings of the 14th ASCA, 1987, 27.

49. Sima, D., The design space of shelving, Journal of Systems Architecture, 45, 863, 1999.

50. Thornton, J.E., Design of a Computer: The CDC 6600, Scott Foresman, Glenview, IL, 1970.

51. Tendler, J.M., POWER4 system microarchitecture, IBM. Journal of Research and Development 46, 1,

5, 2002.

52. Sinhaoy, B., POWER5 system microarchitecture, IBM. Journal of Research and Development 49, 4=5,

505, 2005.

53. de Vries, H., Understanding the detailed Architecture of AMD’s 64 bit Core, www.chip-architect.

com, 2003.

54. Torres, G., Inside Pentium M Architecture, www.hardwaresecrets.com=article=270, 2006.

55. Torres, G., Inside Intel Core Microarchitecture, www.hardwaresecrets.com=article=313=1, 2006.

56. Wechsler, O., Inside Intel Core Microarchitecture, White Paper Intel Corp, 2006.

57. de Vries, H., Looking at Intel’s Prescott die, part II, www.chip-architect.com, 2003.

2.3 Predicting Branches in Computer Programs

Kevin Skadron and David Tarjan

2.3.1 What Is Branch Prediction and Why Is It Needed?

2.3.1.1 What Is Branch Prediction?

Branch instructions permit a program to control the flow of instruction execution within a program.

Examples of high-level program constructs that translate into branches are ‘‘if-then’’ statements and

‘‘for’’ loops. They test some condition, and depending on the outcome, execution proceeds down one of

two possible paths. In almost all instruction sets, branch instructions have exactly two possible

outcomes: not-taken, the sequential or fall-through case, in which the condition is false and the

program continues executing the instructions that immediately follow the branch; and taken,

the nonsequential case, in which the condition is true and execution jumps to a target specified in

the branch instruction. In the case of an ‘‘if ’’ statement, the two outcomes are the ‘‘then’’ clause and the

fall-through case, which may correspond to an ‘‘else’’ clause. In the case of a ‘‘for’’ loop, the two

outcomes are an iteration of the loop body or the fall-through case, which corresponds to exiting the

loop. For example, a typical loop structure in assembly code might look like this (bnez means branch if

the condition is not equal to zero):

L: (loop body)

. . .

sub r1, #1, r1 ; rl is the loop counter

bnez r1, L ; if the loop count is not yet zero, branch back

; to the top of the loop (label ‘‘L’’) and iterate

(fall-through code) ; this code gets executed after the loop exits

Note that in all the assembly language examples in this chapter, destination registers are listed last.

Branches create a problem because the identity of the proper path can only be known after the branch

has finished testing its condition, a process that takes time. Because of the pipelined nature of almost all

modern processors, this resolution latency necessitates branch prediction. Figure 2.20 shows the flow of

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 38 4.10.2007 2:56pm Compositor Name: BMani

2-38 Digital Systems and Applications

a branch through a generic pipeline. Resolving the branch requires waiting until it proceeds through

several stages and finally executes. If the fetching of subsequent instructions must wait until the proper

path is known with confidence, stall time or a bubble results [1].

If branch outcomes are instead predicted and subsequent instructions are speculatively fetched and

executed, this bubble is eliminated whenever the prediction is correct. This is shown in Fig. 2.21. If the

prediction is incorrect, these speculative instructions must be squashed—removed from the pipeline—

and no time has been wasted compared to the alternative of no prediction. Squashing can be accom-

plished simply by preventing the misspeculated instructions from modifying any processor state. These

squashed instructions, however, represent an opportunity cost: had the branch been correctly predicted,

those instructions would have been correct, and would have performed useful work. This wasted time is

called the misprediction penalty and is equal to the branch resolution time.

Other control-flow instructions exist that transfer execution to some other program location but are

not conditional and do not branch. These jump instructions either jump to the target specified in the

instruction (direct jumps), or jump to a target that has been computed and whose address is found in a

register (indirect jumps). A procedure call is an example of the former, and a procedure return is an

example of the latter. Jumps are also frequently used to jump around the else clause of an if-then-else

XF

F = Fetch
X = Execute

XF

XF

XF

Branch is
fetched

Cycle

1

2

3

Branch is
executed

4

Successor
instruction
is fetched

D

D

D

Branch is
decoded

2—cycle bubble

Branch
continues

through the
pipeline

D

FIGURE 2.20 A branch flowing through a generic pipeline with no prediction. The branch, the first gray box, flows

from left to right. After being fetched, one or more cycles elapse (one cycle in this diagram) while the instruction is

decoded and perhaps other manipulation takes place. Once the branch finally completes executing (i.e., testing its

condition), the next instruction (the next gray box) can be identified and fetched. This figure shows that the

resolution time introduces a delay during which the pipeline stalls. The corresponding bubble here is two cycles long.

(From Skadron, K., Characterizing and removing branch mispredictions. Ph.D. Thesis, Princeton University,

Princeton, June 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 39 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-39

construct. For example, the following C code on the left would be translated into the pseudo-assembly

code on the right (bz: branch if zero):

; r1 holds cond

if (cond) bz r1, L1 ; if cond ¼ ¼ 0, do else clause

procedure1(); call procedure 1 ; cond !¼ 0

else =* cond ¼ ¼ 0 *= jump L2 ; skip else clause

procedure2(); L1: call procedure2 ; cond ¼ ¼ 0

x¼ x þ1; L2: add r20, #1, r20 ; r20 holds x

As with branches, some time is required to determine jump targets. Direct jumps can be resolved early

with proper hardware in the fetch stage to extract the jump target from the instruction, or the targets can

be predicted (e.g., using a branch target address cache—see Section 2.3.3.2). Indirect jumps generally

cannot be resolved early, and instead must proceed through the pipeline in order to read their target

from the register file, just like any other instruction. Fortunately, their targets can also be predicted.

Prediction of indirect jumps is an active research topic [2–6], but is beyond the scope of this treatment

= Known-correct instruction
= Speculative instruction

XF

F = Fetch
X = Execute

XF

XF

XF

Branch is
fetched

Cycle

1

2

3

Branch is
executed

4

Execution
continues

in non-
speculative

mode

D

D

D

Branch is
decoded

Successor
instruction
is fetched

speculatively

Speculative
execution
continues

Speculative
instructions

become
nonspeculative
or are squashed

Branch
has been
resolved

D

FIGURE 2.21 Pipeline behavior with branch prediction. In this diagram, the branch’s outcome is predicted.

Immediately in the next cycle, subsequent instructions are fetched and executed speculatively (black boxes). If

the prediction is correct, the speculative instructions do useful work and the bubble has been eliminated. If the

prediction is incorrect, the speculative instructions are squashed. (From Skadron, K., Characterizing and removing

branch mispredictions. Ph.D. Thesis, Princeton University, Princeton, June 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 40 4.10.2007 2:56pm Compositor Name: BMani

2-40 Digital Systems and Applications

of branch prediction. Return instructions are a special case of indirect jumps, and are easily predicted

using a simple structure known as a return-address stack [7,8].

The term ‘‘branch’’ is often used to refer to any type of control-flow instruction, giving us not only

conditional branches but also direct and indirect (unconditional) branches instead of jumps. But the

term branch is best reserved for conditional branches, because control truly branches at such instruc-

tions, and unconditional control-flow instructions are best called jumps.

2.3.1.2 Why Is It Needed?

Branch prediction is necessary because branches are frequent, 15%–25% of instructions in a typical

program. Without prediction, the pipeline would stall for each branch’s resolution (refer again to Fig.

2.20) and impose a substantial performance penalty. Even if the processor could issue only one

instruction per cycle, and branch resolution stalled the pipeline for only one cycle, this would impose

a performance penalty of 15%–25%. But today’s pipelines are substantially longer (to permit faster clock

speeds) and wider (to exploit instruction-level parallelism or ILP), making the penalties much more

severe in terms of wasted instruction-issue opportunities. Every additional stage in the pipeline between

fetch and execute adds a cycle to the branch resolution delay. In addition, in today’s wide-issue

superscalar pipelines, the penalty is equal to the resolution delay times the issue width. The minimum

resolution delay in the Compaq* Alpha 21264—a four-wide superscalar processor—is 7 cycles [9], and

the minimum resolution delay in the Intel Pentiumy Pro—a three-wide superscalar organization—and

its successors is 11 cycles [10]. The corresponding penalties are 28 and 33 instruction-issue slots. Of

course, programs often do not exhibit enough ILP to use the full issue width all the time, so the actual

penalties are not quite so severe. On the other hand, the resolution delays just specified are only the

minimum delays. The out-of-order nature of many high-performance processors’ execution engines

means that instructions may spend an arbitrary amount of time in decoupling buffers, and this makes

the pipeline seem longer and exacerbates the branch resolution delays. A correct branch prediction

eliminates these stall cycles. A further problem is that mispredictions limit the processor’s ability to build

up a large window of instructions over which to expose ILP.

With the misprediction penalty so high in terms of wasted instruction-issue opportunities, not only is

branch prediction necessary but also the highest possible prediction accuracy is necessary in order to

minimize stall cycles and maximize the processor’s ability to exploit ILP.

2.3.2 Software Techniques

Branches can be predicted or otherwise managed by both software and hardware techniques. This

section focuses on software techniques, and Section 2.3.3 focuses on hardware techniques.

2.3.2.1 Branch Delay Slots

One early software technique that was able to eliminate the need for prediction in early processors is the

branch delay slot. Instead of predicting the branch’s outcome, the instruction-set architecture can be

defined so that some number of instructions following a branch execute regardless of the branch’s

outcome. These instruction positions are called delay slots and must be filled with instructions that are

safe to execute regardless of the outcome of the branch, or with nops (but nops do no useful work).

Instructions to fill the delay slot might come from positions that preceded the branch in the original

code schedule but can safely be reordered, for example. Consider the sequence of code:

1. add r1, r2, r3

2. add r4, r5, r6

3. bnez r6

4. (delay slot)

*Compaq Computer Corp., Houston, Texas.
yIntel Corp., Santa Clara, California.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 41 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-41

Instruction 1 can safely be moved into the delay slot, because doing so violates no data dependencies.

Instruction 2, of course, cannot be moved into the delay slot, because it computes the value of r6 that the

branch then examines. More aggressive techniques can analyze instructions from after the branch,

identify a safe instruction, and hoist it into the delay slot. A more thorough treatment of branch

delay slots and associated techniques can be found in Ref. [11].

Unfortunately, delay slots have drawbacks. Even the most aggressive techniques still leave some delay

slots unfilled, wasting instruction-issue opportunities. Delay slots also have the problem that they expose

processor implementation details that might change. Current instruction sets that use delay slots were

defined when processors issued instructions in order, one at a time, and pipelines were short. The branch

resolution delay was hence just one cycle and the corresponding penalty was only one instruction

issue slot, so these instruction sets defined branches to have a single delay slot. Examples include the

MIPS* [12] and SPARCy [13] instruction sets. Yet, later implementations made the pipeline longer and

issued multiple instructions per cycle. This meant that the resolution delay corresponded to many issue

slots, even though the number of delay slots was still fixed by the instruction set at one instruction. In

addition, with multiple issue, a bundle of instructions being considered for issue in any particular cycle

might consist of several instructions following a branch. Exactly one of these—the delay slot—must be

issued unconditionally, while the others are control-dependent on the branch and their execution

depends on the branch outcome. For these reasons, later instruction sets like Alpha AXP [14] do not

include delay slots.

2.3.2.2 Profiling and Compiler Annotation

An alternative software technique is to profile the program’s behavior by gathering data about how

individual branches behave. This involves gathering data while the program is running about its branch’s

behavior. This data can then be fed to a second compilation pass, which annotates the branches to

indicate the predominant direction. The hardware then predicts each branch according to the annota-

tion. So for example, a branch that is taken 80% of the time and not taken 20% of the time would be

annotated predict-taken. More sophisticated profiling and compiler analysis can even make multiple

copies of segments of code so that the branches therein have more consistent behavior, or uncover

branches whose behavior is correlated and thus capture some of the same behavior as global-history

prediction. This is described by Young and Smith [15].

2.3.2.3 Predication

A third technique is predication or if-conversion, in which the branch is removed and instructions from

both the taken and not-taken paths can be executed simultaneously. This eliminates the need to predict

the branch, and converts code that was control dependent into code that is data dependent on the

branch condition. This defers the dependence to the execution core and permits fetching to continue

without risk of rollback due to mispredictions. If done judiciously and execution from the two paths is

properly balanced, if-conversion can be done without any performance penalties. Correctness is ensured

by modifying the instructions that were once controlled or guarded by the if-converted branch so that

they can only commit if the branch condition would have permitted it.

If-conversion is accomplished in one of two ways. In full predication, each individual instruction is

guarded by a condition. This predicate value is specified as a third operand register, usually from a

dedicated register file. Clearly, this requires instruction-set support in every instruction. In partial

predication, on the other hand, there is no support for guarding predicates. Instead, predication is

accomplished using conditional move instructions (CMOVs), which can simply be added to retrofit to

existing instruction sets. One branch path is executed unconditionally. The results for the other path are

*MIPS Technologies, Mountainview, California.
ySPARC International, Inc., Santa Clara, California.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 42 4.10.2007 2:56pm Compositor Name: BMani

2-42 Digital Systems and Applications

computed into temporary registers and then moved into their final destination with CMOVs.

The CMOV only completes if the specified condition (the branch condition) holds true. The following

code sequence gives an example:

Original code Full predication Partial predication

if (cond) pdef cond, p add a, b, x

x¼ aþ b; add a, b, x(p) cmov a, x (cond)

else mov a, x(!p) mul x, x, y

x¼ a; mul x, x, y

y¼ x * x;

The pdef instruction defines a predicate; the condition is evaluated and the result placed in p. In

all cases, y¼ x * x gets the correct value of x because y is data dependent on x and can only use x once

its final value is assigned. The final value of x, in turn, is either control dependent (original code) or

data dependent (predicated code) on cond. Although in this example, the partially-predicated

sequence is shorter, partial predication has two drawbacks. It requires a CMOV instruction for each

destination register on the path being predicated, and each destination register requires a temporary

register [16].

Research by Mahlke et al. [17] has shown that predication substantially reduces both the number of

branches executed as well as the branch misprediction rate. Nevertheless, resource constraints mean that

not all branches can be predicated, and so predication still requires the presence of branch prediction.

This brings us to the hardware techniques, which can be used alone or in conjunction with the software

techniques just described. Note that predication can actually hurt the predictability of the remaining

branches. As seen in the next section, many branch prediction algorithms depend on the ability to track

the history of earlier branch outcomes. Predication removes branches and hence removes this history

from view. Simon et al. [18] explore some ways to rectify this problem.

The literature on predication techniques is a rich body in its own right, and interested readers are

encouraged to consult both the architecture and compiler literature.

2.3.3 Hardware Techniques

2.3.3.1 Static Techniques

The simplest hardware technique is to simply stall after every branch until its outcome is known. As

described above, the consequent delays lead to untenable performance penalties. A better yet still simple

technique is to statically predict all branches to be either taken or not taken. A static not-taken policy is

the easier of the two, because it corresponds to sequential execution. This eliminates the need for the

fetch engine to identify the instructions that are branches or to compute branch targets. Unfortunately,

in most programs more than half of branches are taken [19], making the performance of static-not-

taken usually quite poor. On the other hand, a static taken policy either requires the fetch engine to

identify the instructions that are branches and immediately identify their taken targets, or requires some

delay while instructions are decoded and the target is computed.

A third policy takes advantage of the fact that backward conditional branches almost always corres-

pond to loops, which tend to iterate multiple times, so these branches are likely to be taken. Non-

backward branches, on the other hand, are less biased. Patterson and Hennessy [11] found that 85%

of backward branches are taken whereas only 60% of forward branches are taken. This suggests a

static policy of backwards-taken, forwards-not-taken, or BTFNT. The problem of computing branch

targets remains.

These policies were described by Smith [19] along with the core, bimodal dynamic prediction

technique described in Section 2.3.3.4. Another seminal paper from this era is the exploration of branch

predictor and branch target address cache (BTAC) design choices by Lee and Smith [20]. Both papers

also survey the earliest literature on branch handling.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 43 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-43

2.3.3.2 Branch Target Address Caches

Not only static techniques, but in fact all branch-prediction techniques have the problem that on a

predicted-taken branch, the branch’s target must be computed. This requires extracting the offset field

from the branch instruction and adding it to the PC; tasks which typically cannot be performed until

the instruction-decode stage. If this is the case, some stall cycles result, called a branch-taken bubble.

A second type of predictor—a branch target predictor—can eliminate this problem. In its simplest form,

this is simply a small on-chip memory in the fetch stage that serves as a table of recently seen branches,

BTAC [21,22]. (The BTAC is also often referred to as a branch target buffer [BTB], but this latter term

is too heavily overloaded.) The BTAC is indexed with the branch’s address (in other words, the

PC—program counter—used to fetch the branch). It may be direct-mapped or associative, and tagged

or not tagged. Omitting tags reduces cost, but then a BTAC miss cannot be identified, the predicted-

taken branch will use the wrong target, and this will not be discovered until the branch resolves. For this

reason, BTACs are best tagged.

The dynamic hardware schemes described later in this section maintain tables in which they

track state about conditional branch directions. These direction-prediction tables are often indexed

using the branch address. Because the BTAC table is also indexed by branch address, it may be

convenient with these dynamic schemes to store the direction-prediction information in the BTAC

along with each branch’s target. Apart from the convenience of integrating these different sources of

information into one table, this confers the advantage that if the BTAC is tagged, any branch

prediction state stored in the BTAC is also tagged. Although some processors use this organization,

Calder and Grunwald [23] point out that many branches are not taken and hence do not require the

BTAC to store a target. Decoupling the direction-prediction state from the target-prediction state

therefore permits a smaller BTAC. It also improves flexibility, as some predictors, such as global-

history predictors (see Section 2.3.3.5) do not keep a one-to-one mapping between branch addresses

and direction-prediction entries.

Instead of a BTAC, the processor might employ a branch target instruction cache, which stores some

actual instructions from the branch target rather than merely the target address. This replicates quite a

bit of state from the instruction cache, so this organization is rarely seen, although it does appear in the

Motorola* PowerPCy G4 [24], for example.

The BTAC can also be integrated with the instruction cache. Each cache line can simply store

the target address of one or more of its branches in case that branch is predicted taken. Alternatively,

the I-cache can implement a next-line predictor [25]. Each cache line now stores the index of the next

cache line to be fetched (and also the set if the cache is associative) [26]. If no branches are taken in the

current line, the next-line address will be the next sequential address. If there is a taken branch, the next-

line address will be the appropriate target address. As branches change their taken=not-taken behavior,

this next-line address is updated accordingly. The next-line predictor is, therefore, a combination of the

functionality of a BTB and a bimodal predictor (see Section 2.3.3.4). If a more sophisticated direction

predictor is present, it overrides the next-line predictor. One motivation for using such an organization

is to permit a larger, slower, but more accurate direction predictor that may not be able to be accessed in

a single cycle. The Alpha 21264 takes such an approach [27], using as its slower but more accurate

direction predictor the hybrid predictor described in Section 2.3.3.6.

2.3.3.3 Pipeline Issues

In the most efficient organization, both the BTAC and the branch direction predictor are consulted

during the fetch stage as shown in Fig. 2.22. In this way, the PC can be updated immediately and the

processor can fetch from the appropriate location (taken or not-taken) in the next cycle. This avoids

introducing pipeline bubbles unless there is a BTAC miss or a branch misprediction.

*Motorola, Inc., Schaumburg, Illinois.
yInternational Business Machines Corp., Armonk, New York.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 44 4.10.2007 2:56pm Compositor Name: BMani

2-44 Digital Systems and Applications

Unfortunately, some problems occur with probing the branch-prediction hardware in the fetch

stage. One concern is the branch-predictor and BTAC lookup times. These tables must be fast enough,

and hence small enough, to permit the lookup to complete and the PC to be updated within a single

cycle. Otherwise, the fetch stage falls behind. Current processors use predictors as big as 32 Kbits, but

Jiménez et al. [28] argue that the feasible predictor size for single-cycle access will shrink in the coming

years. The reason for this is that even though the feature size on a processor die continues to shrink with

Moore’s law [29], electrical RC delays are not shrinking accordingly, and hence wire delays are not

shrinking as fast as logic delays. As feature size shrinks, large structures therefore seem to be getting

relatively slower.

Another problem is that in a typical organization, the fetch stage cannot determine whether the

instructions being fetched from the instruction cache contain any branches; that information must wait

until the instructions are decoded. Several solutions are available. The first solution is for the instruc-

tions to be pre-decoded before they are installed into the instruction cache to indicate the instructions

that are branches. The predictor structures can then be indexed using the actual addresses of the

branches. Note that this means either that the predictor must be multiported to cope with fetch blocks

that contain more than one branch, or the predictor can only predict one branch at a time. This is not

necessarily a major restriction, since if the predicted result is not-taken, the remaining instructions in the

fetch block after the branch are still valid and can still be passed on to decode. The second solution is for

the branch predictor to just predict fetch-block successors instead of specific branches. In this case, the

predictor simply predicts whether the next fetch block will be sequential (not-taken) or nonsequential

(taken, in which case the target supplied by the BTAC is used). This is slightly better than the first choice,

because it eliminates the need for pre-decode bits and can fetch past more than one not-taken branch in

a fetch block. It does require the decode stage to identify how each branch in a fetch block was implicitly

predicted. The third solution is for the BTAC and branch predictor to be indexed with the address of

every instruction in the fetch block. Hits in the BTAC indicate the instructions that are branches, and

only the corresponding direction predictions are then used. The problem with this approach is that it

requires as many ports into the BTAC and branch-prediction structures as there are instructions in the

fetch block. These are the basic choices, although many variations and improvements have been

proposed, e.g., [26,30–32].

bpred

BTAC

I-cache

PCm
ux

Predicted-taken target

T/NT

Fetched instructions

m
ux

Computed-taken target, from decode

BTB hit?

+
4

T
o

de
co

de

FIGURE 2.22 The placement of the branch prediction components in the pipeline.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 45 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-45

2.3.3.4 Bimodal Prediction

The simplest dynamic technique, introduced by Smith

[19], is to maintain a small, on-chip memory with a

table of saturating counters that is indexed by branch

address. The saturating counters—typically two bits

each—simply remember the predominant direction of

previous outcomes for that branch. A schematic for a

bimodal predictor appears in Fig. 2.23. As mentioned,

the table usually called the pattern history table (PHT),

although logically a distinct entity might actually be

implemented as a unified structure with the BTAC.

This prediction scheme goes by different names, often

simply two-bit prediction, but recent literature has often

referred to it as bimodal prediction to distinguish it from

other more sophisticated schemes that also use two-bit

saturating counters.

Each time a branch resolves, its corresponding coun-

ter is incremented if the branch was taken, and decre-

mented if not. Incrementing or decrementing has no effect if the counter is already at its maximum or

minimum value, hence the term saturating counter and the name bimodal. In the simplest case of a one-

bit counter, the only possibilities are values of 0 and 1 and the predictor simply remembers the last

outcome for each branch. In the case of two-bit counters, values of 00 and 01 correspond to strongly

not-taken and weakly not-taken, and values of 10 and 11 corresponding to weakly taken and strongly

taken. Two-bit counters give better performance because they exhibit some hysteresis that makes them

less sensitive to infrequent occurrences of outcomes in the nondominant direction. A state-transition

diagram for the most common two-bit counter configuration appears in Fig. 2.24.

Other configurations [20,33] are possible; however, for example, regardless of its current state, the

counter might reset to 00 on a not-taken branch.

As an example of how two-bit counters improve over one-bit counters, recall that a loop branch will

normally be taken. When the loop exits, a one-bit counter will only remember that most recent direction

(not taken), even though the predominant direction is taken. When this same loop is encountered again,

and the loop branch will once again be taken until the loop exits, the first prediction with a one-bit

counter will be not-taken. A two-bit counter, on the other hand, only changes its state from 11 to 10

upon loop exit, and still predicts taken when it returns to the loop, thus eliminating a misprediction

compared to the one-bit counter.

Baddr

PHT

T/NT

FIGURE 2.23 A schematic for a bimodal pre-

dictor. Baddr is the branch address or PC, which

is used to index the PHT (pattern history table),

select the corresponding two-bit counter, and

make a prediction of taken or not-taken.

00

11 10

01

Taken

Taken

Taken

Taken

Not-taken

Not-taken

Not-taken

Not-taken

FIGURE 2.24 The state-transition diagram for a saturating two-bit counter.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 46 4.10.2007 2:56pm Compositor Name: BMani

2-46 Digital Systems and Applications

Wider counters have been considered [19] but con-

fer little benefit and take longer to adjust to a change

in a branch’s behavior.

The size of the PHT is of course not infinite, so the

ideal of one entry per branch may not be realized.

The table is indexed by the branch address modulo

the table size, so some branches may collide. If these

branches are biased in the same direction this is harm-

less, but if not, they will interfere with each others’

attempts to update the counter, and these destructive

PHT conflicts will lead to mispredictions. Sources of

mispredictions are discussed in Section 2.3.4.

2.3.3.5 Two-Level Prediction

Bimodal prediction can be improved in two ways,

both of which explicitly track earlier branch outcomes

and were introduced by Yeh and Patt. Local-history prediction [34] maintains a table of per-branch

histories. Instead of tracking each branch’s predominant direction, this branch history table (BHT)

tracks explicit history in order to detect patterns. For example, a local history can detect patterns like

TNTN . . . that confound simple saturating counters. The predictor still keeps a PHTof two-bit counters,

but these are now indexed using the local history pattern, and the counters now learn outcomes for each

history pattern. A schematic of a local history predictor appears in Fig. 2.25. One apparent problem with

local-history prediction is that it would seem to require two serial lookups: first the BHT to obtain the

history pattern, then the PHT to obtain the actual prediction.

This problem is solved by caching the most recent PHT value for a given BHTentry as an extra field in

the BHT. The next time that BHT entry is indexed, it provides both the current history and the cached

prediction. Fetching proceeds with that cached prediction while the PHT is probed with the history

pattern. The PHT result overrides the cached result, so if the PHT disagrees with the cached prediction,

the pipeline is flushed from the point of the mispredicted branch.

Global-history prediction [35] on the other hand, keeps a single history register—the global branch

history register or GBHR—into which all branch outcomes are shifted, as seen in Fig. 2.26. It might

seem that intermingling outcomes from different branches simply produces noise, but instead global-

history prediction is extremely effective. The reason is that global history exposes correlation among

branches (and hence these predictors are also called correlating predictors).

Consider the following sequence of code:

B1: if (x)

. . .

B2: if (y)

. . .

z¼ x && y;

B3: if (z)

. . .

Even if B1 and B2 are entirely unpredictable

because x and y have very random behavior, B3 can

be predicted with 100% accuracy if the outcomes

of B1 and B2 are known, because the outcome of

B3 is entirely correlated with the outcomes of B1

and B2. Global history is an admittedly crude way

to expose this sort of correlation, because the

T/NT

Baddr

PHT

BHT

FIGURE 2.25 A schematic for a PAs local-history

predictor. The branch address is used to index the

table of per-branch histories (the BHT), select the

appropriate history, and then this history is used to

index the PHT.

T/NT

GBHR

PHT

FIGURE 2.26 A schematic for a GAs global-

history predictor. The global history of recent branch

outcomes, contained in the global branch history regis-

ter (GBHR) is used to index the PHT.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 47 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-47

GBHR also contains outcomes from other branches

that provide no useful information. Yet, as Section

2.3.5 shows, global history is quite effective, and

Evers et al. [36] have shown that many programs

contain substantial degrees of correlated branch

behavior. Unfortunately, no one has come up with a

practical hardware technique for exposing correl-

ation while avoiding the noise that unrelated

branches introduce into the GBHR.

Both the local-history and global-history predict-

ors described above have the problem that different

branches may see the same history. All branches

that see the same history will map to the same PHT

entry. Especially with global prediction, equivalent

history does not always mean the branches will

behave the same way. To reduce the conse-

quent destructive PHT conflicts, Pan et al. [37]

point out that bits from the branch address can be combined with the history bits in order to provide

some degree of anti-aliasing—see Fig. 2.27 for example. The simplest technique is to concatenate the two

bit sources. For N bits of history and M bits of branch address, this creates a configuration where each

M-bit address pattern has its own 2N-entry PHT.

For a fixed table size and hence a fixed number of bits in the index, this necessitates a reduction in the

number of history bits, so a balance must be found between the added prediction capability provided by

history bits and the anti-aliasing capability provided by address bits. This balance is sensitive to the table

size. In a study of the SPECint95 benchmarks [38], Skadron et al. [39] found that as a general rule of

thumb, both global- and local-history predictors should use at least 6–7 bits of branch address,

regardless of predictor size. Predictors with more aggressive anti-aliasing techniques, e.g., the bi-mode

predictor of Lee et al. [40], will need fewer address bits.

To classify the different possible two-level predictor organizations, Yeh and Patt [35,41] developed a

naming scheme that uses three letters to characterize the different organizational choices. The first letter,

G, P, or S, indicates the type of history, global, per branch (i.e., local), or per branch set. The last choice

refers to a predictor that explicitly allocates groups of branches to particular BHT entries, and is only

feasible with extensive profiling or compiler support and hence has received little study. Skadron et al.

[39] added a fourth type, M, to this naming scheme to describe predictors that track a combination of

global and local history. The second letter, A or S, indicates whether the PHT is adaptive, using a finite

state machine based on saturating counters, or fixed, using statically assigned directions (a profiling pass

might determine the best PHT value for each entry); almost all predictors proposed or under study,

however, are A—adaptive. The third letter, g, s, or p, indicates the PHTorganization. The PHTmight be

indexed purely by history (g); or indexed using some concatenated branch address bits, making it set-

associative (s); or the predictor might have a separate PHT for each branch (p, for per-branch). This last

choice eliminates aliasing among branches but is prohibitively large for all but small history sizes, and is

therefore mainly of theoretical interest. A pure global-history predictor like that in Fig. 2.26 is, therefore,

a GAg predictor and a pure local-history predictor like that in Fig. 2.25 is a PAg predictor. If either of

these concatenate some address bits into the index, like the global-history predictor in Fig. 2.27, they

become GAs or PAs predictors. Note that the GAs predictor has also sometimes been referred to as

gselect [42]. Finally, a predictor that uses both global and per-branch history, such as the bi-mode

predictor, would be an MAg or MAs predictor [39]. As for specifying the specific configuration of a

predictor—how many bits, how many entries, etc.—so many notations are involved that it is better to

just be explicit.

An alternative anti-aliasing approach is to XOR the history string and address string together; this

approach, introduced by McFarling [42], is called gshare. This avoids the need to use a shorter history

T/NT

GBHR

PHT

Baddr

M

N

FIGURE 2.27 A schematic for a GAs global-history

predictor. N global history bits are concatenated with

M bits from the branch address to form the PHT

index.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 48 4.10.2007 2:56pm Compositor Name: BMani

2-48 Digital Systems and Applications

string—both strings can be as long as the index. Recent data by Sechrest et al. [43], however, suggest that

gshare confers little benefit over GAs.

Two-level prediction can seem like magic, especially global-history prediction. But it operates on the

same principle as compression; a predictable sequence is also compressible. Indeed, two-level prediction

is a simplified version of a Markov model, the same principle that underlies the prediction by partial

matching (PPM) compression scheme [44].

2.3.3.6 Hybrid Prediction

Because some branches do benefit from global history and others do not, McFarling [42] proposed

hybrid branch prediction. Several different organizations have been proposed [45–47], but the common

idea is to operate two different predictors in parallel, and for each branch select the predictor’s output

that is to be actually used in making the prediction. The selector is itself a predictor and can be any of the

structures described above, but the selector tracks predictor successes rather than branch outcomes. For

each branch, the selector attempts to learn the predictor component that is more effective. Figure 2.28

shows a high-level schematic of a hybrid predictor’s organization. Note that both predictor components

and the selector can all be accessed in parallel to minimize lookup time.

The Compaq Alpha 21264 [27] uses a hybrid predictor comprised of 12-bit GAg and 10-bit PAg

predictors. The PAg component has a 1 K-entry BHT and, because it uses only history bits in indexing

the PHT, the PHT is also 1 K entries. An unusual aspect of the PAg component is that it uses three-bit

instead of two-bit saturating counters in order to achieve a stronger bias once the predictor has trained.

The selector is also a 12-bit GAg predictor, but its PHT tracks the component that has been more

successful for each branch, rather than the direction the branch should take.

Hybrid prediction has also been called tournament, competitive, and combining branch prediction.

2.3.3.7 Loop Prediction

As was pointed out above, static schemes such as BTFNT take advantage of the fact that most backward

branches are loop branches, which are predominantly taken. Two-level predictors that use local history

can accurately predict loop branches (absent aliasing) as long as the loop iteration count is shorter than

the local history length. Similarly, predictors using global history can accurately predict loop branches if

Pred2

(e.g., PAg)

T/NT

Mux

Baddr

Selector
(e.g., GAg)

Pred1
(e.g., GAg)

FIGURE 2.28 A schematic for a hybrid predictor. Pred1 and pred2 are configured as regular, stand-alone branch

predictors (they might be a global-history and a local-history component, for example), but both components

make a prediction and the selector then chooses one component prediction (via the multiplexor or mux) to use as its

final prediction. The selector is a predictor too, but tracks component outcomes rather than branch direction

outcomes.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 49 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-49

the global history is longer than the loop iteration count, and there are no intervening branches.

Another way in which global predictors can predict loops is if they can identify a pattern of branches

that is different on the last iteration of the loop.

There are, however, loops that have large iteration counts or have too many intervening branches

between iterations of the loop. For these and other loops, a loop predictor can be a useful addition to

an existing branch predictor. Loop predictors usually are organized similarly to a tagged BTAC, indexed

and tagged by the branch address. Each entry contains a field for the maximum iteration count, a field

containing the current committed iteration count, and a confidence field. When a new loop branch is

encountered, an entry is allocated, with all fields set to zero. As the usual iteration count is identified, the

maximum iteration field is updated. Each time the same iteration count as in the maximum iteration

count field is seen, the confidence field is incremented. If the actual count is different from the stored

value, the confidence field is reset and the maximum iteration count field is updated. If the confidence

field reaches its maximum value, the loop predictor starts making prediction based on whether the

current iteration count field is equal to the maximum iteration count field or not.

For tight loops that can have multiple loop iterations flowing through the pipeline at the same time,

the committed iteration count will always lag behind the loop and produce many mispredictions. To

deal with this problem, a separate speculative current iteration field is often added to each entry. Similar

to speculative branch history, the field is updated right after a prediction is made. Predictions are then

made based on the state of the speculative current iteration count field. In case of a misprediction, the

value of the committed current iteration count field is copied to the speculative field.

A loop predictor similar to the one described has been included in the Intel Pentium M [48].

2.3.3.8 Neural Prediction

A new class of predictors that have recently drawn a lot of attention are the so-called neural predictors.

The name derives from the fact that the first neural predictors [49,50] were based of off simple neural

networks.

Neural predictors have a core distinguishing feature in that they aggregate the information from

different sub-predictors by computing the sum of a small number of weights, one for each sub-predictor.

Depending on whether the sum is positive or not, the branch is predicted to be taken or not. For ease of

implementation, each weight is usually defined as being a small signed integer; however, other repre-

sentations are possible. Each sub-predictor determines the weight it contributes to the sum, but a global

training mechanism determines the sign and magnitude of each weight. The sub-predictors can be

organized similarly to any of the previously described predictors, where counters are replaced by

weights, or in other ways.

The training mechanism works as follows. On all mispredicted branches, and all correctly predicted

branches where the magnitude of the sum was below a threshold, each weight involved in the prediction

is incremented or decremented depending on whether the branch was taken or not.

The most accurate neural predictors [51,52] typically utilize larger hardware budgets more effectively

than older, nonneural predictors, primarily through utilizing a small number of adders to calculate the

overall sum.

2.3.3.9 Partitioning the Predictor Hardware

Workloads with large instruction working sets suffer the most from destructive aliasing. Since

many commercially important workloads, such as web servers, databases, and transaction processing

systems, fall into this category, manufacturers have tended to include the largest branch predictors they

could afford.

Large branch predictors can however limit the maximum frequency of a processor design [28]. One

way to have both large capacities without limiting frequency is to organize branch predictors according

to the same principles as multilevel caches. The first level can be small and fast, while covering only a

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 50 4.10.2007 2:56pm Compositor Name: BMani

2-50 Digital Systems and Applications

limited number of static branches (for example those currently in the instruction cache). Additional

levels provide large capacity at much higher latencies, without hurting the frequency of a processor.

The division into multiple levels is most natural for bimodal predictors, since each entry (absent

aliasing) is associated with one static branch. Entries can be moved between levels in parallel with the

movement of instructions from the higher level caches into the instruction cache. This approach was

taken in the AMD Opteron [53], where some bimodal information can be stored in the level 2 cache.

Similar divisions into two or more levels for two level predictors using local branch history and loop

predictors are also possible. The BTAC can also be organized into multiple levels if needed.

2.3.3.10 Other Issues in Predictor Organization

The preceding sections have described the basic predictor organizations. Because prediction accuracy so

strongly underpins processor performance, branch prediction remains an active area of research and a

wealth of additional organizations have been proposed, primarily focusing on reducing mispredictions

due to destructive aliasing. Interested readers should consult recent proceedings of the symposia and

conferences in the list of works cited.

It is worth noting, however, that researchers have also considered how to adapt branch prediction to

wider-issue machines. Such a machine must fetch past multiple, possibly taken branches in order to

exploit the wider fetch width. Otherwise the processor becomes fetch-bottlenecked and its effective

width is restricted by the average basic block size.

Yeh et al. [31] describe a different branch address cache that learns segments of the control-flow graph

and, in conjunction with a banked instruction cache, can fetch several blocks from noncontiguous cache

lines in a single cycle. Conte et al. [30] describe a collapsing buffer that can also fetch past branches that are

taken but whose target is in the same fetch block. Reinman et al. [54] decouple branch prediction from

fetch, allowing the branch predictor to run ahead of fetch when possible, and they predict the length of

fetch blocks so that not-taken branches do not unnecessarily limit fetching. The most aggressive proposal

is the trace cache of Rotenberg et al. [32], which dynamically collapses noncontiguous fetch streams into

contiguous traces that are stored in the trace cache, a form of which appears in the Intel Pentium 4 [55]

and the HAL Sparc64 V [56]. This collapsing function can improve fetch bandwidth, but Co et al. [57]

showed that the main value of trace caches is their ability to perform implicit branch prediction: a trace

embodies only one path for each interior branch. On the other hand, trace caches require sophisticated

trace predictors. Co et al. also explore the performance and energy-efficiency trade-offs of traditional

instruction-cache=branch predictor organizations versus trace caches. Highly accurate branch predictors

like neural predictors reduce some of the branch-prediction benefit that trace caches once conferred. A

compromise approach, described by Ramirez et al. [58] is to fetch and predict streams instead of traces:

instruction sequences that are terminated by a taken branch. This allows a conventional instruction cache

to be used but allows a single prediction to guide fetch of longer instruction sequences.

In modern processors, which include simultaneous multithreading (SMT) [59], the choice how to

allocate the shared resources in the pipeline between the different threads is critical for overall

throughput. Branch prediction is affected if the branch predictor is shared, because threads can interfere

with each others’ state. Of greatest concern is when threads corrupt the branch history [60] or the

return-address stack [61]. The solution is to keep a separate branch history structure and return-address

stack for each thread.

2.3.4 Sources of Mispredictions

To better understand the behavior of branch predictors, it is helpful to examine some of the reasons

amispredictionmight occur. These reasons can be broken down into two broad categories: behavioral and

structural. Behavioral mispredictions stem from the intrinsic behavior of a branch and are independent of

the predictor’s organization. Any irregular or random behavior by a branch will inhibit its predictability.

Structural mispredictions, on the other hand, stem from properties of the predictor’s hardware organ-

ization. The major structural sources of mispredictions are described below and come from Ref. [39].

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 51 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-51

2.3.4.1 Destructive PHT and BHT Conflicts

All predictors that track state can suffer when unrelated branches map to the same predictor entry and

interfere with each others’ state. In the predictor’s PHT or in a hybrid predictor’s selector PHT,

destructive conflicts arise when branches map to the same two-bit PHT counter and these branches

go in opposite directions. In the BHT of a local-history predictor, destructive conflicts arise when

branches map to the same history entry and hence the history of one branch displaces that of another

branch. Note that constructive conflicts can also occur in all these structures when—for reasons of either

luck or correlated behavior—the state of one branch causes a correct prediction by other branches. This

means the expected gain from eliminating conflicts would eliminate both destructive and constructive

conflicts, but the destructive behavior usually outweighs the constructive behavior.

2.3.4.2 Training Time

Because dynamic predictors work by recognizing patterns of branch behavior, they take time to train.

The training time comes from two sources. First, the predictor must see enough branches to observe any

patterns that exist. Second, the predictor must reach steady state. Consider the simple pattern TN,TN . . .

in a six-bit history. After this branch has been seen twice, the history will contain xxxxTN, where ‘‘x’’

signifies that these history bits contain a random value. Unless by sheer luck the bits in the ‘‘xxxx’’

portion happen to be TNTN, this pattern is a transient that will not be seen again. This branch must

therefore be seen four more times before the history is fully initialized. In addition, for both types

of training, a pattern must be seen often enough not only to initialize the branch history but also to

put the corresponding counters in the PHT into the proper state. In the TNTN . . . example and

assuming two-bit counters in the PHT, this means that the history TNTNTN must be seen twice to

ensure that the two-bit counter has crossed the threshold. (The counter’s initial value might have been

00, but the correct prediction is T.) The larger the saturating counters, the longer is this component of

the training time.

The predictor must not only train when a program first starts executing but also retrain after every

context switch and also when the program’s behavior changes, either because it enters a new phase or the

nature of its input changes, etc.

2.3.4.3 Wrong Type of History

Mispredictions can also occur because the predictor does not track the most useful type of history—

global or local—for the branch in question. This has been called wrong history, even though it does not

imply that the actual history bits contain any invalid information. Unfortunately, most programs

have some branches that do well with global history and some branches that do well with local history.

A predictor that only tracks one or the other type of history therefore penalizes some branches in

each program. Evers et al. [36] showed this to be important. Skadron et al. [39] found wrong-history

mispredictions are especially severe in global-history predictors, comprising 35%–50% of the total

misprediction rate. They advocated alloyed prediction, which combines global and local history in the

same structure. Lu et al. [62] further explored alloyed prediction.

2.3.4.4 History Length

Mispredictions might also arise even if the predictor tracks the correct type of history but it uses too

short a history. For example, a history length of only two bits may not capture the full behavior of a

pattern longer than two bits. Consider the pattern TNNN,TNNN. . . . A two-bit local history will learn

that TN2! N and this is always correct. But the problem arises for the pattern NN. The predictor will

first learn NN2! N, but on the fifth occurrence of the branch, this will cause a misprediction. On the

other hand, there exist longer patterns for which short history is still sufficient. Consider two bits of

history and the pattern TNNTT,TNNTT. . . . Although the overall pattern is longer than two bits, none

of the distinct sub-patterns (TN, NT, and TT) are longer than two bits.

Alternatively, the history can also be too long. The problem here is that the history may contain many

bits that are entirely uncorrelated with the behavior of the branch to be predicted. This means that every

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 52 4.10.2007 2:56pm Compositor Name: BMani

2-52 Digital Systems and Applications

time this branch is seen, those bits may have a different value, and the predictor may potentially have to

train on all possible combinations of those unrelated bits. This has the effect of smearing a particular

branch’s predictor state across a large portion of the PHT. In the absence of conflicts, this should,

however, only be a problem for global history. This problem might also be called a training-time

misprediction and was discussed by Evers et al. [36].

2.3.4.5 Update Timing

Depending on how the predictor is updated, mispredictions can also arise because the predictor contains

stale state. If the predictor is not updated until a branch exits the pipeline, information about that

branch’s behavior does not appear in the predictor while the branch is in flight. Yet, later branches that

are fetched and predicted before the first branch retires may depend on that first branch’s outcome [63].

Consider again the sequence of correlated branches:

B1: if(x)

. . .

B2: if(y)

. . .

z¼ x && y;

B3: if(z)

. . .

In a global-history predictor, if B1 or B2 has not yet resolved, the predictor will use state and hence

possibly incorrect global history when looking up the prediction for B3. A similar problem arises in a

local-history predictor for branches with repeating patterns.

The solution is to speculatively update the branch history immediately after the branch has been

predicted, using the just-predicted value. If the prediction is correct, all subsequent branches see the

correct history. If not, the history must be repaired, or the predictor will accumulate bogus history.

Fortunately, because all instructions after a misprediction are squashed and re-fetched, subsequent

branches still see the correct history. This speculative-update-with-repair scheme therefore gives the

illusion of omniscient history update. These mechanisms were first described by Jourdan et al. [64], who

also found that in two-level predictors, it is only early update of the branch history that matters. Barring

destructive conflicts, the prediction for a particular PHT index is fairly stable over time, so the two-bit

saturating counters can be updated after the branch resolves.

2.3.5 Comparison of Hardware Prediction Strategies

Figures 2.29 and 2.30 present the prediction accuracies of conditional-branch directions for static-not-

taken, static-taken, BTFNT, bimodal, GAs, PAs, and hybrid predictors for the SPECint95 benchmarks

[38] and for two different sizes: a small predictor configuration of 8 Kbits, and a large configuration of

64 Kbits.

The specific configurations are presented in Tables 2.2 and 2.3. Of course, static predictors have no

size, so the data for these is simply replicated in both graphs. The configurations for GAs, PAs, and the

hybrid predictor are taken from Skadron et al. [39], which explored the different possible combinations

of history bits, address bits, and, for the hybrid predictor, different possible sizes of the three structures.

The data was gathered using a modified version of the simple, instruction-level branch-predictor

simulator from SimpleScalar version 2.0 [65]. All the benchmarks were compiled using gcc version 2.6.3

for the SimpleScalar research instruction set (PISA), and with optimization set at �O3—funroll-loops

(note that �O3 includes inlining).

Simulation captures all user-level behavior, including libraries, but cannot capture any behavior in the

kernel due to system calls. Data was gathered using the SPEC reference inputs. Some benchmarks come

with multiple inputs, in which case one has been chosen. Go uses a playing level of 50 and a 213 21

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 53 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-53

board with the 9 stone 21 input. M88ksim uses the dhrystone input, gcc the cccp.i input, xlisp the

9-queens problem, ijpeg the vigo.ppm input, and perl the scrabble game.

The reference inputs produce very long simulation times—on the order of days even for simpler instruction-

level simulations—so the results here are taken for only a representative, one-billion-instruction segment of

each program’s execution. A representative segment is reached by fast-forwarding past unrepresentative

initial program behavior using a fast-simulation mode that updates the branch predictor state (so that the

predictor state is accurate when the full-detail simulation starts) but does not gather branch-prediction

statistics [66]. The fast-forward intervals are taken from Ref. [39] and are presented in Table 2.4, along with

the observed number of static branch sites and the number of dynamic branches executed for each benchmark.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

go m88 gcc compress xlisp ijpeg perl vortex

P
re

di
ct

io
n

ac
cu

ra
cy

T

NT

BTFNT

Bim

GAs

PAs

Hyb

FIGURE 2.29 Branch prediction accuracies for 8-Kbit predictors for the SPECint95 benchmarks. Bim is the

bimodal predictor, and Hyb is the hybrid predictor. Specific configurations appear in Table 2.3.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

go m88 gcc compress xlisp ijpeg perl vortex

P
re

di
ct

io
n

ac
cu

ra
cy

T

NT

BTFNT

Bim

GAs

PAs

Hyb

FIGURE 2.30 Branch prediction accuracies for 64-Kbit predictors for the SPECint95 benchmarks. Specific

configurations appear in Table 2.4.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 54 4.10.2007 2:56pm Compositor Name: BMani

2-54 Digital Systems and Applications

As can be seen from the data in Figs. 2.29 and 2.30, the static schemes all perform terribly, and

different schemes are better for different benchmarks, usually by a significant margin. BTFNT is the best

static scheme for five of the eight benchmarks, but performs terribly for m88ksim. (But bear in mind

that BTFNTwould look better for floating-point codes, which are heavily loop oriented.) Always-taken

is the best static scheme for m88ksim and ijpeg, but is the worst for three other benchmarks. This

variability of the best scheme among different benchmarks makes it difficult to choose one static scheme

to implement.

Among dynamic schemes, bimodal is worse than the more sophisticated dynamic schemes for all

except go and vortex. Unlike the other schemes, however, bimodal is less sensitive to predictor size, with

a mean difference between the 8-Kbit and 64-Kbit bimodal predictors of only 0.55%. The reason for this

is that the bimodal predictor allocates only one entry to each branch site (i.e., a static branch location in

the program), no matter how often that branch executes or how varied its behavior is. Most of the

programs have a fairly small number of branch sites, and of course the property of locality means that

only a subset of these are active at any one time. A 4 K-entry (8 Kbit) table is, therefore, sufficient to

capture most of the static branch locations, and making the table larger has little effect.

Among two-level predictors, GAs are better than PAs about as often as PAs are better than GAs. As

with the static schemes, this variability of the best scheme among benchmarks makes it difficult to

choose the scheme to implement. This is strong motivation for use of the hybrid predictor, especially

given the observation [36,39] that many programs have some branches that are much better predicted

using global history, whereas other branches are much better predicted using local history. GAs, PAs,

and hybrid, however, are all the more sensitive to predictor size than bimodal is. Go and gcc are

particularly sensitive to predictor size, and so are xlisp and perl to some extent. The hybrid predictor is

the most sensitive to size, because it must allocate the available hardware budget across four tables: the

selector’s PHT, the global-history component’s PHT, and the local-history component’s BHT and PHT.

TABLE 2.2 Predictor Configurations for an 8-Kbit Hardware Budget

Predictor

Index Bits

(h ¼ hist., a ¼ addr.) BHT Entries PHT Entries

Static not-taken — — —

Static taken — — —

BTFNT — — —

Bimodal 12a — 4 K

Gas 5h, 7a — 4 K

Pas 4h, 7a 1 K 2 K

Hybrid (selector) 3h, 7a — 1 K

(global) 4h, 7a — 2 K

(local) 2h, 7a 512 512

TABLE 2.3 Predictor Configurations for a 64-Kbit Hardware Budget

Predictor

Index Bits

(h ¼ hist., a ¼ addr.) BHT Entries PHT Entries

Static not-taken — — —

Static taken — — —

BTFNT — — —

Bimodal 15a — 32 K

Gas 8h, 7a — 32 K

Pas 8h, 6a 4 K 16 K

Hybrid (selector) 6h, 7a — 8 K

(global) 7h, 7a — 16 K

(local) 8h, 4a 1 K 4 K

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 55 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-55

Each of these tables is therefore substantially smaller than in a single two-level predictor and therefore

suffers more destructive interference. This especially affects the programs with large static branch

footprints, like go and gcc. Yet, a hybrid predictor also has an important advantage: in order to better

control destructive conflicts, it can dynamically shift the component it uses to make a prediction for

each branch.

Note that these results do not include the effects of predication, context switching, operating system

behavior, or any profile-guided feedback. All of these effects might change the results.

2.3.6 Summary

Branch prediction is important because otherwise every branch stalls the fetch engine. Some alternatives

exist, like delay slots and predication, but delay slots are not compatible with modern, wide-issue

superscalar processors, and predication cannot remove all branches. Static prediction techniques that

require no hardware support are also possible, but they are either very simple, or in the case of compiler

directives, require instruction-set support. Static techniques also have the drawback that they cannot

adapt to changing run-time conditions.

Dynamic branch-prediction techniques have evolved from the simple bimodal predictor to more

sophisticated two-level and hybrid predictors that exploit patterns in branch behavior and correlation

among branches. Refinements to these techniques, as well as new fetch organizations that permit

fetching past multiple branches continue to be active areas of research.

The massive effort to find better branch-handling techniques is motivated by the severe penalty

imposed by mispredictions. Especially with the long and wide pipelines of modern processors, a very

small misprediction rate can severely harm performance. Indeed, the fetch bottleneck remains one of the

most severe limitations on faster processing, and Jouppi and Ranganathan [67] argue that it may

become the most severe bottleneck in future processors, even more severe than memory latency or

memory bandwidth.

With the dramatic shift in focus of recent processors from pure performance to a balance of energy

efficiency and performance, the impact of branch prediction accuracy on the overall energy efficiency of

a processor has become more important [68]. Since branch prediction accuracy has such a leveraged

effect on the performance and energy efficiency (through less wasted work on mispredicted instructions)

of a processor, further increases in the size, complexity, and power usage of branch predictors can be

justified, as long as the extra power usage of the branch predictor does not exceed the savings in the

whole processor [69]. The recent Intel Core Duo [70] and the announced Core 2 Duo processors have

shorter pipelines than the previous Intel Pentium 4, yet continue to increase the size and accuracy of

their branch prediction hardware, because it allows them to reach a given performance level at a lower

power level.

TABLE 2.4 Branch and Fast-Forward Statistics for the SPECint95 Benchmarks

Fast-Forward

Distance (million)

Static Conditional

Branch Sites

Dynamic Conditional

Branches Executed (million)

go 925 5331 112

m88ksim (m88) 0 968 162

gcc 0 20,783 190

compress 1648 203 151

xlisp 0 676 154

ijpeg 823 1,415 58

perl 600 614 129

vortex 2450 3,203 124

Note : All benchmarks are run for one billion instructions in statistics-gathering mode after

the fast-forward interval.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 56 4.10.2007 2:56pm Compositor Name: BMani

2-56 Digital Systems and Applications

References

1. Skadron, K., Characterizing and removing branch mispredictions, Ph.D. Thesis, Princeton Univer-

sity, Department of Computer Science, Princeton, NJ, 1999.

2. Calder, B. and Grunwald, D., Reducing indirect function call overhead in Cþþ programs, in

Proceedings of 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pp. 397–408, Jan. 1994.

3. Chang, P.-Y., Hao, E., and Patt, Y.N., Target prediction for indirect jumps, in Proceedings of 24th

Annual International Symposium on Computer Architecture, pp. 274–283, June 1997.

4. Driesen, K. and Hölzle, U., Accurate indirect branch prediction, in Proceedings of the 25th Annual

International Symposium on Computer Architecture, pp. 167–178, July 1998.

5. Kalamatianos, J. and Kaeli, D.R., Predicting indirect branches via data compression, in Proceedings of

31st Annual ACM=IEEE International Symposium on Microarchitecture, pp. 272–281, Dec. 1998.

6. Seznec, A. and Michaud, P., A case for (partially) tagged geometric history length branch prediction,

The Journal of Instruction Level Parallelism, 8(1), Feb. 2006, (http:==www.jilp.org=vol8).

7. Kaeli, D.R. and Emma, P.G., Branch history table prediction of moving target branches due to

subroutine returns, in Proceedings of the 18th Annual International Symposium on Computer

Architecture, pp. 34–41, May 1991.

8. Webb, C.F., Subroutine call=return stack, IBM Technical Disclosure Bulletin, Vol. 30, No. 11,

April 1988.

9. Gwennap, L., Digital 21264 sets new standard, Microprocessor Report, pp. 11–16, Oct. 28, 1996.

10. Gwennap, L., Intel’s P6 uses decoupled superscalar design, Microprocessor Report, pp. 9–15, Feb.

16, 1995.

11. Patterson, D.A. and Hennessy, J.L., Computer Architecture: A Quantitative Approach, 2nd ed.,

Morgan Kaufmann, San Francisco, CA, 1996.

12. Price, C., MIPS IV Instruction Set, Revision 3.1, MIPS Technologies Inc., Mountain View, CA,

Jan. 1995.

13. SPARC International Inc., The SPARC Architecture Manual, Version 8, Prentice Hall, Englewood

Cliffs, NJ, 1992.

14. Digital Equipment Corp., Alpha AXP Architecture Handbook, Oct. 1994.

15. Young, C. and Smith, M.D., Static correlated branch prediction, ACM Transactions Programming

Languages and Systems, 21(5):1028–1075, Sept. 1999.

16. Mahlke, S.A. et al., A comparison of full and partial predicated execution support for ILP processors,

in Proceedings of the 22nd Annual International Symposium on Computer Architecture, pp. 138–149,

June 1995.

17. Mahlke, S.A. et al., Characterizing the impact of predicated execution on branch prediction,

in Proceedings of the 27th Annual International Symposium on Microarchitecture, pp. 217–227,

Dec. 1994.

18. B. Simon, B. Calder, and J. Ferrante. Incorporating predicate information into branch predictors in

Proceedings of the 9th Annual International Symposium on High Performance Computer Architecture,

pp. 53–64, Feb. 2003.

19. Smith, J.E., A study of branch prediction strategies, in Proceedings of the 8th Annual International

Symposium on Computer Architecture, pp. 135–148, May 1981.

20. Lee, J.K.F. and Smith, A.J., Branch prediction strategies and branch target buffer design, IEEE

Computer, 17(1):6–22, Jan. 1984.

21. Holgate, R.W. and Ibbett, R.N., An analysis of instruction fetching strategies in pipelined computers,

IEEE Transactions on Computers, C29(4):325–329, Apr. 1980.

22. Losq, J.J., Generalized history table for branch prediction, IBM Technical Disclosure Bulletin, Vol. 25,

No. 1, pp. 99–101, June 1982.

23. Calder, B. and Grunwald, D., Fast & accurate instruction fetch and branch prediction, in Proceedings

of the 21st Annual International Symposium on Computer Architecture, pp. 2–11, May 1994.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 57 4.10.2007 2:56pm Compositor Name: BMani

System Design 2-57

24. Diefendorff, K., PowerPC G4 gains velocity, Microprocessor Report, pp. 10–15, Oct. 25, 1999.

25. W.M. Johnson. Superscalar Microprocessor Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

26. Calder, B. and Grunwald, D., Next cache line and set prediction, in Proceedings of the 22nd Annual

International Symposium on Computer Architecture, pp. 287–296, June 1995.

27. Kessler, R.E., McLellan, E.J., and Webb, D.A., The Alpha 21264 microprocessor architecture, in

Proceedings 1998 International Conference on Computer Design, pp. 90–95, Oct. 1998.

28. Jiménez, D.A., Keckler, S.W., and Lin, C., The impact of delay on the design of branch predictors,

in Proceedings of the 33rd Annual IEEE=ACM International Symposium on Microarchitecture,

pp. 67–77, Dec. 2000.

29. Moore, G.E., Cramming more components onto integrated circuits, Electronics, 38(8):114–117,

Apr. 1965.

30. Conte, T. et al., Optimization of instruction fetch mechanisms for high issue rates, in Proceedings of

the 22nd Annual International Symposium on Computer Architecture, pp. 333–344, June 1995.

31. Yeh, T.-Y., Marr, D.T., and Patt, Y.N., Increasing the instruction fetch rate via multiple branch

prediction and a branch address cache, in Proceedings of the 7th International Conference on

Supercomputing, pp. 67–76, July 1993.

32. Rotenberg, E., Bennett, S., and Smith, J.E., Trace cache: A low latency approach to high bandwidth

instruction fetching, in Proceedings of the 29th Annual. IEEE=ACM International Symposium on

Microarchitecture, pp. 24–34, Dec. 1996.

33. Nair, R., Optimal 2-bit branch predictors, IEEE Transactions on Computers, 44(5):698–702,

May 1995.

34. Yeh, T.-Y. and Patt, Y.N., Two-level adaptive training branch prediction, in Proceedings of the 24th

Annual International Symposium on Microarchitecture, pp. 51–61, Nov. 1991.

35. Yeh, T.-Y. and Patt, Y.N., Alternative implementations of two-level adaptive branch prediction, in

Proceedings of the 19th Annual International Symposium on Computer Architecture, pp. 124–134,

May 1992.

36. Evers, M. et al., An analysis of correlation and predictability: What makes two-level branch

predictors work, in Proceedings of the 25th Annual International Symposium on Computer

Architecture, pp. 52–61, June 1998.

37. Pan, S.-T., So, K., and Rahmeh, J.T., Improving the accuracy of dynamic branch prediction using

branch correlation, in Proceedings of the 5th International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 76–84, Oct. 1992.

38. Standard Performance Evaluation Corporation, SPEC CPU95 benchmarks, http:==www.

specbench.org=.

39. Skadron, K., Martonosi, M., and Clark, D.W., A taxonomy of branch mispredictions, and alloyed

prediction as a robust solution to wrong-history mispredictions, in Proceedings of 2000 International

Conference on Parallel Architectures and Compilation Techniques, pp. 199–206, Oct. 2000.

40. Lee, C.-C., Chen, I.-C.K., and Mudge, T.N., The bi-mode branch predictor, in Proceedings of the 30th

Annual International Symposium on Microarchitecture, pp. 4–13, Dec. 1997.

41. Yeh, T.-Y. and Patt, Y.N., A comparison of dynamic branch predictors that use two levels of branch

history, in Proceedings of the 20th Annual International Symposium on Computer Architecture,

pp. 257–266, May 1993.

42. McFarling, S., Combining branch predictors, Technical Note TN-36, Digital Equipment Corp.

Western Research Laboratory, June 1993.

43. Sechrest, S., Lee, C.-C., and Mudge, T., Correlation and aliasing in dynamic branch predictors, in

Proceedings of the 23rd Annual International Symposium on Computer Architecture, pp. 22–32, May

1995.

44. Chen, I.-C., Coffey, J.T., and Mudge, T.N., Analysis of branch prediction via data compression, in

Proceedings on the 7th International Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 128–137, Oct. 1996.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 58 4.10.2007 2:57pm Compositor Name: BMani

2-58 Digital Systems and Applications

45. Chang, P.-Y., Hao, E., and Patt, Y.N., Alternative implementations of hybrid branch predictors,

in Proceedings of the 28th Annual International Symposium on Microarchitecture, pp. 252–257,

Dec. 1995.

46. Evers, M., Chang, P.-Y., and Patt, Y.N., Using hybrid branch predictors to improve branch prediction

accuracy in the presence of context switches, in Proceedings of the 23rd Annual International

Symposium on Computer Architecture, pp. 3–11, May 1996.

47. Grunwald, D., Lindsay, D., and Zorn, B., Static methods in hybrid branch prediction, in Proceedings

1998 International Conference on Parallel Architectures and Compilation Techniques, pp. 222–229,

Oct. 1998.

48. Gochman, S. et al., The Intel Pentium M Processor: Microarchitecture and Performance, Intel

Technology Journal, 7(2):21–59, May 2003.

49. Vintan, L., Towards a high-performance neural branch predictor, in Proceedings of the International

Joint Conference on Neural Networks, pp. 868–873, July 1999.

50. Jiménez, D.A. and Lin, C., Dynamic branch prediction with perceptrons, in Proceedings of the 7th

International Symposium on High-Performance Computer Architecture, pp. 197–206, Jan. 2001.

51. Seznec, A., Analysis of the o-geometric historic length branch predictor, in Proceedings of the 32nd

Annual International Symposium on Computer Architecture, pp. 394–405, May 2005.

52. Tarjan, D. and Skadron, K., Merging path and gshare indexing in perceptron branch prediction,

ACM Transactions on Architecture and Code Optimization., 2(3):280–300, Sept. 2005.

53. Keltcher, C.N., The AMD opteron processor for multiprocessor servers, IEEE Micro, 23(2):66–76,

Mar.–Apr. 2003.

54. Reinman, G., Austin, T., and Calder, B., A scalable front-end architecture for fast instruction

delivery, in Proceedings of the 26th Annual International Symposium on Computer Architecture,

pp. 234–245, May 1999.

55. Glaskowsky, P.N., Pentium 4 (partially) previewed, Microprocessor Report, pp. 1, 11–13, Aug. 2000.

56. Diefendorff, K., Hal makes Sparcs fly, Microprocessor Report, pp. 1, 6–12, Nov. 15, 1999.

57. Co, M., Weikle, D.A.B., and Skadron, K., Evaluating trace cache energy efficiency, ACM Transactions

on Architecture and Code Optimization, 3(4):450–476, Dec. 2006.

58. Ramirez, A. et al., Fetching instruction streams, in Proceedings of the 35th International Symposium

on Microarchitecture, pp. 371–382, Nov. 2002.

59. Tullsen, D.M., Eggers, S.J., and Levy, H.M., Simultaneous multithreading: Maximizing on-chip

parallelism, in Proceedings of the 22nd Annual International Symposium on Computer Architecture,

pp. 392–403, June 1995.

60. Ramsay, M., Feucht, C., and Lipasti, M.H., Exploring efficient SMT branch predictor design, in

Proceedings of the 2003 Workshop on Complexity Effective Design, June 2003.

61. Skadron, K. et al., Improving prediction for procedure returns with return-address-stack repair

mechanisms, in Proceedings of the 31st Annual International Symposium on Microarchitecture,

pp. 259–271, Dec. 1998.

62. Lu, Z. et al., Alloyed branch history: Combining global and local branch history for robust

performance, International Journal of Parallel Programming, Kluwer, 31(2):137–177, Apr. 2003.

63. Hao, E., Chang, P.-Y., and Patt, Y., The effect of speculatively updating branch history on branch

prediction accuracy, revisited, in Proceedings of the 27th Annual International Symposium on

Microarchitecture, pp. 228–232, Nov. 1994.

64. Jourdan, S. et al., Recovery requirements of branch prediction storage structures in the presence

of mispredicted-path execution, International Journal of Parallel Programming, 25(5):363–383,

Oct. 1997.

65. Burger, D.C. and Austin, T.M., The SimpleScalar tool set, version 2.0, Computer Architecture News,

25(3):13–25, June 1997.

66. Skadron, K. et al., Branch prediction, instruction-window size, and cache size: Performance trade-

offs and simulation techniques, IEEE Transactions on Computers, 48(11):1260–1281, Nov. 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 59 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-59

67. Jouppi, N.P. and Ranganathan, P., The relative importance of memory latency, bandwidth, and

branch limits to performance, in Proceedings of the Workshop on Mixing Logic and DRAM: Chips that

Compute and Remember, June 1997.

68. Parikh, D. et al., Power issues related to branch prediction, in Proceedings of the 8th International

Symposium on High-Performance Computer Architecture, pp. 233–244, Feb. 2002.

69. Co, M., Weikle, D.A.B., and Skadron, K., A break-even formulation for evaluating branch predictor

energy efficiency, in Proceedings of the Workshop on Complexity Effective Design, June 2005.

70. Gochman, S. et al., The introduction to Intel core duo processor architecture, Intel Technology

Journal, 10(2):89–97, May 2006.

2.4 Network Processor Architecture

Tzi-cker Chiueh

2.4.1 Introduction

The explosive traffic growth on the Internet comes with an ever more demanding requirement on the

available bandwidth and thus on the performance of the network devices that move network packets

from sources to destinations. In the most general sense, network processors are those that are specifically

designed to transport, order, and manipulate network packets as they move through the network. As

network protocols are typically structured as a stack of layers, network processors can be classified into

physical-layer, link-layer, and network-layer processors, depending on the protocol layer at which they

operate. Physical-layer processors are responsible for electrical or optical signal generation and inter-

pretation for transporting digital bits, whereas link-layer network processors deal with framing, bit error

detection=correction and arbitration of concurrent accesses to shared media. Network-layer processors

operate on individual packets and determine how to route packets from their senders to receivers in a

particular order, and modify their headers or even payloads along the way if necessary. Because the

Internet is largely based on the IP protocol, almost all state-of-the-art network-layer processors are

designed to process IP packets only. The conspicuous exception is network-layer processors designed for

ATM networks. The focus of this paper, however, is exclusively on network-layer processors, which can

operate at from Layer 3 to Layer 7 in the ISO=OSI protocol stack model.

In general, three approaches are used for network processor design, which correspond to different

design points in the programmability=performance spectrum. The ASIC approach takes a full customi-

zation route by dedicating specially-made hardware logic to specific network packet processing func-

tionalities. Although this approach gives the highest performance, it is typically not programmable and

therefore not sufficiently flexible to support a wide variety of network devices. Consequently, such

processors are more expensive and tend to be outdated sooner because they cannot exploit economies of

scale to keep up with technology advances. The general-purpose CPU approach either takes an existing

processor for PCs or embedded systems as it is, or augments it with a small set of instructions specifically

included to improve network packet processing. While this approach admits the most programming

flexibility, the throughput of these processors is substantially lower than what modern network devices

require. The main reason for this lackluster performance is that network device workloads are data

movement-intensive, whereas traditional processors are designed to support computation-intensive

tasks. The last approach to network processor design, programmable network processor, attempts to

strike a balance between programmability and performance and achieves the best of both worlds. Instead

of using general-purpose instruction set, a programmable network processor defines the set of instruc-

tion set primitives for network packet processing from scratch, and exposes these primitives to system

designers so that they can tailor the processor to the requirement of different network devices. In the rest

of this paper, we will concentrate only on programmable network processors, as they represent the most

promising and commercially popular approach to network processor design.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 60 4.10.2007 2:57pm Compositor Name: BMani

2-60 Digital Systems and Applications

In addition to the basic network processing function such as packet routing and forwarding, modern

network processors are tasked with additional capabilities that support advanced network functional-

ities, such as differentiated quality of service (QoS), encryption=decryption, etc. For network processors

that are to be used in edge network devices, they may need to perform even higher-level tasks such as

firewalling, virtual private network (VPN) support, load balancing, etc. Given an increasing variety of

features that network devices have to support, it is crucial for a network processor architecture to be

sufficiently general that system designers can build newer functionalities on these processors without

causing serious performance degradation. The challenge for network processor design is thus to identify

the set of packet processing primitives that is elastic enough to support as many different types of

network devices as possible, and at the same time is sufficiently customized so that the performance

overhead due to ‘‘impedance mismatch’’ is minimized.

In the rest of this chapter, we first discuss fundamental design issues related to network processor

architecture in Section 2.4.2, and then describe specific network processor architectural features that

have been proposed in Section 2.4.3. In Section 2.4.4, we review the design of several commercially

available network processors to contrast their underlying approaches. Finally, we outline future network

processor research directions in Section 2.4.5.

2.4.2 Design Issues

To understand the network processor architecture, let us first look at what a programmable network

processor is supposed to do. After receiving an IP packet from an input interface, the network processor

first determines the output interface via which the packet should be forwarded toward its destination. In

the case that multiple input packets are destined to the same output interface, the network processor also

decides the order in which these packets should be sent out on the associated output link, presumably

according to certain quality of service (QoS) policy. Finally, before the packet is forwarded to the next-

hop router, the network processor modifies the packet’s header or even payload according to standard

network protocols or application-specific semantics. For IP packets, at least the TTL (time-to-live) field

in the header must be decremented at each hop and as a result the IP packet header checksum needs to

be re-computed. Other IP header fields such as TOS (type-of-service) may also need to be modified for

QoS reasons. In some cases, even the packet body need to be manipulated, e.g., transcoding of a video

packet in the presence of congestion. In summary, given an input packet, the network processor needs to

identify its output interface, schedule its transmission on the associated output link, and make necessary

modifications to its header or payload to satisfy general protocol or application-specific requirements.

Fundamentally, a network processor performs three types of tasks: packet classification, packet

scheduling, and packet forwarding. Given an input IP packet, the packet classification module in the

network processor decides how to process this packet, based on the packet’s header and sometimes even

payload fields. In the simplest case, the result of packet classification is the output interface through

which the input packet should be forwarded. To support differentiated QoS, the result of packet

classification becomes a specific output connection queue into which the input packet should be

buffered. In the most general case, the result of packet classification points to the software routine

that is to be invoked to process the input packet; possible processing ranges from forwarding the input

packet into an output interface and a buffer queue, to arbitrarily complex packet manipulation. The

design challenge of packet classification is that the number of bits used in packet classification is

increasing due to IPv6 and=or multiple header fields, and varying because of application-level protocols

such as URL in the HTTP protocol.

The packet forwarding module of a network processor physically moves an input packet from an

incoming interface to its corresponding outgoing interface. The key design issues on packet forwarding

are the topology of the switch fabric and the switch scheduling policy to resolve output contention, i.e.,

when multiple incoming packets need to be forwarded to the same output interface. State-of-the-art

network devices are based on crossbar fabrics, which are more expensive but greatly reduce the

implementation complexity of the switch scheduler. Given a crossbar fabric, the switch scheduler

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 61 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-61

finds a match between the incoming packets and the output interfaces so that the switch fabric is utilized

with maximum efficiency and the resulting matching is consistent with the output link’s scheduling

policy, which in turn depends on the QoS requirement. Algorithmically, this is a constrained bipartite

graph matching problem, which is known to be NP-complete. The design challenge of switch scheduling

is to find a solution that approximates the optimal solution as closely as possible and that is simple

enough for efficient hardware implementation. One such algorithm is iterative random matching [1]

and its optimized variant [2].

Traditionally, a FIFO queue is associated with each output link of a network device to buffer all

outgoing packets through that link. To support fine-grained QoS, such as per-network-connection

bandwidth guarantee, one buffer queue is required for each network connection whose QoS is to be

protected from the rest of the traffic. After classification, packets that belong to a specific connection are

buffered in the connection’s corresponding queue. A link scheduler then schedules the packets in the

per-connection queues that share the same output link in an order that is consistent with each

connection’s QoS requirement. A general framework of link scheduling is packetized fair queuing

(PFQ) [3], which performs the following two operations for each incoming packet, virtual finish time

computation, which is O(N) computation, and priority queue sorting, which is O(log N) computation,

where N is the number of active connections associated with an output interface. Intuitively, a packet’s

virtual finish time corresponds to the logical time at which that packet should be sent if the output link

is scheduled according to the fluid fair queuing model. After the virtual finish time for each packet is

computed, packets are sent out in an ascending order of their virtual finish time. A nice property of

virtual finish time is that an earlier packet’s virtual finish time is unaffected by the arrival of subsequent

packets. With per-connection queuing and output link scheduling, traffic shaping is automatic if packets

are dropped when they reach a queue that is full. As the complexity of both operations in link scheduling

depends on N, they cannot readily scale to a large number of QoS-sensitive connections. Although there

are various attempts to simplify PFQ, most hardware link schedulers use a much simpler weighted

round-robin algorithm, which multiplexes connections on an output link according to weights that are

proportional to the connections’ QoS requirements.

In addition to the above three types of tasks, a network processor may need to support such higher-

level functionalities as security, multicast, congestion control, etc., because more and more intelligence is

moved from end hosts to the network. It is not clear what common primitives these high-level functions

can share, as comprehensive workload characterization along this line is almost nonexistent. The entire

active network field [4] is about the development of operating system and network procotols support for

programmable network devices so that they can perform application-specific operations on an applica-

tion’s packets as they go through the network; however, until now the research on architectural support

for active networking is almost nonexistent in the literature.

Figure 2.31 shows the generic architecture of an Internet router, which serves as an instance of a

network device that is built on network processor. The line cards are input=output interfaces and are

connected to external network links. Line cards typically include hardware for physical-layer and link-

layer protocol processing, and a network processor that performs packet classification, queuing and

output-link scheduling. The switch fabric controller determines when input packets should be for-

warded to their corresponding output interface. The control processor is typically a standard RISC

processor and is responsible for non-time-critical tasks such as routing table maintenance and traffic

statistics collection and reporting.

2.4.3 Architectural Support for Network Packet Processing

Given the network device system architecture in Fig. 2.31, in this section we present architectural

features that were proposed previously to improve the performance of network processors. But first

let’s consider the performance requirements of a very high-speed router. Assuming the worst-case

scenario, i.e., each packet is 64-byte long, an OC-768 or 40 Gbps network processor needs to handle

80 million packets per second, or one packet every 12.5 ns. Assume further that a packet is processed in a

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 62 4.10.2007 2:57pm Compositor Name: BMani

2-62 Digital Systems and Applications

pipeline fashion, i.e., packet classification, packet forwarding, and packet scheduling. Therefore, this

12.5 ns corresponds to the pipeline cycle time, rather than the total packet latency within the network

device. In packet classification, multiple memory accesses to the routing=classification table data

structure are needed. For a static RAM with 2-ns cycle time, a 12.5-ns cycle time means that the network

processor cannot access more than six memory words if the memory system is 32-bit wide. In packet

forwarding, the output buffer queue memory should run at 1,250 MHz using a 128-bit-wide interface,

because the rule of the thumb is that packet buffers need to operate at four times as fast the line rate. In

packet scheduling, even assuming a modest number of active connections, say 1,000, the link scheduler

logic needs to perform each primitive operation in virtual finish time calculation within 12.5 ps, or

about one CMOS transistor delay. The above analysis demonstrates that in all three cases, new

architecture-level and circuit-level innovations are required to develop a network processor that meets

the OC-768 performance goal.

Two basic approaches to speeding up network packet processing inside a network processor are

pipelining and parallelization. A deeper pipeline reduces the cycle time of the pipeline and, therefore,

improves the system throughput. However, because packet classification, packet forwarding, and packet

scheduling each exhibit complicated internal dependencies and sometimes iterative structures, it is

difficult to pipeline these functions effectively. Parallelization can be applied at different granularities.

Finer granularity parallelism is more difficult to exploit but potentially leads to higher performance gain.

In the case of network packet processing, because processing of one packet is independent of processing

of another packet, packet-level parallelism appears to be the right granularity that strikes a good balance

between performance gain and implementation complexity. Typically, a thread is dedicated to the

processing of one packet, and different threads can run in parallel on distinct hardware engines. To

reap further performance improvement by exploiting instruction-level parallelism, researchers and

companies have proposed to run concurrent packet-processing threads on a simultaneous multi-

threading processor [5,11] to mask as many pipeline stalls as possible. Such multithreading processors

require the support of multiple hardware contexts and fast context switching.

Compared with generic CPU workloads, network packet processing requires much more frequent bit-

level manipulation, such as header field extraction and header checksum computation. In a standard

RISC processor, extracting an arbitrary range of bits from a 32-bit word requires at least three

Switch
controller

Control
processor

P
H
Y

M
A
C

P
H
Y

M
A
C

Network
processor

Network
processor

Network
processor

Network
processor

P
H
Y

M
A
C

P
H
Y

M
A
C

P
H
Y

M
A
C

P
H
Y

M
A
C

Network
processor

Network
processor

Network
processor

Network
processor

P
H
Y

M
A
C

P
H
Y

M
A
C

Crossbar
switch
fabric

Link

Line card

FIGURE 2.31 The system architecture of a generic network device such as an IP packet router.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 63 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-63

instructions, and performing a byte-wide summing of the four bytes within a word takes at least 13

instructions. Therefore, commercial network processors [6] include special bit-level manipulation and

1’s complement instructions to speed up header field extraction and replacement, as well as packet

checksumming computation.

Caching is arguably the most effective and most often used technique in modern computer system

design. One place in network processor design to which caching can be effectively applied is packet

classification. Since multiple packets travel on a network connection in its lifetime, in theory each

intermediate network device only needs to perform packet classification once for the first packet and

reuses the resulting classification decision for all subsequent packets. This corresponds to temporal

locality if one treats the set of all possible values of the header fields used in packet classification as an

address space. Empirical studies [7,8] show that network packet streams indeed exhibit substantial

temporal locality but very little spatial locality. In addition, unlike CPU cache, the classification results

for neighboring points in this address space tend to be identical. Therefore, network processor cache can

be designed to cache address ranges rather than just address space points, as in standard cache. Chiueh

and Pradhan [8] showed that caching ranges of classification address space can increase the effective

coverage of a network processor cache by several orders of magnitude as compared to conventional

caches that cache individual addresses.

Another alternative to speed up packet classification is through special content-addressable memory

(CAM) [13]. Commercial CAMs support ternary comparison logic (0, 1, and X or don’t-care).

Classification rules are pre-stored in the CAMs. Given an input packet, the selective portion of its

packet header is compared against all the stored classification patterns in parallel, and a priority decoder

picks the highest priority among the matched rules if there are multiple of them. Although CAM can

identify relevant packet classification rules at wire speed, two problems are associated with apply-

ing CAM to the packet classification problem. First, to support range match, e.g., source port number

130–202, one has to break a range rule to multiple range rules, each covering a range whose size is a

multiple of 2. This is because CAMs only support don’t-care match but not arbitrary arithmetic

comparison. For example, the range 129–200 needs to be broken down into eight ranges: 130–130,

131–132, 133–136, 137–144, 145–160, 161–192, 193–200, and 201–202. For classification rules with

multiple range fields, the need for range decomposition can significantly increase the number of CAM

entries required. Second, because CAMs are hardwired memory with built-in width, it cannot easily

support matching of variable-length fields such as URL, or accommodate changing packet classification

rules after network devices are put into field use.

Finally, because the main task of network devices is to move packets from one interface to another,

efficient data movement is of paramount importance. Because most packet buffer memory is imple-

mented in DRAM, it is essential to exploit the fast access mode in modern DRAM chips to keep up with

the line rate. In addition, it should support multiple DMA channels to allow multiple data transfer

transactions to proceed in parallel without the attention of network processors.

2.4.4 Example Network Processors

Intel’s Internet exchange architecture (IXA) [6] includes an IXE component as the switching fabric, an

IXF component for framing and formatting, an LXT component for physical-layer processing, and an

Internet exchange processor (IXP) for packet processing. The IXP consists of a StrongARM core, six

microengines and interfaces with the SRAM, SDRAM, the PCI bus, and a proprietary bus, the IX bus.

The StrongARM core performs such supervisory processing as maintaining the routing table. Each of six

microengines is a RISC core augmented with special instructions optimized for network processing such

as bit extraction, table lookup, and single-cycle shifting, and with support for hardware multithreading.

Each microengine has four program counters that allow four parallel threads to time-share a micro-

engine’s data path. There are two banks of single-ported general-purpose registers for ALU operations,

and four single-ported transfer registers to read=write SRAM and SDRAM. The IX bus allows the IXPs

to interface with IXFs and IXEs, and supports 5 Gbps at 80 MHz.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 64 4.10.2007 2:57pm Compositor Name: BMani

2-64 Digital Systems and Applications

Agere’s PayloadPlus architecture [9] includes a fast pattern processor (FPP), a routing switch

processing (RSP), an agere system interface (ASI), and a functional programming language (FPL) for

programming the FPP and RSP. The FPP sits between the physical interface and the RSP, and performs

packet re-assembly, protocol recognition and associated computation, and calculation of checksums and

CRC. The FPP is based on a pipelined and multithreaded architecture. It allocates a thread and a context

to process each incoming packet, and operates on one 64-byte block at a time, each in the associated

packet’s context. To program the FPP, system designers use a declarative programming language, FPL, to

specify the set of protocols to recognize and the set of actions to take for each specified protocol.

Programs for the FPP are represented as trees, where nodes correspond to pattern recognition functions

and leaves as actions. The RSP sits between the FPP and the switch fabric controller, and consists of three

VLIW engines: Traffic Management Compute engine that enforces packet discarding policies and

maintains queue statistics, Traffic Shaper Compute engine that ensures QoS and CoS for each connec-

tion queue, and Stream Editor Compute engine that performs necessary packet modifications. These

three engines work on each packet together as a linear pipeline. The ASI interfaces with the host

processor for configuration and program download, and in addition coordinates the data movement

between the FPP and RSP.

C-Port’s digital communications processor (DCP) [10] includes 16 channel processors (CP), five

specialized processors, and a 160 Gpbs internal bus. Each CP interfaces with the physical link interface,

and consists of a RISC core and two serial data processors (SDP). SDPs perform low-level bit manipu-

lation task whereas the RISC core performs such high-level task as packet scheduling and traffic statistics

collection. The five specialized processors perform classification table access, packet buffering, routing

table lookup, interfacing with the switch fabric, and supervisory processing. C-Port supports a special

communications programming interface called C-Ware to simplify system designers’ task of program-

ming DCP.

2.4.5 Conclusion

In this chapter, we present the set of tasks that a modern network processor needs to perform, describe a

set of architectural features specifically designed for network packet processing, and survey several

commercial network processor architectures as examples. Most of existing network processors include

special instructions to speed up packet processing, and use a parallel multithreaded architecture to

exploit multiple levels of parallelism; however, these architectures cannot scale to OC768 link rate and

beyond, and, therefore, further research into network processor architecture is warranted. Here are

several research directions that we believe are worth exploring:

. Scalable packet classification mechanism that supports variable-length application-level classifi-

cation patterns

. Integrated packet scheduling for both switch fabric and output links to achieve per-connection

QoS in an input queuing network device architecture

. Novel memory management scheme that exploits the abundant internal bandwidth of intelligent

RAM architecture [12] to cost-effectively satisfy the memory bandwidth requirements of terabit

links

. Architectural support for active networking and other high-level network functionalities

References

1. Nick McKeown and Thomas E. Anderson. ‘‘A quantitative comparis on of scheduling algorithms for

input-queued switches.’’ Computer Networks and ISDN Systems, vol. 30, no. 24, pp. 2309–2326,

December 1998.

2. Nick McKeown. ‘‘iSLIP: A scheduling algorithm for input-queued switches.’’ IEEE Transactions on

Networking, vol. 7, no. 2, April 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 65 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-65

3. Keshav, S., ‘‘On the efficient implementation of fair queueing.’’ Journal of Internetworking: Research

and Experience, Vol. 2, no. 3, September 1991.

4. Tennenhouse, D. and D. Wetherall. ‘‘Towards an active network architecture.’’ Computer Commu-

nication Review, vol. 26, no. 2, p. 5–18, April 1996.

5. Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer, and Brian N. Bershad. ‘‘Characterizing

processor architectures for programmable network interfaces.’’ In Proceedings of the 2000 Inter-

national Conference on Supercomputing, Santa Fe, N.M., May 2000.

6. Intel Internet Exchange Architecture, http:==developer.intel.com=design=ixa=whitepapers=ixa.htm.

7. Tzi-cker Chiueh and Prashant Pradhan. ‘‘High-performance IP routing table lookup using CPU

caching.’’ In Proceedings of IEEE INFOCOM 1999, New York City, April 1999.

8. Tzi-cker Chiueh and Prashant Pradhan. ‘‘Cache memory design for internet processors.’’ In Pro-

ceedings of Sixth Symposium on High-Performance Computer Architecture (HPCA-6), Toulouse,

France, January 2000.

9. Agere Systems. The PayloadPlus Architecture. http:==www.lucent.com=micro=netcom=docs=

fppproductbrief.pdf.

10. David Husak and Robert Gohn. ‘‘Network processor programming models: the key to achieving

faster time-to-market and extending product life.’’ http:==www.cportcorp.com=products=pdf=net_

proc_prog_models.pdf.

11. Xtream Logic Corporation. ‘‘Xstream logic packet processor core.’’ http:==www.xstreamlogic.

com=architectural_files=v3_document.htm.

12. David Patterson et al. ‘‘A case for intelligent DRAM: IRAM,’’ IEEE Micro, April 1997.

13. Anthony J. McAuley, Paul F. Tsuchiya, and Daniel V. Wilson. ‘‘Fast multilevel hierarchical routing

table using content-addressable memory.’’ U.S. Patent serial number 034444. Assignee Bell Com-

munications Research, Inc., Livingston, NJ, January 1995.

2.5 Stream Processors and Their Applications
for the Wireless Domain

Binu Mathew and Ali Ibrahim

2.5.1 Introduction

Many embedded media and digital signal processing applications involve simple repeated computations

on a very long or never-ending sequence of data. There is limited access or no access at all to past data. A

good example is an image processing system such as the simplified version of a face recognition system

shown in Fig. 2.32. This surveillance system accepts a video stream from a camera, identifies the pixels

that have human skin color, segments the image into regions that contain skin or no-skin, uses a neural

network-based algorithm to identify regions that may contain a face, uses another neural network-based

algorithm to locate the eyes, and then tries to match the face against a database of known faces to obtain

a person’s identity. Details of the system may be found in Ref. [1]. The application represents a well-

structured assembly of simple compute intensive algorithms. Data flow between the component blocks

is regular and predictable. The whole computation may be abstracted as a data-flow graph consisting of

a few key procedures and an input stream and an output stream. We say that applications with such

simple regular structures are ‘‘stream-able’’ and the style of computation is called stream processing.

Other examples include link-level encryption in networks, video transcoding, video compression,

cellular telephony as well as the image and speech processing. Even though stream optimized processor

hardware is a relatively new area, stream oriented techniques are ubiquitous in the software world with

UNIX pipes being a prime example.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 66 4.10.2007 2:57pm Compositor Name: BMani

2-66 Digital Systems and Applications

2.5.1.1 Rationale

Most current research in processor architecture revolves around optimizing four criteria: energy (or

power), delay, area, and reliability. For scientific applications, memory bandwidth is also a precious

commodity that critically affects delay. One or more of these criteria can often be traded off for the sake

of another. For processors, it is often the case that the product of energy and delay required to process a

given work load is relatively constant across different architectures after normalizing for the CMOS

process [2]. To achieve a significant improvement in the energy-delay product, the architecture needs to

be optimized to exploit the characteristics of the target application. Stream applications exhibit three

forms of parallelism that can be taken advantage of: instruction level parallelism (ILP) (execute

independent instructions in parallel), data parallelism (operate on multiple data elements at once,

often using SIMD), and task parallelism (execute different tasks in parallel on different processors).

Current high-performance dynamically scheduled out-of-order processors are optimized for applica-

tions that have a limited amount of ILP. They do not depend heavily on task level parallelism as evidenced

by the fact that most processors support only one- or two-way SMTand one or two cores per chip. Deep

submicron CMOS processes offer the opportunity to fabricate several thousands of 32-bit adders or

multipliers on a 103 10 mm microprocessor die. Yet, because of the limited ILP and irregular nature of

typical applicationsmost microprocessors have six or fewer function units. The bulk of the area and power

is consumed by caches, branch predictors, instruction windows, and other structures associated with

identifying and exploiting ILP and speculation. Stream applications on the other hand have very regular

structures, are loop oriented, and exhibit very high levels of ILP. In fact, Kapasi et al. report being able to

achieve 28 to 53 instructions per cycle for a set of stream applications on the Imagine stream processor [3].

To achieve such high levels of parallelism, stream processors typically utilize a large number of function

units that are fed by a hierarchy of local register files (LRF), stream register files (SRF), and stream caches

that decouple memory access from program execution. The resulting bandwidth hierarchy can exploit

data parallelism andmainmemory bandwidthmuchmore efficiently than traditional processors resulting

in better performance per unit area or unit power. In addition, it is possible to construct multiple stream

processors on the same chip and use stream communication mechanisms to ensure high bandwidth data

flow and exploit task level parallelism. The trade-off when compared to general-purpose processors is a

much more restrictive programming model and applicability that is limited to the streaming domain.

2.5.1.2 Terminology

Definitions of common stream programming terms follow:

Record A record is either an atomic data type such as an integer or a floating

point number or an aggregate of records.

Stream A stream is a directed sequence of records. Depending on their direction,

streams may be either input streams or output streams. While most

Segment
image
(K2)

Eigenfaces
face

recognizer
(K6)

Neural net
eye locator

(K5)

Rowley
voter
(K4)

Rowley/
Viola-Jones

detector
(K3)

Flesh
tone
(K1)

Video
stream

Identity

FIGURE 2.32 Face recognizer: an example stream application.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 67 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-67

streams are very long or never ending, stream programming systems

also support some specialized types of streams. Constant streams have

a fixed length and are often repeatedly reused. Conditional streams

access a record from the stream only when a condition code that is

computed in a processor or a function unit cluster of a processor is

true [4]. They may be input or output streams depending on the

direction of access. Most streams are sequential, i.e., for input

streams the algorithm can read only the next record in the stream

and write the sequentially next record to an output stream. Gather

streams allow arbitrary indexing to fetch records [5]. Indexed streams

allow accessing elements within a constrained range of one stream to

be accessed using indices from another stream [6].

Derivation A new stream defined to contain a subset of the records from another

stream is called a derived stream. For example, if the variable x refers to

an existing input stream, y is a constant stream containing the integers

(0,2,4,8) an indexed stream z may be derived from x and y that

is constrained to have the range (0,8) relative to the current position

of x. If S[i] denotes the ith record relative to the current position of

stream S, then z[0]¼ x[0], z[1]¼ x[2], and so on. Derivations may

be done using other mechanisms such as strided or bit-reversed

access. The key point is that the stream compiler should be able to

reason about the relationship of records of the derived and base

streams.

Kernel A kernel is a function that transforms input streams to output streams.

Kernel functions are typically loop-oriented computations with few

or nonexistent conditional branches in the loop body. Simple

conditional operations in the original algorithm may often be

converted into forms such as predicated execution=if-conversion,

conditional moves, and input=output to conditional streams.

Stream Graph A stream graph is a directed graph where the nodes are kernels

and the edges correspond to streams that convey the data between the

kernels.

SRF SRF are specialized storage structures used to hold streaming data. They

are essentially large blocks of SRAM under the control of hardware

that know how to fetch and store the sequentially next element of a

particular stream, perform operations for gather streams, indexed

streams, etc.

LRF The complexity of multiported register files is one of the critical factors

that limit the issue width in a traditional microprocessor. Rather than

use a single central register file, stream architectures attach LRF to

execution clusters or function units. These LRFs typically serve only

the units they are attached to. Intercluster communication is handled

by a compiler-controlled communication network.

Producer–consumer

locality

It is common in stream applications for a producer kernel to generate

and save some results to an SRF and the results are immediately used

by a consumer kernel straight out of the SRF without saving

intermediate results to lower levels of the memory hierarchy.

Such reuse of intermediate results is termed producer–consumer

locality.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 68 4.10.2007 2:57pm Compositor Name: BMani

2-68 Digital Systems and Applications

2.5.2 Stream Virtual Machine

The stream virtual machine (SVM) is an abstract machine model that has been proposed by Labonte

et al. to represent the important characteristics of stream architectures and to develop techniques to

compile applications and analyze their performance across different implementation architectures [7].

Their compilation technique proceeds in two stages. First a high level compiler (HLC) reads a stream

application written in a stream programming language such as StreamIt or ArrayC. The HLC also reads

an abstract SVM model for a stream architecture such as the MIT RAWmachine or Stanford Imagine. It

then uses the abstract machine model to partition the application into kernels that will execute on

particular processing resources and into data transfers between the kernels. This mapping may be

described in terms of functions available in the SVM API. API functions provide for initializing local

memory, scheduling kernels for execution, declaring dependence between kernels, coordinating DMA

transfers between different units, etc. [7]. The kernels are then compiled into binary form by a low level

compiler (LLC) that is specific to the particular architecture.

An SVMmodel for a stream architecture consists of three types of components: processors, memories,

and links. Processors in turn come in three varieties. Control processors decide the sequence of

operations performed by the entire machine. Control processors offload the compute intensive task of

stream kernel execution to kernel processors (stream processors). Lastly, DMA engines are considered as

processors that execute specialized kernels that transfer data between the many different memories in the

system. The parameters that describe an SVM processor are its type (control, kernel or DMA), its

operating frequency, function unit mix, degree of SIMD parallelism, the number and capacity of register

files, etc. The memories in an SVM system may be classified depending on their access mechanism into

RAMs (random access allowed), FIFOs (only sequential access allowed), and caches (associative lookup

allowed). Since stream processors use a hierarchy of memories that capture producer–consumer locality

to economize main memory bandwidth, a natural characterization parameter for SVM memories is the

bandwidth and latency they offer to entities that are above and below them in the bandwidth hierarchy.

Links allow processors and memories to communicate with each other and are characterized by their

bandwidth and latency.

Figure 2.33 shows an SVM model to which we can map our face recognizer from Fig. 2.32. It consists

of three stream processors, a control processor and a multichannel DMA engine that can move data

between the SRFs and main memory. Solid lines indicate data paths and dotted lines indicate control

paths. We next describe different types of task to resource mappings for such an application.

2.5.3 Time and Space Multiplexing

Consider a set of n kernels named K¼ {K1, K2, . . . , Kn} and m processors P¼ {P1, P2, . . . , Pm}. Let D(Ki,

Pj) denote the execution time (delay) of kernel Ki when executed on processor (or processor set) Pj.

When the set of processors is understood from the context, we will denote this as D(Ki). Let P(P) denote

Multichannel
DMA

Host SP1 SP2 SP3

Main
memory

SRF1 SRF2 SRF3

FIGURE 2.33 SVM machine model example.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 69 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-69

the power set of P. A schedule S is a mapping S(K)! P(P)3 t where t is the start time of the kernel. We

will hereafter use the notation Ki �p and Ki �t to denote the set of processors and start time assigned to

kernel Ki. Legal mappings obey the following rules:

1. Kj � t � Ki � tþD(Ki) when ever Kj depends on Ki, i.e., dependencies are not violated.

2. For all i , j such that i 6¼ j, and Ki � t � Kj � t<Ki � tþD(Ki , Ki � p), it should be the case that Ki � p
\ Kj · p¼f, i.e., only one kernel may be executing on a processor at any time.

3. For all i , Ki � p 6¼ f, i.e., every kernel should be allocated at least one processor.

A stream processing system whose schedules follow the rule, for all i, Ki � p¼P is called a time

multiplexed system. In such a system, all available processing resources are allocated to one kernel

and then to the next kernel and so on. A stream processing system whose schedules follow the rule, for all

i , jKi � pj ¼ 1 is called a space multiplexed system. In such a system, only one processor is ever allocated

to one kernel. If there is some i , j such that i 6¼ j , and Ki � t � Kj � t<Ki � tþD(Ki , Ki � p) and jKi � pj> 1,

the system is said to be space–time multiplexed. In that case, multiple kernels execute simultaneously

and some kernels are given more than one processor. Figure 2.34 shows three different mappings for the

application from Fig. 2.32 on to the architecture from Fig. 2.33. By our definitions, Fig. 2.34a is a

space multiplexed schedule, Fig. 2.34b is a time multiplexed schedule, and Fig. 2.34c is a space–time

multiplexed schedule. To simplify the example, DMA transfers are not shown.

To consider the relative benefits of time and space multiplexing we present a simplified analysis that

considers only two kernels K1 and K2 where K2 depends on K1. A more detailed theoretical framework

has been developed by the authors, but the details will be deferred to a later publication. Consider the

case where the amount of data parallelism available is much larger than the number of processorsm. For

the space multiplexed case, we follow the schedule:

S(K1) ¼ (0, {P1, P2, . . . , Pm=2�1}) and S(K2) ¼ (D(K1), {Pm=2, Pm=2þ1, . . . , Pm}):

For the time multiplexed case, we follow the schedule:

S(K1) ¼ (0, {P1, P2, . . . , Pm}) and S(K2) ¼ (D(K1), {P1, P2, . . . , Pm}):

K1

K2

SP1 SP2 SP3 SP1 SP1SP2 SP2SP3

K5

K6

SP3

K4

K5

K6

K3

K4

K1

K2

K3

K4

K1

K2

K3

K5

K6

(a) (b)

e
m
i
T

(c)

FIGURE 2.34 Example schedules for the application from Fig. 2.32.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 70 4.10.2007 2:57pm Compositor Name: BMani

2-70 Digital Systems and Applications

Because of abundant data parallelism, we can assume that execution time of a kernel is inversely

proportional to the number of processors allocated to it. Then, Throughputtime mux ¼ 1
D(K1)þD(K2)

and

Throughputspace mux ¼ 1
MAX(2�D(K1), 2�D(K2))

¼ 1
2�D(K1)

(arbitrarily picking K1 as the larger term).

Therefore, Throughput ratiotime mux=space mux ¼ MAX(2�D(K1), 2�D(K2))
D(K1)þD(K2)

. Since this ratio is greater than or

equal to one, time multiplexing works better than space multiplexing in this case. Intuitively, the space

multiplexed version works like a pipeline where the stage delays are unbalanced and the pipeline shifts at

the speed of the slowest stage while the space multiplexed version is perfectly load balanced. In addition,

it is possible to convert the time multiplexed system into an m-way SIMD version where all m copies

share the same control logic and instruction memory leading to lower area and higher power efficiency.

When the stages are balanced MAX(23D(K1), 23D(K2))¼ 23D(K1)¼ 23D(K2). Then the

throughput ratio becomes one, but time multiplexing is still better because of higher area and power

efficiency.

The situation is quite different when the data=instruction level parallelism is limited. Let kernels K1

and K2 each require N1 and N2 instructions worth of computation, respectively. Assume that all

instructions require one cycle. Further, assume that dependencies limit the peak IPC possible to I1 and

I2 where I1, I2�m=2. Then, D(K1)¼N1=I1 and D(K2)¼N2=I2. Then, Throughputtime mux ¼ 1
N0

I0
þ N1

I1

and

Throughputspace mux ¼ 1

MAX
N0
I0
,
N1
I1

� � : Therefore, Throughput ratiotime mux=space mux ¼
MAX

N0
I0
,
N1
I1

� �
N0
I0
þ N1

I1

:

Since this quantity is less than one, space multiplexing is the better alternative in this case. Intuitively,

time multiplexing lets execution resources go waste while space multiplexing shares the resources leading

to better performance. As before, when the load is perfectly balanced they have equivalent throughput,

but time multiplexing is the better option in that case. On a practical note, when time multiplexed

architectures are based on very wide SIMD execution, it is often cumbersome to reformulate algorithms

to match the wide SIMD model. Programmers might find it much more convenient to express an

algorithm as a pipeline of tasks in a form suitable for space multiplexing. Programming languages like

StreamIt attempt to automatically compile space multiplexed code to space–time multiplexed binaries,

but further research in this area is required to take advantage of the efficiency of time multiplexed

architectures.

2.5.4 Stream Processor Implementations

Now that we have introduced a minimal framework to reason about various styles of stream processing,

we present an overview of three specific implementations: Stanford Imagine, MIT RAW, and IBM’s cell

processor.

2.5.4.1 Imagine

The Imagine image and signal processor developed by Prof. William Dally and the Concurrent VLSI

Architecture Group (CVA) at Stanford University was the pioneering project in stream processing [3].

Figure 2.35 shows the internal structure of an Imagine processor. The Imagine processor consists of eight

execution clusters where each cluster contains six ALUs resulting in a peak execution rate of 48

arithmetic operations per second. Each cluster executes a VLIW instruction under the control of the

microcontroller. The same VLIW instruction is issued to all clusters resulting in the instruction fetch and

control overhead being amortized over eight-way SIMD execution. The bandwidth hierarchy consists of

LRF attached to each function unit that provide 435 GB=s, an SRF that feeds the LRFs at 25.6 GB=s, and

a streaming memory system that feeds the SRF at 2.1 GB=s. The LRFs within each cluster are connected

directly to function units but can accept results from other function units over an intra-cluster switching

network. Each cluster also contains a communication unit that can send and receive results from other

units over an intercluster switching network. The SRF is internally split into banks that serve each

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 71 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-71

cluster. In addition, each cluster also has a 256 word 32-bit scratchpad memory. The host processor

queues kernels for execution with the stream controller via the host interface. The stream controller

initiates stream loads and stores via the stream memory system, uses an internal scoreboard to ensure

that dependencies are satisfied, and then lets the microcontroller sequence the execution of the next

kernel function whose dependencies have all been satisfied. The Imagine processor was fabricated in a

0.18 m CMOS process and achieved 7.96 GFLOPS and 25.4 GOPS at 200 MHz. Imagine was succeeded

by the Merrimac project where the focus was on developing a streaming supercomputer for scientific

computing.

Both Imagine and Merrimac were developed primarily around the concept of time multiplexing. Thus

they are optimized for applications with very high levels of data parallelism. In a multichip configur-

ation, it is possible to space–time multiplex these systems by making kernels on each node communicate

with their counterparts on other nodes over a network interface.

2.5.4.2 RAW

The RAW processor is a wire delay exposed tiled architecture developed by Prof. Anant Agarwal and the

Computer Architecture Group (CAG) at MIT as a part of the oxygen ubiquitous computing project [8].

Increasing wire delays in submicron CMOS processes and the demand for high clock rates have created a

need to decentralize control and resources and distribute resources as semiautonomous clusters that

avoid the need for single-cycle global communication. The RAW processor approaches this problem by

splitting the die area into a square array of identical tiles and the tiles communicate with each other over

a mesh network. Each tile contains an eight-stage in-order single issue MIPS-like processor with a

pipelined FPU, 32 KB of instruction cache, 32 KB of data cache, and routers for two static and two

dynamic networks that transport 32-bit data. The routers have another 64 KB of instruction cache.

Point-to-point transport of scalar values is done over the high performance static network that is fully

compiler controlled and guarantees in-order operand delivery. The dynamic network routes operations

such as I=O, main memory traffic, and inter-tile message passing that are difficult to fully schedule

statically. The static router controls two cross bars each with seven inputs namely the four neighboring

tiles in the square array, the router pipeline itself, the other crossbar, and the processor. For tiles on the

periphery of the chip, some of the links connect to external interfaces. The tiles and the static router are

Host
processor

Host
interface

Stream
controller

S
D
R
A
M

Streaming
 memory
system

Streaming
 register

file

ALU cluster 7

ALU cluster 6

ALU cluster 5

ALU cluster 0

Network
interface

Microcontroller

Imagine stream processor

Other
Imagine nodes,

I/O

FIGURE 2.35 Imagine stream processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 72 4.10.2007 2:57pm Compositor Name: BMani

2-72 Digital Systems and Applications

designed for single cycle latency between hops. The compiler encodes the routing decisions for the

crossbars into a 64-bit instruction that is fetched from a 64 KB instruction cache and executed by

the static router. Inter-tile communication latency is reduced by integrating the network with the bypass

paths of the processor. A 225 MHz implementation of a 16 tile RAW processor was fabricated in a 0.18 m

CMOS process and achieved speedups of 4.9–15.4 over a 600 MHz Pentium 3 for a set of stream-

oriented benchmarks written in the StreamIt language.

Because of its independent threads of execution in each tile, the RAW processor is capable of

performing time, space, and space–time multiplexing. The Streamlt language mostly exposes a space

multiplexed programming model even though the compiler is capable of partitioning kernels and load

balancing them for space–time multiplexing (Fig. 2.36).

2.5.4.3 Cell

Stream processors made their commercial debut in 2005 with the cell broadband engine architecture

(CBEA) from IBM that was developed under collaboration with Toshiba and Sony [9]. This architecture

is optimized for a range of compute intensive applications varying from computer games, cryptography,

graphics transformations, and lighting to scientific workloads. The cell consists of a 64-bit power

processor that serves a similar function to the host processor of Imagine and eight streaming units

named synergistic processing elements (SPE). Each SPE is capable of 128-bit SIMD operations that may

be two 64-bit, four 32-bit, eight 16-bit, or 16 byte-wide operations. An SPE consists of two pipelines.

The even pipeline executes floating point and integer arithmetic while the odd pipeline handles

branches, memory accesses, and permutations. Up to two instructions may be issued in-order per

cycle to a set of seven function units. The bandwidth hierarchy consists of a 128 word 128-bit LRF in

each cluster that is filled from a 256 KB local store (SRF) that is in turn serviced by a globally coherent

DMA engine. Interestingly, the SRF also serves as the instruction store for an SPE. Like in the case of the

RAW processor, each SPE has its own thread of execution and the system is capable of performing time,

space, and space–time multiplexing. The cell processor was fabricated in a 90 nm CMOS process, has a

peak operating frequency of 4 GHz, and achieves an SIMD speedup of 9.9 times on a set of compiled

benchmarks.

2.5.5 Stream Processing for Wireless Systems

Until now, most research in stream processing has addressed media and scientific applications. Wireless

communication in forms such as cellular telephony systems and local and personal area networks has

become a ubiquitous part of modern life. Mobile wireless systems have relatively high demands for

processing and power efficiency and represent a new domain in which stream processors could be quite

useful. With around one billion cell phones sold annually, the volume in this market provides economic

justification for the development of specialized processor architectures. We present a brief overview of

cellular communication technology and indicate avenues for the application of stream processors.

Processor

Switch

Raw tile
Raw processor

FIGURE 2.36 RAW processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 73 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-73

First generation (1G) cellular systems using analog technology were introduced in Scandinavia in

1981 and were followed by similar systems in the United States. They provided only voice transmission.

The first digital cellular systems that made their appearance in 1990 and were termed second generation

wireless (2G) systems. They provided better voice quality and added data services support with

transmission rates up to 9.6 Kbits=s. To support high data rates and to be able to provide multimedia

services anytime and anywhere, the International Telecommunications Union defined a family of

systems for the third generation (3G) mobile telecommunications called IMT-2000. The 3G system

provides data rates up to 2 Mbits=s for stationary users, 384 Kbits=s for pedestrians, and 144 Kbits=s for

vehicular users. The services offered by 3G systems can be divided into different classes depending on

their delay sensitivity. Voice, video telephony, and video games are delay sensitive. E-mail, short message

service, and data downloads are not delay sensitive. In this subsection, we explain the wide-band code

division multiple access (WCDMA) system that is commonly used in 3G systems.

The quest to improve data rates and quality of service and to provide seamless roaming and global

mobility for voice and data services, a new wireless standard (4G) is currently being formulated. The

technologies that would most likely play an important role in 4G are software defined radio (SDR) and

multiple input multiple output (MIMO) antenna systems. 3G and 4G systems consist of several layers

each providing a specific function. The following sections will only focus on the physical layer where all

the compute intensive algorithms are located.

2.5.6 WCDMA Physical Layer

Figure 2.37 shows the block diagram of a receiver that uses WCDMA physical layer technology. We focus

on the receiver rather than the transmitter, since the latter has a much lower computational complexity

than the former.

At the output of the A=D converter, the signal is first filtered using a root-raised cosine (RRC) filter

that reduces inter-symbol interference. Subsequently, the signal is fed to a rake receiver and a searcher.

Because of the possibility of multipath propagation, the rake receiver has a number of fingers called

correlators that individually process several multipath components. In each of these fingers, the signal is

unspread by multiplying it by a unique PN code used by the transmitter. This operation separates the

desired data signal from interfering signals. The outputs from different correlators are then combined to

achieve improved reliability and performance. Depending on the number of multipath components, the

number of correlators varies between two and six. The searcher provides an estimate of the number

of multipaths and their relative delays. The rake receiver uses this information to control the number of

correlators and the delay between them. Finally, the signal is passed through a turbo decoder for

error correction. Turbo coding is used in 3G wireless cellular systems because of its outstanding error

correction capabilities.

All of these algorithms are dominated by inner loops of low-to-moderate complexity that are applied

to real-time data streams. The loop bodies tend to have a high degree of parallelism and have operations

Channel
decoder

Maximal
ratio

combiningRF

A/D

Searcher

Descramble DespreadRRC
filter

FIGURE 2.37 Functional diagram of the most compute intensive receiver algorithms.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 74 4.10.2007 2:57pm Compositor Name: BMani

2-74 Digital Systems and Applications

such as complex-correlation arithmetic that could benefit from processor specialization. The simple

regular data-flow and real-time requirements make this system a good candidate for acceleration using

customized stream processors.

2.5.7 4G

As explained before, it is anticipated that MIMO and software radio technologies may play a key role in

4G systems. The use of a MIMO system could significantly increase the data rate but when compared

with 3G it could also increase the computational complexity by one to two orders of magnitude,

depending on the number of antennas. There are several different flavors of MIMO-based systems

such as MIMO–OFDM (orthogonal frequency division multiplexing) and MIMO MC-CDMA (multi-

carrier code division multiple access). A simplified block diagram of a MIMO–OFDM receiver is shown

in Fig. 2.38. MIMO–OFDM combines OFDM and MIMO techniques to realize good spectral efficiency

and high throughout. It can transmit OFDM modulated data from multiple antennae simultaneously.

The receiver first performs OFDM demodulation then does MIMO decoding to extract data from all the

transmit antennae and sub-channels.

In software-defined radio technology, a large portion of the radio frequency functionality such as the

intermediate frequency (IF) stage, bit-stream processing, modulation=demodulation, and source pro-

cessing are performed in software running as opposed to the traditional approach of using RF circuits.

SDR provides the opportunity to implement multimode terminals that can operate at several different

frequency ranges. New services and advanced signal processing techniques can be easily implemented

and tested using the SDR approach. Its reprogrammability allows it to download algorithms on demand,

and intelligently adapt radio interfaces to different applications and environments. Both MIMO and

SDR are computationally intensive techniques with well-structured data-flow and are amenable to

stream processing.

2.5.8 Computational Complexity and Power Consumption

The computational requirements imposed by cellular standards have increased exponentially from 1G to

4G. This is because of the increased complexity of algorithms introduced to reduce the bit-error rate use

of the wireless spectrum more efficiently. These algorithms have been shown to require more perform-

ance than is currently available in embedded processors. Table 2.5, shows the computation requirements

to handle 384 Kbits=s transmission rate on a 3G WCDMA receiver [10]. The problem will persist in the

future since the computation requirements are growing faster than Moore’s law [10]. Power dissipation

is also a major problem in battery-powered mobile computing and communication devices. Although

the computational requirements are increasing exponentially, battery capacity is only improving at the

Channel
decoderRX FRAME CYCLIC

SYNCHRF PREFIX
FFT

OFDM demodulator

MIMO channel
estimation

and
detection

FIGURE 2.38 MIMO–OFDM receiver.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 75 4.10.2007 2:57pm Compositor Name: BMani

System Design 2-75

rate of 1.03 times per year [11]. Flexibility and low time to market require the use of programmable

processors for the implementation of the increasingly sophisticated digital signal processing algorithms.

Power efficiency on the other hand, requires the use of a customized solution. To make 4G systems

usable, the performance per unit power consumption of processors needs to improve significantly—an

area in which stream processors have a significant advantage.

2.5.9 Current Solutions

As explained in the previous sections, wireless applications can be partitioned into different components

that can be space–time multiplexed efficiently. This structural simplicity has given rise to several

multiprocessor system-on-chip (SoC) architectures with the OMAP from TI, SB3010 from Sandbridge

technologies, and the EVP processor from Philips being prominent examples.

2.5.9.1 Texas Instruments OMAP

The OMAPV2230 is one of the interesting SoCs from TI’s OMAP-VOX product family [12]. It is an

integrated universal mobile telecommunications system (UMTS) solution for 3G handsets. It integrates a

digital base-band system and an applications processor. The digital base-band system consists of an ARM

processor for control purposes, a TI TMS320C55x processor for DSP algorithms, and a custom ASIC

module that handles the compute intensive portions of 3G base-band processing. The applications

processor includes a dedicated 2D=3D graphics accelerator and an image video audio accelerator (IVA).

2.5.9.2 Philips EVP

The embedded vector processor (EVP) developed by Philips is a VLIW-based scalable SIMD architecture

designed to support multiple 3G standards [13]. The EVP includes several specialized function units such

as a shuffle unit, an intra-vector unit that supports intra-vector operations, and a code generation unit that

supports CDMAcode generation. It also includes an address calculation unit that supports an extensive set

of addressing modes. The EVP exploits VLIW parallelism by providing the ability to issue five vector

operations, four scalar operations, and address updates and loop control operations simultaneously.

2.5.9.3 Sandbridge Technologies SB3010

Sandbridge Technologies has implemented a 3G multimedia handset design using their SB3010 base-

band processor [14]. The processor integrates an ARM 9 RISC core, four of Sandbridge’s own Sand-

blaster DSP cores, on-chip instruction caches and data memories, and a programmable RF interface. In

most broadband communication systems, data is streamed from an A=D converter. To accommodate for

this, their design uses scratchpad memories rather than data caches. Each Sandblaster core delivers two

billion MAC operations per second and supports eight hardware threads. With a total performance of

the order of 10 billion MACs per second, the SB3010 is able to run different wireless protocols such as

WCDMA, as well as multimedia codecs such as MPEG-4 H.264 and MP-3.

TABLE 2.5 Computation Requirements for 3G

WCDMA Receiver

Algorithm Approximate MIPS

Digital filter (RRC, channelization) 3000

Searcher 1500

Rake 650

Maximal-ratio combining 24

Channel estimator 12

AGC, AFC 10

De-interleaving, rate matching 14

Turbo decoding 52

Sum 5262

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 76 4.10.2007 2:58pm Compositor Name: BMani

2-76 Digital Systems and Applications

The DSP architecture can be partitioned into an instruction fetch and branch unit, an integer and

load store unit, and an SIMD vector unit. This SIMD unit consists of four vector processing elements

(VPE), an accumulator register file, a shuffle unit, and a reduction unit. Integer operations 16, 32, and

40-bit fixed-point data types is supported. The Sandblaster DSP implements an unorthodox multi-

threading method to avoid the hassles posed by data dependencies and hazards in pipelined processors.

Eight hardware threads are supported, but they issue instructions round-robin. Effectively, each thread

issues an instruction every eighth cycle and its dependencies resolve while it waits for other threads to

take their turn.

2.5.10 Stream Processor Based Wireless SoCs

As shown in Fig. 2.37 and explained in previous sections, wireless systems usually consist of multiple

DSP algorithm kernels connected in feed forward pipelines and data is streamed between the kernels.

These kernels are typically compute bound, exhibit high levels of data parallelism, typically require low

precision fixed-point arithmetic, and contain bit manipulation operations that could benefit from

customized instructions and function units.

The ACT stream processor developed at the University of Utah has demonstrated that compute

intensive 3G base-band algorithms stream architectures perform very well on stream architectures

[15–17]. The energy-delay product of this stream processor was within one to two orders of magnitude

of that of an ASIC. This research is a first step toward the goal of creating high-efficiency wireless SoCs

based on space–time multiplexed implementations of base-band algorithms on a network of customized

stream processors. Unlike the general mesh network of the RAW processor, the on-chip interconnect

between the stream processors can be customized to account for the data-flows observed in 3G and 4G

systems. It is known that the input from the A=D converter stage to a WCDMA system requires at most

7.68 MB=s bandwidth [18]. Communication between later kernels in a WCDMA system requires even

less bandwidth. This makes it possible to use low throughput interconnects between different stream

processors. Once the data is received by a particular core, it may need to be buffered and accumulated. In

the case of MIMO-OFDM, this takes the form of a FIFO that is required between the OFDM modulator

and MIMO detection. In the case of turbo codes, this is because the algorithm operates only on blocks of

data. In either case, an SRF structure that supports sequential and indexed streams would be adequate to

handle the buffering requirements. Some parts of wireless processing may not be amenable to space

multiplexing because of load imbalance between stages, variability in data arrival times. A mixture of

distributed control, space–time multiplexing, data rearrangement units, and programmable intercon-

nect may be required to solve all the complex challenges posed by 4G algorithms.

2.5.11 Conclusions

Stream processors have been extensively studied in academia by projects such as Stanford Imagine and

MIT RAW. They made their commercial debut with the cell, a broadband processor from IBM that is the

computing engine for the Sony PlayStation 3. Research has demonstrated that stream processors can

achieve very high levels of energy efficiency and performance on a variety of speech and image

processing as well as wireless communication tasks [1,17]. The cellular telephony market has experi-

enced rapid growth around the world and represents a significant opportunity for stream processors

because this domain requires very high computation rates to reduce the bit error rate and to support

high data rates, full motion video and multimedia applications, and a variety of wireless standards.

Simultaneously, they must also be energy efficient and flexible, have a low time to market, and be low

cost. The stringent power requirements of mobile wireless systems calls for different patterns of stream

processor customization than previously studied for scientific stream processors. The possibility of

customizing the instruction set architecture and on-chip interconnect and performing energy-delay

trade-offs for wireless optimized stream processors merits further study.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 77 4.10.2007 2:58pm Compositor Name: BMani

System Design 2-77

References

1. B. Mathew. The perception processor. Ph.D. Thesis, School of Computing, University of Utah, Salt

Lake City, UT, Aug. 2004.

2. R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors. IEEE Journal

of Solid-State Circuits, 31(9):1277–1284, Sept. 1996.

3. U. Kapasi, W.J. Dally, S. Rixner, J.D. Owens, and B. Khailany. The Imagine stream processor. In

Proceedings 2002 IEEE International Conference on Computer Design, pp. 282–288, Sept. 2002.

4. U.J. Kapasi, W.J. Dally, S. Rixner, P.R. Mattson, J.D. Owens, and B. Khailany. Efficient conditional

operations for data-parallel architectures. In MICRO 33: Proceedings of the 33rd Annual ACM=IEEE

International Symposium on Microarchitecture, pp. 159–170, New York, 2000. ACM Press.

5. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook for

gpus: Stream computing on graphics hardware. ACM Transaction Graph, 23(3):777–786, 2004.

6. P. Mattson, U. Kapasi, J. Owens, and S. Rixner. Imagine programming system user’s guide. http:==

cva.stanford.edu=classes=ee482s=docs=ips_user.pdf, 2002.

7. F. Labonte, P. Mattson, W. Thies, I. Buck, C. Kozyrakis, and M. Horowitz. The stream virtual

machine. In Proceedings of the 13th International Conference on Parallel Architecture and Compilation

Techniques (Pact, 04), pp. 267–277, 2004.

8. M.B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. Johnson, J. Kim,

J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation

of the raw microprocessor: An exposed-wire-delay architecture for ilp and streams. In ISCA ’04:

Proceedings of the 31st Annual International Symposium on Computer Architecture, p. 2, Washington,

DC, 2004. IEEE Computer Society.

9. D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P. Harvey,

H. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny,

M. Riley, D. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa.

Overview of the architecture, circuit design, and physical implementation of a first-generation cell

processor. IEEE Journal of Solid-State Circuits, 41(1):179–196, 2006.

10. D. Greifendorf, J. Stammen, and P. Jung. The evolution of hardware platforms for mobile ‘‘software

defined radio’’ terminals. Proceeding IEEE Personal, Indoor, and Mobile Radio Conference, Sept. 2002.

11. J.M. Rabaey, M. Potkonjak, F. Koushanfar, S. Li, and T. Tuan. Challenges and opportunities in

broadband and wireless communication designs. In Proceedings IEEE=ACM International Conference

on Computer Aided Design (ICCAD), pp. 76–83, Nov. 2000.

12. T. Instruments. Omapv2230. Technical Report, http:==focus.ti.com=pdfs=wtbu=ti_omapv2230.pdf.

13. K. van Berkel, F. Heinle, P.P. Meuwissen, K. Moerman, and M. Weiss. Vector processor as an enabler

for software defined radio in handheld devices. EURASIP Journal on Applied Signal Processing,

16:2613–2625, 2005.

14. M. Schulte, J. Glossner, S. Jinturkar, M. Moudgill, S. Mamidi, and S. Vassiliadis. A low-power multi-

threaded processor for software defined radio. Journal of VLSI Signal Processing Systems, 43

(2=3):143–159, 2006.

15. A. Ibrahim and A. Davis. Address acceleration mechanisms for an adaptive cellular telephony

processor. International Conference on Multimedia and Expo (ICME), 2005.

16. A. Ibrahim and A. Davis. Exploiting data context switching in a low power VLIW coprocessor.

Workshop on Optimizations for DSP and Embedded Systems (ODES), in conjunction with IEEE=ACM

International Symposium on Code Generation and Optimization (CGO), 2005.

17. A. Ibrahim, M. Parker, and A. Davis. Energy efficient cluster coprocessors. International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), May 2004.

18. H. Holma and A. Toskala. WCDMA for UMTS: Radio Access for Third Generation Mobile Commu-

nications, 2nd edn., John Wiley & Sons, 2002.

Vojin Oklobdzija/Digital Systems and Applications 6195_C002 Final Proof page 78 4.10.2007 2:58pm Compositor Name: BMani

2-78 Digital Systems and Applications

3
Architectures
for Low Power

Pradip Bose
IBM T.J. Watson Research Center

3.1 Introduction... 3-1

3.2 Fundamentals of Performance and Power:
An Architect’s View... 3-2
Performance Fundamentals . Power Fundamentals .

Power–Performance Efficiency Metrics

3.3 A Review of Key Ideas in Power-Aware
Microarchitectures... 3-6
Power Efficiency at the Processor Core Level

3.4 Power-Efficient Microarchitecture Paradigms 3-14
Single-Core Superscalar Processor Paradigm . Multicluster

Superscalar Processors . Simultaneous Multithreading .

Chip Multiprocessing

3.5 Conclusions.. 3-19

3.1 Introduction

Power dissipation limits have emerged as a key constraint in the design of microprocessors, even for

those targeted for the high-end server product space. At the low end of the performance spectrum,

power has always dominated over performance as the primary design constraint. However, although

battery life expectancies have shown modest increases, the larger demand for increased functionality and

speed has increased the severity of the power constraint in the world of handheld and mobile systems. At

the high end, where performance was always the primary driver, we are witnessing a trend where

increasingly, energy and power limits are dictating the high-level processing paradigms, as well as the

lower-level issues related to clocking and circuit design.

Figure 3.1 shows the expected maximum chip power (for high-performance processors) through the

year 2020. The data plotted is based on the updated 2006 projections made by the International

Technology Roadmap for Semiconductors (ITRS) (http:==public.itrs.net). The projection indicates

that beyond the continued growth period (through the year 2007) for high-end microprocessors,

there will be a saturation in the maximum chip power (with a projected cap of around 200 W from

years 2008 all the way through 2020). This is ostensibly because of thermal=packaging and die size limits

that have already started to kick in. Beyond a certain power regime, air cooling is not sufficient to

dissipate the heat generated; on the other hand, use of liquid cooling and refrigeration causes a sharp

increase of the cost–performance ratio. Thus, power-aware design techniques, methodologies, and tools

are of the essence at all levels of design.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 1 4.10.2007 2:55pm Compositor Name: BMani

3-1

In this chapter, we first present a survey of some of the most promising ideas in power-aware design at

the microarchitecture level. We base this review on the currently available literature, with special

emphasis on relevant work presented at recent architecture conferences and workshops. Where useful,

we also refer to earlier papers that deal with fundamental issues related to the performance, cost, and

scalability of concurrent machine architectures. We show how the fundamentals of machine perform-

ance relate to the modern problem of architecting processors in a way that allows them to scale well

(over time) in terms of joint power–performance metrics. In this context, we comment on and compare

the viability and future promise of several microarchitectural paradigms that have already been

picked up by industrial designs, e.g., clustered superscalars, various flavors of multithreading (e.g.,

simultaneous multithreading (SMT)), and chip multiprocessors (CMP).

In Section 3.2, we review the fundamentals of pipelined and vector=parallel computation as they relate

to performance and energy characteristics. We also dwell briefly on the topic of defining a suitable set of

metrics to measure power–performance efficiency at the microarchitecture level. In Section 3.3, we

provide a survey of the most promising ideas and approaches in power-aware design at the microarch-

itecture level, with references to circuit design and clocking issues that are relevant in the discussion. This

review is presented in the context of workloads and benchmarks that represent different markets. In

Section 3.4, we compare the power–performance outlook of three emergingmicroarchitectural paradigms

in the general-purpose processor space: multicluster superscalars, multithreaded processors, and CMP. In

Section 3.5, we conclude by summarizing the main issues addressed in this chapter. We also point to a list

of future research items that the architecture community needs to pursue in collaboration with the circuit

design community to achieve the targets dictated by future cost and performance pressures.

3.2 Fundamentals of Performance and Power:
An Architect’s View

3.2.1 Performance Fundamentals

The most straightforward metric for measuring performance is the execution time of a given program

mix on the target processor [1,2]. The execution time can be written as

T ¼ PL *CPI *CT ¼ PL *CPI * (1=f) (3:1)

2005
2007

2009
2011

2013
2015

Year

0

50

100

150

200

250

M
ax

 p
ow

er
/c

hi
p

(w
at

ts
)

Linear growth period

FIGURE 3.1 Maximun chip power projection (ITRS roadmap).

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 2 4.10.2007 2:55pm Compositor Name: BMani

3-2 Digital Systems and Applications

where

PL is the dynamic path length of the program mix, measured as the number of machine instruc-

tions executed

CPI is the average processor cycles per instruction incurred in executing the program mix

CT is the processor cycle time (measured in seconds per cycle) whose inverse determines the clock

frequency f

Since performance increases with decreasing T, one may formulate performance, Perf, as

Perfchip � ¼ Kpf f � ¼ KpvV (3:2)

where, the K’s are constants for a given microarchitecture-compiler implementation and for a specific

workload mix. The Kpf value stands for the average number of machine instructions that are executed

per cycle on the machine being measured; this is usually referred to as IPC, the inverse of CPI.

Performance, Perfchip, in this case is measured in units like millions of instructions per second (mips).

In Equation 3.2, V is the chip supply voltage (often written as Vdd). As stated below, and in Refs. [2,3],

the operating frequency is often assumed to be roughly proportional to the supply voltage.

Selecting a suite of publicly available benchmark programs that everybody accepts as being represen-

tative of real-world workloads is difficult to begin with. Adopting a noncontroversial weighted mix is also

not easy. For the commonly used SPECbenchmark suite (see http:==www.specbench.org), the SPECmarks

rating (for each class, e.g., integer or floating point) is derived as a geometric mean of execution time ratios

for the programswithin that class. Each ratio is calculated as the speedupwith respect to execution time on

a specified reference machine. An advantage of this method is that different machines can be ranked

unambiguously from a performance viewpoint, if one believes in the particular benchmark suite. That is,

the ranking can be shown to be independent of the reference machine used in such a formulation.

Even if one is able to fix the input workload mix to some known average characteristics, there is

usually a large variation in workload behavior across different applications in the mix and in some cases,

within even a single application. Thus, even though one can compute an average IPC (or Kpf in Equation

3.2), it is possible to exploit the variations in IPC to reduce average power in architectures where the

resources are dynamically adapted to match the IPC requirements. (See Section 3.3.1.6).

Let us now discuss the basics of power dissipation in a processor chip.

3.2.2 Power Fundamentals

At the elementary transistor gate (e.g., an inverter) level, total power dissipation can be formulated as the

sum of three major components: switching loss, leakage, and short-circuit loss [2–5].

Powerdevice ¼ (1=2)CVddVswingaf þ IleakageVdd þ IscVdd (3:3)

where

C is the output capacitance

Vdd is the supply voltage

f is the chip clock frequency

a is the activity factor (0< a � 1), which determines the device switching frequency

Vswing is the maximum voltage swing across the output capacitor, which in general can be less

than Vdd

Ileakage is the leakage current

Isc is the short-circuit current

In the literature, Vswing is often approximated to be equal to Vdd (or simply V for short) making the

switching loss�(1=2)CV2 af. Also, as discussed in Ref. [3], for a prior generation range of Vdd (say 1–3 V)

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 3 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-3

switching loss, (1=2)CV2 af, was the dominant component, assuming the activity factor to be above a

reasonable minimum. So, as a first-order approximation, for the whole chip of the previous generation

(e.g., CMOS 180 nm, and before) we may formulate the power dissipation to be

Powerchip ¼ (1=2)
X
i

CiV
2
i aifi

" #
(3:4)

where, Ci, Vi, ai, and fi are unit- or block-specific average values in the most general case; the summation

is taken over all blocks or units i, at the microarchitecture level (e.g., icache, dcache, integer unit,

floating-point unit (FPU), load-store unit, register files, and buses [if not included in individual units],

etc). Also, for the voltage range considered, the operating frequency is roughly proportional to the

supply voltage, and the capacitance C remains roughly the same if we keep the same design but scale the

voltage. If a single voltage and clock frequency are used for the whole chip, the above reduces to

Powerchip ¼ V 3
X
i

K v
i ai

 !
¼ f 3

X
i

K
f
i ai

 !
(3:5)

If we consider the very worst-case activity factor for each unit i, i.e., if ai¼ 1 for all i, then, an upper

bound on the maximum chip power may be formulated as

Max powerchip ¼ KVV
3 ¼ KFf

3 (3:6)

where KV and KF are design-specific constants. Note that an estimation of peak or maximum power is

important, for the purposes of determining the packaging and cooling solution required. The larger the

maximum power, the more expensive is the net cooling solution. Note also that the formulation in

Equation 3.6 is overly conservative, as stated. In practice, it is possible to estimate the worst-case

achievable maximum for the activity factors. This allows the designers to come up with a tighter

bound on maximum power before the packaging decision is made.

The last equation (Equation 3.6) is what leads to the so-called cube root rule [3], where redesigning

a chip to operate at half the voltage (and frequency) results in the power dissipation being lowered

to (1=2)3 or one-eighth the original. This implies the single-most efficient method for reducing

power dissipation for a processor that has already been designed to operate at high frequency—reduce

the voltage (and hence the frequency). There is a limit, however, of how lowVdd can be reduced (for a given

technology), which has to do with manufacturability and circuit reliability issues. Thus, a combination of

microarchitecture and circuit techniques to reduce power consumption, without necessarily employing

multiple or variable supply voltages is of special relevance in the design of robust systems.

In post-180 nm technologies, static (i.e., leakage or standby) power has increasingly become a major,

if not the dominating, component of chip power. As discussed in Ref. [6], the three major types of

leakage effects are (1) subthreshold, (2) gate, and (3) reverse-biased, drain- and source-substrate

junction band-to-band tunneling (BTBT). With technology scaling, each of these leakage components

tends to increase drastically. For example, as technology scales downward, the supply voltage (Vdd) must

also scale down to reduce dynamic power and maintain device reliability. However, this requires the

scaling down of the threshold voltage (Vth) to maintain reasonable gate overdrive and therefore,

performance, which is a function of (Vdd�Vth). However, lowering the Vth causes substantial increases

in leakage current, and therefore, standby power, in spite of the lower Vdd. The subthreshold channel

leakage current in an MOS device is governed by the following equation [7]:

Ileakage ¼ Kw*W � 10�Vth=S (3:7)

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 4 4.10.2007 2:55pm Compositor Name: BMani

3-4 Digital Systems and Applications

where

Kw, measured in units of microamps per micron (mA=mm) can be thought of as the width-

sensitivity coefficient

W is the device width

S is the subthreshold swing, measured in mV like the Vth

In Ref. [7], the value of Kw is quoted to be 10. S is a parameter that is defined to characterize the

efficiency of a device in turning on or off. It can be shown that the turn-off characteristic of a device is

proportional to the thermal voltage (kT=q) and the ratio of junction capacitance (Cj) to oxide

capacitance (Cox) [8]. The parameter S can be formulated as

S ¼ 2:3(kT=q)(1þ Cj=Cox) (3:8)

This parameter is usually specified in units ofmillivolt (mV) per decade and it defines howmanymillivolts

the gate voltage must drop before the drain current is reduced by one decade. The thermal voltage kT=q is

equal to 26mVat room temperature. Thus, at room temperature, the minimum value of S is about 60mV

per decade. This means that an ideal device at room temperature would experience a 103 reduction in

drain current for every 60 mV reduction of the gate voltage Vgs in the subthreshold region. In the deep

submicron era, a typical transistor device has an S value in the range of 85–90 mV per decade.

Also note that Vth (Equation 3.7) is itself a function of temperature (T); in fact Vth decreases by

2.5 mV=K as temperature increases. Also, Kw itself is a strong function of temperature (�T 2). Thus, as T

increases, leakage current increases dramatically, both because of its dependence on T and decrease in

Vth. The delay of an inverter gate is given by the alpha-power model [9] as

Tg � LeffVdd

m(T)(Vdd � Vth)
a (3:9)

where, a is typically around 1.3 and m is the mobility of carriers (which is a function of temperature

T, m(T) � T �1.5). As Vth decreases, (Vdd�Vth) increases so the inverter becomes faster. As T increases,

(Vdd – Vth) increases, but m(T) decreases [10]. This latter effect dominates; so, with higher temperatures,

the logic gates in a processor generally become slower.

3.2.3 Power–Performance Efficiency Metrics

The most common (and perhaps obvious) metric to characterize the power–performance efficiency of a

microprocessor is a simple ratio, like mips=watt. This attempts to quantify the efficiency by projecting

the performance achieved or gained (measured in millions of instructions per second or mips) for every

watt of power consumed. Clearly, the higher the number, the better the machine is. Dimensionally,

mips=watt equates to the inverse of the average energy consumed per instruction. This seems a

reasonable choice for some domains where battery life is important. However, there are strong argu-

ments against it in many cases, especially when it comes to characterizing higher end processors.

Performance has typically been the key driver of such server-class designs and cost or efficiency issues

have been of secondary importance. Specifically, a design team may well choose a higher frequency

design point (which meets maximum power budget constraints) even if it operates at a much lower

mips=watt efficiency compared to one that operates at better efficiency, but at a lower performance level.

As such, (mips)2=watt or even (mips)3=watt may be the metric of choice at the high end. On the other

hand, at the lowest end, where battery life (or energy consumption) is the primary driver, one may want

to put an even greater weight on the power aspect than the simplest mips=watt metric; i.e., one may just

be interested in minimizing the watts for a given workload run, irrespective of the execution time

performance, provided the latter does not exceed some specified upper limit.

The mips metric for performance and the watts value for power may refer to average or peak values,

derived from the chip specifications. For example, for a 1 GHz (¼ 109 cycles=s) processor, which can

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 5 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-5

complete up to four instructions per cycle, the theoretical peak performance is 4000 mips. If the average

completion rate for a given workload mix is p instructions per cycle, then the average mips would equal

1000 times p. However, when it comes to workload-driven evaluation and characterization of processors,

metrics are often controversial. Apart from the problem of deciding on a representative set of benchmark

applications, there are fundamental questions that persist about how to boil down performance into a

single (average) rating that is meaningful in comparing a set of machines. Since power consumption

varies, depending on the program being executed, the issue of benchmarking is also relevant in assigning

an average power rating. In measuring power and performance together for a given program execution,

one may use a fused metric like power-delay product (PDP) or energy-delay product (EDP) [5,11]. In

general, the PDP-based formulations are more appropriate for low-power, portable systems, where

battery life is the primary index of energy efficiency. The mips=watt metric is an inverse PDP formu-

lation, where delay refers to average execution time per instruction. The PDP, being dimensionally equal

to energy, is the natural metric for such systems. For higher end systems (e.g., workstations), the EDP-

based formulations are deemed to be more appropriate, since the extra delay factor ensures a greater

emphasis on performance. The (mips)2=watt metric is an inverse EDP formulation. For the highest

performance, server-class machines, it may be appropriate to weight the delay part even more. This

would point to the use of (mips)3=watt, which is an inverse ED2P formulation. Alternatively, one may

use (cpi)3_watt as a direct ED
2P metric, applicable on a ‘‘per instruction’’ basis (see [2]).

The energy*(delay)2 metric, or perf3=power formula, is analogous to the cube root rule [3], which

follows from constant voltage scaling arguments (see previous discussion, Equation 3.6). Clearly, to

formulate a voltage-invariant power–performance characterization metric, we need to think in terms of

perf3=power. When we are dealing with the SPEC benchmarks, one may therefore evaluate efficiency as

(SPECrating)x=watt, or (SPEC)x=watt for short, where the exponent value x (¼ 1, 2, or 3) may depend

on the class of processors being compared.

Brooks et al. [2] discuss the power–performance efficiency data for a range of commercial processors

of approximately the same generation (circa year 2000). SPEC=watt, SPEC2=watt, and SPEC3=watt are

used as the alternative metrics, where SPEC stands for the processor’s SPEC rating (see definition

principles, in Section 3.2.1 or in Ref. [1]). The data validates our assertion that depending on the metric

of choice and the target market (determined by workload class and the power=cost), the conclusion

drawn about efficiency can be quite different. For performance-optimized, high-end processors, the

SPEC3=watt metric seems to be fairest. For power-first processors targeted toward integer workloads,

SPEC=watt seems to be the fairest.

3.3 A Review of Key Ideas in Power-Aware Microarchitectures

In our review of power-efficient design concepts at the microarchitecture level, our primary attention

will be on dynamic (also known as active or switching) power governed by the formula, CV2af. Recall

that C refers to the switching capacitance, V is the supply voltage, a is the activity factor (0< a< 1), and

f is the operating clock frequency. Power reduction ideas must therefore focus on one or more of these

basic parameters. Reducing active power generally results in reduction of on-chip temperatures, and this

indirectly causes leakage power to go down as well. Similarly, any increase in efficiency directed at

lowering the latch count (e.g., by reducing the basic pipeline depth, or by reducing the number of back-

end execution pipes within a given functional unit) also results in area and leakage reduction as a side

benefit. However, later in this section, we also deal with the problem of mitigating leakage power

directly, by providing microarchitectural support to what are primarily circuit-level mechanisms.

3.3.1 Power Efficiency at the Processor Core Level

In this section, we examine the key ideas that have been proposed in terms of microarchitectural support

for power efficiency, at the level of a single processor core.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 6 4.10.2007 2:55pm Compositor Name: BMani

3-6 Digital Systems and Applications

The effective (average) value of C can be reduced by using (1) area-efficient designs for various macros;

(2) adaptive structures, which change in effective size, latency, or communication bandwidth depending

on the needs of the input workload, (3) selectively ‘‘gating off ’’ the clock for unused or idle units; (4)

reducing or eliminating ‘‘speculative waste’’ resulting from executing instructions in mis-speculated

branch paths or prefetching useless instructions and data into caches, based on wrong guesses.

The average value of V can be reduced via dynamic voltage scaling, i.e., by reducing the voltage as and

when required or possible. Microarchitectural support, in this case, is not required, unless the mech-

anisms to detect ‘‘idle’’ periods or temperature overruns are detected using counter-based ‘‘proxies,’’

specially architected for this purpose. Hence, in this chapter, we do not dwell on dynamic voltage scaling

methods. (Note again, however, that since reducing V also requires (or results in) reduction of the

operating frequency, f, net power reduction has a cubic effect; thus, dynamic voltage and frequency

scaling (DVFS), though arguably not a microarchitectural technique per se, is the most effective way of

power reduction). Deciding when and how to apply DVFS, as a function of the input workload

characteristics and overall operating environment, on the other hand, is very much a microarchitectural

issue. It is a problem that is increasingly relevant in the era of variability-tolerant, power-efficient multi-

core chip design, described briefly in Section 3.4.

The average value of the activity factor, a, can be reduced by (1) the use of clock-gating, where the

normally free-running, synchronous clock is disabled in selected units or subunits within the system

based on information or predictions about current or future activity in those regions; (2) the use of data

representations and instruction schedules that result in reduced switching. Microarchitectural support is

provided in the form of added mechanisms to (1) detect, predict, and control the generation of the

applied gating signals or (2) aid in power-efficient data and instruction encodings. Compiler support

for generating power-efficient instruction scheduling and data partitioning or special instructions for

‘‘nap=doze=sleep’’ control, if applicable, must also be considered under this category.

While clock-gating helps eliminate (or drastically reduce) active or switching power when a given

macro, subunit, or unit is idle, power-gating can be used to also eliminate the residual leakage power of

that idle entity. In this case, as described in detail later on, the power supply voltage V is itself gated off

from the target circuit block, with the help of a header or footer transistor. Here, the need for

microarchitectural support in the form of predictive control of the gating signal is even stronger because

of the relatively large performance overheads that would be incurred without such support. There are

other techniques like adaptive body biasing that are also targeted at leakage power control, and these too

require some degree of microarchitectural support. However, these techniques are most relevant to bulk-

CMOS designs (as opposed to SOI–CMOS technology), and are predominantly device- and circuit-level

methods. As such, we do not dwell on them in this chapter.

Lastly, the average value of the design frequency, f, can be controlled or reduced by using (1) variable,

multiple, or locally asynchronous (self-timed) clocks, e.g., in GALS [12] designs; (2) clock throttling,

where the frequency is reduced dynamically in response to power or temperature overrun indicators; or

(3) reduced pipeline depths in the baseline microarchitecture definition.

We consider power-aware microarchitectural constructs that use C, a, or f as the primary lever for

reducing active power; and those that use the supply voltage V as the lever for reducing leakage power. In

any such proposed processor architecture, the efficacy of the particular power reduction method that is

used must be assessed by understanding the net performance impact. Here, depending on the applica-

tion domain (or market), a PDP, EDP, or ED2P metric for evaluating and comparing power–perform-

ance efficiencies must be used. (See earlier discussion in Section 3.2).

3.3.1.1 Optimal Pipeline Depth

A fundamental question that is asked has to do with pipeline depth. Is a deeply pipelined, high frequency

(speed demon) design better than an IPC-centric low frequency (braniac) design? In the context of the

topic of this chapter, ‘‘better’’ must be judged in terms of power–performance efficiency.

Let us consider, first, a simple, hazard-free, linear pipeline flow process, with k stages. Let the time for

the total logic (without latches) to compute one answer be T. Assuming that the k stages into which the

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 7 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-7

logic is partitioned are of equal delay, the time per stage and thus the time per computation becomes (see

Chapter 2 in Ref. [13])

t ¼ T=k þ D (3:10)

where D is the delay added due to the staging latch. The inverse of t determines the clocking rate or

frequency of operation. Similarly, if the energy spent (per cycle, per second, or over the duration of the

program run) in the logic is W and the corresponding energy spent per level of staging latches is L then

the total energy equation for the k-stage pipelined version is roughly given as the follows:

E ¼ Lk þW (3:11)

The energy equation assumes that the clock is free-running; i.e., on every cycle, each level of staging

latches is clocked to enable the advancement of operations along the pipeline. (Later, we shall consider

the effect of clock-gating.) Equations 3.10 and 3.11, when plotted as a function of k, are depicted in

Figure 3.2a and b, respectively.

As the number of stages increases, the energy or power consumed increases linearly; while, the

performance also increases, but not as fast. In order to consider the PDP-based power–performance

efficiency, we compute the ratio

Power

Performance
¼ (Lk þW)(T=k þ D)

¼ LT þWD þ (LDk2

þWT)=k (3:12)

Figure 3.3 shows the general shape of this curve as a

function of k. Differentiating the right-hand side

expression in Equation 3.12 and setting it to zero,

one can solve for the optimum value of k for which

the power–performance efficiency is maximized; i.e.,

the minimum of the curve in Figure 3.2b can be

shown to occur when

k(opt) ¼
ffi
(WT)=(LD)

p
(3:13)

Number of stages, k Number of stages, k

E
ne

rg
y,

 E
(p

er
 u

ni
t o

f t
im

e)

P
er

fo
rm

an
ce

(o
pe

ra
tio

ns
 p

er
 s

ec
on

d)

(a) (b)

1/(T/k + D)

Lk + W

FIGURE 3.2 Power and performance curves for idealized pipeline flow.

Minimum

k (opt)
Number of stages, k ----->

P
ow

er
/p

er
fo

rm
an

ce

FIGURE 3.3 Power performance ratio curve for

idealized pipeline flow.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 8 4.10.2007 2:55pm Compositor Name: BMani

3-8 Digital Systems and Applications

Larson [14] first published the above analysis, albeit from a cost=performance perspective.

This analysis shows that, at least, for the simplest, hazard-free pipeline flow, the highest frequency

operating point achievable in a given technology may not be the most energy-efficient. Rather,

the optimal number of stages (and hence operating frequency) is expected to be at a point

which increases for greater W or T and decreases for greater L or D. For a prior generation

POWER4-class (�0.18 m) superscalar processor operating at around 1 GHz [15], the floating-point

arithmetic unit is estimated to yield values of T¼ 7.5 ns, D¼ 0.15 ns, W¼ 0.15 W, and L¼ 0.1 W.

This yields a k(opt) �8 (rounded off from 8.67), if we use the idealized formalism (Equation 3.13).

For real superscalar machines, the number of latches in the overall design tends to go up much

more sharply with k than the linear assumption in the above model. This tends to make k(opt) even

smaller. Also, in real pipeline flow with hazards, e.g., in the presence of branch-related stalls and

disruptions, performance actually peaks at a certain value of k before decreasing [3,16,17] (instead of

the asymptotically increasing behavior shown in Figure 3.2b). This effect would also lead to decreasing

the effective value of k(opt). (However, k(opt) increases if we use EDP or ED2P metrics instead of the

PDP metric used.). In a detailed simulation-based analysis of a POWER4-class superscalar machine, it

has been shown [18,19] that the optimal pipeline depth using a ED2P metric like (BIPS)3=watt (where

BIPS is the standard performance metric of billions of instructions completed per second) is around 18

FO4* per pipe stage for SPEC2000 workloads. For commercial workloads like TPC-C, the optimal

point is shown to shift to shallower pipelines (25–28 FO4). In contrast, note that if one considered a

power-unaware performance-only metric, like BIPS, the optimal pipeline depth for SPEC2000 is

around 10 FO4 per stage. For TPC-C, the performance-only optimal point is reported to be pretty

flat across the 10–14 FO4 points.

3.3.1.2 Vector=SIMD Processing Support

Vector=SIMD modes of parallelism present in current architectures afford a power-efficient method

of extending performance for vectorizable codes. Fundamentally, this is because for doing the work

offetching and processing a single (vector) instruction, a large amount of data is processed in a parallel

or pipelined manner. If we consider an SIMD machine, with p k-stage functional pipelines

(see Figure 3.4) then looking at the pipelines alone,

one sees a p-fold increase of performance, with a p-fold

increase in power, assuming full utilization and hazard-

free flow, as before. Thus, an SIMD pipeline unit offers

the potential of scalable growth in performance, with

commensurate growth in power; i.e., at constant power–

performance efficiency. If, however, one includes the

front-end instruction cache and fetch=dispatch unit

that are shared across the p SIMD pipelines, then

power–performance efficiency can actually grow with

p. This is because, the energy behavior of the instruction

cache (memory) and the fetch=decode path remains

essentially invariant with p, while net performance

grows linearly with p.

In a superscalar machine with a vector=SIMD exten-

sion, the overall power-efficiency increase is limited by

the fraction of code that runs in vector=SIMD-mode

(per Amdahl’s law).

Instr cache

Instr fetch and decode

Switch/bus

Function
pipe 1

Function
pipe 2

Function
pipe p

........

Switch/busses

Memory
bank 1

Memory
bank 2

Memory
bank p

........

FIGURE 3.4 Parallel SIMD architecture.

*Fan-out-of-four (FO4) delay is defined as the delay of one inverter driving four copies of an equally sized

inverter. The amount of logic and latch overhead per pipeline stage is often measured in terms of FO4 delay.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 9 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-9

3.3.1.3 Clock-Gating: Power Reduction Potential and Microarchitectural Support

Clock-gating refers to circuit-level control [21,22] for disabling the clock to a given set of latches, a

macro, a bus, to a cache or register file access path, or an entire unit on a particular machine cycle.

Figure 3.5 depicts a typical clocking arrangement used in pipelined dataflow logic within a high-end

microprocessor. The bank of latches is clocked via an AND gate that is enabled by a valid-bit signal from

the previous pipeline stage. A stall-bit from the next pipeline stage is used to recirculate the current data

during a pipeline stall. The latches are clocked only when there is valid data available from the previous

stage or when the data needs to be held. In alternate designs, the stall-bit can also be used to gate the

clock to further improve clock-gating efficiency.

In current generation server-class microprocessors, about 70% of the active (switching) power is

consumed by the clock distribution network and its latch load alone. As reported in Ref. [23], the major

part of the clock power is dissipated close to the leaf nodes of the clock tree that drive latch banks. Since

a clock-gated latch keeps its current data value stable, clock-gating prevents signal transitions of invalid

data from propagating down the pipeline thereby reducing switching power in the combinational logic

between latches. In addition to reducing dynamic power, clock-gating can also reduce static (leakage)

power. As already explained, leakage current in CMOS devices is exponentially dependent on tempera-

ture. The temperature reduction brought on by clock-gating can therefore significantly reduce the

leakage power as well.

We define clock-gating efficiency (CGE) for a given input workload as follows: CGE� [1� (average

clock-gated power)=(maximum unconstrained power)]3 100%, so that higher numbers imply greater

levels of power reduction.

Figure 4 in Ref. [24] shows the computed CGE across various workloads (SPEC2000 suite) using the

Turandot=PowerTimer [23] power–performance simulator. Such microarchitecture-level analysis points

to opportunities of power savings in a processor, since idle periods of a particular resource (e.g., a

pipeline stage) can be identified and quantified.

Figure 3.6a and b show the opportunities available within several units (and in particular,

the instruction fetch unit, IFU) of the same example processor in the context of the TPC-C trace

segment referred to above. Figure 3.6a depicts the instruction frequency mix of the trace segment used.

This shows that the FPU operations are a very tiny fraction of the total number of instructions in the

trace. Therefore, with proper detection and control mechanisms architected in hardware, the FPU

could essentially be ‘‘gated off ’’ in terms of the clock delivery for the most part of such an execution.

Figure 3.6b shows the fraction of total cycles spent in various modes within the IFU. I-fetch was

on hold for about 48% of the cycles, and the fraction of useful fetch cycles was only 28%. Again, this

points to great opportunities either in terms of clock-gating or dynamic ifetch throttling (see

Section 3.3.1.8).

Valid signal from prev. stage

Clock

Stall signal from next stage

Data-in

Clock

FIGURE 3.5 Clock gating mechanism.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 10 4.10.2007 2:55pm Compositor Name: BMani

3-10 Digital Systems and Applications

Microarchitectural support for conventional clock-gating can be provided in at least three ways:

(1) dynamic detection of idle modes in various clocked units or regions within a processor or system,

(2) static or dynamic prediction of such idle modes, and (3) using ‘‘data valid’’ bits within a pipeline

flow path to selectively enable=disable the clock applied to the pipeline stage latches. If static prediction

is used, the compiler inserts special nap=doze=sleep=wake-type instructions where appropriate, to aid

the hardware in generating the necessary gating signals. Methods 1 and 2 result in coarse-grain clock-

gating, where entire units, macros, or regions can be gated off to save power, whereas method 3 results in

fine-grain clock-gating, where unutilized pipe segments can be gated off during normal execution within

a particular unit, like the FPU. The detailed circuit-level implementation of gated-clocks, the potential

performance degradation, inductive noise problems, etc., are not discussed in this chapter. However,

these are very important issues that must be dealt with adequately in an actual design.

Referring back to Figures 3.2 and 3.3, note that since (fine-grain) clock-gating effectively causes a

fraction of the latches to be gated off, we may model this by assuming that the effective value of L

decreases when such clock-gating is applied. This has the effect of increasing k (opt); i.e., the operating

frequency for the most power-efficient pipeline operation can be increased in the presence of clock-

gating. This is an added benefit.

H
ol

d
(id

le
)

IC
M

is
s

Im
is

s

IC
W

rit
e

R
ed

ire
ct

B
IQ

F
ul

l

P
re

fb

B
rn

 fl
us

h

>
2

B
r

U
se

fu
l f

et
ch

es

0

10

20

30

40

50

60

P
er

ce
nt

 o
f n

et
 c

yc
le

s

Frequency mix

BRU
10.1%

CRU
2.3%

FXU
48.5%

LSU
38.9%

FPU
0.2%

BRU

CRU

FXU

LSU

FPU

(a)

(b)

FIGURE 3.6 (a) Instruction frequency mix for a typical commercial workload trace segment. (b) Stall profile in the

instruction fetch unit (IFU) for the commercial workload.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 11 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-11

In a recently reported work [24], the limits of CGE has been examined and then stretched by adding

a couple of new advances: transparent pipeline clock-gating (TCG) [25] and elastic pipeline clock-

gating (ECG) [26]. TCG introduces a new way of clock-gating pipelines. In traditional clock-gating,

latches are held opaque to avoid data races between adjacent latch stages; this N clock pulses are

needed to propagate a single data item through an N-stage pipeline, even if at a given clock cycle all

other (i.e., N� 1) stages have invalid input data. In a transparent clock-gated pipeline, latches are held

transparent by default. TCG is based on the concept of data separation. Assume that a pair of data

items A and B simultaneously moves through a TCG pipeline. A data race between A and B is avoided

by separating the two data items by clocking or gating a latch stage opaque, such that the opaque latch

stage acts as a barrier separating the two data items from each other. The number of clock pulses

required for a data item item A to move through an N-stage pipeline is no longer only dependent

on N, but also on the number of clock cycles that separate A from the closest upstream data item

B. For an N-stage pipeline, where B follows n clock cycles behind A, only floor (N=n) clock pulses have

to be generated to move A safely through the pipeline. ECG is a different technique that achieves

further efficiency by exploiting the inherent storage redundancy afforded by a traditional master–slave

latch pair. ECG allows the designer to allow stall signals to propagate backward in pipeline flow logic

in a stage-by-stage fashion, without incurring the leakage power and area overhead of explicitly

inserted stall buffers. Logic-level details of TCG and ECG are available in the originally published

papers [24–26]. As reported there, TCG enables clock power reduction to the tune of 50% over

traditional stage-level clock-gating under commercial (TPC-C) class workloads. Even under heavy

floating-point workloads, where fewer bubbles are available in the pipeline, the clock power in the

floating-point pipeline can be reduced by 34%. The significant reduction in dynamic stall power

(27%) and leakage power (44%) afforded by ECG in a FPU design have also been reported in the

published literature.

3.3.1.4 Predictive Power-Gating

As previously indicated, leakage power is a major (if not dominant) component of total power

dissipation in current and future CMOS microprocessors. Cutting off the power supply (Vdd) to

major circuit blocks to conserve idle power (sleep mode) is not a new concept, especially for battery-

powered mobile systems. However, dynamically effecting such gating, on a unit-by-unit basis, as

function of input workload demand is not a design technique that has seen widespread usage yet,

especially in server-class microprocessors. The main reasons have been the perceived risks or negative

effects arising from (1) performance and area overheads, (2) inductive noise on the power supply grid,

and (3) potential design tools and verification concerns. Advances in circuit design have minimized the

area and cycle-time delay overhead concerns in recent industrial practices. Microarchitectural predict-

ive techniques [27–29] have recently been so perfected that now they equip designers with the tools

needed to minimize any architectural performance overheads as well. The inductive noise concerns do

persist, but there are known solution approaches in the realm of power distribution networks and

package design that will no doubt mature to help mitigate those concerns. The design tools and

verification challenge, of course will prevail as a difficult roadblock—but again, solutions will even-

tually emerge to get rid of that concern.

3.3.1.5 Variable Bit-Width Operands

One of the techniques proposed for reducing dynamic power consists of exploiting the behavior of

data in programs, which is characterized by the frequent presence of small values. Such values can be

represented as and operated upon as short bit-vectors. Thus, by using only a small part of the processing

datapath, power can be reduced without loss of performance. Brooks and Martonosi [30] analyzed the

potential of this approach in the context of 64-bit processor implementations (e.g., the Compaq Alpha

architecture). Their results show that roughly 50% of the instructions executed had both operands

whose length was less than or equal to 16 bits. Brooks and Martonosi proposed an implementation that

exploits this by dynamically detecting the presence of narrow-width operands on a cycle-by-cycle basis.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 12 4.10.2007 2:55pm Compositor Name: BMani

3-12 Digital Systems and Applications

3.3.1.6 Adaptive Microarchitectures

Another method of reducing power is to adjust the size of various storage resources within a processor

or system, with changing the needs of the workload. Albonesi [31] proposed a dynamically reconfigur-

able caching mechanism that reduces the cache size (and hence power) when the workload is in a

phase that exhibits reduced cache footprint. Such downsizing also results in improved latency, which

can be exploited (from a performance viewpoint) by increasing the cache cycling frequency on a local

clocking or self-timed basis. Maro et al. [32] have suggested the use of adapting the functional unit

configuration within a processor in tune with changing workload requirements. Reconfiguration is

limited to shutting down certain functional pipes or clusters, based on utilization history or IPC

performance. In that sense, the work by Maro et al. is not too different from coarse-grain clock-gating

support, as discussed earlier. In early work done at IBM Watson, Buyuktosunoglu et al. [33] designed

an adaptive issue queue that can result in (up to) 75% power reduction when the queue is sized down

to its minimum size. This is achieved with a very small IPC performance hit. Another example is the

idea of adaptive register files (see Ref. [34]) where the size and configuration of the active size of the

storage is changed via a banked design, or through hierarchical partitioning techniques. A recent

tutorial article by Albonesi et al. [35] provides an excellent coverage of advances in the field of adaptive

architectures.

3.3.1.7 Dynamic Thermal Management

Most clock-gating techniques are geared toward the goal of reducing average chip power. As such, these

methods do not guarantee that the worst-case (maximum) power consumption will not exceed safe

limits. The processor’s maximum power consumption dictates the choice of its packaging and cooling

solution. In fact, as discussed in Ref. [22], the net cooling solution cost increases in a piecewise linear

manner with respect to the maximum power, and the cost gradient increases rather sharply in the higher

power regimes. This necessitates the use of mechanisms to limit the maximum power to a controllable

ceiling, defined by the cost profile of the market for which the processor is targeted. Most recently, in the

high-performance world, Intel’s Pentium 4 processor is reported to use an elaborate on-chip thermal

management system to ensure reliable operation [22]. At the lower end, the G3 and G4 PowerPC

microprocessors [36,37] include a thermal assist unit (TAU) to provide dynamic thermal management.

In a recently reported academic work, Brooks and Martonosi [38] discuss and analyze the potential

reduction in maximum power ratings without significant loss of performance, by the use of specific

dynamic thermal management (DTM) schemes. The use of DTM requires the inclusion of on-chip

sensors to monitor actual temperature, or proxies of temperature [38] estimated from on-chip counters

of various events and rates.

3.3.1.8 Dynamic Throttling of Communication Bandwidths

This idea has to do with reducing the width of a communication bus dynamically, in response to

reduced needs or in response to temperature overruns. Examples of on-chip buses that can be throttled

are instruction fetch bandwidth, instruction dispatch=issue bandwidths, register renaming bandwidth,

instruction completion bandwidths, memory address bandwidth, etc. In the G3 and G4 PowerPC

microprocessors [36,37], the TAU invokes a form of instruction cache throttling as a means to lower

the temperature when a thermal emergency is encountered.

3.3.1.9 Speculation Control

In current generation, high-performance microprocessors, branch mispredictions, and mis-speculative

prefetches end up wasting a lot of power. Manne et al. [39,40] have described means of detecting or

anticipating an impending mispredict and using that information to prevent mis-speculated instruc-

tions from entering the pipeline. These methods have been shown to reduce power by up to 38% with

less than a 1% performance loss.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 13 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-13

3.4 Power-Efficient Microarchitecture Paradigms

Now that we have examined specific microarchitectural constructs that aid power-efficient design, let us

examine the inherent power–performance scalability and efficiency of selected paradigms that are

currently established or are emerging in the high-end processor roadmap. In particular, we consider

(1) wide-issue, speculative superscalar processors, (2) multicluster superscalars, (3) SMT processors, and

(4) chip multiprocessors (CMPs). those that use single program speculative multithreading, as well as

those that are general multicore symmetric multiprocessing (SMP) or throughput engines.

In illustrating the efficiency advantages or deficiencies, we use the following running example. It

shows one iteration of a loop trace that we consider in simulating the performance and power

characteristics across the above computing platforms.

Let us consider the following floating-point loop kernel, shown below (coded using the PowerPC

instruction set architecture):

Example loop test case

[P] [A] fadd fp3, fp1, fp0

[Q] [B] lfdu fp5, 8(r1)

[R] [C] lfdu fp4, 8(r3)

[S] [D] fadd fp4, fp5, fp4

[T] [E] fadd fp1, fp4, fp3

[U] [F] stfdu fp1, 8(r2)

[V] [G] bc loop_top

The loop body consists of seven instructions, the final one being a conditional branch that causes

control to loop back to the top of the loop body. The instructions are labeled A through G. (The

labels P through Vare used to tag the corresponding instructions for a parallel thread—when we consider

SMT and CMP). The lfdu=stfdu instructions are load=store instructions with update, where the base

address register (e.g., r1, r2, or r3) is updated after execution by holding the newly computed address.

3.4.1 Single-Core Superscalar Processor Paradigm

One school of thought anticipates a continued progression along the path of wider, aggressively super-

scalar paradigms. Researchers continue to innovate in an attempt to extract the last ounce of IPC-level

performance from a single-thread instruction-level parallelism (ILP) model. Value prediction advances

(pioneered by Lipasti et al. in Ref. [41]) promise to break the limits imposed by true data dependencies.

Trace caches (Smith et al. in Ref. [41]) ease the fetch bandwidth bottleneck, which can otherwise impede

scalability. However, increasing the superscalar width beyond a certain limit tends to yield diminishing

gains in net performance (i.e., the inverse of CPI * CT; see Equation 3.1). At the same time, the power–

performance efficiency metric (e.g., performance per watt or (performance)2 per watt, etc.) tends to

degrade beyond a certain complexity point in the single-core superscalar design paradigm. This is

illustrated below in the context of our example loop test case.

Let us consider a base machine that is a four-wide superscalar, with two load-store units supporting

two floating-point pipes (see Figure 3.7). The data cache has two load ports and a separate store port.

Two load-store unit pipes (LSU0 and LSU1) are fed by a single issue queue, LSQ; similarly, the two FPU

unit pipes (FPU0 and FPU1) are fed by a single issue queue, FPQ. In the context of the loop above, we

essentially focus on the LSU–FPU subengine of the whole processor.

Let us assume the following high-level parameters (latency and bandwidth) characterizing the base

superscalar machine model of width W ¼ 4:

. Instruction fetch bandwidth, fetch_bw¼ 2 *W¼ 8 instructions per cycle

. Dispatch=decode=rename bandwidth, disp_bw¼W¼ 4 instructions per cycle; dispatch is

assumed to stall beyond the first branch scanned in the instruction fetch buffer

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 14 4.10.2007 2:55pm Compositor Name: BMani

3-14 Digital Systems and Applications

. Issue_bandwidth from LSQ (reservation station), lsu_bw¼W=2¼ 2 instructions per cycle

. Issue_bandwidth from FPQ, fpu_bw¼W=2¼ 2 instructions per cycle

. Completion bandwidth, compl_bw¼W¼ 4 instructions per cycle

. Back-to-back-dependent floating-point operation issue delay, fp_delay¼ 1 cycle

. The best-case load latency, from fetch to writeback¼ 5 cycles

. The best-case store latency, from fetch to writing in the pending store queue¼ 4 cycles; (a store is

eligible to complete the cycle after the address–data pair is valid in the store queue)

. The best-case floating-point operation latency, from fetch to writeback¼ 7 cycles (when the issue

queue, FPQ is bypassed, because it is empty)

Loads and floating-point operations are eligible for completion (retirement) of the cycle after writeback

into rename buffers. For simplicity of analysis let us assume that the processor uses in-order issue from

the issue queues (LSQ and FPQ). In our simulation model, the superscalar width W is a ganged

parameter, defined as follows:

W¼ (fetch_bw=2)¼ disp_bw¼ compl_bw.

The number of LSU units, ls_units, FPU units, fp_units, data cache load ports, l_ports, and data cache

store ports are varied as follows as W is changed:

ls_units¼ fp_units¼ l_ports¼max [floor(W=2), 1]

s_ports¼max [floor(l_ports=2), 1].

For illustrative purposes, a simple (and decidedly naive) analytical energy model is assumed, where

the power consumed is a function of the following parameters: W, ls_units, fp_units, l_ports, and

s_ports. In particular, the power, PW, in watts is computed as PW¼K * [(W)yþ ls_unitsþ fp_unitsþ
l_portsþ s_ports], where y (0< y< 1) is an exponent that may be varied to see the effect on power–

performance efficiency and K is a constant. Figure 3.8 shows the performance and performance=power

I-Cache

IFU/BRU

Dispatch

FXU LSU FPU

D-Cache

Completion

unit

BHT/BTAC

FPRs
rename buffs

GPRs

rename buffs

disp_bw

compl_bw

ls_units = lsu_bwfx_units = fxu_bw fp_units = fpu_bw

LSQFPQ FPQ

l_ports,
s_ports

C
B
U
F

fetch_bw

FIGURE 3.7 High-level block-diagram of machine organization modeled in the eliot=elpaso tool.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 15 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-15

ratio variation with superscalar width, W; for this graph, y has been set to 0.5 and the scaling constant K

is 2. The BIPS values are computed from the IPC (instruction per cycle) values, assuming a clock

frequency of 1 GHz.

The graph in Figure 3.8a shows that a maximum issue width of W¼ 4 could be used to achieve the

best (idealized) BIPS performance. This idealized plot is obtained using a tool called eliot [42]. This is a

parameterized, PowerPC superscalar model, that can operate either in cycle-by-cycle simulation mode,

or, it can generate idealized bounds, based on static analysis of a loop code segment. The eliot model has

now been updated to include parameterized, analytical energy models for each unit or storage resource

within the processor. This new tool, called elpaso can be used to generate power–performance efficiency

data for loop test cases. As shown in Figure 3.8b, from a power–performance efficiency viewpoint

(measured as a performance over power ratio), the best-case design is achieved forW< 4. Depending on

the sophistication and accuracy of the energy model (i.e., how power varies with microarchitectural

complexity), and the exact choice of the power–performance efficiency metric, the inflexion point in the

curve in Figure 3.9b changes; however, it should be obvious that beyond a certain superscalar width, the

power–performance efficiency diminishes continuously. Fundamentally, this is because of the single-

thread ILP limit of the loop trace being considered (as apparent from Figure 3.8a).

BIPS2/watt

BIPS/watt

Superscalar width W

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

fo
rm

an
ce

-p
ow

er
 e

ffi
ci

en
cy

1

(a) (b)

2
3

4
5

6
7

8
9

10
11

12
Superscalar width W

0.5

1

1.5

2

2.5

3

3.5

4

S
te

ad
y-

st
at

e
lo

op
 B

IP
S

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 3.8 Loop performance and performance=power variation with issue width.

1
2

3
4

5
6

7
8

9
10

11
12

Superscalar width W

0

1

2

3

4

5

6

7

8

S
te

ad
y-

st
at

e
B

IP
S

fp_delay = 1

fp_delay = 2

2-thread SMT BIPS2/watt

BIPS/watt

0

0.5

1

1.5

2

B
IP

S
/w

at
t

2-thread SMT

(a)

1
2

3
4

5
6

7
8

9
10

11
12

Superscalar width W
(b)

FIGURE 3.9 Performance andpower–performance variationwidthW for 2-thread symmetricmultiprocessing (SMT).

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 16 4.10.2007 2:55pm Compositor Name: BMani

3-16 Digital Systems and Applications

Note, by the way, that the resource sizes are assumed to be large enough, so that they are effectively

infinite for the purposes of our running example above. Some of the actual sizes assumed for the base

case (W¼ 4) are as follows: completion (reorder) buffer size, cbuf_size¼ 32; load-store queue size,

lsq_size¼ 6; floating-point queue size, fpq_size¼ 8; pending store queue size, psq_size¼ 16.

The microarchitectural trends beyond the current superscalar regime are effectively targeted toward

the goal of extending the power–performance efficiency factors. That is, the complexity growth must

ideally scale at a slower rate than the growth in performance. Power consumption is one index of

complexity; it also determines packaging and cooling costs. (Verification cost and effort is another

important index). In that sense, a microarchitecture paradigm that ensures that the power–performance

efficiency measure of choice is a nondecreasing function of time is the ideal, complexity-effective design

paradigm for the future. Of course, it is hard to keep scaling a given paradigm beyond a few processor

generations. Whenever we reach a maximum in the power–performance efficiency curve, it is time to

invoke the next paradigm shift.

Next, we examine some of the promising new trends in microarchitecture that can serve as the next

platform for designing power–performance scalable machines.

3.4.2 Multicluster Superscalar Processors

As described in our earlier article [2], Zyuban et al. [43,44] studied the class of multicluster superscalar

processors as a means of extending the power-efficient growth of the basic superscalar paradigm. One

way to address the energy growth problem at the microarchitectural level is to replace a classical

superscalar CPU with a set of clusters, so that all key energy consumers are split among clusters.

Then, instead of accessing centralized structures in the traditional superscalar design, instructions

scheduled to an individual cluster would access local structures most of the time. The main advantage

of accessing a collection of local structures instead of a centralized one is that the number of ports and

entries in each local structure is much smaller. This reduces the latency and energy per access. If the

nonaccessed substructures of a resource can be gated off (e.g., in terms of the clock), then the net energy

savings can be substantial.

According to the results obtained in Zyuban’s work, the energy dissipated per cycle in every unit or

subunit within a superscalar processor can be modeled to vary (approximately) as IPCunit * (IW)g, where

IW is the issue width, IPCunit is the average IPC performance at the level of the unit or structure under

consideration, and g is the energy growth parameter for that unit. Then, EDP for the particular unit

would vary as

EDPunit ¼ IPCunit * (IW)g

IPCoverall

(3:14)

Zyuban shows that for real machines, where the overall IPC always increases with issue width in a

sublinear manner, the overall EDP of the processor can be bounded as

(IPC)2g�1 � EDP � (IPC)2g (3:15)

where g is the energy-growth factor of a given unit and IPC refers to the overall IPC of the processor that is

assumed to vary as (IW)0.5. Thus, according to this formulation, superscalar implementations that

minimize g for each unit or structure will result in energy-efficient designs. The eliot=elpaso tool does

not model the effects of multiclustering in detail; however, from Zyuban’s work, we can infer that a

carefully designed multicluster architecture has the potential of extending the power–performance

efficiency scaling beyond what is possible using the classical superscalar paradigm. Of course, such

extended scalability is achieved at the expense of reduced IPC performance for a given superscalarmachine

width. This IPC degradation is caused by the added intercluster communication delays and other power

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 17 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-17

management overhead in a real design. Some of the IPC loss (if not all) can be offset by a clock frequency

boost, which may be possible in such a design, due to the reduced resource latencies and bandwidths.

High-performance processors (e.g., the Compaq Alpha 21264 and the IBM POWER4) certainly have

elements of multiclustering, especially in terms of duplicated register files and distributed issue queues.

Zyuban proposed and modeled a specific multicluster organization in his work. This simulation-based

study determined the optimal number of clusters and their configurations, for the EDP metric.

3.4.3 Simultaneous Multithreading

Let us examine the SMT paradigm [45] to understand how this may affect our notion of power–

performance efficiency. The data in Table 3.1 shows the steady-state utilization of some of the resources

in our base superscalar machine in response to the input loop test case discussed earlier. Since, because

of fundamental ILP limits the IPC will not increase beyond W¼ 4, it is clear why power–performance

efficiency will be on a downward trend beyond a certain width of the machine. (Of course, here we

assume maximum processor power numbers, without any clock-gating or dynamic adaptation to bring

down the power).

With SMT, assume that we can fetch from two threads (simultaneously, if the icache is dual-ported, or

in alternate cycles if the icache remains single-ported). Suppose two copies of the same loop program

(see example at the beginning of Section 3.4) are executing as two different threads. So, thread-1

instructions A-B-C-D-E-F-G and thread-2 instructions P-Q-R-S-T-U-V are simultaneously available

for dispatch and subsequent execution on the machine. This facility allows the utilization factors, and

the net throughput performance to go up, without a significant increase in the maximum clocked power.

This is because, the issue width W is not increased but the execution and resource stages or slots can be

filled up simultaneously from both threads. The added complexity in the front end, of maintaining two

program counters (fetch streams) and the global register space increase alluded to before, adds to the

power a bit. On the other hand, the core execution complexity can be relaxed a bit without a

performance hit. For example, the fp_delay parameter can be increased, to reduce core complexity,

without any performance degradation. Figure 3.9 shows the expected performance and power–

performance variation with superscalar width W for the 2-thread SMT processor. The power model

assumed for the SMT machine is the same as that of the underlying superscalar, except that a fixed

fraction of the net power is added to account for the SMToverhead. (The fraction added is assumed to

be linear in the number of threads, in an n-thread SMT processor.) Figure 3.9 shows that under the

assumed model, the performance–power efficiency scales better with W, compared with the base

superscalar (Figures 3.7 and 3.8).

Seng and Tullsen [46] presented analysis to show that using a suitably architected SMT processor, the

per-thread speculative waste can be reduced, while increasing the utilization of the machine resources by

TABLE 3.1 Steady-State Resource Utilization Profile for Base (W¼ 4)

Superscalar Machine

Resource Name Steady-State Utilization (%)

Completion (reorder) buffer, CBUF 53

Load-store issue queue, LSQ 0

Load-store unit pipe 0, LSU-0 100

Load-store unit pipe 1, LSU-1 50

Floating point issue queue, FPQ 0

Floating point unit pipe 0, FPU-0 100

Floating point unit pipe 1, FPU-1 50

Data cache read port 0, C0 50

Data cache read port 1, C1 50

Data cache store port, C2 50

Pending store queue, PSQ 12.5

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 18 4.10.2007 2:55pm Compositor Name: BMani

3-18 Digital Systems and Applications

executing simultaneously from multiple threads. This was shown to reduce the average energy per

instruction by 22%.

3.4.4 Chip Multiprocessing

In a multiscalar-like CMP machine [47], different iterations of a single-loop program could be initiated

as separate tasks or threads on different core processors on the same chip. Thus, the threads A-B-C-D-

E-F-G and P-Q-R-S-T-U-V derived from the same user program would be issued in sequence by a global

task sequencer to two cores, in a two-way multiscalar CMP. Register values set in one task are forwarded

in sequence to dependent instructions in subsequent tasks. For example, the register value in fp1 set by

instruction E in task 1 must be communicated to instruction T in task 2; so instruction Tmust stall in

the second processor until the value communication has occurred from task 1. Execution on each

processor proceeds speculatively, assuming the absence of load-store address conflicts between tasks;

dynamic memory address disambiguation hardware is required to detect violations and restart task

executions as needed. In this paradigm also, if the performance can be shown to scale well with the

number of tasks, and if each processor is designed as a limited-issue, limited-speculation (low com-

plexity) core, it is possible to achieve better overall scalability of performance–power efficiency.

Another trend in high-end microprocessors is true CMP, where multiple (distinct) user programs

execute separately on different processors on the same chip. A commonly used paradigm in this case is

that of (shared memory) symmetric multiprocessing (SMP) on a chip (see Hammond et al. in Ref. [41]).

Larger SMP server nodes can be built from such chips. Server product groups such as IBM’s high-end

PowerPC division have relied on such CMP paradigms as the scalable paradigm for the immediate

future. IBM’s POWER4 and POWER5 designs [15,48,49] are the first examples of this industry-wide

trend, more recent examples being Intel’s Montecito [50] and Sun’s Niagara [51]. Such CMP designs

offer the potential of convenient coarse-grain clock-gating and ‘‘power-down’’ modes, where one or

more processors on the chip may be turned off or slowed down to save power when needed.

In general, in a design era where technological constraints like power dissipation have caused a significant

slow down in the growth of single-thread execution clock frequency (and performance), parallelism via

multiple cores on a die, each operating at lower than achievable single-core frequency (i.e., at larger FO4 per

stage than earlier generation processors), is the natural paradigm of choice for power-efficient, scalable

performance growth through the next several generations of processor design. Heterogeneity in the form of

different types of cores, accelerators, and mixed signal components [52–54] or variable per-core frequency

support are on the horizon. Such heterogeneity is needed to support the diverse set of workloads that will

enable the next generation of computing systems in a power-constrained design era.

3.5 Conclusions

In this chapter, we first discussed issues related to power–performance efficiency and metrics from

an architect’s viewpoint. We showed that depending on the application domain (or market), it may be

necessary to adopt one metric over another in comparing processors within that segment. Next,

we described some of the promising new ideas in power-aware microarchitecture design. This discussion

included circuit-centric solutions like clock-gating and power-gating, wheremicroarchitectural support is

needed tomake the right decisions at run time. Later, we used a simple loop test case to illustrate the limits

of power–performance scalability in some popular paradigms that are being developed by various vendors

within the high-end processor domain. In particular, we show that scalability of current generation

superscalars may be extended effectively through multiclustering, SMT, and CMP. Our experience in

simulating these structures points to the need of keeping a single core (or the uni-threaded core) simple

enough to ensure scalability in the power, performance, and verification cost of future systems. Detailed

simulation results with benchmarks to support these conclusions were not provided in this tutorial-style

paper. We limited our focus to a few key ideas and paradigms of interest in future power-aware processor

design. Many new ideas to address various aspects of power reduction have been presented in recent

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 19 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-19

workshops [55–57]. All of these could not be discussed in this chapter, but the interested reader should

certainly refer to the cited references for further detailed study.

Acknowledgments

The author is indebted to his fellow researchers (and summer interns) who either have contributed or

still contributing to the power-aware microprocessor project at IBMWatson. In particular, he is thankful

to Victor Zyuban, Alper Buyuktosunoglu, Hans Jacobson, Stanley Schuster, Peter Cook, Jude Rivers,

Zhigang Hu, Prabhakar Kudva, Chen-Yong Cher, Eren Kursun, Yingmin Li, Canturk Isci, Hendrik

Hamann, Alan Weger, Hubertus Franke, Joenghwan Choi, Rakesh Kumar, and Phil Emma. The author is

also thankful to other colleagues in his organization’s management chain, including Jaime Moreno and

Michael Rosenfield for their constant support and encouragement. In addition, the author would like to

express his gratitude to Prof. David Brooks at Harvard University, Prof. Margaret Martonosi at

Princeton University, Prof. Kevin Skadron at University of Virginia, Prof. Vojin Oklobdzija at University

of California, Davis, and Prof. David Albonesi at University of Rochester for their active collaboration

with our group at IBM T.J. Watson Research Center.

References

1. Hennessey, J.L. and Patterson, D.A., Computer Architecture: A Quantitative Approach, 2nd ed.,

Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.

2. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.-D.,

Zyuban, V., Gupta, M., and Cook, P.W., Power-aware microarchitecture: Design and modeling chal-

lenges for next-generationmicroprocessors,Proc. IEEEMicro, 20(6): 26–44,November=December 2000.

3. Flynn, M.J., Hung, P., and Rudd, K., Deep-submicron microprocessor design issues, Proc. IEEE

Micro, 19(4): 11–22, July=August 1999.

4. Borkar, S., Design challenges of technology scaling, Proc. IEEEMicro, 19(4): 23–29, July=August 1999.

5. Gonzalez, R. and Horowitz, M., Energy dissipation in general purpose microprocessors, IEEE J.

Solid-State Circuits, 31(9): 1277–1284, September 1996.

6. Agrawal, A., Mukhopadhyay, S., Raychowdhury, A., Roy, K., and Kim, C.H., Leakage power analysis

and reduction in nanoscale circuits, IEEE Micro, 26(2): 68–80, March 2006.

7. Hu, C., Device and technology impact on low power electronics, in Low Power Design Methodologies,

Jan Rabaey (Ed.), Kluwer Publishing, Dordrecht, 1996, pp. 21–35.

8. Brews, J.R., Subthreshold behavior of uniformly and non-uniformly doped long-channel MOSFET,

IEEE Trans. Electron Devices, 26(9): 1282–1291, September 1979.

9. Sakurai, T. and Newton, R., Alpha-power law MOSFET model and its applications to CMOS

inverter delay and other formulas, IEEE J. Solid State Circuits, 25(2): 584–594, 1990.

10. Kanda, K., et al., Design impact of positive temperature dependence on drain current in sub-1-V

CMOS VLSIs, IEEE J. Solid State Circuits, 36(10): 1559–1564, 2001.

11. Oklobdzija, V.G., Architectural tradeoffs for low power, Proceedings of the International Symposium

on Computer Architecture (ISCA) Workshop on Power-Driven Microarchitectures, Barcelona, Spain,

June 1998.

12. Iyer, A. and Marculescu, D., Power–performance evaluation of globally asynchronous, locally syn-

chronous processors, Proceedings of the International Symposium on Computer Architecture (ISCA),

Anchorage, AK, May 2002, pp. 158–168.

13. Kogge, P.M., The Architecture of Pipelined Computers, Hemisphere Publishing Corporation,

New York, 1981.

14. Larson, A.G., Cost-effective processor design with an application to fast Fourier transform com-

puters, Digital Systems Laboratory Report SU-SEL-73-037, Stanford University, Stanford, CA,

August 1973; see also, Larson and Davidson, Cost-effective design of special purpose processors:

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 20 4.10.2007 2:55pm Compositor Name: BMani

3-20 Digital Systems and Applications

A fast Fourier transform case study, Proceedings of the 11th Annual Allerton Conference on Circuits

and System Theory, University of Illinois, Champaign-Urbana, IL, 1973, pp. 547–557.

15. Tendler, J.M., Dodson, J.S., Fields, J.S., Jr., Le, H., and Sinharoy, B., POWER4 system microarchi-

tecture, IBM J. Res. Dev., 46(1): 1–116, January 2002.

16. Dubey, P.K. and Flynn, M.J., Optimal pipelining, J. Parallel and Distributed Computing, 8(1): 10–19,

January 1990.

17. Hartstein, A. and Puzak, T.R., The optimum pipeline depth for a microprocessor, Proceedings of

the 29th International Symposium on Computer Architecture (ISCA-29), Anchorage, AK, May 2002,

pp. 7–13.

18. Srinivasan, V., Brooks, D., Gschwind, M., Bose, P., Zyuban, V., Strenski, P.N., and Emma, P.G.,

Optimizing pipelines for power and performance, Proceedings of the 35th Annual IEEE=ACM

Symposium on Microarchitecture (MICRO-35), Istanbul, Turkey, November 2002, pp. 333–344.

19. Zyuban, V., Brooks, D., Srinivasan, V., Gschwind, M., Bose, P., Strenski, P., and Emma, P., Integrated

analysis of power and performance for pipelined microprocessors, IEEE Trans. Comput., 53(8):

1004–1016, August 2004.

20. Borkar, S., VLSI design challenges for gigascale integration, Keynote speech given at 18th Inter-

national Symposium on VLSI Design, Kolkata, India, January 2005.

21. Tiwari, V. et al., Reducing power in high-performance microprocessors, Proceedings of the

IEEE=ACM Design Automation Conference, ACM, New York, 1998, pp. 732–737.

22. Gunther, S.H., Binns, F., Carmean, D.M., and Hall, J.C., Managing the impact of increasing

microprocessor power consumption, Intel Technology Journal Q1, 5(1): 1–9, February 2001.

23. Brooks, D., Bose, P., Srinivasan, V., Gschwind, M.K., Emma, P.G., and Rosenfield, M.G., New

methodology for early-stage, microarchitecture-level power–performance analysis of microproces-

sors, IBM J. Res. Dev., 47(5=6): 653–662, September=November 2003.

24. Jacobson, H., Bose, P., Hu, Z., Eickemeyer, R., Eisen, L., and Griswell, J., Stretching the limits of

clock-gating efficiency in server-class processors, Proceedings of the International Symposium on High

Performance Computer Architecture (HPCA), San Francisco, CA, February 2005, pp. 238–242.

25. Jacobson, H.M., Improved clock-gating through transparent pipelining, Proceedings of the Inter-

national Symposium on Low Power Electronics and Design (ISLPED), Newport Beach, CA, August

2004, pp. 26–31.

26. Jacobson, H.M. et al., Synchronous interlocked pipelines, Proceedings of the International Symposium

on Advanced Research in Asynchronous Circuits and Systems (ASYNC), Manchester, UK, April 2002,

pp. 3–12.

27. Kaxiras, S., Hu, Z., and Martonosi, M., Cache decay: Exploiting generational behavior to reduce

cache leakage power, Proceedings of the International Symposium on Computer Architecture (ISCA),

Goteborg, Sweden, June–July 2001, pp. 240–251.

28. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., and Mudge, T., Drowsy caches: Simple techniques for

reducing leakage power, Proceedings of the International Symposium on Computer Architecture

(ISCA), 2002.

29. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., and Bose, P., Microarchitec-

tural techniques for power gating of execution units, Proceedings of the International Symposium on

Low Power Electronics and Design (ISLPED), Newport Beach, CA, August 2004, pp. 32–37.

30. Brooks, D. and Martonosi, M., Dynamically exploiting narrow width operands to improve processor

power and performance, Proceedings of the 5th International Symposium on High-Performance

Computer Architecture (HPCA-5), Orlando, FL, January 1999.

31. Albonesi, D., Dynamic IPC=clock rate optimization, Proceedings of the 25th Annual International

Symposium on Computer Architecture (ISCA-25), Barcelona, Spain, 1998, pp. 282–292.

32. Maro, R., Bai, Y., and Bahar, R.I., Dynamically reconfiguring processor resources to reduce power-

consumption in high-performance processors, Proceedings of Power Aware Computer Systems (PACS)

Workshop, held in conjunction with ASPLOS, Cambridge, MA, November 2000.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 21 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-21

33. Buyuktosunoglu, A. et al., An adaptive issue queue for reduced power at high performance, Proceed-

ings of ISCAWorkshop on Complexity-Effective Design (WCED), Vancouver, Canada, June 2000.

34. Cruz, J.-L., Gonzalez, A., Valero, M., and Topham, N.P., Multiple-banked register file architectures,

Proceedings of the International Symposium on Computer Architecture (ISCA), Vancouver, Canada,

June 2000, pp. 316–325.

35. Albonesi, D.H., Balasubramonian, R., Dropsho, S.G., Dwarkadas, S., Friedman, E.G., Huang, M.C.,

Kursun, V., Magklis, G., Scott, M.L., Semeraro, G., Bose, P., Buyuktosunoglu, A., Cook, P.W., and

Schuster, S.E., Dynamically tuning processor resources with adaptive processing, IEEE Computer,

Special Issue on Power-Aware Computing, 36(12): 49–58, December 2003.

36. Reed, P. et al., 250 MHz 5 W RISC microprocessor with on-chip L2 cache controller, in Digest of

Technical Papers, IEEE Journal of Solid-State Circuits (JSSC), 32(11): 1635–1649, 1997.

37. Sanchez, H. et al., Thermal management system for high performance PowerPC microprocessors, in

Digest of papers, IEEE COMPCON, p. 325, 1997.

38. Brooks, D. and Martonosi, M., Dynamic thermal management for high-performance microproces-

sors, Proceedings of the 7th International Symposium on High Performance Computer Architecture

(HPCA-7), Nuevo Leon, Mexico, January 2001, pp. 20–24.

39. Manne, S., Klauser, A., and Grunwald, D., Pipeline gating: Speculation control for energy reduction,

Proceedings of the 25th Annual International Symposium on Computer Architecture (ISCA-25),

Barcelona, Spain, 1998, pp. 132–141.

40. Grunwald, D., Klauser, A., Manne, S., and Pleszkun, A., Confidence estimation for speculation

control, Proceedings of the 25th Annual International Symposium on Computer Architecture

(ISCA-25), Barcelona, Spain, 1998, pp. 122–131.

41. Theme issue, The future of processors, IEEE Comput., 30(9): 37–93, September 1997.

42. Bose, P., Kim, S., O’Connell, F.P., and Ciarfella, W.A., Bounds modeling and compiler optimizations

for superscalar performance tuning, J. Syst. Architecture, 45: 1111–1137, 1999, Elsevier Press.

43. Zyuban, V., Inherently lower-power high performance super scalar architectures, Ph.D Thesis,

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN,

2000.

44. Zyuban, V. and Kogge, P., Optimization of high-performance superscalar architectures for energy

efficiency, Proceedings of the 2000 International Symposium on Low Power Electronics and Design

(ISLPED), Rapallo, Italy, July 2000, pp. 84–89.

45. Tullsen, D.M., Eggers, S.J., and Levy, H.M., Simultaneous multithreading: Maximizing on-chip

parallelism, Proceedings of the 22nd Annual International Symposium on Computer Architecture

(ISCA-22), Santa Margherita Ligure, Italy, June 1995, pp. 292–403.

46. Seng, J.S., Tullsen, D.M., and Cai, G., The power efficiency of multithreaded architectures, Invited

talk presented at ISCA Workshop on Complexity-Effective Design (WCED), Vancouver, Canada,

June 2000.

47. Sohi, G., Breach, S.E., and Vijaykumar, T.N., Multiscalar processors, Proceedings of the 22nd Annual

International Symposium on Computer Architecture (ISCA-22), IEEE CS Press, Los Alamitos, CA,

1995, pp. 414–425.

48. Diefendorff, K., POWER4 focuses on memory bandwidth, Microprocessor Report, October 6, 1999,

pp. 11–17.

49. Kalla, R., Sinharoy, B., and Tendler, J., IBM POWER5 chip: A dual-core multithreaded processor,

IEEE Micro, 24(2): 40–47, March=April 2004.

50. McNairy, C. and Bhatia, R., Montecito: A dual-core, dual-thread Itanium processor, IEEE Micro,

25(2): 10–20, March=April 2005 (see also, Hot Chips 2004).

51. Kongetira, P., A 32-way multithreaded SPARC1 processor, presented at Hot Chips, August 2004.

52. Rakesh, Kumar, Tullsen, D., Jouppi, N., and Ranganathan, P., Heterogeneous chip multiprocessors,

IEEE Computer, November 2005.

53. Kahle, J.A. et al., Introduction to the cell multiprocessor, IBM J. Res. Dev., 49(4=5), 2005.

54. Gara, A. et al., Overview of the Blue Gene=L system architecture, IBM J. Res. Dev., 49(2=3), 2005.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 22 4.10.2007 2:55pm Compositor Name: BMani

3-22 Digital Systems and Applications

55. Talks presented at the Kool Chips Workshops: http:==www.cs.colorado.edu=�grunwald=Low-

PowerWorkshop.

56. Talks presented at the ISCA Workshops on Complexity Effective Design (WCED-2000 through

WCED-2006), http:==www.csl.cornell.edu=�albonesi=wced.html.

57. Talks presented at the Power Aware Computer Systems (PACS) Workshops; e.g., the 2004 offering:

http:==www.ece.cmu.edu=�pacs04=.

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 23 4.10.2007 2:55pm Compositor Name: BMani

Architectures for Low Power 3-23

Vojin Oklobdzija/Digital Systems and Applications 6195_C003 Final Proof page 24 4.10.2007 2:55pm Compositor Name: BMani

4
Performance
Evaluation

Jozo J. Dujmović
Daniel N. Tomasevich
Ming Au-Yeung
San Francisco State University

Lizy Kurian John
University of Texas at Austin

Eric Rotenberg
North Carolina State University

4.1 Measurement and Modeling of Disk
Subsystem Performance .. 4-1
Introduction . Description Errors and Prediction Errors of

Disk Subsystem Models . A Simple Acceleration=Deceleration

Model of Disk Access Time . A Fixed Maximum Velocity

Model of Seek Time . Numerical Computation of the

Average Seek Time . A Simple Model of Cached Disk

Access Time . MVA Models and Their Limitations .

Experimental Results for LDMVA Model of a Disk Subsystem

with Access Optimization . Experimental Results for LDMVA

Model of a Disk Subsystem with Caching and Access

Optimization . Predictive Power of Queuing Models .

Conclusions

4.2 Performance Evaluation: Techniques, Tools,
and Benchmarks .. 4-21
Introduction . Performance Measurement . Performance

Modeling . Workloads and Benchmarks

4.3 Trace Caching and Trace Processors.............................. 4-38
Instruction Fetch Bottleneck . Inefficient High-Bandwidth

Execution Mechanisms . Control and Data Dependence

Bottlenecks . Trace Cache and Trace Predictor: Efficient

High-Bandwidth Instruction Fetching . Trace Processor:

Efficient High-Bandwidth Instruction Execution .

Summary via Analogy

4.1 Measurement and Modeling of Disk
Subsystem Performance

Jozo J. Dujmović, Daniel N. Tomasevich, and Ming Au-Yeung

4.1.1 Introduction

In queuing theory literature, many models describe the dynamic behavior of computer systems. Good

sources of such information [1,2] usually include stochastic models based on birth–death formulas, the

convolution algorithm [3], load-independent and load-dependent mean value analysis (MVA) models

[4], and BCMP networks [5]. Theoretical queuing models presented in computer literature easily

explains phenomena such as bottlenecks, saturation, resource utilization, etc.; however, it is very difficult

to find sources that show a second level of modeling, which focuses on the ability of models to also

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 1 4.10.2007 2:55pm Compositor Name: BMani

4-1

achieve good numerical accuracy when modeling real computer systems running real workloads.

Although the phenomenology is important in the classroom, it is the numerical accuracy that counts

in engineering practice. The usual task of performance analysts is to measure system performance and

then derive models that can describe and predict the behavior of analyzed systems with reasonable

accuracy. Trying to model the dynamic behavior of real computer systems running real workloads

frequently is found to be a difficult task.

Our first goal is to develop load-dependent models of disk units that have a moderate level of

complexity suitable for engineering practice. The presented disk unit models describe disk access

times, head movement optimization, and disk caching. These models are then used for creating MVA

models of disk subsystems. Our second goal is to investigate and exemplify the limits of numerical

accuracy of presented queuing models, and to propose indicators of predictive power of analyzed

models. We present case studies of disk subsystem modeling of a VAX under VMS and a PC under

Windows NT. They provide a good insight into the level of difficulty encountered in practical disk

subsystem modeling and help establish realistic expectations of modeling errors. The relative simplicity

of MVA models makes them attractive for practice. They can be easily combined with our disk unit

models. However, our experiments with MVA models show that only the load-dependent version of

MVA generates results with reasonable accuracy.

4.1.2 Description Errors and Prediction Errors of Disk Subsystem Models

Modeling errors are defined as differences between queuing theory results and experimental measurements.

Simple queuing models of disk subsystems (such as load-independent MVA) frequently generate

modeling errors of 30%–50%ormore. In themajority of practical cases, such low accuracy is not acceptable.

Usually, modeling errors below 5% are acceptable, but require detailed and more sophisticated models.

The accuracy of models can only be evaluated with respect to measurements performed for a specific

system running a specific workload. Our approach to modeling and analysis of disk subsystems includes

the following main steps:

. Specification of drive workload that can be used to create various levels of disk subsystem load

. Measurement of system performance under a strictly increasing disk subsystem load

. Development of an analytic model with adjustable parameters that describes the dynamics of a

disk subsystem

. Calibration of the analytic model by adjusting all model parameters to minimize the difference

between the measured values and the values computed from the analytic model

. Assessment of the predictive power of the analytic model

. The use of the calibrated model for performance prediction of systems with different parameters

or workload

It is useful to identify two types of modeling errors: description errors and prediction errors. We define a

description error as the mean relative error between the measured performance indicators of a real

system and the performance indicators of a calibrated model. The description error is defined only

within the range of measurements. By contrast, the prediction error is defined as the error in predicting

the values of performance indicators outside the range of measurements or for different configurations

of the analyzed system or for a different workload. For example, if we measure the response time for the

degree of multiprogramming from 1 to 8 then the description error is the mean error between eight

measured values and eight computed values. The prediction error is the error between the computed

response time for 20 jobs and the actual response time, if it were measured. The prediction error is also

the error between predicted time and actual response time for a system with a different number of disks,

processors, or for a different workload.

The basic problem of modeling is that the ratio between prediction errors and description errors can

frequently be large, e.g., 2–10. Consequently, to provide reasonable prediction power, the description

errors of analytic models must be small, typically just a few percentage.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 2 4.10.2007 2:55pm Compositor Name: BMani

4-2 Digital Systems and Applications

4.1.3 A Simple Acceleration=Deceleration Model of Disk Access Time

The movement of the disk input=output (I=O) mechanism is usually modeled assuming that movement

is caused by applying a constant force for both acceleration and deceleration. This is a simple and usually

a realistic assumption illustrated in Fig. 4.1. If the mass of the I=O mechanism is m, then force f causes

the acceleration a¼ f=m. After applying acceleration a with force f, we apply deceleration with force �f.

The I=O heads travel the total distance x and the corresponding time T is called the seek time.

After accelerating for time T=2, the I=O heads attain the speed v¼ aT=2 and travel the distance

x=2¼ a(T=2)2=2. Therefore, the seek time as a function of distance is T(x) ¼ 2
ffiffiffiffiffiffiffiffi
x=a

p
. If the maximum

distance is xmax then the maximum seek time is Tmax; the acceleration is a¼ 4xmax=Tmax
2 , and

T(x) ¼ Tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=xmax

p
. The distance x can be expressed as a physical length or as a number of cylinders

traveled (in this case, the dimension of acceleration is cylinder=s2). If the head moves from cylinder y to

cylinder z then the traveled distance is x¼ jy� zj. The seek time is t(y,z) ¼ Tmax

ffijy � zj=xmax

p
. The

initial position y and the final position z can be anywhere in the interval [0, xmax]. Assuming the uniform

distribution of accesses to all cylinders, the average seek time, Tseek, can be computed as follows:

Tseek ¼ 1

x2max

ðxmax

0

ðxmax

0

t(y,z)dydz ¼ Tmax

x
5=2
max

ðxmax

0

ðxmax

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jy � zj

p
dydz ¼ 8

15
Tmax ¼ 16

15

ffiffiffiffiffiffiffiffiffi
xmax

a

r

Consider the case where each cylinder has a fixed data capacity of b bytes. For a large contiguous file of

size F, the maximum distance the I=O mechanism can travel is xmax¼ F=b cylinders. Consequently, the

average seek time for this file is Tseek ¼ c
ffiffiffi
F

p
, where c ¼ 16=(15

ffiffiffiffiffi
ab

p
) ¼ constant. If we access data in the

range 0 � F � Fmax, the average seek time is the following function of the file size:

Tseek(F) ¼ Tmax seek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F=Fmax

p
Tmax seek ¼ 16

15

ffiffiffiffiffiffiffiffiffi
Fmax

ab

r

Now the constant Tmax seek has a suitable interpretation of the maximum value of the average seek time

for the file of size Fmax.

When the I=Omechanism reaches a destination cylinder, it is necessary to wait for the latency time until

the desired sector reaches the read=write head. For a disk that rotates at Nrev revolutions=min, the total

revolution time is 60=Nrev. The latency time is uniformly distributed between 0 and 60=Nrev. Therefore,

the average latency is half of the revolution time, i.e., Tlatency¼ 30=Nrev. The disk data transfer time for one

sector is Ttransfer¼ 60=NrevNsector¼ 2Tlatency =Nsector. Therefore, the mean time to access and transfer disk

data from a file of size F is

Taccess ¼ Tseek þ Tlatency þ Ttransfer

¼ Tmax seek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F=Fmax

p
þ 30(1þ 2=Nsector)=Nrev

ffi Tmax seek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F=Fmax

p
þ 30=Nrev

This is the simplest and idealized model of the mean

disk access time. This model neglects phenomena

such as differences between disk acceleration and

deceleration, head settle time [6] (dominating short

seeks), limitedmaximum velocity, nonuniformity of

rotational latency for nonindependent requests, zon-

ing, bus interface and contention [7], disk command

overhead [8], as well as effects of caching and head

movement optimization.

Initial
position

m m

x

f −f

Force
reverse

point
Final

position

DecelerationAcceleration

FIGURE 4.1 Movement of the disk I=O mechan-

ism (seek). (From Dujmovic, J.J., Tomasevich, D.,

and Au-Yeung, M., Measurement and modeling of

disk subsystem performance, 25th International Con-

ference for the Resource Management and Perform-

ance Evaluation of Enterprise Computing Systems,

CMG 1999 Proceedings, Vol. 2, pp. 670–679, 1999.

With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 3 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-3

4.1.4 A Fixed Maximum Velocity Model of Seek Time

A more realistic model of seek time can be derived if we assume that the maximum velocity of the I=O

heads has a constant maximum value, as shown in Fig. 4.2. For small distances (exemplified by seek

times t1, t2, and all other seek times t � T*) we assume that the heads first linearly accelerate for some

time and then decelerate exactly the same amount of time. For larger distances (seek times t � T*), the

heads linearly accelerate until they achieve the maximum speed vmax, then travel at this constant speed,

and eventually decelerate linearly.

The maximum time T* that the disk mechanism can travel without being limited by the maximum

velocity is called the critical seek time. T* is the time to accelerate disk heads to the maximum speed and

then to decelerate them to a standstill. In cases where disk heads travel at the constant maximum speed,

the critical seek time T* denotes the acceleration plus deceleration time, i.e., the total seek time

minus the time heads spent traveling at the constant maximum speed. Assuming constant accelera-

tion=deceleration, the critical seek time is T*¼ 2vmax=a. During the critical seek time interval, the

mechanism travels the distance x*, called the critical distance. In the case of constant accelera-

tion=deceleration, we have v¼ at, x(t)¼ at2=2, and x*¼ 2x(T*=2)¼ v 2max=a.

Let us now investigate a general symmetrical case where the function v(t) has the property that the

acceleration time equals the deceleration time. We differentiate the small distance model (T � T*) and

the large distance model (T � T*) as follows:

x(T) ¼
ðT
0

v(t)dt

¼

ðT=2
0

v(t)dt

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
acceleration

þ
ðT
T=2

v(t)dt

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
deceleration

, T � T*

ðT*=2
0

v(t)dt

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
acceleration

þ
ðT�T*=2

T*=2

vmaxdt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
max velocity

þ
ðT
T�T*=2

v(t)dt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
deceleration

¼ x*þ vmax(T � T*), T � T*

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

x* ¼
ðT*=2
0

v(t)dt

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
acceleration

þ
ðT

T�T*=2

v(t)dt

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
deceleration

at

v (t)
vmax

v

t1 t2 T*T* T
T − T*

t

Disk head velocity

Deceleration Deceleration

Time

Seek time

0
0

2 2

Acceleration

FIGURE 4.2 A simplified disk head velocity diagram. (From Dujmovic, J.J. and Tomasevich, D., Calibration and

comparison of disk unit models, 27th International Conference for the Resource Management and Performance

Evaluation of Enterprise Computing Systems, CMG 2001 Proceedings, Vol. 1, pp. 315–325, 2001. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 4 4.10.2007 2:55pm Compositor Name: BMani

4-4 Digital Systems and Applications

The distance x* is the total distance for acceleration from 0 to vmax and deceleration from vmax to 0. In

the constant acceleration case (v(t)¼ at), this model yields

x(T) ¼
aT 2

4
¼ vmax

2T*
T 2, T � T* ¼ 2vmax

a

vmax T � vmax

a

� �
¼ vmax T � T*

2

� �
, T � T*

8>><
>>:

The critical distance x* is given by the following expression:

x* ¼ x(T*) ¼ a(T*)2

4
¼ vmaxT*

2
¼ v2max

a

Therefore, the acceleration and the maximum speed depend on the critical values x* and T*:

a ¼ 4x*=(T*)2, vmax ¼ 2x*=T*

They can also be numerically determined from the linear segment of the seek time characteristic, using

arbitrary points (x1, T1) and (x2, T2):

vmax ¼ x2 � xi

T2 � T1

, a ¼ (x2 � x1)
2

(T1x2 � T2x1)(T2 � T1)

The seek time characteristic follows from x(T):

T(x) ¼
2

ffiffiffi
x

a

r
¼ 2

ffiffiffiffiffiffiffiffiffi
xx*

vmax

s
¼ T*

ffiffiffiffiffi
x

x*

r
, x � x*

x þ x*

vmax

¼ T*

2
þ x

vmax

¼ T*

2

x

x*
þ 1

� �
, x � x*

8>>><
>>>:

This function satisfies the following properties:

. The initial nonlinear segment, for x � x*, is a square root function.

. The second segment, for x> x*, is a linear function.

. At the critical point x¼ x*, the first derivative of the square root function equals the first

derivative of the linear function (dT=dx¼ 1=vmax).

From T¼T*(1þ x=x*)=2, we can easily see that both x* and T* can be determined from the linear

segment of the measured seek time characteristic using the following four steps, illustrated in Fig. 4.3:

0 x
0

T */2

T *

X *

T

[3]

[1] [2]

Nonlinear
segment

[4]

Linear
segment

FIGURE 4.3 Graphical method for determining x* and T*. (From Dujmovic, J.J. and Tomasevich, D., Calibration

and comparison of disk unit models, 27th International Conference for the Resource Management and Performance

Evaluation of Enterprise Computing Systems, CMG 2001 Proceedings, Vol. 1, pp. 315–325, 2001. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 5 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-5

1. Extend the linear segment of the measured seek time characteristic to the vertical axis. For x¼ 0,

we get the point T*=2 on the vertical axis.

2. Move vertically up to the point T* (this value is twice the distance between the origin and the

intersection of the linear segment and the vertical axis).

3. Move horizontally to the intersection with the linear segment.

4. Move down to the horizontal axis and determine the point x*.

Because the linear segment of the seek time characteristic determines the values of x* and T* (as well as

a and vmax), it follows that the nonlinear segment must terminate exactly in the (x*, T*) point. A

numerical method for computing x* and T* can be based on any two points (x1, T1) and (x2, T2) taken

on the linear segment. From the linear segment function T¼T1þ (x� x1)(T2�T1)=(x2� x1), we

obtain the following expression:

x* ¼ T1x2 � T2x1

T2 � T1

, T* ¼ 2
T1x2 � T2x1

x2 � x1

The presented model is suitable for a qualitative description of the seek time behavior and for providing

insight into disk characteristics, but its flexibility is limited because it has only two parameters. In

addition to limited flexibility, this model is not appropriate for those disk units that do not satisfy the

assumptions of constant acceleration=deceleration, and for units where the seek time for short distances

is significantly affected by the head settling time. The accuracy of modeling can be improved using

numerical models that fit the measured characteristic and use more than two adjustable parameters.

4.1.5 Numerical Computation of the Average Seek Time

A simple numerical model can be based on three points: (x1, T1), (x*, T*), and (x2, T2), where

x1< x*< x2. Here, (x1, T1) is the point from the initial nonlinear segment. Contrary to the approach

presented in Section 4.1.4, the middle point (x*, T*) is not computed from the linear part of the

measured characteristic, but directly selected from the seek time graph as the beginning of the linear

segment. The point (x2, T2) denotes the end of the linear segment (the maximum distance heads can

travel). The corresponding model is as follows:

T(x) ¼
T*

x

x*

� �r
¼ txr , t ¼ T*

(x*)r
, x � x*

T*þ T2 � T*

x2 � x*
(x � x*) ¼ Ax þ B, x � x*

8>><
>>:

From T1 ¼ txr1 and T*¼ t(x*)r, it follows that T*=T1¼ (x*=x1)
r. Therefore, the parameters are

r ¼ log (T*=T1)

log (x*=x1)
, t ¼ T1=x

r
1 ¼ T*=(x*)r

A ¼ T2 � T*

x2 � x*
, B ¼ T*� Ax*

Using this model, it is possible to numerically compute the mean seek time. Suppose that a file occupies

N cylinders. The probability that the seek distance x is less than or equal to a given value z is

Px(z) ¼ P[x � z] ¼ (2Nz � z2)=N2

This probability distribution function yields the following probability density function:

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 6 4.10.2007 2:55pm Compositor Name: BMani

4-6 Digital Systems and Applications

px(z) ¼ dP=dz ¼ 2(N � z)=N 2

Hence, the average seek time for the N cylinders file can be computed as follows:

�Tseek ¼
ðN
0

T(z)px(z)dz ¼ 2

N 2

ðN
0

T(z)(N � z)dz

Using the presented seek time model for N � x*, we have

�Tseek ¼ 2t

N2

ðN
0

zr(N � z)dz ¼ 2tNr

(r þ 1)(r þ 2)

Similarly, for N � x*, we get

�Tseek ¼ 2

N 2

ðx*
0

T(z)(N � z)dz þ
ðN
x*

T(z)(N � z)dz

2
4

3
5

¼ 2

N 2

ðx*
0

tzr(N � z)dz þ
ðN
x*

(Az þ B)(N � z)dz

2
4

3
5

¼ 2t(x*)rþ1

N 2

N

r þ 1
� x*

r þ 2

� �
þ (N � x*)[N(AN þ 3B þ Ax*)� x*(3B þ 2Ax*)]

3N 2

Therefore, the average seek time as a function of file size is given by the following function:

�Tseek(N) ¼
2tNr

(r þ 1)(r þ 2)
, N � x*

2t(x*)rþ1

N 2

N

r þ 1
� x*

r þ 2

� �
þ (N � x*)[N(AN þ 3B þ Ax*(3B þ 2Ax*)]

3N2
, N � x*

8>><
>>:

Advantages of the presented exponential model are (1) parameters can be quickly computed from three

selected points of the characteristic and (2) parameter r enables modeling of disk characteristics that are

different from the square root model. From T(1)¼ t, it follows that t is interpreted as the single cylinder

seek time. The limitation of this model is that by determining t and r from points (x1, T1) and (x*, T*), it

is not possible to have the exact value of t and optimum modeling of the curvature. To improve this

model we can introduce one more parameter as follows:

T(x) ¼
0, x ¼ 0

t þ c(x � 1)r 1 � x � x*

Ax þ B, x � x*

8<
:

This new model has a nonlinear part (for x � x*) and a linear part (for x � x*). Since T(1)¼ t and

T(2)¼ tþ c, the parameter t is the single cylinder seek time and the parameter c is the difference

c¼T(2)�T(1). The parameters of this model (t, c, r, A , B, x*) are not independent. First, for x¼ x* the

nonlinear part must be connected to the linear part:

t þ c(x*� 1)r ¼ Ax*þ B

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 7 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-7

In addition, to assure perfect continuity of this model, for x¼ x* the nonlinear and linear model must

have the same first derivatives:

dT

dX

���
x¼x*

¼ A ¼ cr(x*� 1)r�1 (4:1)

Inserting this value of A in the connection relation, we have the expression for B:

B ¼ t þ c(x*� 1)r � cr(x*� 1)r�1x* (4:2)

The linear function can now be written as

Ax þ B ¼ cr(x � x*)

(x*� 1)1�r
þ t þ c(x*� 1)r

Therefore, using Eqs. 4.1 and 4.2, our exponential model is now

T(x) ¼
t þ c(x � 1)r , 1 � x � x*

cr(x � x*)

(x*� 1)1�r þ t þ c(x*� 1)r , x � x*

8<
:

The model has four independent parameters—t, c, r, x* that can be determined using a calibration

procedure. The objective of calibration is to make the model as close as possible to the measured

values (x1,T1), . . . , (xn,Tn). Optimum values of parameters can be computed from the measured values

(x1,T1), . . . , (xn,Tn) by minimizing one of the following criterion functions:

E1(t ,c,r,x*) ¼ 1

n

Xn
i¼1

(T(xi)� Ti)
2

E2(t ,c,r,x*) ¼ 1

n

Xn
i¼1

���T(xi)� Ti

���
E3(t ,c,r,x*) ¼ max

1�i�n

���T(xi)� Ti

���
E1 is a traditional mean square error

E2 is the mean absolute error

E3 is used to minimize the maximum error (minimax)

These criterion functions yield consistent or similar results and in this section we primarily used E1. For

all the above criteria, the most suitable minimization method is the Nelder–Mead simplex algorithm [9].

The resulting calibrated (optimum) values of parameters t, c, r, x* are those that yield the minimum

value of the selected criterion function.

Experiments with modern disk units show that the 4-parameter exponential model regularly achieves

high accuracy. Typical average relative errors are between 2% and 3%. The quality of this model is

illustrated in Fig. 4.4 for the Quantum Atlas III disk that has 8057 cylinders, and capacity of 9.1 GB. The

optimum parameters of the model are t¼ 1.55 ms, c¼ 0.32 ms, r¼ 0.387, and x*¼ 1686 cylinders. Note

that the optimum value of the exponent r is not 1=2 as expected from constant acceleration=deceleration

models, and frequently used in disk performance literature.

A detailed comparison of the accuracy of various disk seek time models can be found in Ref. [17]. The

analyzed modes include a best-fit version of the square root model [7], the polynomial square root

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 8 4.10.2007 2:55pm Compositor Name: BMani

4-8 Digital Systems and Applications

model [12], and our exponential model. Typical average and maximum relative errors for seek time

characteristics of 10 sample disk units are 4.5% and 66% for the best-fit square root model, 5.8% and

66% for the polynomial square root model, and 2.6% and 24% for the exponential model. The

maximum errors occur in the initial nonlinear segment of the seek time characteristic.

The mean seek time for accessing a file (or database) occupying N adjacent cylinders is

�Tseek(N) ¼

2

N 2

ðN
0

T(z)(N � z)dz, N � x*

2

N 2

ðx*
0

T(z)(N � z)dz þ
ðN
x*

T(z)(N � z)dz

2
4

3
5, N � x*

8>>>>>>><
>>>>>>>:

The final result is

�Tseek(N)¼
2(N � 1)2

N 2

t

2
þ c(N � 1)r

(rþ 1)(rþ 2)

� 	
, N � x*

2

N 2

t(x*� 1)(2N � x*� 1)

2
þ c(x*� 1)rþ1 N(rþ 2)� x*(rþ 1)� 1]½ �

(rþ 1)(rþ 2)
þ (N � x*)2(AN þ 2Ax*þ 3B)

6

� 	
, N � x*

8>>><
>>>:

Here A and B are defined by Eqs. 4.1 and 4.2.

Numerical models based on best fit do not provide a direct correspondence between disk performance

and physical attributes such as mass, force, acceleration, maximum speed, etc.; however, they are popular

with many authors because of their low numerical errors. For example, Ruemmler and Wilkes [7] used

the following simple model:

T(x) ¼ a þ b
ffiffiffi
x

p
, for short seeks (a,b ¼ constant)

Ax þ B, for long seeks (A,B ¼ constant)

A315

10

S
ee

k
tim

e
[m

s]

5

0
0 2000 4000 6000 8000

Cylinders

FIGURE 4.4 The 4-parameter exponential seek time model of the Quantum Atlas III disk (based on DiskSim

measurements of G.R. Ganger available at http:==www.ece.cmu.edu=�ganger). (FromDujmovic, J.J. and Tomasevich,

D., Calibration and comparison of disk unit models, 27th International Conference for the Resource Management and

Performance Evaluation of Enterprise Computing Systems, CMG 2001 Proceedings, Vol. 1, pp. 315–325, 2001. With

permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 9 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-9

Similarly, Ng [11] uses the model

T(x) ¼ a þ b
ffiffiffi
x

p þ c log (d), a,b,c ¼ constant

where d denotes the recording areal density in tracks=in. Lee and Katz [12] propose a model without a

linear segment:

T(x) ¼ 0, x = 0

A
ffiffiffiffiffiffiffiffiffiffiffi
x � 1

p þ B(x � 1)þ Tmin seek, x > 0

In this model, A and B are constants and Tmin seek is the minimum seek time corresponding to the

minimum nonzero number of cylinders x¼ 1. Finally, Shriver [13] suggests slightly higher model

granularity:

T(x) ¼
0, x ¼ 0

a þ b
ffiffiffi
x

p
, 0 � x � x1

c þ d
ffiffiffi
x

p
, x1 � x � x2

Ax þ B, x > x2

(a,b,c,d,A,B ¼ constant)

8>><
>>:

The accuracy of these models is less than the accuracy of the 4-parameter exponential model.

4.1.6 A Simple Model of Cached Disk Access Time

Modern operating systems use the main memory as a disk cache. In such cases, disk access is illustrated

as shown in Fig. 4.5. If data are not in the cache, it is necessary to fetch data from the disk. This causes

one or more disk accesses, taking time Tdisk. If data are already in the cache, access is very fast, Tcache �
Tdisk. The mean access time Ta of a cached disk depends on the cache hit probability p:

Ta ¼ pTcache þ (t � p)(Tcache þ Tdisk) ¼ Tcache þ (1� p)Tdisk

Probability p depends on the data access locality properties and for a large number of accesses, assuming

C< F, it satisfies the inequality p � C=F. The lowest hit ratio, p¼C=F, is obtained in the case of

minimum locality, i.e., in the case of uniform distribution of disk accesses. If Tdisk¼Taccess, the upper

bound of the cached disk access time is a function of the disk file size F, which can be modeled as follows:

Ta(F)¼
Tcache, F � C

Tcacheþ 1� C
F

� �
Tmax seek

F
Fmax

� �r
þ 30

Nrev

h i
, F � C

(

This model has four adjustable parameters: Tcache, C, r,

and Tmax seek. Two adjustable parameters (Tcache and C)

represent the disk cache, and two parameters (Tmax seek

and r) represent the seek time model. The simple

2-parameter seek time model T¼ Tmax seek(F=Fmax)
r

yields sufficiently good accuracy for the most frequent

cases of relatively small databases where the seek time is

nonlinear. For example, in the case of the Quantum Atlas

III disk, the nonlinear segment corresponds to data sizes

up to (1686=8057)9.1 GB¼ 1.9 GB. For larger databases

(that require the linear segment of the seek time charac-

teristic), we can apply the 3- and 4-parameter models

described in the previous section.

Disk file

CPU
Tcache

Cache

C
Tdisk

F

FIGURE 4.5 File access using a disk cache.

(From Dujmovic, J.J., Tomasevich, D., and Au-

Yeung, M., Measurement and modeling of disk

subsystem performance, 25th International

Conference for the Resource Management and

Performance Evaluation of Enterprise Comput-

ing Systems, CMG 1999 Proceedings, Vol. 2,

pp. 670–679, 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 10 4.10.2007 2:55pm Compositor Name: BMani

4-10 Digital Systems and Applications

If we measure disk access times T1, . . . , Tn for a sequence of file sizes F1, . . . , Fn, the calibration of the

above model can be performed by selecting the optimum values of Tcache, C, r, and Tmax seek, which

minimize the criterion function

E(Tcache,C,R,Tmax seek) ¼
Xn
i¼1

���Ti � Ta(Fi ,Tcache,C,r,Tmax seek)
���q

The exponent q is usually selected in the range 1 � q � 4, where larger values are selected in cases where

the primary goal is to minimize large errors. The minimization can be performed using the traditional

Nelder–Mead simplex method [9].

A verification of this model is shown in Figs. 4.6 and 4.7 for a 300 MHz PC with 64 MB of memory,

Windows NT 4.5, and a 4 GB SCSI disk that has Nnev¼ 7200 rev=min. The resulting parameters

are Tcache¼ 96 ms, C¼ 48 MB, r¼ 0.234, and Tmax seek¼ 7.51 ms for Fmax¼ 1400 MB. In the majority

Computed

Measured

File size [MB]

150010005000

A
cc

es
s

tim
e

[m
s] 10

12

14

8

6

4

2

0

FIGURE 4.6 Measured and computed access times. (From Dujmovic, J.J., Tomasevich, D., and Au-Yeung, M.,

Measurement and modeling of disk subsystem performance, 25th International Conference for the Resource

Management and Performance Evaluation of Enterprise Computing Systems, CMG 1999 Proceedings, Vol.2,

pp. 670–679, 1999. With permission.)

120100806040200

File size [MB]

Measured

Computed

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

A
cc

es
s

tim
e

[m
s]

FIGURE 4.7 Measured and computed access times showing the cache size of 48 MB (magnified detail of Fig. 4.5).

(From Dujmovic, J.J., Tomasevich, D., and Au-Yeung, M., Measurement and modeling of disk subsystem performance,

25th International Conference for the Resource Management and Performance Evaluation of Enterprise Computing

Systems, CMG 1999 Proceedings, Vol. 2, pp. 670–679, 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 11 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-11

of 245 measured points (only some of them

shown in Fig. 4.6), the mean relative error of

this model is less than 1%.

4.1.6.1 Disk Access Optimization
Model

The disk access time model described in the

previous section assumes a single program

that generates disk access requests. In such a

case, all requests are served strictly in the

order they are submitted and disk access

optimization is not possible; however, in the

case of multiprogramming, the disk queue

contains multiple requests independently

generated by various programs. It is possible

to use a disk access optimization algorithm

that increases the global disk throughput by

minimizing the movement of I=O head

mechanism. The simplest of such an algo-

rithm is the shortest seek time first (SSTF)

[10,14], which can be easily analyzed.

A simulator for the SSTF technique can be easily written according to the following algorithm:

1. Create a disk queue with n random requests.

2. Select an arbitrary initial position of disk heads.

3. Find the request that yields the shortest distance x.

4. Compute the relative seek time t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=xmax

p
(this is a normalized time with a maximum

value of 1).

5. The position of the processed request becomes the new position of the disk head mechanism.

6. Replace the processed request with a new random request.

7. Repeat steps 3–6 many times and compute the average relative (normalized) seek time.

The results of the simulation yield a decreasing relative seek time function presented in Fig. 4.8. Taking

this function into account, the optimized disk access time can be well approximated, using the following

model:

Ta(n) ¼ tmin þ (tmax � tmin) e
a(n�1)

The parameter tmin is introduced to reflect the mean latency time. The value of tmax corresponds to the

maximum seek distance. The quality of this approximation is rather good, as shown in Fig. 4.8. The

exponent a has a negative value, which reflects the quality of the optimization algorithm (as the quality

of optimization increases, so does the absolute value of the exponent a).

4.1.6.2 Disk Service Time Model

Generally, the mean disk access time is a decreasing function of the disk queue length and is an

increasing function of file size. If we want to combine the disk cache access model and the disk access

optimization model, the result can be the following formula for load-dependent and cached disks:

Ta(F ,n) ¼
Tcache, F � C

Tcache þ F � C

F
Tmax seek

F

Fmax

� �r

ea(n�1) þ 30

Nrev

� 	
, F � C

8<
:

Model

Simulation

Disk queue length

0.6

0.5

0.4

0.3

0.2

0.1

0

R
el

at
iv

e
se

ek
 ti

m
e

0 5 10 15 20

FIGURE 4.8 Comparing simulation and analytic models of

seek time. (From Dujmovic, J.J., Tomasevich, D., and

Au-Yeung, M., Measurement and modeling of disk subsystem

performance, 25th International Conference for the Resource

Management and Performance Evaluation of Enterprise Com-

puting Systems, CMG 1999 Proceedings, Vol. 2, pp. 670–679,

1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 12 4.10.2007 2:55pm Compositor Name: BMani

4-12 Digital Systems and Applications

The disk service time is different from the mean disk access time. Disk service time is affected by caching

and access optimization, but it includes only the cases of actual disk access, excluding the cases of

fetching data from the cache without disk access. Consequently, we propose the following model of the

load-dependent cached disk service time:

Sd(F ,n) ¼ Tmax seek

F

Fmax

� �r

ea(n�1) þ 30

Nrev

þ t0, F > C

The first term in this model reflects the optimized seek time, the second term is the latency time, and the

third term reflects the data transfer time and related cache I=O operations. This model is successfully

applied for the analysis of a cached system presented in Section 4.1.7. The presented load-dependent

service time model can also be developed using other seek time models described in Section 4.1.5.

4.1.6.3 Disk Subsystem Benchmark Workload

Disk subsystem workloads always lie between two obvious extremes: sequential access and uniformly

distributed random access. Sequential access is more frequent, but random access is more general because

it includes seek operations. Similarly, benchmark workloads must balance write and read operations. This

balance is based on two facts: (1) read operations are generally more frequent than write operations and

(2) write operations are less desirable in benchmarking because performance results are rather sensitive to

tuning of disk formats or blocking factors, which frequently yields questionable results. Finally, the

benchmark workload can be symmetric (i.e., balanced load, where all disks have the same load) and

asymmetric (usually with bottleneck disks). Symmetric loads aremore desirable in benchmarking because

they expose the capabilities of disk controllers and central processors better.

A simple classification of disk workloads is presented in Table 4.1. Workload type 0 or 1 can be used

for creating files that are then processed by other workloads. Workload types 2 and 3 are used for

benchmarking systems using sequential access. Similarly, workload types 6 and 7 are used for bench-

marking, using random access. We use workload type 6 as the basic workload for measurement of

disk subsystem performance. It consists of n copies of a disk random access program (DRAN),

which uniformly accesses files that are uniformly distributed over all disk units [15]. This is a simple

balanced workload that should properly reflect disk subsystem performance and be suitable for both

performance measurement and modeling. Typical results of running the DRAN workload type 6 are

presented in Fig. 4.9.

TABLE 4.1 Classification of Eight Basic Disk Workloads

Access Method Operation Load Balance

Workload Type

(S ¼ Sequential,

R ¼ Random)

(W ¼ Write,

R ¼ Read)

(S ¼ Symmetric,

A ¼ Asymmetric)

0 S W S

1 S W A

2 S R S

3 S R A

4 R W S

5 R W A

6 R R S

7 R R A

Source : Dujmovic, J.J., Tomasevich, D., and Au-Yeung, M., Measurement and modeling of

disk subsystem performance, 25th International Conference for the Resource Management

and Performance Evaluation of Enterprise Computing Systems, CMG 1999 Proceedings,

Vol. 2, pp. 670–679, 1999. With permission.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 13 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-13

The analyzed computer, VAX 8650, has 14 disk units (RA 81) and one or two disk controllers (HSC

50). Each program generates 7000 visits to the central processor, and 7000 visits to disks. Since the disk

load is uniformly distributed, each program creates 500 accesses to each disk. In the case of a single

program, the measured processor time for a single disk controller is 4.99 s and the total elapsed time is

163.16 s. The processor time can be interpreted as processor demand Dp¼ 4.99 s. A queuing model of

this system, in the case of two disk controllers, is shown in Fig. 4.10. The next step is to develop an

analytic model for the analysis of this system.

4.1.7 MVA Models and Their Limitations

Let us introduce the following variables:

N ¼ degree of multiprogramming (number of jobs in the system)

K ¼number of service centers (processors, disks, and disk controllers)

Pk(jjn)¼ probability that there are j jobs at the kth service center, if the total number of jobs in the

system (degree of multiprogramming) is n

Rk(n) ¼ response time of the kth service center in the case of n jobs in the system (n¼ 1, . . . , N)

R(n) ¼ response time of the whole system

Uk(n) ¼ utilization of the kth server

Qk(n) ¼ queue length at the kth server

Sk(j) ¼ service time of the kth server if j jobs are in the queue; if the kth server is load independent

then Sk(j)¼ Sk¼ constant, k 2 {1, . . . , K}

Vk ¼ number of visits to the kth server per job

Dk ¼ service demand for the kth server; in the case of load-independent servers, Dk¼Vk Sk

0

50

100

150

200

250

300

0 5 10 15 20

Processor time
Response time (1 disk controller)
Response time (2 disk controllers)

Degree of multiprogramming

T
im

e
[s

]

FIGURE 4.9 Measured response times for VAX 8650. (From Dujmovic, J.J., Tomasevich, D., and Au-Yeung, M.,

Measurement and modeling of disk subsystem performance, 25th International Conference for the Resource Manage-

ment and Performance Evaluation of Enterprise Computing Systems, CMG 1999 Proceedings, Vol. 2, pp. 670–679,

1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 14 4.10.2007 2:55pm Compositor Name: BMani

4-14 Digital Systems and Applications

X(n) ¼ system throughput (completed jobs

per time unit)

Xk(n)¼ throughput of the kth service center

when there are n jobs in the system,

Xk(n)¼Vk X(n)

The traditional load-independent mean value

analysis program (LIMVA) is based on assump-

tion that the service times of all servers are con-

stant. The goal of MVA models is to compute

system response times, utilizations, and through-

puts. Following is the traditional LIMVA model:

Qk(0) ¼ 0, k ¼ 1, . . . , K

for n¼ 1 to N do

Rk(n) ¼ Sk[1þ Qk(n� 1)], k ¼ 1, . . . , K

R(n) ¼
XK
k¼1

VkRk(n)

X(n) ¼ n=R(n)

Xk(n) ¼ VkX(n), k ¼ 1, . . . , K

Uk(n) ¼ SkXk(n) ¼ DkX(n), k ¼ 1, . . . , K

Qk(n) ¼ VkX(n)Rk(n), k ¼ 1, . . . , K

end_for

For perfectly balanced systems, where all

demands are equal (D¼V1S1¼V2S2¼ � � � ¼
VKSK), this algorithm yields equal distribution

of jobs in service centers

Qk(n) ¼ n=K , k ¼ 1, . . . , K

This is a consequence of equal residence times

VkRk(n) ¼ Dk[1þQk(n� 1)] ¼ D[1þ (n� 1)=K], k ¼ 1, . . . , K

and their use for computing Qk(n)¼VkX(n)Rk(n). Furthermore, this yields linear response times and

other relations:

R(n) ¼ KVkRk(n) ¼ (n� 1þ K)D

Rk(n) ¼ (n� 1þ K)Sk=K , k ¼ 1, . . . , K

X(n) ¼ n=(n� 1þ K)D

Xk(n) ¼ n=(n� 1þ K)Sk , k ¼ 1, . . . , K

Uk(n) ¼ n=(n� 1þ K), k ¼ 1, . . . , K

Of course, in a general case we have different demands, and the response time is no longer linear.

Unfortunately, the nature of the LIMVA model is essentially quasi-linear. Even for different demands, the

response time curves remain similar to straight lines.

Sc

Sc

Sp

Disk
controller

Central
processor

Disk
controller

Load-
dependent

disks

Load-
dependent

disks

FIGURE 4.10 A queuing model of VAX 8650. (From

Dujmovic, J.J., Tomasevich, D., and Au-Yeung, M.,

Measurement and modeling of disk subsystem perform-

ance, 25th International Conference for the Resource

Management and Performance Evaluation of Enterprise

Computing Systems, CMG 1999 Proceedings, Vol. 2,

pp. 670–679, 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 15 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-15

Limitations of the LIMVA model are exemplified in Fig. 4.11. In this case the processor service time

obtained from measurements is Sp¼ 825 ms, the number of processor visits per job is Vp¼ 7000, yielding

processor demand Dp¼ 5.775 s. The number of disks¼ 14 and the number of disk visits per job is

Vd¼ 7000=14¼ 500. The available resources include the central processor and 14 equally loaded disk

units. A spectrum of LIMVA models can be obtained for disk service times varying in the range 12 ms �
Sd � 24 ms, and yielding disk demands in the range, 6 s � Dd � 12 s. The corresponding response times

presented in Fig. 4.11 are, in the whole range, practically straight lines and obviously inadequate for

representing the measured response time function. The best approximation would be obtained for Sd¼ 16

ms, but this approximation is equally poor as the attempt to use a straight line to approximate a parabola.

The nature of the dynamic behavior of VAX 8650 is quite different from what can be modeled by LIMVA

regardless howwell we adjust its parameters. Thus, amore flexiblemodel is needed. Taking into account that

disks are never load independent, because they regularly use either access optimization or access optimiza-

tion and caching, we hope that better results should be expected from load-dependent MVA models.

For batch systems we apply the load-dependent mean value analysis model (LDMVA) introduced in

Ref. [5] (see also [1,2]):

Pk(0j0) ¼ 1, k ¼ 1, . . . , K

for n¼ 1 to N do

Rk(n) ¼
Xn
j¼1

jSk(j)Pk(j � 1jn� 1), k ¼ 1, . . . , K

R(n) ¼
XK
k¼1

VkRk(n)

X(n) ¼ n=R(n)

50

100

150

200

250

300

350

400

450
Sd

=

12,13,

...,

24 ms

Degree of multiprogramming

R
es

po
ns

e
tim

e
[s

]

1197531 13 15 17 19

FIGURE 4.11 A family of LIMVA models and measured VAX 8650 response time. (From Dujmovic, J.J., Toma-

sevich, D., and Au-Yeung, M., Measurement and modeling of disk subsystem performance, 25th International

Conference for the Resource Management and Performance Evaluation of Enterprise Computing Systems, CMG

1999 Proceedings, Vol. 2, pp. 670–679, 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 16 4.10.2007 2:55pm Compositor Name: BMani

4-16 Digital Systems and Applications

Pk(jjn) ¼
VkSk(j)X(n)Pk(j � 1jn� 1), j ¼ 1, . . . , n

1�Pn
i¼1

Pk(ijn), j ¼ 0

8<
:

9=
;, k ¼ 1, . . . , K

Qk(n) ¼
Xn
j¼1

jPk(jjn), k ¼ 1, . . . , K

Uk(n) ¼ 1� Pk(0jn), k ¼ 1, . . . , K

end_for

4.1.8 Experimental Results for LDMVA Model of a Disk Subsystem
with Access Optimization

Let us now apply the LDMVA model for the VAX 8650 disk subsystem modeling. The measured

response and processor times can be used to adjust parameters of the LDMVA model. This is called

calibration of the queuing model. The calibration process is based on measured response times Tm1(n)

and Tm2(n), which correspond to systems with one and two disk controllers. Suppose that the load-

dependent disk service time is approximated by Sd(n)¼ tminþ (tmax� tmin)e
a(n� 1). The parameters of

the LDMVA model are tmin, tmax, a, Sp, Sc. Let Rc1(n, tmin, tmax, a, Sp, Sc) and Rc2(n, tmin, tmax, a, Sp,

Sc) be the response times computed from the LDMVA model, respectively using one and two

controllers. The model calibration procedure is based on the minimization of the compound criterion

function

C(tmin,tmax,a,Sp,Sc)

¼ max
Xnmax

n¼1

[Tm1(n)� Rc1(n,tmin,tmax,a,Sp,Sc)]
2,
Xnmax

n¼1

[Tm2(n)� Rc2(n,tmin,tmax,a,Sp,Sc)]
2

()

The results of calibration performed using the Nelder–Mead simplex method [9] are the following values

of parameters: tmin¼ 11.5 ms, tmax¼ 20 ms, a¼�4, Sp¼ 0.822 ms, and Sc¼ 0.89 ms. The mean relative

error for all presented points is 1% (Fig. 4.12). At this level of description error, it is realistic to expect

good prediction results.

4.1.9 Experimental Results for LDMVA Model of a Disk Subsystem
with Caching and Access Optimization

In this experiment, we use the same 300 MHz PC presented in Section 4.1.5 and Figs. 4.6 and 4.7.

Its memory capacity is 64 MB with two disk units, and the disk cache size under Windows NT 4.5 is

C¼ 48 MB.

The measured response times for DRAN benchmarks accessing a 100 MB file and 1 GB file are

presented in Fig. 4.13. The LDMVA model we used is based on measured disk parameters reported in

Section 4.1.5 and on the disk service time model Sd(F,n) proposed in Section 4.1.6.1. Disk accesses to a

file of size F occur with the probability (F�C)=F and cache accesses with the probability C=F. The

number of disk visits Vd now depends on the number of processor visits Vp and the size of file. If

the number of disks is k then Vd(F)¼Vp(F�C)=kF. Therefore, the disk cache causes both the disk

service time and the number of visits to be functions of the file size. Processor service time is not

constant. For cache accesses, it can be expressed as Sp¼ tp
progþ tp

cache and for disk accesses as Sp¼ tp
prog

þ tp
cacheþ tp

disk, where the three components correspond to the processor activity for the benchmark

program, cache access, and serving the file management system during the disk access. The mean service

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 17 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-17

time is Sp¼ tp
progþ tp

cacheþ tp
disk(F�C)=F. The calibrated model in Fig. 4.13 has the mean modeling

error of 7.4%.

4.1.10 Predictive Power of Queuing Models

All queuing models have adjustable parameters (e.g., the processor and disk service times [16]). The

default values of these parameters, taken from manufacturer specifications, regularly yield rather large

prediction errors. These errors can be reduced by corrections of parameters in a calibration process.

During the model calibration, the parameters are adjusted to minimize the difference between the

measured values and computed values from the model [17]. In essence, this is just a standard curve

fitting process, and the resulting low description error is not necessarily a proof of the quality of themodel.

The only way to assess the quality of the model is through the analysis of the prediction errors.

Let n be the number of measured response times R1, . . . , Rn and let us use the firstmmeasured values,

R1, . . . , Rm, m � n, for the model calibration. The indicator p¼ 100 m=n shows the percent of values

used for calibration. Let e(p) denote the average relative error between the measured vales and the

values of the calibrated model for the whole range of n data points. Generally, e(p) is expected to be a

decreasing function, and three typical such functions are presented in Figs. 4.14 and 4.15.

150

170

190

210

230

250

270

290

1 3 5 7 9 11 13 15 17 19

Computed R1 Measured R1

Computed R2 Measured R2

Degree of multiprogramming

R
es

po
ns

e
tim

e
[s

]

FIGURE 4.12 The results of LDMVA model calibra-

tion. (From Dujmovic, J.J., Tomasevich, D., and

Au-Yeung, M., Measurement and modeling of disk sub-

system performance, 25th International Conference for

the ResourceManagement and Performance Evaluation

of Enterprise Computing Systems, CMG 1999 Proceed-

ings, Vol. 2, pp. 670–679, 1999. With permission.)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20
Degree of multiprogramming

R
es

po
ns

e
tim

e
[s

]

Model (F

=

100 MB)

Model (F

=

1 GB)Measured (F

=

1 GB)

Measured (F

=

100 MB)

FIGURE 4.13 Measured response times and the results

of the LDMVA model. (From Dujmovic, J.J., Tomasevich,

D., and Au-Yeung, M., Measurement and modeling of disk

subsystem performance, 25th International Conference for

the ResourceManagement and Performance Evaluation of

Enterprise Computing Systems, CMG 1999 Proceedings,

Vol. 2, pp. 670–679, 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 18 4.10.2007 2:55pm Compositor Name: BMani

4-18 Digital Systems and Applications

In all cases, we measured the processor time

and used this value in our LDMVA model. The

calibration process included three parameters of

the disk subsystem (minimum service time tmin,

maximum service time tmax, and the exponent a

introduced in Section 4.1.6). Consequently, the

e(p) function starts with m¼ 3 points.

In the ideal theoretical case of a perfect model,

we expect e(p)¼ 0 for allm � 3. Good predictive

power of a model is indicated by e(p), approach-

ing a constant low value as soon as possible.

Consequently, the predictive power is related to

the smallest value of p after which e(p) remains

in the d neighborhood of the minimum

emin ¼ min
p�100%

e(p). Let us denote this value as

p*(d). In other words

e(p) > (1þ d)emin, 8p � p*(d)

Now, we can define the following predictive

power quality indicator:

q(d) ¼ 1� p*(d)

1� pmin

100%

where pmin denotes the minimum value of p

necessary for calibration (in our examples pmin

corresponds to m¼ 3).

The case in Fig. 4.14 reaches the minimum error

e(100%)¼ 2.16%. Let us take d¼ 0.2. Thenwe have

(1þ d)emin¼ 2.59%, p*(0.2)¼ 0.875(87.5%), and

the resulting predictive power is rather low:

q(0:2) ¼ 1� 0:875

1� 0:375
	 100 ¼ 20%

In the case of Fig. 4.15, the model with 1 HSC50

disk controller yields emin¼ 1.53%, and for

d¼ 0.2 we have

(1þ d)emin ¼ 1:84%, p*(0:2) ¼ 0:7,

q(0:2) ¼ 35:3%

Finally, the predictive power in the case with two

HSC50 disk controllers is much better: we have

emin¼ 0.64% yielding

(1þ d)emin ¼ 0:77%,

p*(0:2) ¼ 0:35, q(0:2) ¼ 76:5%

0

2

4

6

8

10

12

14

20 40 60 80 100

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

[%
]

Fraction of points [%]

FIGURE 4.14 Prediction errors e(p) for VAX 11=785.

(From Dujmovic, J.J., Tomasevich, D., and Au-Yeung,

M., Measurement and modeling of disk subsystem per-

formance, 25th International Conference for the

Resource Management and Performance Evaluation of

Enterprise Computing Systems, CMG 1999 Proceedings,

Vol. 2, pp. 670–679, 1999. With permission.)

0
0 20 40 60 80 100

1

2

3

4

5

6

7

8

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

[%
]

Fraction of points [%]

2* HSC50

1* HSC50

FIGURE 4.15 Prediction errors e(p) for VAX 8650.

(From Dujmovic, J.J., Tomasevich, D., and Au-Yeung,

M., Measurement and modeling of disk subsystem per-

formance, 25th International Conference for the

Resource Management and Performance Evaluation of

Enterprise Computing Systems, CMG 1999 Proceedings,

Vol. 2, pp. 670–679, 1999. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 19 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-19

4.1.11 Conclusions

Even in cases of fully controlled simple synthetic workloads, the performancemodeling of disk subsystems is

not a simple task. Basic popular load-independent queuing models (load-independent convolution algo-

rithm or MVA) cannot be used for modeling modern disk subsystems, which use caching and disk access

optimization. The use of load-dependent MVA models is rather efficient and we proposed models for

optimized disk access, cached disk access, and combined optimized and cached disk access. Presentedmodels

need a careful calibration procedure. In the majority of cases based on symmetric random disk accesses, the

modeling errors for optimized disk access were less than 2%. In more complex cases with optimized disk

accesses andcaching,ourmodels regularly achieve errorsbelow10%.Experimental verificationofourmodels

has been successfully performed in both VAX=VMS and PC=NTenvironments.

References

1. Jain, R., The Art of Computer System Performance Analysis. John Wiley & Sons, New York, 1991.

2. Menasce, D., V. Almeida, and L. Dowdy, Capacity Planning and Performance Modeling. Prentice-

Hall, Englewood Cliffs, NJ, 1994.

3. Buzen, J.P., Computational algorithms for closed queuing networks with exponential servers.

Communications of the ACM, 16(9): 527–531, 1973.

4. Reiser, M. and S.S. Lavenberg, Mean-value analysis of closed multichain queuing networks. Journal

of the ACM, 27(2): 313–322, 1980.

5. Basket, F., K. Chandy, R. Munz, and F. Palacios, Open, closed, and mixed networks of queues with

different classes of customers. Journal of the ACM, 22(2): 248–260, 1975.

6. Worthington, B.L., G.R. Ganger, Y.N. Patt, and J. Wilkes, On-line extraction of SCSI disk drive

parameters. Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, Performance Evaluation Review, Ottawa, Canada, Vol. 23, pp. 146–156, May

1995.

7. Ruemmler, C. and J. Wilkes, An introduction to disk drive modeling. IEEE Computer, 27(3): 17–28,

1994.

8. IBM, Hard disk drive specifications—Deskstar 60GPX. S07N-4780–02, Publication #2818, February 1,

2001.

9. Nelder, J.A. and R. Mead, A simplex method for function minimization. Computer Journal, 7(4):

308–313, 1965.

10. Silbershatz, A. and P.B. Galvin, Operating System Concepts. Addison–Wesley, Reading, MA 1994.

11. Ng, S.W., Advances in disk technology: Performance issues. IEEE Computer, 40(1): 75–81, 1998.

12. Lee, E.K. and R.H. Katz, An analytic performance model of disk arrays. Proceedings of ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems, Santa Clara, CA,

pp. 98–109, May 1993.

13. Shriver, E., Performance modeling for realistic storage devices. Ph.D. Thesis, Department of Computer

Science, New York University, New York, May 1997.

14. Worthington, B.L., G.R. Ganger, and Y.N. Patt, Scheduling algorithms for modern disk drives.

Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, Performance Evaluation Review, Nashville, TN, Vol. 22, pp. 241–251, May 1994.

15. Dujmovic, J.J., Multiprogramming efficiency analysis for computer evaluation and selection studies.

Proceedings of the 11th International Symposium Computer at the University, Cavtat, Croatia, 1989.

16. Dujmovic, J.J., D. Tomasevich, and M. Au-Yeung, Measurement and modeling of disk subsystem

performance, 25th International Conference for the Resource Management and Performance Evalu-

ation of Enterprise Computing Systems, CMG 1999 Proceedings, Reno, NV, Vol. 2, pp. 670–679, 1999.

17. Dujmovic, J.J. and D. Tomasevich, Calibration and comparison of disk unit models, 27th International

Conference for the Resource Management and Performance Evaluation of Enterprise Computing

Systems, CMG 2001 Proceedings, Anaheim, CA, Vol. 1, pp. 315–325, 2001.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 20 4.10.2007 2:55pm Compositor Name: BMani

4-20 Digital Systems and Applications

4.2 Performance Evaluation: Techniques, Tools,
and Benchmarks

Lizy Kurian John

4.2.1 Introduction

State-of-the-art high performance microprocessors contain tens of millions of transistors and operate at

frequencies close to 2 GHz. These processors perform several tasks in overlap, employ significant

amounts of speculation and out-of-order execution, and other microarchitectural techniques, and are

true marvels of engineering. Designing and evaluating these microprocessors is a major challenge,

especially considering the fact that one second of program execution on these processors involves several

billion instructions and analyzing one second of execution may involve dealing with tens of billion

pieces of information.

In general, design of microprocessors and computer systems involves several steps (i) understanding

applications and workloads that the systems will be running, (ii) innovating potential designs, (iii)

evaluating performance of the candidate designs, and (iv) selecting the best design. The large number of

potential designs and the constantly evolving nature of workloads have resulted in designs being largely

adhoc. In this article, we investigate major techniques used in the performance evaluation process.

It should be noted that performance evaluation is needed at several stages of the design. In early

stages, when the design is being conceived, performance evaluation is used to make early design

tradeoffs. Usually, this is accomplished by simulation models, because building prototypes of state-of-

the-art microprocessors is expensive and time consuming. Several design decisions are made before any

prototyping is done. Once the design is finalized and is being implemented, simulation is used to

evaluate functionality and performance of subsystems. Later, performance measurement is done after

the product is available in order to understand the performance of the actual system to various real

world workloads and to identify modifications to incorporate in future designs.

Performance evaluation can be classified into performance modeling and performance measurement,

as illustrated in Table 4.2. Performance measurement is possible only if the system of interest is available

for measurement and only if one has access to the parameters of interest. Performance measurement

may further be classified into on-chip hardware monitoring, off-chip hardware monitoring, software

monitoring, and microcoded instrumentation. Performance modeling is typically used when actual

systems are not available for measurement or, if the actual systems do not have test points to measure

every detail of interest. Performance modeling may further be classified into simulation modeling and

analytical modeling. Simulation models may further be classified into numerous categories depending

TABLE 4.2 A Classification of Performance Evaluation Techniques

Performance measurement Microprocessor on-chip performance monitoring counters

Off-chip hardware monitoring

Software monitoring

Micro-coded instrumentation

Performance modeling Simulation

Trace driven simulation

Execution driven simulation

Complete system simulation

Event driven simulation

Software profiling

Analytical modeling

Probabilistic models

Queuing models

Markov models

Petri net models

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 21 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-21

on the mode=level of detail of simulation. Analytical models use probabilistic models, queueing theory,

Markov models or Petri nets.

Performance modeling=measurement techniques and tools should possess several desirable features.

. They must be accurate. It is easy to build models that are heavily sanitized, however, such models

will not be accurate.

. They must be noninvasive. The measurement process must not alter the system or degrade the

system’s performance.

. They must not be expensive. Building the performance measurement facility should not cost

significant amount of time or money.

. They must be easy to change or extend. Microprocessors and computer systems constantly

undergo changes and it must be easy to extend the modeling=measurement facility to include

the upgraded system.

. They must not need source code of applications. If tools and techniques necessitate source code, it

will not be possible to evaluate commercial applications where source is not often available.

. They should measure all activity including kernel and user activity. Often it is easy to build tools

that measure only user activity. This was acceptable in traditional scientific and engineering

workloads; however, in database, Web server, and Java workloads, significant operating system

activity exists, and it is important to build tools that measure operating system activity as well.

. They should be capable of measuring a wide variety of applications including those that use

signals, exceptions, and DLLs (dynamically linked libraries).

. They should be user-friendly. Hard-to-use tools often are underutilized. Hard-to-use tools also

result in more user error.

. They should be fast. If a performance model is very slow, long-running workloads, which take

hours to run, may take days or weeks to run on the model. If an instrumentation tool is slow, it

can be invasive.

. Models should provide control over aspects that are measured. It should be possible to selectively

measure what is required.

. Models and tools should handle multiprocessor systems and multithreaded applications. Dual

and quad-processor systems are very common nowadays. Applications are becoming increasingly

multithreaded especially with the advent of Java, and it is important that the tool handles these.

. It will be desirable for a performance evaluation technique to be able to evaluate the performance

of systems that are not yet built.

Many of these requirements are often conflicting. For instance, it is difficult for a mechanism to be fast

and accurate. Consider mathematical models. They are fast, although several simplifying assumptions go

into their creation, and often they are not accurate. Similarly, it is difficult for a tool to be noninvasive

and user-friendly. Many users like graphical user interfaces (GUIs), however, most instrumentation and

simulation tools with GUIs are slow and invasive.

Benchmarks and metrics to be used for performance evaluation have always been interesting and

controversial issues. There has been a lot of improvement in benchmark suites since 1988. Before that

computer performance evaluation has been largely with small benchmarks such as kernels extracted

from applications (e.g., Lawrence Livermore Loops), Dhrystone and Whetstone benchmarks, Linpack,

Sorting, Sieve of Eratosthenes, 8-queens problem, Tower of Hanoi, etc. [1]. The Standard Performance

Evaluation Cooperative (SPEC) consortium and the Transactions Processing Council (TPC) formed in

1988 have made available several benchmark suites and benchmarking guidelines to improve the quality

of benchmarking. Several state-of-the-art benchmark suites are described in Section 4.2.4.

Another important issue in performance evaluation is the choice of performance metric. For a system

level designer, execution time and throughput are two important performance metrics. Execution time is

generally the most important measure of performance. Execution time is the product of the number of

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 22 4.10.2007 2:55pm Compositor Name: BMani

4-22 Digital Systems and Applications

instructions, cycles per instruction (CPI), and the clock period. Throughput of an application is a more

important metric, especially in server systems. In servers that serve the banking industry, airline

industry, or other similar businesses, what is important is the number of transactions that could be

completed in unit time. Such servers, typically called transaction processing systems use transactions per

minute (tpm) as a performance metric. Millions of instructions per second (MIPS) and million of

floating point operations per second (MFLOPS) were very popular measures of performance in the past.

Both of these are very simple and straightforward to understand and hence have been used often,

however, they do not contain all three components of program execution time and hence are incomplete

measures of performance. Several low level metrics are of interest to microprocessor designers, in order

to help them identify performance bottlenecks and tune their designs. Cache hit ratios, branch

misprediction ratios, number of off-chip memory accesses, etc. are examples of such measures.

Another major problem is the issue of reporting performance with a single number. A single number

is easy to understand and easy to be used by the trade press. Use of several benchmarks also makes it

necessary to find some kind of a mean. Arithmetic mean, geometric mean, and harmonic mean are three

ways of finding the central tendency of a group of numbers; however, it should be noted that each of

these means should be used in appropriate conditions depending on the nature of the numbers which

need to be averaged. Simple arithmetic mean can be used to find average execution time from a set of

execution times. Geometric mean can be used to find the central tendency of metrics that are in the form

of ratios (e.g., speedup) and harmonic mean can be used to find the central tendency of measures that

are in the form of a rate (e.g., throughput). Cragon [2] and Smith [3] discuss the use of the appropriate

mean for a given set of data. Cragon [2] and Patterson and Hennessy [4] illustrate several mistakes one

could possibly make while finding a single performance number.

The rest of this chapter section is organized as follows. Section 4.2.2 describes performance

measurement techniques including hardware on-chip performance monitoring counters on micro-

processors. Section 4.2.3 describes simulation and analytical modeling of microprocessors and computer

systems. Section 4.2.4 presents several state-of-the-art benchmark suites for a variety of workloads. Due

to space limitations, we describe some typical examples of tools and techniques and provide the reader

with pointers for more information.

4.2.2 Performance Measurement

Performance measurement is used for understanding systems that are already built or prototyped.

Performance measurement can serve two major purposes: tune this system or systems to be built and

tune the application if source code and algorithms can still be changed. Essentially, the process involves

(i) understanding the bottlenecks in the system that has been built, (ii) understanding the applications

that are running on the system and the match between the features of the system and the characteristics

of the workload, and (iii) innovating design features that will exploit the workload features. Performance

measurement can be done via the following means:

. Microprocessor on-chip performance monitoring counters

. Off-chip hardware monitoring

. Software monitoring

. Microcoded instrumentation

4.2.2.1 On-Chip Performance Monitoring Counters

All state-of-the-art high performance microprocessors including Intel’s Pentium III and Pentium IV,

IBM’s POWER 3 and POWER 4 processors, AMD’s Athlon, Compaq’s Alpha, and Sun’s UltraSPARC

processors incorporate on-chip performance monitoring counters, which can be used to understand

performance of these microprocessors, while they run complex, real-world workloads. This ability has

overcome a serious limitation of simulators, that they often could not execute complex workloads. Now,

complex run-time systems involving multiple software applications can be evaluated and monitored

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 23 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-23

very closely. All microprocessor vendors nowadays release information on their performance monitoring

counters, although they are not part of the architecture.

For illustration of on-chip performance monitoring, we use the Intel Pentium processors. The

microprocessors in the Intel Pentium contain two performance monitoring counters. These counters

can be read with special instructions (e.g., RDPMC) on the processor. The counters can be made to

measure user and kernel activity in combination or in isolation. A variety of performance events can be

measured using the counters [50]. For illustration of the nature of the events that can be measured, Table

4.3 lists a small subset of the events that can be measured on the Pentium III. Although more than 200

distinct events can be measured on the Pentium III, only two events can be measured simultaneously.

For design simplicity, most microprocessors limit the number of events that can be simultaneously

measured to 4 or 5. At times, certain events are restricted to be accessible only through a particular

counter. These steps are necessary to reduce the overhead associated with on-chip performance

monitoring. Performance counters do consume on-chip real estate. Unless carefully implemented,

they can also impact the processor cycle time.

Several tools are available to measure performance using performance monitoring counters. Table 4.4

lists some of the available tools. Intel’s Vtune software may be used to perform measurements using the

Intel processor performance counters [5]. The P6Perf utility is a plug-in for Windows NT performance

TABLE 4.3 Examples of Events That Can Be Measured Using Performance Monitoring Counters

on an Intel Pentium III Processor

Event Description of Event Event Number in Hex

DATA_MEM_REFS All loads and stores from=to memory 43H

DCU_LINES_IN Total lines allocated in the data cache unit 45H

IFU_IFETCH Number of instruction fetches (cacheable and uncacheable) 80H

IFU_IFETCH_MISS Number of instruction fetch misses 81H

ITLB_MISS Number of Instruction TLB misses 85H

IFU_MEM_STALL Number of cycles instruction fetch is stalled for any reason 86H

L2_IFETCH Number of L2 instruction fetches 28H

L2_LD Number of L2 data loads 29H

L2_ST Number of L2 data stores 2AH

L2_LINES_IN Number of lines allocated in the L2 24H

L2_RQSTS Total number of L2 requests 2EH

INST_RETIRED Number of instructions retired C0H

UOPS_RETIRED Number of micro-operations retired C2H

INST_DECODED Number of instructions decoded D0H

RESOURCE_STALLS Number of cycles in which there is a resource related stall A2H

MMX_INSTR_EXEC Number of MMX Instructions Executed B0H

BR_INST_RETIRED Number of branch instructions retired C4H

BR_MISS_PRED_RETIRED Number of mispredicted branches retired C5H

BR_TAKEN_RETIRED Number of taken branches retired C9H

BR_INST_DECODED Number of branch instructions decoded E0H

BTB_MISSES Number of branches for which BTB did not predict E2H

TABLE 4.4 Software Packages for Performance Counter Measurement

Tool Platform Reference

VTune IA-32 http:==developer.intel.com=software=products=vtune=vtune_oview.htm

P6Perf IA-32 http:==developer.intel.com=vtune=p6perf=index.htm

PMON IA-32 http:==www.ece.utexas.edu=projects=ece=lca=pmon

DCPI Alpha http:==www.research.digital.com=SRC=dcpi=

http:==www.research.compaq.com=SRC=dcpi=

Perf-mon UltraSPARC http:==www.sics.se=�mch=perf-monitor=index.html

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 24 4.10.2007 2:55pm Compositor Name: BMani

4-24 Digital Systems and Applications

monitoring [6]. The Compaq DIGITAL Continuous Profiling Infrastructure (DCPI) is a very powerful

tool to profile programs on the Alpha processors [7,8]. The performance monitor perf-mon is a small

hack that uses the on-chip counters on UltraSPARC-I=II processors to gather statistics [9]. Packages like

Vtune perform extensive post-processing and present data in graphical forms; however, extensive post-

processing can sometimes result in tools that are somewhat invasive. PMON [10] is a counter reading

software written by Juan Rubio of the Laboratory for Computer Architecture at the University of Texas.

It provides a mechanism to read specified counters with minimal or no perceivable overhead. All these

tools measure user and operating system activity. Since everything on a processor is counted, effort

should be made to have minimal or no other undesired process running during experimentation. This

type of performance measurement can be done on binaries, and no source code is desired.

4.2.2.2 Off-Chip Hardware Measurement

Instrumentation using hardware means can also be done by attaching off-chip hardware, two examples

of which are described in this section.

4.2.2.2.1 SpeedTracer from AMD

AMD developed this hardware tracing platform to aid in the design of its X86 microprocessors. When an

application is being traced, the tracer interrupts the processor on each instruction boundary. The state of

the CPU is captured on each interrupt and then transferred to a separate control machine where the

trace is stored. The trace contains virtually all valuable pieces of information for each instruction that

executes on the processor. Operating system activity can also be traced; however, tracing in this manner

can be invasive, and may slow down the processor. Although the processor is running slower, external

events such as disk and memory accesses still happen in real time, thus looking very fast to the slowed-

down processor. Usually, this issue is addressed by adjusting the timer interrupt frequency. Use of this

performance monitoring facility can be seen in Merten [11] and Bhargava [12].

4.2.2.2.2 Logic Analyzers

Poursepanj and Christie [13] use a Tektronix TLA 700 logic analyzer to analyze 3D graphics workloads

on AMD-K6-2-based systems. Detailed logic analyzer traces are limited by restrictions on sizes and are

typically used for the most important sections of the program under analysis. Preliminary coarse level

analysis can be done by performance monitoring counters and software instrumentation. Poursepanj

and Christie used logic analyzer traces for a few tens of frames, which covered a second or two of smooth

motion [13].

4.2.2.3 Software Monitoring

Software monitoring is often performed by utilizing architectural features such as a trap instruction or a

breakpoint instruction on an actual system, or on a prototype. The VAX processor from Digital (now

Compaq) had a T-bit that caused an exception after every instruction. Software monitoring used to be an

importantmode of performance evaluation before the advent of on-chip performancemonitoring counters.

The primary advantage of software monitoring is that it is easy to do. The primary disadvantage is that the

instrumentation can slow down the application. The overhead of servicing the exception, switching to a data

collection process, and performing the necessary tracing can slow down a program bymore than 1000 times.

Another disadvantage is that software monitoring systems, typically, only handle the user activity.

4.2.2.4 Microcoded Instrumentation

Digital used microcoded instrumentation to obtain traces of VAX and Alpha architectures. The ATUM

tool [14] used extensively by Digital in the late 1980s and early 1990s uses microcoded instrumentation.

This is a technique lying between trapping information on each instruction, using hardware interrupts

(traps) or software traps. The tracing system essentially modified the VAX microcode to record all

instruction and data references in a reserved portion of memory. Unlike software monitoring, ATUM

could trace all processes including the operating system, but this kind of tracing is invasive, and can slow

down the system by a factor of 10 without including the time to write the trace to the disk.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 25 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-25

4.2.3 Performance Modeling

Performance measurement as described in the previous section can be done only if the actual system or a

prototype exists. It is expensive to build prototypes for early stage evaluation. Hence, one needs to resort

to some kind of modeling in order to study systems yet to be built. Performance modeling can be done

using simulation models or analytical models.

4.2.3.1 Simulation

Simulation has become the de facto performance modeling method in the evaluation of microprocessor

architectures for several reasons. The accuracy of analytical models in the past has been insufficient for

the type of design decisions computer architects wish to make (for instance, what kind of caches or

branch predictors are needed), therefore, cycle accurate simulation has been used extensively by

architects. Simulators model existing or future machines or microprocessors. They are essentially a

model of the system being simulated, written in a high-level computer language such as C or Java, and

running on some existing machine. The machine on which the simulator runs is called the host machine

and the machine being modeled is called the target machine. Such simulators can be constructed in

many ways.

Simulators can be functional simulators or timing simulators. They can be trace driven or execution

driven simulators. They can be simulators of components or that of the complete system. Functional

simulators simulate functionality of the target processor, and in essence provide a component similar to

the one being modeled. The register values of the simulated machine are available in the equivalent

registers of the simulator. In addition to the values, the simulators also provide performance informa-

tion in terms of cycles of execution, cache hit ratios, branch prediction rates, etc. Thus, the simulator is a

virtual component representing the microprocessor or subsystem being modeled plus a variety of

performance information.

If performance evaluation is the only objective, one does not need to model the functionality. For

instance, a cache performance simulator does not need to actually store values in the cache; it only needs

to store information related to the address of the value being cached. That information is sufficient to

determine a future hit or miss. Although it is nice to have the values as well, a simulator that models

functionality in addition to performance is bound to be slower than a pure performance simulator.

Register transfer language (RTL) models used for functional verification may also be used for perform-

ance simulations, however, these models are very slow for performance estimation with real-world

workloads and are not discussed in this article.

4.2.3.1.1 Trace Driven Simulation

Trace driven simulation consists of a simulator model whose input is modeled as a trace or sequence of

information representing the instruction sequence that would have actually executed on the target

machine. A simple trace driven cache simulator needs a trace consisting of address values. Depending on

whether the simulator is modeling a unified instruction or data cache, the address trace should contain

addresses of instruction and data references.

Cachesim5 and Dinero IV are examples of cache simulators for memory reference traces. Cachesim5

comes from Sun Microsystems along with its Shade package [15]. Dinero IV [16] is available from the

University of Wisconsin, Madison. These simulators are not timing simulators. There is no notion of

simulated time or cycles, only references. They are not functional simulators. Data and instructions do

not move in and out of the caches. The primary result of simulation is hit and miss information. The

basic idea is to simulate a memory hierarchy consisting of various caches. The various parameters of

each cache can be set separately (architecture, mapping policies, replacement policies, write policy,

statistics). During initialization, the configuration to be simulated is built up, one cache at a time,

starting with each memory as a special case. After initialization, each reference is fed to the appropriate

top-level cache by a single simple function call. Lower levels of the hierarchy are handled automatically.

One does not need to store a trace while using Cachesim5, because Shade can directly feed the trace into

Cachesim5.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 26 4.10.2007 2:55pm Compositor Name: BMani

4-26 Digital Systems and Applications

Trace driven simulation is simple and easy to understand. The simulators are easy to debug.

Experiments are repeatable because the input information is not changing from run to run; however,

trace driven simulation has two major problems:

1. Traces can be prohibitively long if entire executions of some real-world applications are con-

sidered. The storage needed by the traces may be prohibitively large. Trace size is proportional to

the dynamic instruction count of the benchmark.

2. The traces do not represent the actual stream of processors with branch predictions. Most trace

generators generate traces of only completed or retired instructions in speculative processors.

Hence, they do not contain instructions from the mispredicted path.

The first problem is typically solved using trace sampling and trace reduction techniques. Trace sampling

is a method to achieve reduced traces; however, the sampling should be performed in such a way that the

resulting trace is representative of the original trace. It may not be sufficient to periodically sample a

program execution. Locality properties of the resulting sequence may be widely different from that of the

original sequence. Another technique is to skip tracing for a certain interval, then collect for a fixed

interval, and then skip again. It may also be needed to leave a warm-up period after the skip interval, to

let the caches and other such structures to warm up [17]. Several trace sampling techniques are discussed

by Crowley and Baer [18]. The QPT trace collection system [19] solves the trace size issue by splitting the

tracing process into a trace record generation step and a trace regeneration process. The trace record has

a size similar to the static code size, and the trace regeneration expands it to the actual full trace upon

demand.

The second problem can be solved by reconstructing the mispredicted path [20]. An image of

the instruction memory space of the application is created by one pass through the trace, and,

thereafter, fetching from this image as opposed to the trace. Although 100% of the mispredicted

branch targets may not be in the recreated image, studies show that more than 95% of the targets can

be located.

4.2.3.1.2 Execution Driven Simulation

Researchers and practitioners assign two meanings to this term. Some refer to simulators that take

program executables as input as execution driven simulators. These simulators utilize the actual

input executable and not a trace. Hence, the size of the input is proportional to the static instruction

count and not the dynamic instruction count. Mispredicted branches can be accurately simulated

as well. Thus, these simulators solve the two major problems faced by trace driven simulators.

The widely used Simplescalar simulator [21] is an example of such an execution driven simulator.

With this tool set, the user can simulate real programs on a range of modern processors and systems,

using fast execution driven simulation. There is a fast functional simulator and a detailed, out-of-order

issue processor that supports non-blocking caches, speculative execution, and state-of-the-art branch

prediction.

Some others consider execution driven simulators to be simulators that rely on actual execution of

parts of code on the host machine (hardware acceleration by the host instead of simulation) [22]. These

execution driven simulators do not simulate every individual instruction in the application. Only the

instructions that are of interest are simulated. The remaining instructions are directly executed by the host

computer. This can be done when the instruction set of the host is the same as that of the machine being

simulated. Such simulation involves two stages. In the first stage or preprocessing, the application

program is modified by inserting calls to the simulator routines at events of interest. For instance, for a

memory system simulator, only memory access instructions need to be instrumented. For other

instructions, the only important thing is to make sure that they get performed and that their execution

time is properly accounted for. The advantage of execution driven simulation is speed. By directly

executing most instructions at the machine’s execution rate, the simulator can operate orders of

magnitude faster than cycle by cycle simulators that emulate each individual instruction. Tango, Proteus,

and FAST are examples of such simulators [22].

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 27 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-27

4.2.3.1.3 Complete System Simulation

Many execution and trace driven simulators only simulate the processor and memory subsystem.

Neither I=O activity nor operating system activity is handled in simulators such as Simplescalar. But

in many work-loads, it is extremely important to consider I=O and operating system activity. Complete

system simulators are complete simulation environments that model hardware components with

enough detail to boot and run a full-blown commercial operating system. The functionality of the

processors, memory subsystem, disks, buses, SCSI=IDE=FC controllers, network controllers, graphics

controllers, CD-ROM, serial devices, timers, etc. are modeled accurately in order to achieve this.

Although functionality stays the same, different microarchitectures in the processing component can

lead to different performance. Most of the complete system simulators use microarchitectural models

that can be plugged in and out. For instance, SimOS [23], a popular complete system simulator,

provides a simple pipelined processor model and an aggressive superscalar processor model. SimOS

and SIMICS [24,25] can simulate uniprocessor and multiprocessor systems. Table 4.5 lists popular

complete system simulators.

4.2.3.1.4 Stochastic Discrete Event Driven Simulation

It is possible to simulate systems in such a way that the input is derived stochastically rather than as a

trace=executable from an actual execution. For instance, one can construct a memory system simulator

in which the inputs are assumed to arrive according to a Gaussian distribution. Such models can be

written in general purpose languages such as C, or using special simulation languages such as SIM-

SCRIPT. Languages such as SIMSCRIPT have several built-in primitives to allow quick simulation of

most kinds of common systems. Built-in input profiles including resource templates, process templates,

queue structures, etc., facilitate easy simulation of common systems. An example of the use of event

driven simulators using SIMSCRIPT may be seen in the performance evaluation of multiple-bus

multiprocessor systems in Kurian et al. [26,27].

4.2.3.1.5 Program Profilers

Software profiling tools is a class of tools that is similar to simulators and performance measurement

tools. These tools are used to generate traces, to obtain instruction mix, and a variety of instruction

statistics. They can be thought of as software monitoring on a simulator. They input an executable and

decode and analyze each instruction in the executable. These program profilers can be used as the front

end of simulators. A popular program profiling tool is Shade for the UltraSparc [15].

Shade—Shade is a fast instruction-set simulator for execution profiling. It is a simulation and tracing

tool that provides features of simulators and tracers in one tool. Shade analyzes the original program

instructions and cross-compiles them to sequences of instructions that simulate or trace the original

code. Static cross-compilation can produce fast code, but purely static translators cannot simulate and

trace all details of dynamically linked code. One can develop a variety of analyzers to process the

information generated by Shade and create the performance metrics of interest. For instance, one can

use shade to generate address traces to feed into a cache analyzer to compute hit-rates and miss rates of

cache configurations. The Shade analyzer Cachesim5 does exactly this.

TABLE 4.5 Examples of Complete System Simulators

Simulator Information Site Instruction Set Operating System

SimOS Stanford University MIPS SGI IRIX

http:==simos.stanford.edu=

SIMICS Virtutech

http:==www.simics.com

http:==www.virtutech.com

PC, SPARC, and Alpha Solaris 7 and 8, Red Hat Linux 6.2

(both x86, SPARC V9, and Alpha versions),

Tru64 (Digital Unix 4.0F), and Windows NT 4.0

Bochs http:==bochs.sourceforge.net x86 Windows 95, Windows NT, Linux, FreeBSD

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 28 4.10.2007 2:55pm Compositor Name: BMani

4-28 Digital Systems and Applications

Jaba—Jaba [46] is a Java Bytecode Analyzer developed at the University of Texas for tracing Java

programs. Although Java programs can be traced using shade to obtain profiles of native execution, Jaba

can yield profiles at the bytecode level. It uses JVM specification 1.1. It allows the user to gather

information about the dynamic execution of a Java application at the Java bytecode level. It provides

information on bytecodes executed, load operations, branches executed, branch outcomes, etc. Use of

this tool can be found in [47].

A variety of profiling tools exist for different platforms. In addition to describing the working of

Shade, Cmelik et al. [15] also compares Shade to several other profiling tools for other platforms. A

popular one for the x86 platform is Etch [51]. Conte and Gimarc [52] is a good source of information to

those interested in creating profiling tools.

4.2.3.2 Analytical Modeling

Analytical performance models, while not popular for microprocessors, are suitable for evaluation of large

computer systems. In large systems, where details cannot be modeled accurately for cycle accurate simula-

tion, analytical modeling is an appropriate way to obtain approximate performance metrics. Computer

systems can generally be considered as a set of hardware and software resources and a set of tasks or jobs

competing for using the resources. Multicomputer systems and multiprogrammed systems are examples.

Analytical models rely on probabilistic methods, queuing theory, Markov models, or Petri nets to

create a model of the computer system. A large body of literature on analytical models of computer

exists from the 1970s and early 1980s. Heidelberger and Lavenberg [28] published an article summar-

izing research on computer performance evaluation models. This article contains 205 references, which

cover all important work on performance evaluation until 1984. Readers interested in analytical

modeling should read this article.

Analytical models are cost-effective because they are based on efficient solutions to mathematical

equations; however, in order to be able to have tractable solutions, often, simplifying assumptions are

made regarding the structure of the model. As a result, analytical models do not capture all the detail

typically built into simulation models. It is generally thought that carefully constructed analytical models

can provide estimates of average job throughputs and device utilizations to within 10% accuracy and

average response times within 30% accuracy. This level of accuracy, while insufficient for microarchitec-

tural enhancement studies, is sufficient for capacity planning in multicomputer systems, I=O subsystem

performance evaluation in large server farms, and in early design evaluations of multiprocessor systems.

Only a small amount of work has been done on analytical modeling of microprocessors. The level of

accuracy needed in trade off analysis for microprocessor structures is more than what typical analytical

models can provide; however, some effort into this arena came from Noonburg and Shen [29] and Sorin

et al. [30]. Those interested in modeling superscalar processors using analytical models should read

Noonburg et al.’s work [29] and Sorin et al.’s work [30]. Noonburg et al. used a Markov model to model

a pipelined processor. Sorin et al. used probabilistic techniques to processor a multiprocessor composed

of superscalar processors. Queuing theory is also applicable to superscalar processor modeling, as

modern superscalar processors contain instruction queues in which instructions wait to be issued to

one among a group of functional units.

4.2.4 Workloads and Benchmarks

Benchmarks used for performance evaluation of computers should be representative of applications that

are run on actual systems. Contemporary computer applications include a variety of applications, and

different benchmarks are appropriate for systems targeted for different purposes. Table 4.6 lists several

popular benchmarks for different classes of workloads.

4.2.4.1 CPU Benchmarks

SPEC CPU2000 is the industry-standardized CPU-intensive benchmark suite. The System Performance

Evaluation Cooperative (SPEC) was founded in 1988 by a small number of workstation vendors who

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 29 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-29

realized that the marketplace was in desperate need of realistic, standardized performance tests. The

basic SPEC methodology is to provide the benchmarker with a standardized suite of source code based

upon existing applications that has already been ported to a wide variety of platforms by its member-

ship. The benchmarker then takes this source code, compiles it for the system in question. The use of

already accepted and ported source code greatly reduces the problem of making apples-to-oranges

comparisons. SPEC designed CPU2000 to provide a comparative measure of compute intensive per-

formance across the widest practical range of hardware. The implementation resulted in source code

benchmarks developed from real user applications. These benchmarks measure the performance of the

processor, memory, and compiler on the tested system. The suite contains 14 floating point programs

written in C=Fortran and 11 integer programs (10 written in C and 1 in Cþþ). The SPEC CPU2000

benchmarks replace the SPEC89, SPEC92, and SPEC95 benchmarks.

The Java Grande Forum Benchmark suite consists of three groups of benchmarks—microbe-

nchmarks that test individual low-level operations (e.g., arithmetic, cast, create), Kernel benchmarks

which are the heart of the algorithms of commonly used applications (e.g., heapsort, encryption=

decryption, FFT, Sparse matrix multiplication, etc.), and applications (e.g., Raytracer, Monte Carlo

simulation, Euler equation solution, molecular dynamics, etc.) [48]. These are compute intensive

benchmarks available in Java.

TABLE 4.6 Popular Benchmarks for Different Categories of Workloads

Workload Category Example Benchmark Suite

CPU benchmarks

Uniprocessor SPEC CPU 2000 [31]

Java Grande Forum Benchmarks [32]

SciMark [33]

ASCI [34]

Parallel processor SPLASH [35]

NASPAR [36]

Multimedia MediaBench [37]

Embedded EEMBC benchmarks [38]

Digital signal processing BDTI benchmarks [39]

Java

Client side SPECjvm98 [31]

CaffeineMark [40]

Server side SPECjBB2000 [31]

VolanoMark [41]

Scientific Java Grande Forum Benchmarks [32]

SciMark [33]

Transaction processing

OLTP (On-line transaction processing) TPC-C [42]

TPC-W [42]

DSS (Decision support systems) TPC-H [42]

TPC-R [42]

Web server SPEC web99 [31]

TPC-W [42]

VolanoMark [41]

E-commerce

With commercial database TPC-W [42]

Without commercial database SPECjBB2000 [31]

Mail-server SPECmail2000 [31]

Network file system SPEC SFS 2.0 [31]

Personal computer SYSMARK [43]

Ziff Davis WinBench [44]

3DMarkMAX99 [45]

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 30 4.10.2007 2:55pm Compositor Name: BMani

4-30 Digital Systems and Applications

SciMark is a composite Java benchmark measuring the performance of numerical codes occurring in

scientific and engineering applications. It consists of five computational kernels: FFT, Gauss-Seidel

relaxation, Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization. These kernels

are chosen to provide an indication of how well the underlying Java Virtual Machines perform on

applications utilizing these types of algorithms. The problems sizes are purposely chosen to be small in

order to isolate the effects of memory hierarchy and focus on internal JVM=JIT and CPU issues. A larger

version of the benchmark (SciMark 2.0 LARGE) addresses performance of the memory subsystem with

out-of-cache problem sizes.

ASCI, the Accelerated Strategic Computing Initiative (ASCI) of the Lawrence Livermore laboratories

contains several numeric codes suitable for evaluation of compute intensive systems. The programs are

available from [34].

SPLASH, the SPLASH suite was created by Stanford researchers [35]. The suite contains six scientific

and engineering applications, all of which are parallel applications.

NAS Parallel Benchmarks (NPB) are a set of eight programs designed to help evaluate the perform-

ance of parallel supercomputers. The benchmarks, which are derived from computational fluid dynam-

ics (CFD) applications, consist of five kernels and three pseudo-applications.

4.2.4.2 Embedded and Media Benchmarks

4.2.4.2.1 EEMBC Benchmarks

The EDN Embedded Microprocessor Benchmark Consortium (EEMBC—pronounced ‘‘embassy’’) was

formed in April 1997 to develop meaningful performance benchmarks for processors in embedded

applications. EEMBC is backed by the majority of the processor industry and has therefore established

itself as the industry-standard embedded processor benchmarking forum. EEMBC establishes bench-

mark standards and provides certified benchmarking results through the EEMBC Certification Labs

(ECL) in Texas and California. The EEMBC’s benchmarks comprise a suite of benchmarks designed to

reflect real-world applications, while it also includes some synthetic benchmarks. These benchmarks

target the automotive=industrial, consumer, networking, office automation, and telecommunications

markets. More specifically, these benchmarks target specific applications that include engine control,

digital cameras, printers, cellular phones, modems, and similar devices with embedded microprocessors.

The EEMBC consortium dissected these applications and derived 37 individual algorithms that consti-

tutes the EEMBC’s Version 1.0 suite of benchmarks.

4.2.4.2.2 BDTI Benchmarks

Berkeley Design Technology, Inc. (BDTI) is a technical services company that has focused exclusively on

digital signal processing (DSP) since 1991. BDTI provides the industry standard BDTI Benchmarksy, a

proprietary suite of DSP benchmarks. BDTI also develops custom benchmarks to determine perform-

ance on specific applications The benchmarks contain DSP routines such as FIR filter, IIR filter, FFT, dot

product, and Viterbi decoder.

4.2.4.2.3 MediaBench

The MediaBench benchmark suite consists of several applications belonging to the image processing,

communications and DSP applications. Examples of applications that are included are JPEG, MPEG,

GSM, G.721 Voice compression, Ghostscript, ADPCM, etc. JPEG is the compression program for

images, MPEG involves encoding=decoding for video transmission, Ghostscript is an interpreter for

the Postscript language, and ADPCM is adaptive differential pulse code modulation. The MediaBench is

an academic effort to assemble several media processing related benchmarks. An example of the use of

these benchmarks may be found in [49].

4.2.4.3 Java Benchmarks

SPECjvm98, the SPECjvm98 suite consists of a set of programs intended to evaluate performance for the

combined hardware (CPU, cache, memory, and other platform-specific performance) and software

aspects (efficiency of JVM, the JIT compiler, and OS implementations) of the JVM client platform [31].

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 31 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-31

The SPECjvm98 uses common computing features such as integer and floating point operations, library

calls and I=O, but does not include AWT (window), networking, and graphics. Each benchmark can be

run with three different input sizes referred to as S1, S10, and S100. The 7 programs are compression=

decompression (compress), expert system (jess), database (db), Java compiler (javac), mpeg3 decoder

(mpegaudio), raytracer (mtrt), and a parser (jack).

SPECjbb2000 (Java Business Benchmark) is SPEC’s first benchmark for evaluating the perform-

ance of server-side Java. The benchmark emulates an electronic commerce workload in a 3-tier system.

The benchmark contains business logic and object manipulation, primarily representing the activities

of the middle tier in an actual business server. It models a wholesale company with warehouses

serving a number of districts. Customers initiate a set of operations such as placing new orders

and checking the status of existing orders. It is written in Java, adapting a portable business

oriented benchmark called pBOB written by IBM. Although it is a benchmark that emulates business

transactions, it is very different from the TPC benchmarks. There are no actual clients, but they are

replaced by driver threads. Similarly, there is no actual database access. Data is stored as binary trees

of objects.

CaffeineMark 2.5 is the latest in the series of CaffeineMark benchmarks. The benchmark suite

analyses Java system performance in eleven different areas, nine of which can be run directly over

the internet. It is almost the industry standard Java benchmark. The CaffeineMark can be used

for comparing applet-viewers, interpreters and JIT compilers from different vendors. The Caffeine-

Mark benchmarks can also be used as a measure of Java applet=application performance across

platforms.

VolanoMark is a pure Java server benchmark with long-lasting network connections and high thread

counts. It can be divided into two parts: server and client, although they are provided in one package. It

is based on a commercial chat server application, the VolanoChat, which is used in several countries

worldwide. The server accepts connections from the chat client. The chat client simulates many chat

rooms and many users in each chat room. The client continuously sends messages to the server and

waits for the server to broadcast the messages to the users in the same chat room. VolanoMark creates

two threads for each client connection. VolanoMark can be used to test both speed and scalability of a

system. In speed test, it is run in an iterative fashion on a single machine. In scalability test, the server

and client are run on separate machines with high-speed network connections.

SciMark, see Section 4.2.4.1.

Java Grande Forum Benchmarks, see Section 4.2.4.1.

4.2.4.4 Transaction Processing Benchmarks

The TPC is a nonprofit corporation founded in 1988 to define transaction processing and database

benchmarks and to disseminate objective, verifiable TPC performance data to the industry. The term

transaction is often applied to a wide variety of business and computer functions. Looked at it as a

computer function, a transaction could refer to a set of operations including disk read=writes, operating

system calls, or some form of data transfer from one subsystem to another. TPC regards a transaction as

it is commonly understood in the business world: a commercial exchange of goods, services, or money.

A typical transaction, as defined by the TPC, would include the updating to a database system for such

things as inventory control (goods), airline reservations (services), or banking (money). In these

environments, a number of customers or service representatives input and manage their transactions

via a terminal or desktop computer connected to a database. Typically, the TPC produces benchmarks

that measure transaction processing (TP) and database (DB) performance in terms of how many

transactions a given system and database can perform per unit of time, e.g., transactions per second

or transactions per minute. The TPC benchmarks can be classified into two categories, online transac-

tion processing (OLTP) and decision support systems (DSS). OLTP systems are used in day-to-day

business operations (airline reservations, banks), and are characterized by large number of clients who

continually access and update small portions of the database through short running transactions.

Decision support systems are primarily used for business analysis purposes, to understand business

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 32 4.10.2007 2:55pm Compositor Name: BMani

4-32 Digital Systems and Applications

trends, and for guiding future business directions. Information from the OLTP side of the business is

periodically fed into the DSS database and analyzed. DSS workloads are characterized by long running

queries that are primarily read-only and may span a large fraction of the database. Four benchmarks are

active: TPC-C, TPC-W, TPC-R, and TPC-H. These benchmarks can be run with different data sizes, or

scale factors. In the smallest case (or scale factor¼ 1), the data size is approximately 1 GB. The earlier

TPC benchmarks, namely TPC-A, TPC-B, and TPC-D have become obsolete.

4.2.4.4.1 TPC-C

TPC-C is anOLTP benchmark. It simulates a complete computing environment where a population of users

executes transactions against a database. The benchmark is centered around the principal activities (trans-

actions) of a business similar to that of aworldwidewholesale supplier. The transactions include entering and

delivering orders, recording payments, checking the status of orders, andmonitoring the level of stock at the

warehouses. Although the benchmark portrays the activity of a wholesale supplier, TPC-C is not limited to

the activity of any particular business segment, but rather, represents any industry that must manage, sell, or

distribute a product or service. TPC-C involves a mix of five concurrent transactions of different types and

complexity either executed on-line or queued for deferred execution. There are multiple on-line terminal

sessions. The benchmark can be configured to use any commercial database system such as Oracle, DB2

(IBM), or Informix. Significant disk input andoutput are involved. The databases consist ofmany tableswith

a wide variety of sizes, attributes, and relationships. The queries result in contention on data accesses and

updates. TPC-C performance is measured in new-order transactions per minute. The primary metrics are

the transaction rate (tpmC) and price per transaction ($=tpmC).

4.2.4.4.2 TPC-H

The TPC Benchmarky H (TPC-H) is a decision support system (DSS) benchmark. It consists of a suite

of business oriented ad-hoc queries and concurrent data modifications. The queries and the data

populating the database have been chosen to have broad industry-wide relevance. This benchmark is

modeled after decision support systems that examine large volumes of data, execute queries with a high

degree of complexity, and give answers to critical business questions. The benchmark contains 22

queries. The performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour

Performance Metric (QphH@Size), and the TPC-H Price=Performance Metric, $=QphH@Size. One may

not perform optimizations based on apriori knowledge of queries in TPC-H.

4.2.4.4.3 TPC-R

The TPC Benchmarky R (TPC-R) is a decision support benchmark similar to TPC-H, but which allows

additional optimizations based on advance knowledge of the queries. It consists of a suite of business

oriented queries and concurrent data modifications. As in TPC-H, there are 22 queries. The perform-

ance metric reported by TPC-R is called the TPC-R Composite Query-per-Hour Performance Metric

(QphR@Size), and the TPC-R Price=Performance Metric, $=QphR@Size.

4.2.4.4.4 TPC-W

TPC BenchmarkyW (TPC-W) is a transactional web benchmark. The workload simulates the activities

of a business oriented transactional Web server in an electronic commerce environment. It supports

many of the features of the TPC-C benchmark and has several additional features related to dynamic page

generation with database access and updates. Multiple on-line browser sessions and on-line transaction

processing are supported. Contention on data accesses and updates are modeled. The performance

metric reported by TPC-W is the number of Web interactions processed per second (WIPS). Multiple

Web interactions are used to simulate the activity of a retail store, and each interaction is subject to a

response time constraint. Different profiles can be simulated by varying the ratio of browsing and buying

i.e., simulating customers who are primarily browsing and those who are primarily shopping.

4.2.4.5 Web Server Benchmarks

SPECweb99 is the SPEC benchmark for evaluating the performance of World Wide Web servers. It

measures a system’s ability to act as a Web server. The initial effort from SPEC in this direction was

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 33 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-33

TABLE 4.7 Popular Personal Computer Benchmarks

Benchmark Description

Business Winstone [44] A system-level, application-based benchmark that measures a

PC’s overall performance when running today’s top-selling

Windows-based, 32-bit applications. It runs real 32-bit

business applications through a series of scripted activities

and uses the time a PC takes to complete those activities to

produce its performance scores. The suite includes five

Microsoft Office 2000 applications (Access, Excel,

FrontPage, PowerPoint, and Word), Microsoft Project 98,

Lotus Notes R5, NicoMak WinZip, Norton AntiVirus, and

Netscape Communicator.

WinBench99 [44] A subsystem-level benchmark that measures the performance

of a PC’s graphics, disk, and video subsystems in a

Windows environment.

3DwinBench [44] Tests the bus used to carry information between the graphics

adapter and the processor subsystem. Hardware graphics

adapters, drivers, and enhancing technologies such as

MMX=SSE are tested.

CD WinBench99 [44] Measures the performance of a PC’s CD-ROM subsystem,

which includes the CD drive, controller, and driver, and the

system processor.

Audio WinBench 99 [44] Measures the performance of a PC’s audio subsystem, which

includes the sound card and its driver, the processor, the

DirectSound and DirectSound 3D software, and the

speakers.

Battery Mark [44] Measures battery life on notebook computers.

I-bench [44] A comprehensive, cross-platform benchmark that tests the

performance and capability of Web clients. The benchmark

provides a series of tests that measure both how well the

client handles features and the degree to which network

access speed affects performance.

Web Bench [44] Measures Web server software performance by running

different Web server packages on the same server hardware

or by running a given Web server package on different

hardware platforms.

NetBench [44] A portable benchmark program that measures how well a file

server handles file I=O requests from clients. NetBench

reports throughput and client response time

measurements.

3Dmark MAX 99 [45] From Futuremark Corporation. Is a nice 3D benchmark that

measures 3D gaming performance. Results are dependent

on CPU, memory architecture, and the 3D accelerator

employed.

SYSMARK [43] Measures a system’s real-world performance when running

typical business applications. This benchmark suite

comprises the retail versions of eight application programs

and measures the speed with which the system under test

executes predetermined scripts of user tasks typically

performed when using these applications. The performance

times of the individual applications are weighted and

combined into both category-based performance scores as

well as a single overall score. The application programs

employed by SYSmark 32 are: Microsoft Word 7.0 and

Lotus WordPro 96 for word processing, Microsoft Excel 7.0

(for spreadsheet), Borland Paradox 7.0 (for database),

CorelDraw 6.0 (for desktop graphics), Lotus Freelance

Graphics 96 and Microsoft Powerpoint 7.0 (for desktop

presentation), and Adobe Pagemaker 6.0 (for desktop

publishing).

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 34 4.10.2007 2:55pm Compositor Name: BMani

4-34 Digital Systems and Applications

SPECweb96, but it contained only static workloads, meaning that the requests were for simply down-

loading web pages that do not involve any computation. But if one examines the use of the web, it is

clear that many downloads involve computation to generate the information the client is requesting.

Such Web pages are referred to as dynamic web pages. SPECweb99 includes dynamic Web pages. The file

accesses are made to closely match today’s real-world Web server access patterns. The pages also contain

dynamic ad rotation using cookies and table lookups.

VolanoMark, see Section 4.2.4.3.

TPC-W, see Section 4.2.4.4.

4.2.4.6 E-commerce Benchmarks

See SPECjbb2000 in Section 4.2.4.3 and TPC-W in the Section 4.2.4.4.

4.2.4.7 Mail Server Benchmarks

SPECmail2001 is a standardized mail server benchmark designed to measure a system’s ability to act as a

mail server servicing e-mail requests. The benchmark characterizes throughput and response time of a

mail server system under test with realistic network connections, disk storage, and client workloads. The

benchmark focuses on the ISP as opposed to enterprise class of mail servers, with an overall user count

in the range of approximately 10,000–1,000,000 users. The goal is to enable objective comparisons of

mail server products.

4.2.4.8 File Server Benchmarks

System File Server Version 2.0 (SFS 2.0) is SPEC’s benchmark for measuring NFS (network file system)

file server performance across different vendor platforms. It contains a workload that was developed

based on a survey of more than 1,000 file servers in different application environments.

4.2.4.9 PC Benchmarks

A variety of benchmarks are available, primarily from Ziff Davis and Bapco to benchmark the

Windows-based personal computer. Table 4.7 lists the most common PC benchmarks. Ziff Davis

Winstone and Bapco SYSMARK are benchmarks that measure overall performance while the other

TABLE 4.8 Benchmark Web Sites

Example Benchmark Suite Web Site for More Information

SPEC CPU 2000 http:==www.spec.org

Java Grande Forum Benchmarks http:==www.epcc.ed.ac.uk=javagrande=

SciMark http:==math.nist.gov=scimark2

ASCI http:==www.llnl.gov=asci_benchmarks=asci=asci_code_list.html

NASPAR http:==www.nas.nasa.gov=Software=NPB=

MediaBench http:==www.cs.ucla.edu=�leec=mediabench=

EEMBC benchmarks http:==www.eembc.org

BDTI benchmarks http:==www.bdti.com=

SPECjvm98 http:==www.spec.org

CaffeineMark http:==www.pendragon-software.com=pendragon=cm3

SPECjBB2000 http:==www.spec.org

VolanoMark http:==www.volano.com=benchmarks.html

TPC-C http:==www.tpc.org

TPC-W http:==www.tpc.org

TPC-H http:==www.tpc.org

TPC-R http:==www.tpc.org

SPECweb99 http:==www.spec.org

SPECmail2000 http:==www.spec.org

SPEC SFS 2.0 http:==www.spec.org

SYSMARK http:==www.bapco.com=

Ziff Davis Benchmarks http:==www.zdnet.com=etestinglabs=filters=benchmarks

3DMarkMAX99 http:==www.pcbenchmarks.com

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 35 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-35

benchmarks are intended to measure performance of one subsystem such as video or audio or one

aspect such as power.

Techniques and tools for performance evaluation improve year by year. For instance, performance

monitoring counters were not available to the public until 1997. Benchmarks get updated almost every

year. Those interested in experimental performance evaluation should continuously monitor the state of

the art. Table 4.8 provides sources for the benchmarks described in this article. The references at the end

can provide new information on tools and benchmarks. Microprocessor vendors are inclined to show off

their products in the best light, to projecting results for benchmarks that run well on their system,

developing special optimizations within their compilers just for the sake of improving benchmark

scores, and stretching the benchmark’s behavior while staying within the ‘‘legal’’ limits of the benchmark

guidelines. It is extremely important to understand benchmarks, their features and metrics used for

performance evaluation to really understand the performance results.

References

1. Reinhold P. Weicker, ‘‘An Overview of Common Benchmarks,’’ IEEE Computer, pp. 65–75, Dec.

1990.

2. H. Cragon, Computer Architecture and Implementation, Cambridge University Press, Cambridge,

2000.

3. J.E. Smith, ‘‘Characterizing Computer Performance with a Single Number,’’ Communications of the

ACM, Oct. 1988.

4. Patterson and Hennessy, Computer Architecture: The Hardware=Software Approach, by Hennessy and

Patterson, Morgan Kaufman Publishers, 2nd ed., 1998.

5. Vtune profiling software, http:==developer.intel.com=software=products=vtune=vtune_oview.htm.

6. P6perf utility, http:==developer.intel.com=vtune=p6perf=index.htm.

7. DCPI Tool home page, http:==www.research.digital.com=SRC=dcpi=) and http:==www.research.

compaq.com=SRC=dcpi=.

8. J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G. Chrysos, ‘‘Profile Me: Hardware Support

for Instruction Level Profiling on Out of Order Processors,’’ MICRO-30 proceedings, pp. 292–302,

1997.

9. Perf-monitor for UltraSparc, http:==www.sics.se=�mch=perf-monitor=index.html.

10. PMON http:==www.ece.utexas.edu=projects=ece=lca=pmon.

11. M.C. Merten, A.R. Trick, E.M. Nystrom, R.D. Barnes, and W.W. Hwu, ‘‘A Hardware-Driven

Profiling Scheme for Identifying Hot Spots to Support Runtime Optimization,’’ Proceedings of the

26th International Symposium on Computer Architecture, pp. 136–147, May 1999.

12. R. Bhargava, J. Rubio, S. Kannan, L.K. John, D. Christie, and L. Klaes, ‘‘Understanding the Impact of

x86=NT Computing on Microarchitecture,’’ in Characterization of Contemporary Workloads, pp.

203–228, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.

13. Ali Poursepanj and David Christie, ‘‘Generation of 3D Graphics Workload for System Performance

Analysis,’’ Presented at the First Workshop on Workload Characterization, Also in Workload Charac-

terization: Methodology and Case Studies, edited by John and Maynard, IEEE CS Press, 1999.

14. A. Agarwal, R.L. Sites, and M. Horowitz, ‘‘ATUM: A New Technique for Capturing Address Traces

Using Microcode,’’ Proceedings of the 13th International Symposium on Computer Architecture,

pp. 119–127, June 1986.

15. B. Cmelik and D. Keppel, ‘‘Shade: A Fast Instruction-Set Simulator for Execution Profiling,’’ Chapter

2 in Fast Simulation of Computer Architectures, by T.M. Conte and C.E. Gimarc, Kluwer Academic

Publishers, Dordrecht, the Netherlands, 1995.

16. Dinero IV cache simulator, www.cs.wisc.edu=�markhill=DineroIV.

17. P. Bose and T.M. Conte, ‘‘Performance Analysis and Its Impact on Design,’’ IEEE Computer, pp. 41–

49, May 1998.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 36 4.10.2007 2:55pm Compositor Name: BMani

4-36 Digital Systems and Applications

18. P. Crowley and J.-L. Baer, ‘‘On the Use of Trace Sampling for Architectural Studies of Desktop Applica-

tions,’’ Presented at the First Workshop onWorkload Characterization, Also inWorkload Characteriza-

tion: Methodology and Case Studies, edited by John andMaynard, IEEE CS Press, pp. 15–24, 1999.

19. J.R. Larus, ‘‘Efficient Program Tracing,’’ IEEE Computer, pp. 52–61, May 1993.

20. Ravi Bhargava, Lizy K. John, and Francisco Matus, ‘‘Accurately Modeling Speculative Instruction

Fetching in Trace-Driven Simulation,’’ Proceedings of the IEEE Performance, Computers and Com-

munications Conference (IPCCC), pp. 65–71, Feb. 1999.

21. The Simplescalar simulator suite, http:==www.simplescalar.org or http:==www.cs.wisc.edu=�mscalar=

simplescalar.html.

22. B. Boothe, ‘‘Execution Driven Simulation of Shared Memory Multiprocessors,’’ Chapter 6 in Fast

Simulation of Computer Architectures, by T.M. Conte and C.E. Gimarc, Kluwer Academic Publishers,

Dordrecht, the Netherlands, 1995.

23. The SimOS complete system simulator, http:==simos.stanford.edu=.

24. SIMICS www.simics.com.

25. SIMICS, VIRTUTECH http:==www.virtutech.com.

26. L. Kurian, Performance Evaluation of Prioritized Multiple-Bus Multiprocessor Systems, M.S. Thesis,

University of Texas at El Paso, Dec. 1989.

27. L.K. John and Yu-cheng Liu, ‘‘A Performance Model for Prioritized Multiple-Bus Multiprocessor

Systems,’’ IEEE Transactions on Computers, Vol. 45, No. 5, pp. 580–588, May 1996.

28. P. Heidelberger and S.S. Lavenberg, ‘‘Computer Performance Evaluation Methodology,’’ IEEE

Transactions on Computers, pp. 1195–1220, Dec. 1984.

29. D.B. Noonburg and J.P. Shen, ‘‘A Framework for Statistical Modeling of Superscalar Processor

Performance,’’ Proceedings of the 3rd International Symposium on High Performance Computer

Architecture (HPCA), pp. 298–309, 1997.

30. D.J. Sorin, V.S. Pai, S.V. Adve, M.K. Vernon, and D.A. Wood, ‘‘Analytic Evaluation of Shared

Memory Systems with ILP Processors,’’ Proceedings of the International Symposium on Computer

Architecture, pp. 380–391, 1998.

31. SPEC Benchmarks, www.spec.org.

32. Java Grande Benchmarks, http:==www.epcc.ed.ac.uk=javagrande=.

33. SciMark, http:==math.nist.gov=scimark2.

34. ASCI Benchmarks, http:==www.llnl.gov=asci_benchmarks=asci=asci_code_list.html.

35. S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, ‘‘The SPLASH-2 Programs: Characteriza-

tion and Methodological Considerations,’’ Proceedings of the 22nd International Symposium on

Computer Architecture, pp. 24–36, June 1995.

36. NAS Parallel Benchmarks, http:==www.nas.nasa.gov=Software=NPB=.

37. MediaBench benchmarks, http:==www.cs.ucla.edu=�leec=mediabench=.

38. EEMBC, www.eembc.org.

39. BDTI, http:==www.bdti.com=.

40. The Caffeine benchmarks, http:==www.pendragon-software.com=pendragon=cm3.

41. VolanoMark, http:==www.volano.com=benchmarks.html.

42. Transactions Processing Council, www.tpc.org.

43. SYSMARK, http:==www.bapco.com=.

44. Ziff Davis Benchmarks, www.zdbop.com or www.zdnet.com=etestinglabs=filters=benchmarks.

45. PC Benchmarks, www.pcbenchmarks.com.

46. The Jaba profiling tool, http:==www.ece.utexas.edu=projects=ece=lca=jaba.html.

47. R. Radhakrishnan, J. Rubio, and L.K. John, ‘‘Characterization of Java Applications at Bytecode and

Ultra-SPARC Machine Code Levels,’’ Proceedings of IEEE International Conference on Computer

Design, pp. 281–284.

48. J.A. Mathew, P.D. Coddington, and K.A. Hawick, ‘‘Analysis and Development of the Java Grande

Benchmarks,’’ Proceedings of the ACM 1999 Java Grande Conference, June 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 37 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-37

49. C. Lee, M. Potkonjak, and W.H.M. Smith, ‘‘MediaBench: A Tool for Evaluating and Synthesizing

Multimedia and Communication Systems,’’ Proceedings of the 30th International Symposium on

Microarchitecture, pp. 330–335.

50. D. Bhandarkar and J. Ding, ‘‘Performance Characterization of the Pentium Pro Processor,’’ Proceed-

ings of the 3rd High Performance Computer Architecture Symposium, pp. 288–297, 1997.

51. Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brian Bershad, and

Brad Chen, ‘‘Instrumentation and Optimization of Win32=Intel Executables Using Etch,’’ USENIX,

1997.

52. T.M. Conte and C.E. Gimarc, Fast Simulation of Computer Architectures, Kluwer Academic Pub-

lishers, Dordrecht, the Netherlands, 1995.

4.3 Trace Caching and Trace Processors

Eric Rotenberg

A superscalar processor executes multiple instructions in parallel each cycle. Because there are data

dependences among instructions, finding multiple independent instructions that can execute in parallel

requires examining an even larger group of instructions, called the instruction window. Figure 4.16 shows

a high-level view of a superscalar processor, including instruction buffers that make up the window and

the decoupled fetch and execution engines. The fetch engine predicts branches, fetches and renames

instructions, and dispatches them into the window. Meanwhile, each cycle, the execution engine

identifies instructions in the window whose operands are available, and issues them to parallel func-

tional units (FUs).

Peak performance is increased by adding more parallel functional units. But adding more functional

units has ramifications for other parts of the processor. First, instruction fetch bandwidth must be

commensurate with peak execution bandwidth. Second, the window must be correspondingly larger.

FU FUFUFUFU

Instruction window

Instruction execution engine

Instruction
fetch

engine

FIGURE 4.16 High-level view of a superscalar processor: Instruction window and decoupled fetch and execute

engines.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 38 4.10.2007 2:55pm Compositor Name: BMani

4-38 Digital Systems and Applications

A larger window enables the processor to probe deeper into the dynamic instruction stream, increasing

the chance of finding enough independent instructions each cycle to keep functional units operating at

peak efficiency.

Next-generation, high-performance processors will need to issue 8, 12, or even 16 instructions per

cycle. Unfortunately, at high issue rates, supporting mechanisms—instruction supply and the instruc-

tion window—are difficult to scale. This chapter section deals with the instruction fetch bottleneck and

inefficient execution mechanisms, and surveys a next-generation microarchitecture, the trace processor

[21,24,27,29,31], that attacks these problems. A third problem, control and data dependence bottlenecks, is

also covered; however, because this aspect is more involved, it is left to the reader to investigate the trace

processor literature [24,25].

4.3.1 Instruction Fetch Bottleneck

Taken branches in the dynamic instruction stream cause frequent disruptions in the flow of instructions

into the window. The best conventional instruction cache and next-program-counter logic incurs a

single-cycle disruption when a taken branch is encountered. At best, sustained fetch bandwidth is equal

to the average number of instructions between taken branches, which is typically from 6 to 8 instruc-

tions per cycle for integer programs [2,19,32]. Moreover, conventional branch predictors predict at most

one branch per cycle, limiting fetch bandwidth to a single basic block per cycle.

It is possible to modify conventional instruction caches and the next-program-counter logic to

remove taken-branch disruptions, however, that approach is typically complex. Low latency is sacrificed

for high bandwidth. A trace cache [8,14,18,20] changes the way instructions are stored to optimize

instruction fetching for both high bandwidth and low latency.

4.3.2 Inefficient High-Bandwidth Execution Mechanisms

The scheduling mechanism in a superscalar processor converts an artificially sequential program into an

instruction-level parallel program. The scheduling mechanism is composed of register rename logic

(identifies true dependences among instructions and removes artificial dependences), the scheduling

window (resolves dependences near-optimally by issuing instructions out-of-order), and the register file

with result bypasses (moves data to and from the functional units as instructions issue and complete,

respectively). All of the circuits are monolithic and their speed does not scale well for 8 or more

instructions per cycle [13].

Trace processors [21,24,27,29,31] use a more efficient, hierarchical scheduling mechanism to optimize

for both high-bandwidth execution and a fast clock.

4.3.3 Control and Data Dependence Bottlenecks

Most control dependences are removed by branch prediction, but branch mispredictions incur large

performance penalties because all instructions after a mispredicted branch are flushed from the window,

even control- and data-independent instructions. Exploiting control independence preserves useful

instructions and their results [9], which would otherwise be thrown away due to branch mispredictions,

but control independence mechanisms have numerous difficult implementation issues [22]. Moreover, a

large instruction window does nothing to reduce the execution time of long data dependence chains,

which ultimately limit performance if branch mispredictions do not. Value prediction and other forms

of data speculation break data dependence chains [10], but difficult implementation issues must

be resolved, such as providing high-bandwidth value prediction and high-performance recovery

mechanisms.

The hierarchical organization of trace processors can be leveraged to overcome implementation

barriers to data speculation and control independence. The interested reader may learn more about

trace processor control independence mechanisms and data speculation from other sources [21,24,25].

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 39 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-39

4.3.4 Trace Cache and Trace Predictor: Efficient High-Bandwidth
Instruction Fetching

Conventional instruction caches are unable to meet future fetch bandwidth requirements because of

taken branches in the dynamic instruction stream. A taken branch instruction and its target instruction

reside in different cache lines, or in the same cache line with unwanted instructions in between, as shown

in Fig. 4.17a. Figure 4.17a shows a long dynamic sequence of instructions made up of four fetch blocks

separated by taken branches. Ideally, to keep a 16-issue machine well-supplied, the entire sequence needs

to be fetched in a single cycle. But, because the fetch blocks are noncontiguous, it takes at least four

cycles to fetch and assemble the desired sequence.

The fundamental problem is instruction caches store instructions in their static order. A trace cache

[8,14,18,20] stores instructions the way they appear in the dynamic instruction stream. Figure 4.17(b)

shows the same sequence of four fetch blocks stored contiguously in one trace cache line. The trace cache

allows multiple, otherwise noncontiguous fetch blocks to be fetched in a single cycle. A trace in this

context is a dynamic sequence of instructions with a hardware-defined length limit (e.g., 16 or 32

instructions), containing any number of embedded taken and not-taken branches.

A trace cache can be incorporated in the fetch mechanism in several ways. One possibility is to replace

the conventional instruction cache with a trace cache. More likely, both a trace cache and instruction

cache are used. In trace processors, described in the next section, the trace cache is accessed first and, if it

does not have the desired trace, the trace is quickly constructed from the back-up instruction cache.

Early trace cache fetch units [14,20] access the trace cache and instruction cache in parallel, as shown in

Fig. 4.18. If the trace exists in the trace cache, it supplies instructions and the instruction cache’s

instructions are discarded since they are subsumed by the trace. Otherwise, the instruction cache

supplies a smaller fetch block.

A trace is uniquely identified by the

program counter of the first instruction

in the trace (start PC) and embedded

branch outcomes (taken=not-taken bit

for every branch; this assumes indirect

branches terminate a trace, since

taken=not-taken is insufficient for indir-

ect branches). The start PC and branch

outcomes are collectively called the trace

identifier, or trace id. Looking up a trace in

the trace cache is similar to looking up

instructions=data in conventional caches,

except the trace id is used instead of an

address. A subset of the trace id forms an

index into the trace cache and the remain-

ing bits form a tag.One ormore traces and

their identifying tags are accessed at that

index (the number of traces depends on

the trace cache’s set-associativity). If one

of the tags matches the tag of the supplied

trace id, there is a trace cache hit. Other-

wise, there is a trace cachemiss.New traces

are constructed and written into the trace

cache either speculatively, as instructions

are fetched from the instruction cache (as

shown in Fig. 4.18), or non-speculatively,

as instructions retire from the processor.

(a) Instruction cache (b) Trace cache

FIGURE 4.17 Example dynamic sequence stored in an instruc-

tion cache and trace cache.

Trace construction /fillPredicted trace id

Trace
predictor

Instruction
cache

Trace cache

Trace cache hit

FIGURE 4.18 Instruction fetch unit with trace cache.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 40 4.10.2007 2:55pm Compositor Name: BMani

4-40 Digital Systems and Applications

A new predicted trace id is supplied to the trace cache each cycle. Conventional branch prediction,

with a throughput of only one branch prediction per cycle, is not designed to produce trace ids.

Multiple-branch predictor counterparts of single-branch predictors have been proposed but they tend

to be unwieldy [19]. A conceptually simpler approach is to not predict branches directly. Explicit trace

prediction [6] predicts trace ids directly and, in doing so, implicitly predicts any number of embedded

branches in a single cycle. The trace predictor shown in Fig. 4.18 supplies a predicted trace id—start PC

and multiple branch predictions—to both the trace cache and instruction cache.

The trace cache design space is extensive. In addition to typical parameters such as size, set-

associativity, and replacement policy, the design space includes: indexing methods (which PC bits and

which, if any, branch prediction bits are used), path associativity (ability to simultaneously store

different traces with the same start PC), partial matching (ability to use prefix of a trace if the trace id

only partially matches), trace selection (policies for beginning and ending traces), trace cache fill policy,

parallel or sequential accessing of the trace and instruction caches, and other aspects. The interested

reader is referred to trace cache literature to gain an appreciation for the trace cache design space

[4,5,7,14–20,23].

A problem of trace caches is they necessarily use storage less efficiently than instruction caches. A

given static instruction appears exactly once in the instruction cache. In a trace cache, however, there

may be multiple copies of the same static instruction. Redundancy within a trace is caused by dynamic

unrolling of small loops. Redundancy among different traces is caused by partial overlap of different

paths through a region. For example, two traces may start at the same program counter but diverge at a

common branch, such that the two traces share a common prefix; the paths may reconverge before both

traces end, causing even more redundancy.

Trace cache redundancy is the price paid for simplicity and a direct approach to high-bandwidth

instruction fetching. There are other high-bandwidth fetch mechanisms that work solely out of the

conventional instruction cache [2,3,26,32]. They all use the same basic approach. First, the branch

predictor is modified to generate pointers to multiple noncontiguous fetch blocks. Second, the instruc-

tion cache is highly multiported so that pointers can access noncontiguous cache lines in parallel.

Finally, a sophisticated instruction alignment network re-orders the blocks fetched in the previous step

to construct the desired dynamic sequence of instructions. The approach is certainly high-bandwidth

but the number of stages in the fetch pipeline is increased, and additional fetch unit latency impacts

performance negatively [19]. The trace cache approach is less efficient in terms of storage. But other

approaches are inefficient in terms of repeatedly constructing dynamic traces on-the-fly from the static

instruction cache. The trace cache incurs the latency to construct a trace once and then efficiently reuses

it many times.

4.3.5 Trace Processor: Efficient High-Bandwidth Instruction Execution

Instruction execution is inefficient in wide-issue superscalar processors because all data dependences

are handled uniformly. When an instruction issues, its data dependent instructions wakeup with

uniform latency, usually a single cycle, regardless of their location in the window. Resolving all

dependences in a single cycle optimizes parallelism, but cycle time is extended to accommodate the

full length of the window. Increasing processor cycle time penalizes the entire pipeline. A better

alternative is to increase the number of cycles to resolve data dependences, e.g., two cycles instead of

one, so other pipeline stages are unaffected. However, it still remains the case that all data dependences

are slow to resolve.

Fortunately, there is a compromise between optimizing for parallelism and optimizing for cycle

time if data dependences are handled nonuniformly. A trace processor [21,24,27–29,31] hierarchically

divides the processor into smaller processing elements (PEs), as shown in Fig. 4.19. The approach

preserves a fast clock and resolves many data dependences in one clock cycle (data dependences

within PEs), at the expense of resolving some data dependences in two or more clock cycles (data

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 41 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-41

dependences among PEs). The microarchitecture shown in Fig. 4.19 is described in the remainder of

this chapter.

4.3.5.1 Instruction Supply

The trace predictor and trace cache supply a single trace per cycle. The conventional branch predictor

and instruction cache shown in Fig. 4.19 are secondary, back-up mechanisms for constructing traces that

miss in the cache or that were mispredicted [21,23,24].

4.3.5.2 Register Renaming

Register renaming determines data dependences among all newly-fetched instructions, and between

newly-fetched instructions and other instructions already in the window. The first aspect—determining

data dependences among 16 or 32 fetched instructions—almost certainly takes more than a single clock

cycle. Each instruction compares its source registers to the destination registers of all logically preceding

instructions. The second aspect—linking incoming instructions with previous and future instructions in

the window—requires an impractical number of read and write ports to the register rename map table

and high bandwidth to the register freelist.

The efficiency of register renaming and later execution stages is improved by hierarchically dividing

data flow into intra-trace and inter-trace values [31], as shown in Fig. 4.20. Local values are produced

Cache ports

Global result buses

Trace window

FU FUFUFU

ARB D$

Local bypass

Branch
predictor

Trace
predictor

Trace
cache

Instruction
cache

Global rename maps & freelistTrace dispatch bus

PE 0

Local
register

file

Global
register

file

Global bypass

PE 3PE 2PE 1

FIGURE 4.19 Trace processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 42 4.10.2007 2:55pm Compositor Name: BMani

4-42 Digital Systems and Applications

and consumed solely within a trace and are not visible to other traces. Global values are communicated

among traces. Global input values to a trace are called live-ins and global output values of a trace are

called live-outs.

Local dependences in a trace are static because control flow is pre-determined. Thus, intra-trace

dependence checking is performed only once, when the trace is first constructed and written into the

trace cache. Furthermore, the local values that correspond to intra-trace dependences can be statically

bound to registers in a local register file, a process called pre-renaming [31]. Each PE has a small private

local register file, large enough to hold all local values produced by a trace. Local register files are private

because their values do not need to be communicated to other PEs. Pre-rename information is computed

once and stored along with the trace in the trace cache. Pre-renaming eliminates the first aspect of register

renaming from the rename stage—dependence checking among newly fetched instructions.

The second aspect of renaming—linking fetched instructions with other instructions in the window—

is still performed, but the hierarchical treatment of values makes this aspect efficient. The only linkages

are inter-trace dependences. Live-in and live-out values are dynamically renamed to what is logically a

single shared global register file. The global register file communicates values among traces.

Although the global register file, its map table, and its freelist are similar to a superscalar processor’s

monolithic register file and renaming structures, the trace processor’s register file is more efficient

because fewer values are processed. Reduced register file complexity is described below in the context of

instruction issue logic. Global renaming structures are simplified in three ways. First, fewer read and

write ports lead to the global rename map table because only live-ins=live-outs are renamed, and not

local values. Second, bandwidth to the global register freelist is reduced since only live-outs consume free

registers, and not local values. Third, to support trace misprediction recovery, the global rename map

table is checkpointed only at trace boundaries instead of at every branch, so fewer shadow maps are

required.

4.3.5.3 Instruction Dispatch

Merging instructions into the window is also simplified. A single trace is routed to a single PE. A

conventional processor routes multiple instructions to as many, possibly noncontiguous instruction

buffers.

4.3.5.4 Instruction Issue Logic, Register File, and Result Bypasses

The instruction issue mechanism is possibly the most complex aspect of current dynamically scheduled

superscalar processors [13]. Each cycle, the processor examines the instruction window for instructions

whose input values are available and are ready to issue (wakeup logic). Of the ready instructions, a

number of them are selected for issue based on resource constraints (select logic). The selected instruc-

tions read values from the register file and are routed to functional units, where they execute and write

results to the register file. Each result must also be quickly bypassed to functional units to be consumed

by pipelined, data dependent instructions (result bypasses). The wakeup logic, select logic, register file,

and result bypasses all grow in complexity as the size of the instruction window and the number of

parallel execution units are increased [13].

The large trace processor instruction window is distributed among multiple smaller processing

elements (PEs), as shown in Fig. 4.19. Each PE resembles a small superscalar processor and at any

given time is allocated a single trace to process. A PE has (1) enough instruction issue buffers to hold an

Global “live-ins”

Local values
Global “live-outs”

FIGURE 4.20 Data flow hierarchy of traces.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 43 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-43

entire trace, (2) multiple dedicated functional units, and (3) a dedicated local register file for storing and

communicating local values.

Logically, a single global register file stores and communicates global values. Each PE contains a copy

of the global register file for private read ports. Write ports to the global register file are shared, however.

All PEs are connected to shared global result buses, which write values simultaneously into all copies of

the global register file.

A hierarchical instruction window simplifies the wakeup logic, select logic, register file, and result

bypasses. Each aspect is described below.

Waiting instructions monitor fewer ‘‘tags’’ to determine when to wakeup. Tags are broadcast by

producer instructions soon after issuing, to wakeup dependent instructions. Although each PE monitors

both its own local tags and all global tags, overall, fewer tags are monitored than in an equivalent,

nonhierarchical processor. The number of local tags is small, e.g., four tags for a four-issue PE. Even the

number of global tags is small due to reduced global register traffic, e.g., typically two to four tags are

sufficient [24]. Also, tags are broadcast on shorter wires—the length of a PE trace window instead of the

length of the entire window (of course, global tags and values first incur one cycle of delay on the global

result buses, as discussed below). The combination of fewer tags and a smaller wakeup window greatly

reduces wakeup circuit delay, allowing a faster clock.

Instruction select logic is fully distributed. Each PE independently selects ready instructions from its

trace and routes them to dedicated functional units. Here, fewer instruction candidates and fewer

functional units reduce select circuit delay, allowing a faster clock.

The local register file is quite fast because it contains few registers (e.g., typically eight registers [24])

and has relatively few read and write ports, comparable to today’s four-issue superscalar processors. The

complexity of the global register file is reduced because much of the register traffic is off-loaded to the

local register files. For an equivalent instruction window, the global register file requires far fewer

registers and read=write ports than the monolithic file of nonhierarchical processors.

Finally, result bypasses, which are primarily long interconnect, are receiving much attention lately

due to technology trends. In deep sub-micron technologies, interconnect delay improves less with

technology scaling than logic delay does [1,13]. This trend highlights the importance of pur-

poseful, nonuniform bypass latencies. Local values are bypassed quickly among functional units in

a PE. Global values incur an extra cycle (or more) on the global result buses, but at least not all

values are broadcast on global interconnect. In a conventional superscalar processor, all bypasses are

effectively global.

4.3.6 Summary via Analogy

Prior to superscalar processors, comparatively simple out-of-order processors fetched, dispatched,

issued, and executed one instruction per cycle, as shown in the left-hand side of Fig. 4.21. The branch

predictor predicts up to one branch each cycle and a single PC fetches one instruction from a simple

instruction cache. The renaming mechanism, e.g., Tomasulo’s algorithm [30], performs simple depend-

ence checking by looking up a couple of source tags in the register file. And at most one instruction is

steered to the reservation station of a functional unit each cycle. After completing, instructions arbitrate

for a common data bus, and the winner writes its result and tag onto the bus and into the register file.

The superscalar paradigm ‘‘widens’’ each of these pipeline stages and increases complexity with each

additional instruction per cycle. This is clearly manageable up to a point: high-speed, dynamically

scheduled 4-issue superscalar processors currently set the performance standard in microprocessors. But

there is a crossover point beyond which it becomes more efficient to manage instructions in groups, that

is, hierarchically.

A trace processor manages instructions hierarchically. In the right-hand side of Fig. 4.21, the top-most

level of the trace processor hierarchy is shown (the trace-level). The picture is virtually identical to the

single-issue, out-of-order processor on the left-hand side. The unit of operation has changed from one

instruction to one trace, but the pipeline bandwidth remains 1 unit per cycle.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 44 4.10.2007 2:55pm Compositor Name: BMani

4-44 Digital Systems and Applications

In essence, grouping instructions within traces is a reprieve. Complexity (cycle time) does not

necessarily increase with each additional instruction added to a trace. Additional branches are absorbed

by the trace cache and trace predictor, and additional source and destination operands are absorbed by

handling data flow hierarchically. Also, complexity (cycle time) does not necessarily increase with one or

two additional PEs. Hardware parallelism is allowed to expand incrementally—up to a point, at which

time perhaps another level of hierarchy, and another reprieve, is needed.

Perhaps the most important thing to remember about trace processors is that the whole processor

contributes to parallelism, but cycle time is influenced more by an individual processing element than

the whole processor.

References

1. M. Bohr. Interconnect Scaling—The Real Limiter to High Performance ULSI. 1995 International

Electron Devices Meeting Technical Digest, pp. 241–244, 1995.

2. T. Conte, K. Menezes, P. Mills, and B. Patel. Optimization of Instruction Fetch Mechanisms for High

Issue Rates. 22nd International Symposium on Computer Architecture, pp. 333–344, June 1995.

3. S. Dutta and M. Franklin. Control Flow Prediction with Tree-like Subgraphs for Superscalar

Processors. 28th International Symposium on Microarchitecture, pp. 258–263, November 1995.

4. D. Friendly, S. Patel, and Y. Patt. Alternative Fetch and Issue Policies for the Trace Cache Fetch

Mechanism. 30th International Symposium on Microarchitecture, pp. 24–33, December 1997.

5. D. Friendly, S. Patel, and Y. Patt. Putting the Fill Unit to Work: Dynamic Optimizations for Trace

Cache Microprocessors. 31st International Symposium on Microarchitecture, pp. 173–181, December

1998.

6. Q. Jacobson, E. Rotenberg, and J.E. Smith. Path-Based Next Trace Prediction. 30th International

Symposium on Microarchitecture, pp. 14–23, December 1997.

7. Q. Jacobson and J.E. Smith. Instruction Pre-Processing in Trace Processors. 5th International

Symposium on High-Performance Computer Architecture, January 1999.

8. J. Johnson. Expansion Caches for Superscalar Processors. Technical Report CSL-TR-94-630, Com-

puter Systems Laboratory, Stanford University, June 1994.

9. M.S. Lam and R.P. Wilson. Limits of Control Flow on Parallelism. 19th International Symposium on

Computer Architecture, pp. 46–57, May 1992.

1

1

1

FU FU FU FU

PC
1

1

Single
trace

predictor

1

PE PE PE PE

Single
branch

predictor

Simple
instruction

cache

Trace Id

Trace
cache

Rename

Register
file

Rename

CDB Global result bus

Global
register

file

FIGURE 4.21 Analogy between a single instruction and a single trace.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 45 4.10.2007 2:55pm Compositor Name: BMani

Performance Evaluation 4-45

10. M. Lipasti and J. Shen. Exceeding the Dataflow Limit via Value Prediction. 29th International

Symposium on Microarchitecture, December 1996.

11. S. Melvin, M. Shebanow, and Y. Patt. Hardware Support for Large Atomic Units in Dynamically

Scheduled Machines. 21st International Symposium on Microarchitecture, pp. 60–66, December 1988.

12. S. Melvin and Y. Patt. Performance Benefits of Large Execution Atomic Units in Dynamically

Scheduled Machines. 3rd International Conference on Supercomputing, pp. 427–432, June 1989.

13. S. Palacharla, N. Jouppi, and J.E. Smith. Quantifying the Complexity of Superscalar Processors.

Technical Report CS-TR-96-1328, Computer Sciences Department, University of Wisconsin-

Madison, November 1996.

14. S. Patel, D. Friendly, and Y. Patt. Critical Issues Regarding the Trace Cache Fetch Mechanism.

Technical Report CSE-TR-335-97, Department of Electrical Engineering and Computer Science,

University of Michigan-Ann Arbor, 1997.

15. S. Patel, M. Evers, and Y. Patt. Improving Trace Cache Effectiveness with Branch Promotion and

Trace Packing. 25th International Symposium on Computer Architecture, pp. 262–271, June 1998.

16. S. Patel, D. Friendly, and Y. Patt. Evaluation of Design Options for the Trace Cache FetchMechanism.

IEEE Transactions on Computers (special issue on cache memory), 48(2):193–204, February 1999.

17. S. Patel. Trace Cache Design for Wide-Issue Superscalar Processors. PhD Thesis, University of

Michigan-Ann Arbor, 1999.

18. A. Peleg and U. Weiser. Dynamic Flow Instruction Cache Memory Organized around Trace

Segments Independent of Virtual Address Line. U.S. Patent Number 5,381,533, January 1995.

19. E. Rotenberg, S. Bennett, and J.E. Smith. Trace Cache: A Low Latency Approach to High Bandwidth

Instruction Fetching. Technical Report CS-TR-96-1310, Computer Sciences Department, University

of Wisconsin-Madison, April 1996.

20. E. Rotenberg, S. Bennett, and J.E. Smith. Trace Cache: A Low Latency Approach to High Bandwidth

Instruction Fetching. 29th International Symposium on Microarchitecture, pp. 24–34, December 1996.

21. E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith. Trace Processors. 30th International Sympo-

sium on Microarchitecture, pp. 138–148, December 1997.

22. E. Rotenberg, Q. Jacobson, and J.E. Smith. A Study of Control Independence in Superscalar

Processors. 5th International Symposium on High-Performance Computer Architecture, January 1999.

23. E. Rotenberg, S. Bennett, and J.E. Smith. A Trace Cache Microarchitecture and Evaluation. IEEE

Transactions on Computers (special issue on cache memory), 48(2):111–120, February 1999.

24. E. Rotenberg. Trace Processors: Exploiting Hierarchy and Speculation. PhD Thesis, University of

Wisconsin-Madison, August 1999.

25. E. Rotenberg and J.E. Smith. Control Independence in Trace Processors. 32nd International Sympo-

sium on Microarchitecture, November 1999.

26. A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-block Ahead Branch Predictors. 7th

International Conference on Architectural Support for Programming Languages and Operating Systems,

October 1996.

27. J.E. Smith and S. Vajapeyam. Trace Processors: Moving to Fourth-Generation Microarchitectures.

IEEE Computer (special issue on Billion-Transistor Processors), September 1997.

28. G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar Processors. 22nd International Symposium on

Computer Architecture, pp. 414–425, June 1995.

29. K. Sundararaman and M. Franklin. Multiscalar Execution along a Single Flow of Control. Inter-

national Conference on Parallel Processing, August 1997.

30. R. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM Journal of

Research and Development, 11(1):25–33, January 1967.

31. S. Vajapeyam and T. Mitra. Improving Superscalar Instruction Dispatch and Issue by Exploiting

Dynamic Code Sequences. 24th International Symposium onComputer Architecture, pp. 1–12, June 1997.

32. T.-Y. Yeh, D.T. Marr, and Y.N. Patt. Increasing the Instruction Fetch Rate via Multiple Branch

Prediction and a Branch Address Cache. 7th International Conference on Supercomputing, pp. 67–76,

July 1993.

Vojin Oklobdzija/Digital Systems and Applications 6195_C004 Final Proof page 46 4.10.2007 2:55pm Compositor Name: BMani

4-46 Digital Systems and Applications

II
Embedded
Applications

5 Embedded Systems-on-Chips Wayne Wolf ... 5-1

Introduction . Requirements on Embedded SoCs . Embedded SoC

Components . Embedded System Architectures . Embedded SoC Design

Methodologies . Summary

6 Embedded Processor Applications Jonathan W. Valvano ...6-1

Introduction . Embedded Processors . Software Systems . Interfacing .

Data Acquisition Systems . Control Systems . Remote or Distributed Systems

7 An Overview of SoC Buses Milica Mitić, Mile Stojčev, and Zoran Stamenković7-1

Introduction . On-Chip Communication Architectures . System-On-Chip

Buses . Summary

Vojin Oklobdzija/Digital Systems and Applications 6195_S002 Final Proof page 1 4.10.2007 4:05pm Compositor Name: VBalamugundan

II-1

Vojin Oklobdzija/Digital Systems and Applications 6195_S002 Final Proof page 2 4.10.2007 4:05pm Compositor Name: VBalamugundan

5
Embedded

Systems-on-Chips

Wayne Wolf
Princeton University

5.1 Introduction... 5-1

5.2 Requirements on Embedded SoCs................................... 5-2

5.3 Embedded SoC Components ... 5-2
CPUs . Interconnect . Memory . Software Components

5.4 Embedded System Architectures...................................... 5-5

5.5 Embedded SoC Design Methodologies 5-7
Specifications . Design Flows . Platform-Based Design .

Software Performance Analysis and Optimization .

Energy=Power Analysis and Optimization

5.6 Summary .. 5-11

5.1 Introduction

Advances in VLSI technology now allow us to build systems-on-chips (SoCs), also known as systems-

on-silicon (SoS). SoCs are complex at all levels of abstraction; they contain hundreds of millions of

transistors; they also provide sophisticated functionality, unlike earlier generations of commodity

memory parts. As a result, SoCs present a major productivity challenge.

One solution to the SoC productivity problem is to use embedded computers.1 An embedded

computer is a programmable processor that is a component in a larger system that is not a general-

purpose computer. Embedded computers help tame design complexity by separating (at least to some

degree) hardware and software design concerns. A processor can be used as a pre-designed component—

known as intellectual property (IP)—that operates at a known speed and power consumption. The

software required to implement the desired functionality can be designed somewhat separately.

In exchange for separating hardware and software design, some elements traditionally found in

hardware design must be transferred to software design. Software designers have traditionally concen-

trated on functionality while hardware designers have worried about critical delay paths, power con-

sumption, and area. Embedded software designers must worry about real-time deadlines, power

consumption, and program and data size. As a result, embedded SoC design disciplines require a blending

of hardware and software skills.

This chapter considers the characteristics of SoCs built from embedded processors. The next section

surveys the types of requirements that are generally demanded from embedded SoCs. Section 5.3 surveys

the characteristics of components used to build embedded systems. Section 5.4 introduces the types of

architectures used in embedded systems. Section 5.5 reviews design methodologies for embedded SoCs.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 1 4.10.2007 2:54pm Compositor Name: BMani

5-1

5.2 Requirements on Embedded SoCs

A digital system typically uses embedded processors to meet a combination of performance, complexity,

and possibly design time goals. If the system’s behavior is very regular and easy to specify as hardware, it

may not be necessary to use embedded software. An embedded processor becomes more attractive when

the behavior is too complex to be easily captured in hardwired logic.

Using embedded processors may reduce design time by allowing the design to be separated into

distinct software and hardware units. In many cases, the CPU will be predesigned; even if the CPU and

associated hardware is being designed for the project, many aspects of the hardware design can be

performed separately from the software design. (Experience with embedded system designs does show,

however, that the hardware and software designs are intertwined and that embedded software is prone to

some of the same scheduling problems as mainframe software projects.)

But even if embedded processors seem attractive by reducing much of the design to ‘‘just program-

ming,’’ it must be remembered that embedded software design is much more challenging than typical

applications programming for workstations or PCs. Embedded software must be designed to meet not

just functional requirements—the software’s input and output behavior—but also stringent nonfunc-

tional requirements. Those nonfunctional requirements include:

. Performance—Although all programmers are interested in speed of execution, performance is

measured much more precisely in the typical embedded system. Many embedded systems must

meet real-time deadlines. The deadline is measured between two points in the software: if the

program completely executes from the starting point to the end point by the deadline, the system

malfunctions.

. Energy=power—Traditional programmers don’t worry about power or energy consumption.

However, energy and power are important to most embedded systems. Energy consumption is

of course important in battery-operated systems, but the heat generated as a result of power

consumption is increasingly important to wall-powered systems.

. Size—The amount of memory required by the embedded software determines the amount of

memory required by the embedded system. Memory is often one of the major cost components of

an embedded system.

Embedded software design resembles hardware design in its emphasis on nonfunctional requirements

such as performance and power. The challenge in embedded SoC design is to take advantage of the best

aspects of both hardware and software components to quickly build a cost-effective system.

5.3 Embedded SoC Components

5.3.1 CPUs

As shown in Fig. 5.1, a CPU is a programmable instruction

set processor. Instructions are kept in a separate memory—

a program counter (PC) that points to the current instruc-

tion. This definition does not consider reconfigurable logic

to be a programmable computer, because it does not have a

separate instruction memory and a PC. Reconfigurable logic

can be used to implement sequential machines, and so a

CPU could be built in reconfigurable logic. But the separ-

ation of CPU logic and memory is an important abstraction

for program design.

CPU

PC

Memory

Instruction

FIGURE 5.1 A CPU and memory.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 2 4.10.2007 2:54pm Compositor Name: BMani

5-2 Digital Systems and Applications

An embedded processor is judged by several characteristics:

. Performance—The overall speed of execution may be important in some systems, but in many

cases we particularly care about the CPU’s performance on critical sections of code.

. Energy and power—Processors provide different mechanisms to manage power consumption.

. Area—The area of the processor contributes to the total implementation cost of the SoC. The area

of the memory required to store the program also contributes to implementation cost.

These characteristics are judged relative to the embedded software they are expected to run. A processor

may exhibit very different performance or energy consumption on different applications.

RISC processors are commonly used in embedded computing. ARM2 and MIPS3 processors are

examples of RISC processors that are widely used in embedded systems. A RISC CPU uses a pipeline to

increase CPU performance. Many RISC instructions take the same amount of time to execute, simpli-

fying performance analysis. However, many RISC architectures do have exceptions to this rule. An

example is the multiple-register feature of the ARM processor: an instruction can load or store a set of

registers, for which the instruction takes one cycle per instruction.

Most CPUs used in PCs and workstations today are superscalar processors. A superscalar processor

builds on RISC techniques by adding logic that examines the instruction stream and determines, based on

what CPU resources are needed, when several instructions can be executed in parallel. Superscalar

scheduling logic adds quite a bit of area to the CPU in order to check all the possible conflicts between

combinations of instructions; the size of a superscalar scheduler grows as n2, where n is the number of

instructions that are under consideration for scheduling.Many embedded systems, and in particular SoCs,

do not use superscalar processors and instead stick with RISC processors. Embedded system designers

tend to use other techniques, such as instruction-set optimization caches, to improve performance.

Because SoC designers are concerned with overall system performance, not just CPU performance, and

because they have a better idea of the types of software run on their hardware, they can tackle performance

problems in a variety of ways that may use the available silicon area more cost-effectively.

Some embedded processors are known as digital signal processors (DSPs). The term DSP was originally

used to mean one of two things: either a CPU with a Harvard architecture that provided separate memories

for programs and data; or a CPU with a multiply-accumulate unit to efficiently implement digital filtering

operations. Today, the meaning of the term has blurred somewhat. For instance, version 9 of the ARM

architecture is a Harvard architecture to better support digital signal processing. Modern usage applies the

term DSP to almost any processor that can be used to efficiently implement signal processing algorithms.

The application-specific integrated processor (ASIP)4 is one approach to improving the performance

of RISC processors for embedded application. An ASIP’s instruction set is designed to match the

requirements of the application software it will run. On the one hand, special-purpose function units

and instructions to control them may be added to speed up certain operations. On the other hand,

function units, registers, and busses may be eliminated to reduce the CPU’s cost if they do not provide

enough benefit for the application at hand. The ASIP may be designed manually or automatically based

on profiling information. One advantage of generating the ASIP automatically is that the same

information can be used to generate the processor’s programming environment: a compiler, assembler,

and debugger are necessary to make the ASIP useful building blocks.

Another increasingly popular architecture for embedded computing is very long instruction word

(VLIW). A VLIW machine can execute several instructions simultaneously but, unlike a superscalar

processor, relies on the compiler to schedule parallel instructions at compilation time. A pure VLIW

machine uses slots in the long, fixed-length instruction word to control the CPU’s function units, with

NOPs used to indicate slots that cannot be used for useful work by the compiler. Modern VLIW

machines, such as the TI C60005 and the Motorola=Agere StarCore,6 group single-operation instruc-

tions into execution packets; packets; the packet’s length can vary depending on the number of

instructions that the compiler was able to schedule for simultaneous operation. VLIWmachines provide

instruction-level parallelism with a much smaller CPU than is possible in a superscalar system; however,

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 3 4.10.2007 2:54pm Compositor Name: BMani

Embedded Systems-on-Chips 5-3

the compiler must be able to extract parallelism at compilation time to be able to use the CPU’s

resources. Signal processing applications often have parallel operations that can be exploited at com-

pilation time. For example, a parallel set of filter banks runs the same code on different data; the

operations for each channel can be scheduled together in the VLIW instruction group.

5.3.2 Interconnect

Embedded SoCs may connect several CPUs, on-chip memories, and devices on a single chip. High-

performance interconnect systems are required to meet the system’s performance demands. The

interconnection systems must also comply with standards so that existing components may be con-

nected to them.

Busses are still the dominant interconnection scheme for embedded SoCs. Although richer intercon-

nection schemes could be used on-chip, where they are not limited by pinout as in board-level systems,

many existing architectures are still memory-limited and not interconnect-limited. However, future

generations of embedded SoCs may need more sophisticated interconnection schemes.

A bus provides a protocol for communication between components. It also defines a memory space

and the uses of various addresses in that memory space, for example, the address range assigned to a

device connected to the bus. Busses for SoCs may be designed for high-performance or low-cost

operation. A high-performance bus uses a combination of techniques—advanced circuits, additional

bus lines, efficient protocols—to maximize transaction performance. One common protocol used for

efficient transfers is the block transfer, in which a range of locations is transferred based on a single

address, eliminating the need to transfer all the addresses on the bus. Some recent busses allow split

transactions—the data request and data transfer are performed on separate bus cycles, allowing other

bus operations to be performed while the original request is serviced. A low-cost bus design provides

modest performance that may not be acceptable for instruction fetching or other time-critical oper-

ations. A low-cost bus is designed to require little hardware in the bus itself and to impose a small

hardware and software overhead on the devices connecting to the bus. A system may contain more than

one bus; a bridge can be used to connect one bus to another.

The ARM AMBA bus specification7 is an example of a bus specification for SoCs. The AMBA spec

actually includes two busses: the high-performance AMBA high-performance bus (AHB) and the low-

cost AMBA peripherals bus (APB). The Virtual Sockets Interface committee has defined another

standard for interconnecting components on SoCs.

5.3.3 Memory

One of the great advantages of SoC technology is that memory can be placed on the same chip as the

system components that use the memory. On-chip memory both increases performance and reduces

power consumption because on-chip connections present less reactive load than do pins and traces

between chips; however, an SoC may still need to use separate chips for off-chip memory.

Although on-chip embedded memory has many advantages, it still is not as good as commodity

memory. A commodity SRAM or DRAM’s manufacturing process has been carefully tuned to the

requirements of that component. In contrast, an on-chip memory’s manufacturing needs must be

balanced against the requirements of the logic circuits on the chip. The transistors, interconnections,

and storage nodes of on-chip memories all have somewhat different needs than logic transistors.

Embedded DRAMs suffer the most because they need quite different manufacturing processes than

do logic circuits. The processing steps required to build the storage capacitors for the DRAM cell are

not good for small-geometry transistors. As a result, embedded DRAM technologies often com-

promise both the memory cells and the logic transistors, with neither being as good as they would be

in separate, optimized processes. Although embedded DRAM has been the subject of research for

many years, its limitations have kept its from becoming a widely used technology at the time of

this writing.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 4 4.10.2007 2:54pm Compositor Name: BMani

5-4 Digital Systems and Applications

SRAM circuits’ characteristics are closer to those of logic circuits and so can be built on SoCs with less

penalty. SRAM consumes more power and requires more chip area than does DRAM, but SRAM does

not need refreshing, which noticeably simplifies the system architecture.

5.3.4 Software Components

Software elements are also components of embedded systems. Just as pre-designed hardware compon-

ents are used to both reduce design time and to provide predictions of the characteristics of parts of the

system, software components can also be used to speed up software implementation time and to provide

useful data on the characteristics of systems.

CPU vendors often supply software libraries for their processors. These libraries generally supply code

for two types of operations. First, they provide drivers for input and output operations. Second, they

provide efficient implementations of commonly-used algorithms. For example, libraries for DSPs

generally include code for digital filtering, fast Fourier transforms, and other common signal processing

algorithms. Code libraries are important because compilers are still not as adept as expert human

programmers at creating code that is both fast and small.

The real-time operating system (RTOS) is the second major category of software component. Many

applications perform several different types of operations, often with their own performance require-

ments. As a result, the software is split into processes that run independently under the control of an

RTOS. The RTOS schedules the processes to meet performance goals and efficiently utilize the CPU and

other hardware resources. The RTOS may also provide utilities, such as interprocess communication,

networking, or debugging. An RTOS’s scheduling policy is necessarily very different from that used in

workstations and mainframes, because the RTOS must meet real-time deadlines. A priority-driven

scheduling algorithm such as rate-monotonic scheduling (RMS)9 is often used by the RTOS to schedule

activity in the system.

5.4 Embedded System Architectures

The hardware architecture of an embedded SoC is generally tuned to the requirements of the applica-

tion. Different domains, such as automotive, image processing, and networking all have very different

characteristics. In order to make best use of the available silicon area, the system architecture is chosen to

match the computational and communication requirements of the application. As a result, a much

wider range of hardware architectures is found for embedded systems as compared with traditional

computer systems.

Figure 5.2 shows one common configuration, a bus-based uniprocessor architecture for an embedded

system. This architecture has one CPU, which greatly simplifies the software architecture. In addition to

I=O devices, the architecture may include several devices known as accelerators designed to speed up

computations. (Though some authors refer to these units as co-processors, we prefer to reserve that

term for units that are dispatched by the CPU’s

execution unit.) For example, a video oper-

ation’s inner loops may be implemented in an

application-specific IC (ASIC) so that the oper-

ation can be performed more quickly than

would be possible on the CPU. An accelerator

can achieve performance gains through several

mechanisms: by implementing some functions

in special hardware that takes fewer cycles than

is required on the CPU, by reducing the time

required for control operations that would

require instructions on the CPU, and by using

additional registers and custom data flow

CPU Memory

I/O Accelerator

Bus

FIGURE 5.2 A bus-based, single-CPU embedded system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 5 4.10.2007 2:54pm Compositor Name: BMani

Embedded Systems-on-Chips 5-5

within the accelerator to more efficiently implement the available communication. The single-CPU=bus

architecture is commonly used in applications that do not have extensive real-time characteristics and

ones that need to run a wider variety of software. For example, many PDAs use this type of architecture. A

single-CPU system simplifies software design and debugging since all the work is assumed to happen on

one processing element. The single CPU system is also relatively inexpensive.

In general, however, a high-performance embedded system requires a heterogeneous multiproces-

sor—a multiprocessor that uses more than one type of processing element and=or a specialized

communication topology. Scientific parallel processors generally use a regular architecture to simplify

programming. Embedded systems use heterogeneous architectures for several reasons:

. Cost—A regular architecture may be much larger and more expensive than a heterogeneous

architecture, which freed from the constraint of regularity, can remove resources from parts of the

architecture where they are not needed and add them to parts where they are needed.

. Real-time performance—Scientific processors are desgined for overall performance but not to

meet deadlines. Embedded systems must often put processing power near the I=O that requires

realtime responsiveness; this is particularly true if the processing must be performed at a high

rate. Even if a high-rate, real-time operation requires relatively little computation on each

iteration, the high interrupt rate may make it difficult to perform other processing tasks on the

same processing element.

Many embedded systems use heterogeneous multiprocessors. One example comes from telephony.

A telephone must perform both control- and data-intensive operations: both the network protocol

and the user interface require control-oriented code; the signal processing operations require data-

oriented code. The Texas Instruments OMAP architecture, shown in Fig. 5.3, is designed for telephony:

the RISC processor handles general-purpose and control-oriented code while the DSP handles signal

processing. Shared memory allows processes on the two CPUs to communicate, as does a bridge. Each

CPU has its own RTOS that coordinates processes on the CPU and also mediates communication with

the other CPU.

The C-Port network processor,11 whose hardware architecture is shown in Fig. 5.4, provides an

example of a heterogeneous multiprocessor in a different domain. The multiprocessor is a high-speed

bus. The RISC executive processor is C programmable and provides overall control, initialization, etc.

Each of the 16 HDLC processors is also C programmable. Other interfaces for higher-speed networks are

not general-purpose computers and can be programmed only with register settings.

Another category of heterogeneous parallel embedded systems is the networked embedded system.

Automobiles are a prime example of this type of system: the typical high-end car includes over a

hundred microprocessors ranging from 4-bit microcontrollers to high-performance 32-bit processors.

Networks help to distribute high-rate processing to specialized processing elements, as in the HP

DesignJet, but they are most useful when the processing elements must be physically distributed.

When the processing elements are sufficiently far apart, busses designed for lumped microprocessor

systems do not work well. The network is generally used for data transfer between the processing

elements, with each processing element maintaining its own program memory as well as a local data

memory. The processing elements communicate data and control information as required by the

application. I2C and CAN are two widely-used networks for distributed systems.

RISC
CPU

DSP

RTOS RTOS

Shared
memory

Bridge

FIGURE 5.3 The TI OMAP architecture.10

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 6 4.10.2007 2:54pm Compositor Name: BMani

5-6 Digital Systems and Applications

5.5 Embedded SoC Design Methodologies

5.5.1 Specifications

As described in Section 5.2, embedded computers are typically used to build systems with complex

functionality. Therefore, capturing a functional description of the system is an important part of the

design process. A variety of specification languages have been developed. Many of these languages were

developed for software systems, but several languages have been developed over the past decade with

embedded systems in mind.

Specification languages are generally designed to capture particular styles of design. Many languages

have been created to describe control-oriented systems. An early example was Statecharts,12 which

introduced hierarchical states that provided a structured description of state machines. The SDL

language13 is widely used to specify protocols in telecommunications systems. The Esterel language14

describes a reactive system as a network of communicating state machines.

Data-oriented languages find their greatest use in signal processing systems. Dataflow process

networks15 are one example of a specification language for signal processing. Object-oriented specifica-

tion and design have become very popular in software design. Object-oriented techniques mix control

and data orientation. Objects tend to reflect natural assemblages of data; the data values of an object

define its state and the states of the objects define the state of the system. Messages providing

communication and control. The real-time object-oriented Methodology (ROOM)16 is an example of

an object-oriented methodology created for embedded system design.

In practice, many systems are specified in the C programming language. Many practical systems

combine control and data operations, making it difficult to use one language that is specialized for any

type of description. Algorithm designers generally want to prototype their algorithms and verify them

through experimentation; as a result, an executable program generally exists as the golden standard with

which the implementation must conform. This is especially true when the product’s capabilities are

defined by standards committees, which typically generate one or more reference implementations,

RISC
executive
processor

ATM
engine

Other
processors

Memory
control

...

HDLC
engine

HDLC
engine

16
 to

ta
l

FIGURE 5.4 Block diagram of the C-Port network processor.11

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 7 4.10.2007 2:54pm Compositor Name: BMani

Embedded Systems-on-Chips 5-7

usually in C. Once a working piece of code exists in C, there is little incentive to rewrite it in a different

specification language; however, the C specification is generally a long way from an implementation.

Algorithmic designs are usually written for uniprocessors and ignore many aspects of I=O, whereas

embedded systems must perform real-time I=O and often distribute tasks among several processing

elements. Algorithm designers often do not optimize their code for any particular platform, and their

code is certainly not optimized for any particular embedded platform. As a result, a C language

specification often requires substantial re-engineering before it can be used in an embedded system.

5.5.2 Design Flows

In order to better understand modern design methodologies for embedded SoCs, we can start with

traditional software engineering methodologies. The waterfall model, one of the first models of software

design, is shown in Fig. 5.5. The waterfall model is a top-down model with only local feedback. Other

software design models, such as the spiral model, try to capture more bottom-up feedback from

implementation to system design; however, software design methodologies are designed primarily to

implement functionality and to create a maintainable design. Embedded SoCs must, as mentioned in

Section 5.2, satisfy performance and power goals as well. As a result, embedded system design method-

ologies must be more complex.

The design of the architecture of an embedded SoC is particularly important because the architecture

defines the capabilities that will limit both the hardware and software implementations. The architecture

must of course be cost effective, but it must also provide the features necessary to do the job. Because the

architecture is custom designed for the application, it is quite possible to miss architectural features that

are necessary to efficiently implement the system. Retrofitting those features back into the architecture

may be difficult or even impossible if the hardware and software design efforts do not keep in sync.

Important decisions about the hardware architecture include:

. How many processing elements are needed?

. What processing elements should be programmable and which ones should be hardwired?

. How much communication bandwidth is needed in the system and where is it needed?

. How much memory is needed and where should it go in the system?

. What types of components will be used for processors, communication, and memory?

The design of the software architecture is just as important and goes hand-in-hand with the hardware

architecture design. Important decisions about the software architecture include:

. How should the functionality be split into processes?

. How are input and output performed?

. How should processes be allocated to

the various processing elements in the

hardware architecture?

. When should processes be scheduled?

In practice, information required to make

these decisions comes from several sources.

One important source is previous designs.

Though technology and requirements both

change over time, similar designs can provide

valuable lessons on how to (and not to)

design the next system. Another important

source is implementation. Some implementa-

tion information can come from pre-designed

hardware or software components, which is

Requirements

Architecture

Coding

Testing

Maintenance

FIGURE 5.5 The waterfall model of software development.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 8 4.10.2007 2:54pm Compositor Name: BMani

5-8 Digital Systems and Applications

one reason why intellectual-property-based design is so important. Implementation can also come from

early design efforts.

A variety of CAD algorithms have been developed to explore the embedded system design space and to

help automate system architectures. Vulcan21 and Cosyma22 were early hardware=software partitioning

systems that implemented a design using a CPU and one or more custom ASICs. Other algorithms target

more general architectures.23,24

Once the system architecture has been defined, the hardware and software must be implemented.

Hardware implementation challenges include:

. Finding efficient protocols to connect together existing hardware blocks

. Memory design

. Clock rate optimization

. Power optimization

Software implementation challenges include:

. Meeting performance deadlines

. Minimizing power consumption

. Minimizing memory requirements

The design must be verified throughout the design process. Once the design progresses to hardware

and software implementation, simulation becomes challenging because the various components

operate at very different levels of abstraction. Hardware units are modeled at the clock-cycle level.

Software components must often be run at the instruction level or in some cases at even higher levels

of abstraction. A hardware=software co-simulator19 is designed to coordinate simulations that run

at different time scales. The co-simulator coordinates multiple simulators—hardware simulators,

instruction-level simulators, behavioral software processes—and keeps track of the time in each

simulation. The co-simulator ensures that communications between the simulators happen at the

right time for each simulator.

Design verification must include performance, power, and size as well as functionality. Although these

sorts of checks are common in hardware design, they are relatively new to software design. Performance

and power verification of software may require cache simulation. Some recent work has developed

higher-level power models for CPUs.

5.5.3 Platform-Based Design

One response to the conflicting demands of SoC design has been the development of platform-based

design methodologies. On the one hand, SoCs are becoming very complex. On the other hand, they

must be designed very quickly to meet the electronics industry’s short product lifecycles.

Platform-based design tries to tackle this problem by dividing the design process into two phases. In

the first phase, a platform is designed. The platform defines the hardware and software architectures for

the system. The degree to which the architecture can be changed depends on the needs of the market-

place. In some cases, the system may be customizable only by reprogramming. In other cases, it may be

possible to add or delete hardware components to provide specialized I=O, additional processing

capabilities, etc. In the second phase, the platform is specialized into a product. Because much of the

initial design work was done in the first phase, the product can be developed relatively quickly based on

the platform.

Platform-based design is particularly well suited to products derived from standards. On the one

hand, all products must meet the minimum requirements of the standard. On the other hand, standards

committees generally leave room for different implementations to distinguish themselves: added

features, lower power, etc. Designers will generally want to modify their design to add features that

differentiate their product in the marketplace.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 9 4.10.2007 2:54pm Compositor Name: BMani

Embedded Systems-on-Chips 5-9

Platform-based design also allows designers to incorporate design experience into products. Each

product derived from the platform will teach something: how to better design part of the system,

unexpected needs of customers, etc. The platform can be updated as new products are developed from it

so that successive designs will be easier.

Platforms are usually designed within a technology generation. A new VLSI technology generally

changes enough design decisions that platforms must be rethought for each new generation of technol-

ogy. Therefore, the platform itself must be designed quickly and each product based on the platform

must be completed quickly in order to gain effective use of the platform design effort in the 18-month

lifecycle of a manufacturing technology.

5.5.4 Software Performance Analysis and Optimization

Although methods for hardware performance analysis and optimization are well-known, software

techniques for optimizing performance have been developed only recently to meet the demands of

embedded design methodologies.

The performance of an embedded system is influenced by several factors at different levels of

abstraction. The first is the performance of the CPU pipeline itself. RISC design techniques tend to

provide uniform execution times for instructions, but software performance is not always simple to

predict. Register forwarding, which is used to enhance pipeline performance, also makes execution time

less predictable. Branch prediction causes similar problems.

Superscalar processors, because they schedule instructions at execution time based upon execution

data, provide much less predictable performance than do either RISC or VLIW processors. This is one

reason why superscalar processors are not frequently used in real-time embedded systems.

The memory system is often an even greater source of uncertainty in embedded systems. CPUs use

caches to improve average memory response time, but the effect of the cache on a particular piece of

software requires complex analysis. In pathological cases, the cache can add uncertainty to execution

times without actually improving the performance of critical software components. Cache simulation is

often used to analyze the behavior of a program in a cache. Analysis must take into account both

instructions and data. Unlike in workstation CPUs, in which the cache configuration is chosen by the

CPU architect based on benchmarks, the designer of an embedded SoC can choose the configurations of

caches to match the characteristics of the embedded software. Embedded system designers can choose

between hardware and software optimizations to meet performance goals.

Analyzing the performance of a program requires determining both the execution path and the

execution time of instructions along that path.18 Both are challenging problems.20 The execution path of

a program clearly depends on input data values. To ensure that the program meets a deadline, the worst-

case execution path must be determined. The execution time of instructions along the path depend on

several factors: data values, interactions between instructions, and cache state.

5.5.5 Energy=Power Analysis and Optimization

Many embedded systems must also meet energy and power goals as well as performance goals. The

specification may impose several types of power requirements: peak power consumption, average power

consumption, energy consumption for a given operation.

To a first-order, high-performance design is low-power design. Efficient implementations that run

faster also tend to reduce power consumption, but trade-offs between performance and power in

embedded system design. For example, the power consumption of a cache depends on both its size

and the memory system activity.25 If the cache is too small, too many references require expensive main

memory accesses. If the cache is too large, it burns too much static power. Many applications exhibit a

sweet spot at which the cache is large enough to provide most of the available performance benefit while

not burning too much static power. Techniques have been developed to estimate hardware=software

power consumption.26

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 10 4.10.2007 2:54pm Compositor Name: BMani

5-10 Digital Systems and Applications

System-level approaches can also help reduce power consumption.27 Components can be selectively

turned off to save energy; however, because turning a component on again may consume both time and

energy, the decision to turn it off must be made carefully. Statistical methods based on Markov models

can be used to create effective system-level power management methodologies.

5.6 Summary

Embedded computers promise to solve a critical design bottleneck for SoCs. Because we can design

CPUs relatively independently of the programs they run and reuse those CPUs design across many chips,

embedded computers help to close the designer productivity gap. Embedded processors, on the other

hand, require that many design techniques traditionally reserved for hardware—deadline-driven per-

formance, power minimization, size—must now be applied to software as well. Design methodologies

for embedded SoCs must carefully design system architectures that will allow hardware and software

components to work together to meet performance, power, and cost goals while implementing complex

functionality.

References

1. Wayne Wolf, Computers as Components: Principles of Embedded Computer System Design, San

Francisco: Morgan Kaufman, 2000.

2. http:==www.arm.com.

3. http:==www.mips.com.

4. G. Goossens, J. van Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and P.G. Paulin, ‘‘Embedded

software in real-time signal processing systems: design technologies,’’ Proceedings of the IEEE, 85(3),

March 1997, pp. 436–453.

5. http:==www.ti.com.

6. http:==www.lucent.com=micro=starcore=motover.htm.

7. ARM Limited, AMBA(TM) Specification (Rev 2.0), ARM Limited, 1999.

8. http:==www.vsi.com.

9. C.L. Liu and J.W. Layland, ‘‘Scheduling algorithms for multiprogramming in a hard real-time

environment,’’ Journal of the ACM, 20(1), 1973, pp. 46–61.

10. http:==www.ti.com=sc=docs=apps=wireless=omap=overview.htm.

11. http:==www.cportcorp.com=products=digital.htm.

12. D. Harel, ‘‘Statecharts: a visual formalism for complex systems,’’ Science of Computer Programming,

8, 1987, pp. 231–274.

13. Anders Rockstrom and Roberto Saracco, ‘‘SDL—CCITT specification and description language,’’

IEEE Transactions on Communication, 30(6), June 1982, pp. 1310–1318.

14. Albert Benveniste and Gerard Berry, ‘‘The synchronous approach to reactive real-time systems,’’

Proceedings of the IEEE, 79(9), September 1991, pp. 1270–1282.

15. E.A. Lee and T.M. Parks, ‘‘Dataflow process networks,’’ Proceedings of the IEEE, 83(5), May 1995,

pp. 773–801.

16. Bran Selic, Garth Gullekson, and Paul T. Ward, Real-Time Object-Oriented Modeling, New York:

John Wiley and Sons, 1994.

17. Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly, and Lee Todd, Surviving

the SOC Revolution: A Guide to Platform-Based Design, Kluwer Academic Publishers, 1999.

18. Chang Yun Park and Alan C. Shaw, ‘‘Experiments with a program timing tool based on source-level

timing scheme,’’ IEEE Computer, 24(5), May 1991, pp. 48–57.

19. David Becker, Raj K. Singh, and Stephen G. Tell, ‘‘An engineering environment for

hardware=software co-simulation,’’ in Proceedings, 29th Design Automation Conference, IEEE Com-

puter Society Press, 1992, pp. 129–134.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 11 4.10.2007 2:54pm Compositor Name: BMani

Embedded Systems-on-Chips 5-11

20. Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe, ‘‘Performance estimation of embedded

software with instruction cache modeling,’’ in Proceedings, ICCAD-95, IEEE Computer Society

Press, 1995, pp. 380–387.

21. Rajesh K. Gupta and Giovanni De Micheli, ‘‘Hardware-software cosynthesis for digital systems,’’

IEEE Design & Test, 10(3), September 1993, pp. 29–41.

22. R. Ernst, J. Henkel, and T. Benner, ‘‘Hardware-software cosynthesis for microcontrollers,’’ IEEE

Design & Test, 10(4), December 1993, pp. 64–75.

23. Wayne Wolf, ‘‘An architectural co-synthesis algorithm for distributed, embedded computing sys-

tems,’’ IEEE Transactions on VLSI Systems, 5(2), June 1997, pp. 218–229.

24. Asawaree Kalavade and Edward A. Lee, ‘‘The extended partitioning problem: Hardware=software

mapping, scheduling, and implementation-bin selection,’’ Design Automation for Embedded Systems,

2(2), March 1997, pp. 125–163.

25. Yanbing Li and Joerg Henkel, ‘‘A framework for estimating and minimizing energy dissipation of

embedded HW=SW systems,’’ in Proceedings, 35th Design Automation Conference, ACM Press, 1998,

pp. 188–194.

26. W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano, ‘‘Power estimation of embedded systems: a

hardware=software codesign approach,’’ IEEE Transactions on VLSI Systems, 6(2), June 1998,

pp. 266–275.

27. L. Benini, A. Bogliolo, and G. De Micheli, ‘‘A survey of design techniques for system-level dynamic

power management,’’ IEEE Transactions on VLSI Systems, 8(3), June 2000, pp. 299–316.

Vojin Oklobdzija/Digital Systems and Applications 6195_C005 Final Proof page 12 4.10.2007 2:54pm Compositor Name: BMani

5-12 Digital Systems and Applications

6
Embedded Processor

Applications

Jonathan W. Valvano
University of Texas at Austin

6.1 Introduction... 6-1

6.2 Embedded Processors.. 6-3
Embedded Microcomputer . Choosing a Microcomputer

6.3 Software Systems ... 6-5
Assembly Language . High-Level Languages . Software

Development . Memory Allocation

6.4 Interfacing .. 6-6
Digital Logic . Real-Time Systems . Keyboard Interfacing .

Finite State Machine Controller . Current-Activated Output

Devices . Stepper Motors

6.5 Data Acquisition Systems ... 6-10

6.6 Control Systems... 6-11
Digital Control Equations . Pulse-Width Modulation .

Period Measurement . Control Algorithms

6.7 Remote or Distributed Systems 6-14

6.1 Introduction

This chapter overviews the field of embedded processors and their applications. Basic concepts will first

be introduced, followed by the examples of embedded systems. Each topic includes a problem statement,

defines relevant terminology, discusses alternative hardware and software, and concludes with a specific

solution. A systems-level approach to embedded processor applications is achieved by presenting a few

case studies that illustrate the spectrum of applications that employ microcomputers.

As shown in Figure 6.1, the term embedded microcomputer system refers to an electronic device that

contains one or more microcomputers inside. In this context, the word embedded means ‘‘hidden inside

so we cannot see it.’’ A computer is an electronic device with a processor, memory, and input=output

(I=O) ports. Embedded systems perform very specific and predefined operations. The processor includes

registers (which are high-speed memory), an arithmetic logic unit or ALU (to execute math functions), a

bus interface unit or BIU (which communicates with memory and I=O), and a control unit or CU (for

making decisions). Memory is high-speed storage containing software and data. Software consists of a

sequence of commands, which in simple systems are executed in order. Complex systems implement

multithreading, allowing many software sequences to be concurrently active. In an embedded system, we

use read only memory (ROM) for storing the software and fixed constant data, and we use random

access memory (RAM) for storing temporary information. The information in the ROM is nonvolatile,

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 1 4.10.2007 3:45pm Compositor Name: VBalamugundan

6-1

meaning the contents are not lost when power is removed. I=O ports allow information to enter via the

input ports and exit via the output ports. The I=O devices (e.g., parallel ports, serial ports, timer, DAC,

ADC, and network ports) are a crucial part of an embedded system because they provide necessary

functionality. Consequently, high-performance embedded processors, such as Freescale’s 9S12X, contain

a separate dedicated coprocessor just to manage I=O. The software together with the I=O ports and

associated interface circuits gives an embedded computer system its distinctive characteristics.

In a developed country, we interact with embedded computers hundreds of times each day—at home,

in car, at play, and at work. Table 6.1 illustrates the breadth of applications that use an embedded

microcomputer [1].

Registers

Control unit ALU

Bus
interface

unit

Processor

I/O ports

BusMicrocomputer
Electrical,

mechanical,
chemical,

or
optical
devices

Embedded system

RAM

ROM

FIGURE 6.1 An embedded system includes a microcomputer with electrical, mechanical, chemical, and optical

devices. A microcomputer includes a processor with memory, input, and output devices.

TABLE 6.1 Examples of Embedded Systems

Category Examples What the Microcomputer Does?

Consumer Washing machines Controls the water and spin cycles

TV remotes Inputs from keys and sends IR

Clocks and watches Maintains the time and alarms

Games and toys Entertains the child

Audio Plays sounds and cancels noise

Video Plays and records movies

Global positioning Locates and directs position

Communication Answering machines Saves and organizes messages

Phones and pagers Communicates

ATM machines Maintains security and banking

Automotive Automatic breaking Stops on slippery surfaces

Air bags Improves safety

Locks Maintains security

Electronic ignition Controls sparks and fuel injectors

Windows and seats Remembers preferred settings

Instrumentation Collects and provides information

Military Smart weapons Recognizes friend vs. foe

Missile guidance Directs ordnance at the target

Robotic vehicles Gathers information

Industrial Thermostats Controls temperature

Traffic control Optimizes traffic flow

Robot systems Performs complex tasks

Bar codes Inventory control

Medical Defibrillators Restarts heartbeat

Apnea monitor Alarms if the baby stops breathing

Pressure monitor Measures heart function

Pacemakers Helps the heart to beat regularly

Prosthetic devices Increases mobility

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 2 4.10.2007 3:45pm Compositor Name: VBalamugundan

6-2 Digital Systems and Applications

6.2 Embedded Processors

6.2.1 Embedded Microcomputer

The term microcomputer means a small computer. Small in this context describes its size and not its

computing power; so a microcomputer can refer to a very wide range of products from the very

simple to the most powerful Pentium-based PC. We typically restrict the term embedded system to

refer to a system that does not look and behave like a typical computer. Most embedded systems do not

have a keyboard, a graphics display, or secondary storage (disk). Embedded systems can be developed in

two ways. The first technique uses the microcomputers that are available as single chips. These devices

are suitable for low-cost, low-performance systems. On one end of the spectrum is the Microchip

PIC10F200, which is a complete microcomputer in a 6-pin package with 256 by 12-bit ROM, 16 bytes

RAM, and four I=O pins costing about 50¢. On the other end of the performance spectrum is the

Freescale 9S12X, which is also a single-chip microcomputer, but it has 119 I=O pins, 512 MB of ROM,

32 KB of RAM, and runs at speeds up to 40 MHz costing about $15. For systems requiring more

memory or faster execution, we can develop an embedded system around the PC architecture. These

systems are first developed on a standard PC, and then the software and hardware are migrated to a

stand-alone embedded-PC platform, such as the PC=104 (www.pc104.com).

The goal of this first design example is to control the room temperature within a range of 688F–738F.

A sensor, which gives the current temperature in 8F, is connected to input Port A. A heater is connected

to output Port B, such that the heater turns off if Port B is 0, and the heater turns on if Port B is 1. This

example also illustrates how an embedded system performs input=output. When an instruction is

executed, the microprocessor often must refer to memory to read or write information. From a

programming standpoint, most I=O ports are implemented as memory locations. For example, on the

Freescale 6808 (www.freescale.com), I=O ports A and B exist as locations 0 and 1. So, when the program

reads from or writes to locations 0 and 1, it is performing I=O. Most microcomputers allow the

programmer to configure the I=O ports as inputs or outputs. The 6808 ports A and B have direction

registers at locations 4 (DDRA) and 5 (DDRB), respectively. The software writes 0’s to the direction

register to specify the pins as inputs, and 1’s to specify them as outputs. When the 6808 software reads

from location 0, it inputs (gets information) from Port A (lda 0). When the software writes to location 1,

it outputs (sends information) to Port B (sta 1). The solution to the thermostat problem is presented in

Figure 6.2. This Freescale 6808 assembly language program reads from a sensor that is connected to Port

A, if the temperature is above 738F, it turns off the heat (by writing 0 to Port B). If the temperature is

below 688F, it turns on the heat by writing 1 to Port B.

main: mov #0,4

 mov #$FF,5

loop: lda 0

 cmp #73

 bhi off

 cmp #68

 bhs loop

on: mov #1,1

 bra loop

off: mov #0,1

 bra loop

DDRA = 0
DDRB = $FF
RegA = temperature
Is RegA > 73?
Goto off if RegA > 73
Is RegA < 68?
Goto loop if RegA > = 68
PortB = 1, heat on
Goto loop
PortB = 0, heat off
Goto loop

Labels Op codes Operands Comments
main

Make Port A inputs and
Make Port B outputs

Read temperature
from sensor

TemperatureT < 68�F

Turn on heat Turn off heat

T > 73�F

loop

on off

68 ≤ T ≤ 73�F

FIGURE 6.2 A bang-bang temperature controller with hysteresis implemented using a Freescale 6808.

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 3 4.10.2007 3:45pm Compositor Name: VBalamugundan

Embedded Processor Applications 6-3

6.2.2 Choosing a Microcomputer

The computer engineer is often faced with the task of selecting a microcomputer for the project. Table 6.2

lists major manufacturers and their Web sites. Additional details can be found at http:==www.microcon-

troller.com.

Often, only those devices for which the engineers have hardware and software experience are

considered. Fortunately, this blind approach often yields an effective and efficient product, because

many of the computers overlap in their cost and performance. In other words, if a microcomputer with

which we are familiar can implement the desired functions for the project, then it is often efficient to

bypass that perfect piece of hardware in favor of a faster development time. On the other hand,

sometimes we wish to evaluate all potential candidates. Sometimes, it may be cost effective to hire or

train the engineering personnel so that they are proficient in a wide spectrum of potential computer

devices. Many factors must be considered when selecting an embedded microcomputer. The labor costs

include training, development, and testing. The material costs include parts and supplies. The manu-

facturing costs depend on the number and complexity of the components. The maintenance costs

involve revisions to fix bugs and perform upgrades. The ROM size must be big enough to hold

instructions and fixed data for the software. The RAM size must be big enough to hold locals,

parameters, and global variables. The EEPROM size must be big enough to hold nonvolatile fixed

constants that are field configurable. The speed must be fast enough to execute the software in real time.

The I=O bandwidth affects how fast the computer can input=output data. The data size (8-, 16-, or

32-bit) should match most of the data to be processed. Numerical operations like multiply, divide,

signed, and floating point may be needed. Special functions like multiply and accumulate, fuzzy logic,

and complex numbers are sometimes required. There must be enough parallel ports for all the I=O

digital signals. The microcomputer needs the current number and type of network ports to interface

with other computers or I=O devices. The timer functions can be used to generate signals, measure

frequency, and measure period. Pulse-width modulation (PWM) is convenient for the output signals

in many control applications. A DAC is used to convert digital numbers to analog outputs. An ADC is

used to convert analog inputs to digital numbers. The package size and environmental issues affect

many embedded systems. To meet manufacturing deadlines, the availability of a second source is

TABLE 6.2 Web Sites of Companies That Make Microcontrollers

Company Example Products Web Site

Analog devices ADuC http:==www.analog.com

Atmel ARM, AVR, 8051 http:==www.hitachi.com

Cypress H8 http:==www.cypress.com

Dallas=Maxim 8051 http:==www.maxim-ic.com

Freescale HC08, 9S12, PowerPC, Arm, ColdFire http:==www.freescale.com

Hitachi=Renesas H8 http:==www.renesas.com

Infineon C16x, C500, TriCore http:==www.infineon.com

Intel 8051, 8096, ARM http:==www.intel.com

Microchip PIC http:==www.microchip.com

Mitsubishi 740 7600 7700 M16C http:==www.mitsubishichips.com

National CompactRISC http:==www.national.com

NEC 78 K, V850 http:==www.nec.com

NetSilicon ARM http:==www.netsilicon.com

Philips 8051 http:==www.philips.com

Rabbit 2000, 3000, 4000 http:==www.rabbitsemiconductor.com

Silicon Labs 8051 http:==www.silabs.com

STMicroelectronics ST6, ST7, ST9, ARM http:==www.st.com

Siemens C500 C166 TriCore http:==www.siemens.com

Toshiba TMP86 http:==www.toshiba.com

Texas Instruments TMS320, MSP430 http:==www.ti.com

Zilog Z8 http:==www.zilog.com

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 4 4.10.2007 3:45pm Compositor Name: VBalamugundan

6-4 Digital Systems and Applications

advantageous. The availability of high-level language cross-compilers, simulators, emulators will facilitate

software development. The power requirements will be important if the systems are battery operated.

When considering speed, it is best to compare time to execute a benchmark program similar to your

specific application, rather than just comparing bus frequency. One of the difficulties is that the selection

of microcomputer depends on the speed and size of the software, but the software cannot be written

without the computer. Given this uncertainty, it is best to select a family of devices with a range of

execution speeds and memory configurations. In this way, a prototype system is first simulated; then

once the feasibility is confirmed, the specific version of the microcomputer can be selected, knowing the

memory and speed requirements for the project.

6.3 Software Systems

6.3.1 Assembly Language

An assembly language program, like the one shown in Figure 6.2, has a one-to-one mapping with

the machine code of the computer. In other words, one line of assembly code maps into a single machine

instruction. The label field associates the absolute memory address with a symbolic label. The op code

represents the machine instruction to be executed. The operand field identifies the data itself or

the memory location for the data needed by the instruction. The comment field is added by the

programmer to explain what, how, and why. The comments are not used by the computer during

execution, but rather provide a means for one programmer to communicate with another, including

oneself at a later time. This style of programming offers the best static efficiency (smallest program size)

and best dynamic efficiency (fastest program execution). Another advantage of assembly language

programming is the complete freedom to implement any arbitrary decision function or data structure.

We are not limited to a finite list of predefined structures as is the case with high-level languages. For

example, we can write assembly code with multiple entry points (places to begin the function).

6.3.2 High-Level Languages

Although assembly language enforces no restrictions on the programmer, most software developers argue

that the limits placed on the programmer by a structured language, in fact, are a good idea. Building

program and data structures by combining predefined components makes it easy to implement modular

software that is easier to debug, verify correctness, and modify in the future. Software maintenance is the

debug, verify, and modify cycle, and it represents a significant fraction of the effort required to develop

products using embedded computers. Therefore, if the use of a high-level language sacrifices some speed

and memory performance, but reduces the maintenance costs, most computer engineers will choose

reliability and ease of modification over speed and memory efficiency. Cross-compilers for C, Cþþ,

Forth, and Basic are available for many single-chip microcomputers with C being the most popular.

One of the best approaches to this assembly versus high-level language choice is to implement the

prototype in a high-level language, and see if the solution meets the product specifications. If it does,

then leave the software in the high-level language because it will be easier to upgrade in the future. If the

software is not quite fast enough (or small enough to fit into the available memory), then we might try a

better compiler or a more powerful computer. Another approach is to profile the software execution,

which involves collecting timing information on the percentage of time the computer takes executing

each module. The profile allows us to identify a small number of modules that, if rewritten in assembly

language, will have a big impact on the system performance.

6.3.3 Software Development

During the development phases of a project, we often would like the flexibility of accessing components

inside the system. Therefore, the first step in product development is often simulation. Because of the

high cost and long times required to create hardware prototypes, many preliminary feasibility designs

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 5 4.10.2007 3:45pm Compositor Name: VBalamugundan

Embedded Processor Applications 6-5

are now performed using hardware=software simulations. A simulator is a software application that

models the behavior of the mechanical, electrical, and software components. If the external environ-

ment, hardware interfaces, and software program are simulated together, although the simulated time is

slower than the actual time, the real-time hardware=software interactions can be studied. Potential

solutions can be evaluated quickly. The qualities of a good simulator include accuracy, the ability to

recreate a realistic external environment, and the flexible control over visibility [2].

Debugging embedded systems on the actual hardware system is very difficult for two reasons. First, the

embedded system lacks the usual keyboard and display that assist us when we debug regular software.

Second, the nature of embedded systems involves the complex and real-time interaction between the

hardware and software. These real-time interactions make it impossible to test software with the usual

single-stepping and print statements.

A logic analyzer is a multiple-channel digital oscilloscope. The logic analyzer can be used to record the

digital signals at the microcomputer I=O ports. The advantages of the logic analyzer are very high-

bandwidth recording (100 MHz–1 GHz), many channels (16–132 inputs), flexible triggering and

clocking mechanisms, and personality modules that assist in interpreting the data.

Another approach is to use an in-circuit emulator (ICE). An ICE is a complex digital hardware device,

which emulates (behaves in a similar manner) the I=O pins of the microcomputer in real time. The

emulator is usually connected to a personal computer, so that emulated memory, I=O ports, and

registers can be loaded and observed. To use an emulator, we first remove the microcomputer chip

from the circuit and then attach the emulator pod into the socket where the microcomputer chip used to

be. The only disadvantage of the ICE is its cost. To provide some of the benefits of this high-priced

debugging equipment, some microcomputers have a background debug module (BDM). The BDM

hardware exists on the microcomputer chip itself and communicates with the debugging personal

computer via a dedicated 3-pin serial interface. Although not as flexible as an ICE, the BDM can

provide the ability to observe software execution in real time, to set break points, to stop the computer,

and to read and write registers, I=O ports, and memory.

6.3.4 Memory Allocation

Embedded systems group together in physical memory information that has similar logical properties.

Because the embedded system does not load programs off disk when started, allocation is an extremely

important issue for these systems. Typical software segments include global variables, local variables,

fixed constants, and machine instructions. For single-chip implementations, different types of informa-

tion are stored into the three types of memory. RAM is volatile and has random and fast access.

EEPROM is nonvolatile and can be erased and reprogrammed. ROM is nonvolatile but can be

programmed only once.

In an embedded application, structures that must be changed during execution are usually put in

RAM. Examples include recorded data, parameters passed to subroutines, and global and local variables.

We place fixed constants in EEPROM because the information remains when the power is removed, but

can be reprogrammed at a later time. Examples of fixed constants include translation tables, security

codes, calibration data, and configuration parameters. We place machine instructions, interrupt vectors,

and the reset vector in ROM because this information is stored once and will not need to be

reprogrammed in the future.

6.4 Interfacing

6.4.1 Digital Logic

Many logic families are available to design digital circuits. Each family provides the basic logic functions

(AND OR NOT), but differs in the technology used to implement these functions. This results in a wide

range of parameter specifications. Basic parameters of digital devices can be found in Refs. [1,3].

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 6 4.10.2007 3:45pm Compositor Name: VBalamugundan

6-6 Digital Systems and Applications

In general, it is desirable to design digital systems using all components from the same family. There are

four basic considerations when using digital logic: speed, voltage levels, current levels, and capacitive

loading.

One trend in the microcomputer-embedded systems field is the desire to implement higher and

higher levels of functionality into smaller and smaller amounts of space using less and less power. Many

examples of technology were developed according to these principles. Examples include portable

computers, satellite communications, aviation devices, military hardware, and cellular phones. Simply

using a microcomputer provides significant advantages in this faster–smaller race. The embedded system

is not just a computer; so, there must also be mechanical and electrical devices external to the computer.

To shrink the size and power required of these external electronics, they can be integrated into a custom

integrated circuit (IC) called an application-specific integrated circuit (ASIC). An ASIC provides a high

level of functionality squeezed into a small package. Advances in IC design allow more and more of these

custom circuits (both analog and digital) to be manufactured in the same IC chip as the computer itself.

In this way, single-chip solutions are possible.

6.4.2 Real-Time Systems

The microcomputer typically responds to external events with an appropriate software action. The time

between the external event and the software action is defined as the interface latency. If an upper bound

on the latency can be guaranteed, the system is characterized as real time or hard real time. If the system

allows one software task to have priority over the others, then it is described as soft real time. Because

most real-time systems utilize interrupts to handle critical events, we can calculate the upper bound on

the latency as the sum of three components: (1) maximum time the software executes with interrupts

disabled (e.g., other interrupt handlers, critical code); (2) the time for the processor to service the

interrupt (saving registers on stack, fetching the interrupt vector); and (3) software delays in the

interrupt handler before the appropriate software action is performed. Examples of events that some-

times require real-time processing include input, output, and alarms. When new input data are ready,

the software must respond by reading the new input. When the output device is idle, the software must

respond by giving more data to output. When an alarm condition occurs, the software must process the

data until the time the alarm is processed.

Sometimes, the software must respond to internal events. Many real-time systems involve performing

software tasks on a fixed and regular rate. For these systems, a periodic interrupt is employed to generate

requests at fixed intervals. The microcomputer clock guarantees that the interrupt request is made

exactly on time, but the software response (latency) may occur later. Examples of real-time systems that

utilize periodic interrupts include data acquisition systems (DASs) where the ADC is sampled at a fixed

rate, control systems where the software executes at the controller rate, waveform generation (e.g., music

player) where the data are sent to the DAC at a fixed rate, and time of day clocks where the software

maintains the date and time.

6.4.3 Keyboard Interfacing

Individual buttons and switches can be interfaced to a microcomputer input port simply by converting

the on=off resistance to a digital logic signal with a pull-up resistor. When many keys are to be interfaced,

it is efficient to combine them in a matrix configuration. n2 Keys can be constructed as an n by nmatrix.

To interface the keyboard with n2 keys, 2n I=O ports are needed; the rows to open collector (or open

drain) microcomputer outputs and the columns to microcomputer inputs are connected. Open

collector means the output will be low if the software writes a 0 to the output port, but will float

(high impedance) if the software writes a 1. Pull-up resistors on the inputs will guarantee the column

signals will be high if no key is touched in the selected row. The software scans the key matrix by driving

one row at a time to 0, while the other rows are floating. If there is a key touched in the selected

row, then the corresponding column signal will be 0. Many switches will bounce on=off for about 10 ms

when touched or released. The software must read the switch position multiple times over a 20 ms

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 7 4.10.2007 3:45pm Compositor Name: VBalamugundan

Embedded Processor Applications 6-7

period to guarantee a reliable reading. One simple software method uses a periodic interrupt (with a

rate slower than the bounce time) to scan the keyboard. In this way, the software will properly detect

single-key touches. One disadvantage of the matrix-scanned keyboard is the fact that three keys

simultaneously pressed sometimes looks like four keys are pressed.

6.4.4 Finite State Machine Controller

The objective of the second design example is to control traffic at an intersection of two one-way streets.

This example also illustrates programmable logic and memory allocation. The finite state machine

(FSM) has two inputs from sensors that identify the presence of cars as shown in Figure 6.3. There are

also six outputs: red=yellow=green for the north road and red=yellow=green for the east road. In this

FSM, each state has a 6-bit output value, a time to wait in that state, and four next states depending on if

the input is 00 (no cars), 01 (car on the north road), 10 (car on the east road), or 11 (cars on both

roads). The software will output the pattern for the current state, wait for the specified amount of time,

input from the sensors, and jump to the next state depending on the input. The FSM table structure will

be defined in EEPROM, and the program will be stored in ROM. The software for this system exhibits

the three classic segments: RAM, EEPROM, and ROM. Since the variables (Input, Pt) have values that
change during execution, they must be defined in RAM. We should be able to make minor modifications

to the FSM (e.g., add=delete states, change I=O values) by changing the FSM data structure in EEPROM

without modifying the controller (main) in ROM. A C-level program written for a 4 MHz Freescale

9S12 microcontroller is as follows:

const struct State{ == const means put in EEPROM
unsigned char Out; == 6-bit Output
unsigned char Time; == Time to wait in seconds
unsigned char Next[4];}; == Next state if input¼00,01,10,11

typedef const struct State StateType;
#define GoN 0 == Green on North, Red on East
#define WaitN 1 == Yellow on North, Red on East
#define GoE 2 == Red on North, Green on East
#define WaitE 3 == Red on North, Yellow on East
StateType fsm [4]¼{

{0x21, 100, {GoN, GoN, WaitN, WaitN}}, == GoN EEPROM
{0x22, 8, {GoE, GoE, GoE, GoE}}, == WaitN EEPROM
{0x0C, 100, {GoE, WaitE, GoE, WaitE}}, == GoE EEPROM

Initial state

PA1
PA0

PB5
PB4
PB3
PB2
PB1
PB0

East

North

East
North

Car sensors
Go north

Wait = 100 s
Out = 100001

11

Wait north
Wait = 8 s

Out = 100010

Wait east
Wait = 8 s

Out = 010100

Go east
Wait = 100 s
Out = 001100

00

01 10

11
00

01 10

11

10

11

01

01

00

00

10

µC

FIGURE 6.3 A traffic controller implemented using a finite state machine (FSM).

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 8 4.10.2007 3:45pm Compositor Name: VBalamugundan

6-8 Digital Systems and Applications

{0x14, 8, {GoN, GoN, GoN, GoN}}}; == WaitE EEPROM
void Wait(unsigned short delay){ == ROM
unsigned short startTime; == RAM

for(;delay>0;delay––){ == ROM
startTime¼TCNT; == ROM
while((TCNT-startTime)<¼ 31250){}}} == ROM

void main(void){ == ROM
unsigned char Input; == RAM
unsigned int St; == Current State RAM
TSCR1¼0x80; == Enable TCNT ROM
TSCR2¼0x07; == divide by 128, 32us TCNT ROM
St¼GoN; == Initial State ROM
DDRA¼0, DDRB¼0xFF; == A is input, B is output ROM
while(1){ == ROM
PORTB¼fsm [St].Out; == output for this state ROM
Wait(fsm [St].Time); == wait in this state ROM
Input¼PORTA&0x03; == Input¼00 01 10 or 11 ROM
St¼fsm [St].Next [Input];}} == ROM

6.4.5 Current-Activated Output Devices

Many external devices used in embedded systems activate with a current, and deactivate when no

current is supplied. The control element can be either a diode or a coil (resistor and inductor

combination). The microcomputer controls the device by passing current or no current through the

control element. Coil devices include electromagnetic relays, solenoids, DC motors, and stepper motors.

Diode-based devices include LEDs, optosensors, optical isolation, and solid-state relays. Diode-based

devices require a current-limiting resistor. The value of the resistor determines the voltage (Vd), current

(Id) operating point. The coil-based devices require a snubber diode to eliminate the large back

EMF (>200 V) that develops when the current is turned off. The back EMF is generated when the

large dI=dt occurs across the inductance of the coil. The microcomputer output pins do not usually have

a large enough IOL to drive these devices directly, so an open collector gate (such as the 7405, 7406,

75492, 75451, or NPN transistors) can be used to sink current to ground or use an open emitter gate

(like the 75491 or PNP transistors) to source current from the power supply. The L293 has Darlington

transistors both as current sinks (open collector) and current sources (open emitter) configured in an

H-bridge, allowing the computer to control the amount and direction of the current. A device with

an output current larger than the current required by the control element needs to be selected.

6.4.6 Stepper Motors

A bipolar stepper motor has only two coils and four wires, as shown in Figure 6.4. Using the full-step

algorithm, current always passes through both coils. The computer controls a bipolar stepper by

reversing the direction of the currents. If the computer generates the sequence (positive, positive)

(negative, positive) (negative, negative) (positive, negative), the motor will spin. A unipolar stepper

motor is controlled by passing current through four coils, exactly two at a time. There are five or six

wires on a unipolar stepper motor. For both types of stepper motors, the software outputs the sequence

1010, 1001, 0101, 0110 to spin the motor. The software makes one change (e.g., change from 1001 to

0101) to affect one step. The software repeats the entire sequence over and over at regular time intervals

between changes to make the motor spin at a constant rate. Some stepper motors will move on half steps

by outputting the sequence 1010, 1000, 1001, 0001, 0101, 0100, 0110, 0010. Assuming the motor torque

is large enough to overcome the mechanical resistance (load on the shaft), each output change causes the

motor to step a predefined angle. One of the key parameters that determine whether the motor will

slip (a computer change without the shaft moving) is the jerk, which is the derivative of the acceleration

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 9 4.10.2007 3:45pm Compositor Name: VBalamugundan

Embedded Processor Applications 6-9

(i.e., third derivative of the shaft position). Software algorithms that minimize jerk are less likely to cause

a motor slip. If the computer outputs the sequence in the opposite order, the motor spins in the other

direction. A circular linked list data structure, as shown in Figure 6.4, is a convenient software

implementation that guarantees the proper motor sequence is maintained.

6.5 Data Acquisition Systems

Before designing a DAS, the system goals must be clearly understood. The system can be classified as a

quantitative DAS, if the specifications can be defined explicitly in terms of desired range, resolution,

precision, and frequencies of interest. If the specifications are more loosely defined, we classify it as a

qualitative DAS. Examples of qualitative DASs include systems that mimic the human senses where the

specifications are defined using terms like ‘‘sounds good,’’ ‘‘looks pretty,’’ and ‘‘feels right.’’ Other

qualitative DASs involve the detection of events. In these types of systems, the specifications are

expressed in terms of specificity and sensitivity. For example, some premature infants stop breathing

during sleep. If we can detect this event and wake up the baby, the baby will start breathing again. An

apnea monitor is attached to the baby as it sleeps to alert the parents to this life-threatening event. Other

binary detection systems include the presence=absence of a burglar or the presence=absence of cancer. A

true positive (TP) is defined when the condition exists (the baby stops breathing) and the system

properly detects it (the alarm rings). A false positive (FP) is defined when the condition does not exist

(the baby is breathing normally) but the system thinks it exists (the alarm rings). A false negative (FN)

occurs when the condition exists (the baby stops breathing) but the system does not think it exists (the

alarm is silent and baby dies). Prevalence is the probability the condition exists, sometimes called pretest

probability, e.g., what percentage of babies will stop breathing. Sensitivity is the fraction of properly

detected events (the baby stops breathing and the alarm rings) over the total number of events (the baby

stops breathing). It is a measure of how well our system can detect an event. A sensitivity of 1 means the

baby will not die. Specificity is the fraction of properly handled nonevents (the baby is breathing and the

alarm is silent) over the total number of nonevents (the number of normal babies). A specificity of 1

means there will be no false alarms. The positive predictive value (PPV) of a system is the probability

that the condition exists when restricted to those cases where the instrument says it exists. It is a measure

of how much we believe the system is correct when it says it has detected an event. A PPVof 1 means that

when the alarm rings, the baby is not breathing. The negative predictive value (NPV) of a system is the

probability that the condition does not exists when restricted to those cases where the instrument says it

does not exist. An NPV of 1 means if our instrument says the baby is breathing then that the baby is

breathing.

+5 V +12 V

PB3

PB2

PB1

PB0

Periodic interrupt

PORTB=pt->data;

Return from interrupt

pt = pt->next;

1010 1001 0101 0110

pt

µC
Stepper

motor

A

B

Data
next

L293

FIGURE 6.4 A hardware interface of a bipolar stepper motor and the linked list data structure used by the software

to spin the motor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 10 4.10.2007 3:45pm Compositor Name: VBalamugundan

6-10 Digital Systems and Applications

Prevalence ¼ (TPþ FN)=(TPþ TNþ FPþ FN) (6:1)

Sensitivity ¼ TP=(TPþ FN) (6:2)

Specificity ¼ TN=(TNþ FP) (6:3)

PPV ¼ TP=(TPþ FP) (6:4)

NPV ¼ TN=(TNþ FN) (6:5)

Many components are included in a DAS. The transducer converts the physical signal into an electrical

signal. The amplifier converts the weak transducer electrical signal into the range of the ADC (e.g., 0–5 V).

The analog filter removes unwanted frequency components within the signal. The analog filter is

required to remove aliasing error caused by the ADC sampling. A periodic interrupt is used to control

the sampling process. The interrupt service routine will sample the ADC and store the data in a first-in

first-out queue. The data will be processed in the foreground by the main program. Examples of digital

processing include digital filters, calibration calculations, event detection, and data display. Inherent in

digital signal processing is the requirement that the ADC be sampled on a fixed time basis. Sampling at a

known and fixed rate is particularly important when a digital filter is used.

The first decision to make is the ADC precision, which is the number of bits in the ADC. Whether we

have a qualitative or quantitative DAS, we choose the number of bits in the ADC so as to achieve the

desired system specification. For a quantitative DAS, this is a simple task because the relationship

between the ADC precision and the system measurement precision is obvious. For a qualitative DAS,

experimental trials are often employed to evaluate the relationship between ADC bits and system

performance.

The next decision is the sampling rate, fs. The Nyquist theorem states we can reliably represent a band-

limited analog signal in digital form if we sample faster than twice the largest frequency that exists in the

analog signal. For example, if an analog signal only has frequency components in the 0–100 Hz range,

then if sample is taken at a rate above 200 Hz, the entire signal can be reconstructed from the digital

samples. One of the reasons for using an analog filter is to guarantee that the signal at the ADC input is

band limited. Violation of the Nyquist theorem results in aliasing. Aliasing is the distortion of the digital

signal that occurs when frequency components above 0.5 fs exist at the ADC input. These high-frequency

components are frequency shifted or folded into the 0–0.5 fs range.

6.6 Control Systems

6.6.1 Digital Control Equations

A control system is a collection of mechanical and electrical devices connected for the purpose of

commanding, directing, or regulating a physical plant. The real state variables are the actual properties

of the physical plant that are to be controlled. The goal of the sensor and DAS is to estimate the

state variables. Any differences between the estimated state variables and the real state variables will

translate directly into controller errors. A closed-loop control system uses the output of the state

estimator in a feedback loop to drive the errors to 0. The control system compares these estimated

state variables, x(n), to the desired state variables, x* in order to decide appropriate action, u(n). The

terminology (n) refers to the fact that these parameters are digital values sampled at finite-time intervals,

where n is the sample number. The actuator is a transducer, which converts the control system

commands, u(n), into driving forces, which are applied to the physical plant. The goal of the control

system is to drive x(n) to equal x*. If the error e is defined as the difference between the desired and

estimated state variable

e(n) ¼ x*� x(n) (6:6)

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 11 4.10.2007 3:45pm Compositor Name: VBalamugundan

Embedded Processor Applications 6-11

then the control system will attempt to drive e(n) to 0. We usually evaluate the effectiveness of a control

system by determining three properties: steady-state controller error, transient response, and stability.

The steady-state controller error is the average value of e(n). The transient response is how long does

the system take to reach 99% of the final output after x* is changed. A system is stable if steady state

(smooth constant output) is achieved. An unstable system may oscillate.

6.6.2 Pulse-Width Modulation

Many embedded systems must generate output pulses with specific pulse widths. The internal micro-

computer clock is used to guarantee the timing accuracy of these outputs. Many microcomputers have

built-in hardware that facilitates the generation of pulses. One classic example is the pulse-width-

modulated motor controller. The motor is turned on and off at a fixed frequency (see the Out signal

in Figure 6.5). The value of this frequency is chosen to be too fast for the motor to response to the

individual on=off signals. Rather, the motor responses to the average. The computer controls the power

to the motor by varying the pulse width or duty cycle of the wave. The IRF540 MOSFET can sink up to

28 A. To implement PWM, the computer (either with the built-in hardware or the software) uses a clock.

The clock is a simple integer counter that is incremented at a regular rate. The Out signal is set high for

time th then set low for time tl. Since the frequency of Out is to be fixed, (thþ tl) remains constant, but

the duty cycle th=(thþ tl) is varied. The precision of this PWM system is defined to be the number of

distinguishable duty cycles that can be generated. Let H and L be integer numbers representing

the number of clock counts the Out signal is high and low, respectively. We can express the duty cycle

as H=(Hþ L). Theoretically, the precision should be Hþ L, but practically the value may be limited by

the speed of the interface electronics.

6.6.3 Period Measurement

To sense the motor speed, a tachometer can be used. The AC amplitude and frequency of the tachometer

output both depend on the shaft speed. It is usually more convenient to convert the AC signal into

a digital signal (In shown in Figure 6.5) and measure the period. Again, many microcomputers have

built-in hardware that facilitates the period measurement. To implement period measurement, the

computer (again either with the built-in hardware or the software) uses a clock. Period measurement

simply records the time (value of the clock) of two successive rising edges on the input and calculates the

+5 V

µC

Out

Motor

+12 V

IRF540

1N914

1 2

3

tach

1 kΩ

In
1N914

5 kΩ

74HC14

2N2222
1N914

In (slow)

In (half)

In (fast)

Out (high)

Out (half)

Out (low)

th t l

FIGURE 6.5 An interface to a DC motor that uses PWM to control the delivered power and period measurement

to determine the rotation speed.

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 12 4.10.2007 3:46pm Compositor Name: VBalamugundan

6-12 Digital Systems and Applications

time difference. The period measurement resolution is defined to be the smallest difference in period

that can be reliably measured. Theoretically, the period measurement resolution should be the clock

period, but practically the value may be limited by noise in the interface electronics. The software can

calculate shaft speed, because the frequency is 1 over the period.

6.6.4 Control Algorithms

There are many common approaches to designing the software for the control system. The simplest

approach to the closed-loop control system uses incremental control. In this motor control example, the

actuator command, u¼H=(Hþ L), is the duty cycle of the pulse-width-modulated system. An incremental

control algorithm simply adds or subtracts a constant from u depending on the sign of the error. To add

hysteresis to the incremental controller, we define two thresholds, xH and xL, at values just above and below

the desired speed, x*. In other words, if x< xL (themotor is spinning too slow) then u is incremented, and if

x> xH (the motor is spinning too fast) then u is decremented. It is important to choose the proper rate at

which the incremental control software is executed. If it is executed too many times per second, then the

actuator will saturate resulting in a bang-bang system like Figure 6.2. If it is not executed often enough, then

the system will not respond quickly to changes in the physical plant or changes in x*.

A second approach, called proportional integral derivative (PID), uses linear differential equations. To

simplify the PID controller, we break the controller equation into separate proportion, integral, and

derivative terms, where p(n), i(n), and d(n) are the proportional, integral, and derivative components,

respectively. In order to implement the control system with the microcomputer, it is imperative that the

digital equations be executed on a regular and periodic rate (every Dt). The relationship between the real

time, t and the discrete time, n, is simply t¼ nDt. If the sampling rate varies, then controller errors will

occur. The proportional term makes the actuator output linearly related to the error. Using a propor-

tional term creates a control system that applies more energy to the plant when the error is large.

p(n) ¼ kpe(n) (6:7)

The integral term makes the actuator output related to the integral of the error. Using an integral term

often will improve the steady-state error of the control system. If a small error accumulates for a long

time, this term can get large. Some control systems put upper and lower bounds on this term, called

anti-reset-windup, to prevent it from dominating the other terms. The implementation of the integral

term requires the use of a discrete integral or sum. If i(n) is the present control output and i(n� 1) is

the previous calculation, the integral term is simply as follows:

i(n) ¼ i(n� 1)þ kie(n)Dt , where imin � i(n) � imax (6:8)

The derivative term makes the actuator output related to the derivative of the error. This term is usually

combined with either the proportional or integral term to improve the transient of the control system.

The proper value of kd will provide for a quick response to changes in either the set point or loads on the

physical plant. An incorrect value may create an overdamped (very slow response) or an underdamped

(unstable oscillations) response. There are a couple of ways to implement the discrete time derivative. A

simple approach is

d(n) ¼ kd(x(n)� x(n� 1))=Dt (6:9)

In practice, this first-order equation is quite susceptible to noise. More sophisticated calculations can be

found in Ref. [1]. The PID controller software is also implemented with a periodic interrupt every Dt.

The interrupt handler first estimates the state variable, x(n), and then calculates e(n). The next actuator

output is calculated by combining the three terms.

u(n) ¼ p(n)þ i(n)þ d(n) (6:10)

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 13 4.10.2007 3:46pm Compositor Name: VBalamugundan

Embedded Processor Applications 6-13

A third approach uses fuzzy logic to control the physical plant. Fuzzy logic can be much simpler than

PID. It will require less memory and execute faster. When complete knowledge about the physical plant

is known, then a good PID controller can be developed, i.e., the physical plant can be described with a

linear system of differential equations, an optimal PID control system can be developed. Because the

fuzzy logic control is more robust (still works even if the parameter constants are not optimal), then

the fuzzy logic approach can be used when complete knowledge about the plant is not known or can

change dynamically. Choosing the proper PID parameters requires knowledge about the plant. The

fuzzy logic approach is more intuitive, following more closely to the way a human would control the

system. If there is no set of differential equations that describe the physical plant, but there exists expert

knowledge (human intuition) on how it works, then a good fuzzy logic system can be developed. It is

easy to modify an existing fuzzy control system into a new problem. So if the framework exists, rapid

prototyping is possible. Examples of fuzzy logic implementations can be found in Ref. [1].

6.7 Remote or Distributed Systems

Many embedded systems require the communication of command or data information to other

modules at either a near or a remote location. We will limit our discussion with communication with

devices within the same room as presented in Figure 6.6. A full-duplex channel allows data to transfer in

both directions at the same time. In a half-duplex system, data can transfer in both directions but only in

one direction at a time. Half duplex is popular because it is less expensive (two wires) and allows the

addition of more devices on the channel without change to the existing nodes. If the distances are short,

half duplex can be implemented with simple open collector TTL-level logic. Many microcomputers have

open collector modes on their serial ports that allow a half-duplex network to be created without any

external logic (although pull-up resistors are often used). Three factors will limit the implementation of

this simple half-duplex network: (1) the number of nodes on the network, (2) the distance between

nodes, and (3) the presence of corrupting noise. In these situations a half-duplex RS485 driver chip, such

as the SP483 made by Sipex or Maxim, can be used. The master–slave system connects the master

transmit output to all slave receive inputs. This provides for broadcast of commands from the master.

A very common approach to distributed embedded systems is called multidrop, as implemented in a

controller area network (CAN). To transmit information to the other computers, the software activates

the CAN driver and outputs the frame. The scheduling and error checking is handled by the low-level

hardware [1].

Within the same room, IR light pulses can be used to send and receive information. This is the

technology used in the TV remote control. In order to eliminate background EM radiation from

triggering a false communication, the signals are encoded as a series of long and short pulses that

resemble bar codes.

Controller area network

MCP2551

µC RxD
TxD

µC RxD
TxD

µC RxD
TxD

gnd

gnd

gnd

Multidrop network

TTL-level serial port

Ring network

µC RxD
TxD

µC RxD
TxD

µC RxD
TxD

gnd

gnd

gnd

Master−slave network

TTL-level serial port
TxDx is open collector

µC RxD
 TxD

µC RxD
TxD

µC RxD
TxD

gnd

gnd

gnd

+5

FIGURE 6.6 Three simple configurations for distributed embedded systems.

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 14 4.10.2007 3:46pm Compositor Name: VBalamugundan

6-14 Digital Systems and Applications

A number of techniques are available for communicating across longer distances. Within the same

building the Bluetooth protocol can be used. A second technique for longer distances is RF modulation.

The information is modulated on the transmitted RF and demodulated at the receiver. Standard

telephone modems and the Internet can also be used to establish long distance networks.

Two approaches are used to synchronize the multiple computers. In a master–slave system, one device

is the master, which controls all the other slaves. The master defines the overall parameters that govern

the functions of each slave and arbitrates requests for data and resources. This is the simplest approach

but may require a high-bandwidth channel and a fast computer for the master. Collisions are unlikely in

a master–slave system if the master can control access to the network.

The other approach is distributed communication. In this approach, each computer is given certain

local responsibilities and certain local resources. Communication across the network is required when

data collected in one node must be shared with other nodes. A distributed approach will be successful on

large problems that can be divided into multiple tasks that can run almost independently. As the

interdependence of the tasks increases so will the traffic on the network. Collision detection and recovery

are required due to the asynchronous nature of the individual nodes.

References

1. J.W. Valvano, EmbeddedMicrocomputer Systems: Real Time Interfacing, 2nd ed., Thomson-Engineering

Publishers, Toronto, Ontario, Canada, 2006.

2. J.W. Valvano, Introduction to Embedded Microcomputer Systems: Motorola 6811 and 6812 Simulation,

Thomson-Engineering Publishers, Toronto, Ontario, Canada, 2002.

3. C.H. Roth, Fundamentals of Logic Design, Thomson-Engineering Publishers, Toronto, Ontario,

Canada, 2004.

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 15 4.10.2007 3:46pm Compositor Name: VBalamugundan

Embedded Processor Applications 6-15

Vojin Oklobdzija/Digital Systems and Applications 6195_C006 Final Proof page 16 4.10.2007 3:46pm Compositor Name: VBalamugundan

7
An Overview of

SoC Buses

Milica Mitić
Mile Stojčev
University of Niš

Zoran Stamenković
IHP GmbH—Innovations for High

Performance Microelectronics

7.1 Introduction... 7-1

7.2 On-Chip Communication Architectures 7-2
Background . Topologies . On-Chip Communication

Protocols . Other Interconnect Issues . Advantages and

Disadvantages of On-Chip Buses

7.3 System-On-Chip Buses ... 7-4
AMBA Bus . Avalon . CoreConnect . STBus . Wishbone .

CoreFrame . Manchester Asynchronous Bus for Low Energy .

PI Bus . Open Core Protocol . Virtual Component Interface .

SiliconBackplane mNetwork

7.4 Summary .. 7-15

7.1 Introduction

The electronics industry has entered the era of multimillion-gate chips, and there is no turning back. This

technology promises new levels of integration on a single chip, called the system-on-a-chip (SoC) design,

but also presents significant challenges to the chip designers. Processing cores on a single chipmay number

well into the high tens within the next decade, given the current rate of advancements [1]. Interconnection

networks in such an environment are, therefore, becoming more and more important [2]. Currently,

on-chip interconnection networks are mostly implemented using buses. For SoC applications, design

reuse becomes easier if standard internal connection buses are used for interconnecting components of the

design. Design teams developing modules intended for future reuse can design interfaces for the standard

bus around their particular modules. This allows future designers to slot the reuse module into their new

design simply, which is also based around the same standard bus [3].

Shrinking process technologies and increasing design sizes have led to highly complex billion-

transistor integrated circuits (ICs). As a consequence, manufacturers are integrating increasing numbers

of components on a chip. A heterogeneous SoC might include one or more programmable components

such as general-purpose processor cores, digital signal processor cores, or application-specific intellec-

tual property (IP) cores, as well as an analog front end, on-chip memory, I=O devices, and other

application-specific circuits. In other words, a SoC is an IC that implements most or all the functions of

a complete electronic system [4].

On-chip bus organized communication architecture (CA) is among the top challenges in CMOS SoC

technology due to rapidly increasing operation frequencies and growing chip size. In general, the perform-

ance of the SoCdesign heavily depends upon the efficiency of its bus structure. The balance of computation

and communication in any application or task is, of course, known as a fundamental determinant of

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 1 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-1

delivered performance. Usually, IP cores, as constituents of SoCs, are designed with many different

interfaces and communication protocols. Integrating such cores in a SoC often requires insertion of

suboptimal glue logic. Standardsofon-chipbus structuresweredeveloped toavoid this problem.Currently,

there are a few publicly available bus architectures from leadingmanufacturers, such as CoreConnect from

IBM [5], AMBA fromARM [6], SiliconBackplane from Sonics [7], and others. These bus architectures are

usually tied to processor architecture, such as the PowerPC or the ARM processor. Manufacturers provide

cores optimized to work with these bus architectures, thus requiring minimal extra interface logic.

This chapter gives an overview of the more popular on-chip standardized bus architectures such as

AMBA, CoreConnect, Wishbone, STBus, and others, both from an industrial and research viewpoint.

The crucial features, including bus topologies, arbitration methods, bus widths, and types of data

transfers are considered.

The rest of this chapter is organized as follows: Section 7.2 presents background material on CAs,

including a survey of typical topologies and communication protocols in use today. Section 7.3, as a

central part of this chapter, gives an overview of several popular SoC CAs.

7.2 On-Chip Communication Architectures

7.2.1 Background

The design of on-chip CAs addresses the following three issues [8]:

Definition of CA topology : This defines the physical structure of the CA. Numerous topologies exist,

ranging from single shared bus to more complex architectures such as bus hierarchies, token ring,

crossbar, or custom networks.

Selection and configuration of the communication protocols : For each channel=bus in the CA, communi-

cation protocols specify the exact manner in which communication transaction occurs. These protocols

include arbitration mechanisms (e.g., round-robin access, priority-based selection [5,6], time division

multiplexed access [TDMA] [7]), which are implemented in centralized or distributed bus arbiters.

Communication mapping : This refers to the process of associating abstract system-level communications

with physical communication paths in the CA topology [8].

7.2.2 Topologies

With respect to topology, on-chip communication architectures can be classified as follows:

Shared bus: The system bus is the simplest example of a shared communication architecture topology

and is commonly found in many commercial SoCs [9]. Several masters and slaves can be connected to a

shared bus. A block bus arbiter periodically examines accumulated requests from the multiple master

interfaces and grants access to a master using arbitration mechanisms specified by the bus protocol.

Increased load on a global bus lines limits the bus bandwidth. The advantages of shared-bus architecture

include simple topology, extensibility, low area cost, efficient to implement, and easy to build. The

disadvantages of shared-bus architecture are larger load per data bus line, longer delay for data transfer,

larger energy consumption, and lower bandwidth. Fortunately, the above disadvantages, with the

exception of the lower bandwidth, may be overcome by using a low-voltage swing signaling technique.

Hierarchical bus: This architecture consists of several shared buses interconnected by bridges to form a

hierarchy. SoC components are placed at the appropriate level in the hierarchy according to the perform-

ance level they require. Low-performance SoC components are placed at lower performance buses, which

are bridged to the higher performance buses so as not to burden the higher performance SoC components.

Commercial examples of such architectures include the AMBAbus [6], CoreConnect [5], etc. Transactions

across the bridge involve additional overhead, and during the transfer both buses remain inaccessible to

other SoC components. Hierarchical buses offer large throughput improvements over the sharedbuses due

to (1) the decreased load per bus and (2) the potential for transactions to proceed in parallel on different

buses, and multiple ward communications can be preceded across the bridge in a pipelined manner [8].

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 2 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-2 Digital Systems and Applications

Ring: In numerous applications, ring-based applications, such as network processors, and ATM switches

are widely used [5,8]. In a ring, each node component (master–slave) communicates using a ring

interface, and is usually implemented by a token-pass protocol.

7.2.3 On-Chip Communication Protocols

Communication protocols deal with different types of resource management algorithms used for

determining access right to shared communication channels. From this point of view, in the rest of this

section, we give a brief comment related to the main feature of the existing communication protocols.

Static-priority: This protocol employs an arbitration technique and is used in shared-bus communica-

tion architectures. A centralized arbiter examines accumulated requests from each master and grants

access to the requesting master that is of the highest priority. Transactions may be of non-preemptive or

preemptive type. AMBA, CoreConnect, etc., use this protocol [5,6].

Time division multiple access: The arbitration mechanism is based on a timing wheel with each slot

statically reserved for a unique master. Special techniques are used to alleviate the problem of wasted

slots. Sonics uses this protocol [7].

Lottery: A centralized lottery manager accumulates request for ownership of shared communication

resources from one ore more masters, each of which has, statically or dynamically, assigned a number of

lottery tickets [10].

Token passing: This protocol is used in ring-based architectures. A special data word, called token,

circulates on the ring. An interface that receives a token is allowed to initiate a transaction. When the

transaction completes, the interface releases the token and sends it to the neighboring interface.

Code division multiple access (CDMA): This protocol has been proposed for sharing on-chip commu-

nication channel. In a sharing medium, it provides better resilience to noise=interference and has an

ability to support simultaneously transfer of data streams. But this protocol requires implementation of

complex special direct sequence spread spectrum coding schemes, and energy=battery inefficient systems

such as pseudorandom code generators, modulation and demodulation circuits at the component bus

interfaces, and differential signaling [11].

7.2.4 Other Interconnect Issues

We now point to several interconnect issues that have direct impact on bus organization and its efficiency:

Programming model : This consists of a load and store operations. These operations are implemented as a

sequence of primitive bus transactions. Modules issuing requests are called masters and those serving

requests are called slaves [12].

Split versus nonsplit buses : If there is a single arbitration for a request–response pair, the bus is called

nonsplit. In this case, the bus remains allocated to the master of the transaction until the response is

delivered. Alternatively, in a split bus, the bus is released after the request to allow transactions from

different masters to be initiated [13].

Transaction ordering : Usually, all transactions on a bus are ordered. However, on a split bus, a total

ordering of transactions on a single master may cause performance degradation. This situation is typical

when slaves respond at different speed. To solve this problem, recent extensions to bus protocols allow

transactions to be performed on connections [14,15].

Atomic chains of transactions : This represents a sequence of transactions initiated by a single master that

is executed on a single slave exclusively. During this activity, other masters are denied access to that slave

until the end of the first transaction. This mechanism is standardly used to implement synchronization

mechanisms between master modules (i.e., semaphores) [13].

Media arbitration : Bus master modules access the bus and the arbiter grants access. Arbitration is

centralized as there is only one arbiter component. It is also global, since all requests, as well as the state

of the bus, are visible to the arbiter. When a grant is given, the complete path from the source to the

destination is exclusively reserved [12,13].

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 3 4.10.2007 3:44pm Compositor Name: VBalamugundan

An Overview of SoC Buses 7-3

Destination name and routing : Command address and data are broadcasted on the bus. They reach every

destination; only one of each activates, based on the broadcasted address, and executes the requested

command [12,13].

Latency : This is caused by the following two factors: (1) the access time to the bus, which is the time

until the bus is granted and (2) the latency introduced by the bus to transfer the data [12].

Data format : This is defined by separate wire groups for the transaction type, address, write data, read

data, and return acknowledgments=errors [5,6,16,17].

7.2.5 Advantages and Disadvantages of On-Chip Buses

In the bus-based design approach, IP components communicate through one or more buses usually

interconnected by bus bridges. Since the bus specification can be standardized, libraries of components

whose interfaces directly match this specification can be developed. Even if components follow the bus

standard, very simple bus interface adapters may still be needed. For components that do not directly

match the specification, wrappers have to be built. Companies offer very rich component libraries and

specialized development and simulation environments for designing systems around their buses. A

somewhat different approach is a core-based design. In this case, IP components are compliant to a bus-

independent and standardized interface and, thus, are directly connected to each other. Although the

standard may support a wide range of functionalities, each component may have an interface containing

only the functions that are relevant to it. These components may also be interconnected through a bus,

in which case standard wrappers can adapt the component interface to the bus.

As a conclusion we can say that on-chip-bus-design and on-chip-core-based design methodologies are

integration approaches that depend on standardized components or bus interfaces. They allow the

integration of homogeneous IP components that follow these standards to be directly connected to each

other, without requiring the development of complex wrappers. Let us note that on-chip buses rely on

shared communication resources and on arbitration mechanism that is in charge of serializing bus access

requests. This widely adopted solution unfortunately suffers from power and performance scalability

limitations, and restricted sharing of resources between communicating entities. For bus networks, the

bus is occupied by a single communication even if multiple communications could operate simultan-

eously on different portions on the bus. Therefore, a lot of effort has been devoted to the development of

advanced bus topologies (e.g., partial or full crossbar, bridged buses) and protocols for better support of

route-ability, flexibility, reliability, and reconfigure-ability. Therefore, a systematic way of designing

networks with possibly arbitrary topology is gaining the importance [2].

In the long run, a more aggressive approach is needed. For particular needs, the SoC may be built

around a sophisticated and dedicated network-on-chip that may deliver very high performance for

connecting a large number of components. It seems that this design paradigm shifts toward a packetized

on-chip communication based on micronetworks of interconnects or networks-on-chip [18]. More

details concerning NoC design are given in Refs. [13,19,20].

7.3 System-On-Chip Buses

In the sequel, an overviewof themore relevant SoC communication architectures will be given. Because of the

space limitation, the discussion will be focused on describing the more distinctive features of each of them.

7.3.1 AMBA Bus

AMBA (advanced microcontroller bus architecture) [6,21] is a bus standard devised by ARM with aim to

support efficient on-chip communications among ARM processor cores. Nowadays, AMBA is one of the

leading on-chip busing systems used in high-performance SoC design. AMBA (see Figure 7.1) is hierarch-

ically organized into two bus segments, system- and peripheral bus, mutually connected via bridge that

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 4 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-4 Digital Systems and Applications

buffers data and operations between them. Standard bus protocols for connecting on-chip components

generalized for different SoC structures, independent of the processor type, are defined by AMBA specifi-

cations. AMBA does not definemethod of arbitration. Instead it allows the arbiter to be designed to suit the

application needs, the best. The following are the three distinct buses specified within the AMBA bus:

1. ASB (advanced system bus): First generation of AMBA system bus used for simple cost-effective

designs that support burst transfer, pipelined transfer operation, and multiple bus masters.

2. AHB (advanced high-performance bus): As a later generation of AMBA, this bus is intended for

high-performance, high-clock synthesizable designs. It provides high-bandwidth communication

channel between embedded processor (ARM, MIPS, AVR, DSP 320xx, 8051, etc.) and high-

performance peripherals=hardware accelerators (ASICs MPEG, color LCD, etc.), on-chip SRAM,

on-chip external memory interface, and APB bridge. AHB supports a multiple bus masters

operation, peripheral and a burst transfer, split transactions, wide data bus configurations, and

nontristate implementations. Constituents of AHB are AHB-master, -slave, -arbiter, and -decoder.

3. APB (advanced peripheral bus): This bus is used to connect general-purpose low-speed, low-

power peripheral devices. The bridge is peripheral bus master, whereas all bus devices (Timer,

UART, PIA, etc.) are slaves. APB is static bus that provides a simple addressing with latched

addresses and control signals for easy interfacing.

Recently, two new specifications for AMBA bus—multilayer AHB and AMBA AXI— are defined

[6,22]. Multilayer AHB provides more flexible interconnect architecture (matrix that enables parallel

access paths between multiple masters and slaves) with respect to AMBA AHB, and keeps the AHB

protocol unchanged. AMBA AXI is based on the concept point-to-point connection. Good overview

papers related to AMBA specifications are Refs. [6,22,23].

7.3.2 Avalon

Avalon bus (see Figure 7.2) is a bus architecture designed for connecting on-chip processors and

peripherals together into a system-on-a-programmable-chip (SoPC). As an Altera’s parameterized

bus, Avalon is mainly used for FPGA SoC design based on Nios processor [24,25].

High-bandwidth
external memory

interface

ARM
processor On-chip RAM

Bridge

UART Timer

Keypad PIO

AHB or ASB bus

APB bus
AHB to APB bridge

or
ASB to APB bridge

DSP
320xx

MPEG

System bus

Peripheral bus

8051

LCD
control

FIGURE 7.1 AMBA-based system architecture.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 5 4.10.2007 3:44pm Compositor Name: VBalamugundan

An Overview of SoC Buses 7-5

Avalon has a set of predefined signal types with which a user can connect IP blocks. Avalon is a

synchronous interface and specifies the port connections between master and slave components and

specifies the timing by which these components communicate. Basic Avalon bus transactions transfer

one data item 8-, 16-, 32-, 64-, or 128-bits wide. Avalon uses separate address, data, and control lines.

This bus supports multiple bus masters. Masters and slaves interact with each other based on a

technique called slave-side (distributed) arbitration.

The Avalon bus model (switch fabric) provides the following services to Avalon peripherals connected

to the bus: data-path multiplexing, address decoding, wait-state generation, dynamic bus sizing, interrupt

priority assignment, latent transfer capabilities, and a streaming read and write capabilities [24,25].

Altera’s SoPC Builder, as a system development tool, automatically generates the switch fabric logic

that supports each type of transfer supported by the Avalon interface.

7.3.3 CoreConnect

CoreConnect [5] is an IBM-developed on-chip bus. By reusing processor, subsystem, and peripheral

cores, supplied from different sources, enables their integration into a single VLSI design. CoreConnect

is a hierarchically organized architecture. It is comprised of three buses that provide an efficient

interconnection of cores, library macros, and custom logic within a SoC (see Figure 7.3).

Processor

32-bit Avalon
master port

Ethernet MAC

32-bit Avalon
master port

Custom logic

64-bit Avalon
master port

Avalon switch fabric

Custom logic

64-bit Avalon
slave port

UART

16-bit Avalon
slave port

SDRAM
controller

32-bit Avalon
slave port

SRAM
memory chip

16-bit Avalon
slave port

Flash
memory chip

8-bit Avalon
slave port

Ethernet
PHY
chip

SDRAM
memory

chip

RS-232

Custom logic

32-bit Avalon
master port

FIGURE 7.2 Avalon bus-based system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 6 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-6 Digital Systems and Applications

Processor local bus (PLB): This is the main system bus. It is synchronous, multi-master, central arbitrated

bus that allows achieving high-performance and low-latency on-chip communication. Separate address

and data buses support concurrent read and write transfers. PLB macro, such as glue logic, is used to

interconnect various master and slave macros. Each PLB master is attached to the PLB through separate

addresses, read-data and write-data buses, and other control signals. PLB slaves are attached to PLB

through shared, but decoupled, address, and read-data and write-data buses. Up to 16 masters can be

supported by the arbitration unit, whereas there are no restrictions in the number of slave devices [21].

On-chip peripheral bus (OPB): This bus is optimized to connect lower speed, low throughput peri-

pherals, such as serial and parallel port, UART, etc. Crucial features of OPB are fully synchronous

operation, dynamic bus sizing, separate address and data buses, multiple OPB bus masters, single

cycle transfer of data between bus masters, single cycle transfer of data between OPB bus

master and OPB slaves, etc. OPB is implemented as multi-master, arbitrated buses. Instead of tristate

drivers, OPB uses distributed multiplexer. PLB masters gain access to the peripherals on the OPB bus

through the OPB bridge macro. The OPB bridge acts as a slave device on the PLB and a master on

the OPB.

Device-control register bus (DCRB): This is a single-master bus mainly used as an alternative relatively

low speed data path to the system for (1) passing status and setting configuration information into the

individual device-control registers between the processor core and other SoC constituents such as

auxiliary processors, on-chip memory, system cores, peripheral cores, etc. and (2) design for testability

purposes. DCRB is synchronous bus based on a ring topology implemented as distributed multiplexer

across the chip. It consists of a 10-bit address bus and a 32-bit data bus. CoreConnect implements

arbitration based on a static priority, with programmable priority fairness.

High-performance
CPU core

High-performance
memory

ArbiterOPB bridge

High-performance
DMA core

External bus
interface unit

Keyboard UART

PIO Timer

Arbiter

DCRB

PLB

OPB

FIGURE 7.3 CoreConnect bus-based system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 7 4.10.2007 3:44pm Compositor Name: VBalamugundan

An Overview of SoC Buses 7-7

7.3.4 STBus

STBus is an on-chip bus protocol developed by STMicroelectronics [16]. It represents a set of protocol,

interfaces, and architectural specifications intended to implement the communication network of digital

systems. The STBus interfaces and protocols are closely related to the virtual component interface (VCI)

industry standard. STBus implements both the protocols definition and the bus components. The

following protocols are used [16,26]:

1. Type I (peripheral protocol): It is a simple synchronous handshake protocol with limited set of

available command types, suitable for register access and slow peripherals. No pipelining is

applied. Type I acts as a request-grant protocol. Only limited operation code and length are

supported.

2. Type II (basic protocol): This protocol ismore efficient than type I as it supports split transactions and

adds pipelining features. The transaction set includes read=write operationwith different sizes (up to

64 bytes) and also specific operations like read-modify-write and swap. Type II is equivalent to the

request-grant-valid protocol. Transactions may also be grouped into chunks to ensure allocation of

the slave and to ensure no interruption of the data stream. This protocol is typically suited for external

memory controllers. A limitation of this protocol is that the traffic and symmetric transactions

must be ordered (i.e., the number of the requesting cells equals to the number of the response ones).

3. Type III (advanced protocol): This is the most efficient protocol, as it adds support for split

transactions, out-of-order executions, and asymmetric communications (i.e., the number of cells

might differ between request and response). Type III is mainly used by CPUs, multichannel

DMAs, and DDR controllers.

The STBus is modular and allows master and slaves of any protocol type and data size to communicate,

through the use of appropriate type=size converters. A wide variety of arbitration policies is also available,

such as bandwidth limitation, latency arbitration, least recently used (LRU), priority-based arbitration, etc.

The components interconnected by the STBus can be either initiators (initiates transactions on the

bus by sending requests, such as CPUs or ASICs) or targets (responds to requests, such as memories,

registers, or dedicated peripherals). Initiators can load or store data through the STBus backbone (see

Figure 7.4). Some resources might be both initiators and peripheral=targets.

STBus-based system includes three kinds of components [26]:

Switch or node: This block arbitrates and routes the requests and responses. Different kinds of

arbitrations are possible, including fixed priorities, variable priorities, dynamic priorities, latency

based, bandwidth based, and LRU.

Converter or bridge domain: This converts the request from the protocol to another, for example from

basic protocol to advanced protocol.

Size converter: It is used between two buses of same type of different widths; it includes buffering

capacity.

STBus can instantiate different bus topologies as follows [21]:

Single shared bus: This is suitable for simple low-performance implementations; this bus characterizes

minimal wiring area but limited scalability.

Full crossbar: This bus topology is intended for high-performance systems; wiring area is large.

Partial crossbar: This is used in medium-performance systems, represents a good compromise with

respect to the previous two proposals.

7.3.5 Wishbone

Wishbone [27] bus architecture was developed by Silicore Corporation. In August 2002, OpenCores

(organization that promotes open IP cores development) put it into the public domain. This means that

Wishbone is not copyrighted and can be freely copied and distributed.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 8 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-8 Digital Systems and Applications

The Wishbone defines two types of interfaces, called master and slave. Master interfaces are IPs

capable of initiating bus cycles, whereas slave interfaces are capable of accepting bus cycles [21]. The

hardware implementations support various types of interconnection topologies (see Figure 7.5) such as

1. Point-to-point connection—used for direct connection of two participants that transfer data

according to some handshake protocol.

2. Dataflow interconnection—used in linear systolic array architectures for implementation of DSP

algorithms.

3. Shared bus—typical for MPSoCs organized around single system bus.

4. Crossbar switch interconnection—usually used in MPSoCs when more than one masters can

simultaneously access several different slaves. The master requests a channel on the switch; once

this is established, data is transferred in a point-to-point manner.

The Wishbone supports different types of bus transactions, such as read=write, implementing block-

ing=unblocking access. A read-modify-write transfer is also supported. Wishbone does not define

hierarchical buses. In applications where two buses should exist, one slow and one fast, two separated

Wishbone interfaces could be created. Designer can also choose the arbitration mechanism and

implement it to fit the application needs best.

7.3.6 CoreFrame

The CoreFrame [28] architecture is low power high-performance on-chip interconnect architecture for

integration of SoC blocks. From a high-level point of view, the CoreFrame architecture (see Figure 7.6) is

viewed as a system of three buses (CPU bus, PalmBus, and MBus). The CPU bus is connected to

PalmBus via PalmBus controller and to the MBus through a cache or bridge. The PalmBus and MBus are

independent parallel buses, rather than a hierarchy of buses. Concurrent activities may be achieved on

both buses maximizing available bandwidth resources. To avoid three-state buffering, CoreFrame does

Hardware part Processor + cache

Size converter Bridge

Local memory
interface

External memory
interface

Masters

STBus T3 16 bytes STBus T3 16 bytes

STBus backbone

STBus T3 8 bytes STBus T2 16 bytes

Slaves

STBus T3 16 bytes STBus T3 16 bytes

FIGURE 7.4 STBus interconnect.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 9 4.10.2007 3:44pm Compositor Name: VBalamugundan

An Overview of SoC Buses 7-9

Wishbone
master

IP core

Wishbone
slave

IP core

1. Point-to-point interconnection

Data flow

2. Data flow

W
is

hb
on

e
sl

av
e

W
is

hb
on

e
m

as
te

r

IP core “A”

Wishbone
slave

IP core “SA”

Wishbone
master

IP core “MA”

Wishbone
slave

IP core “SB”

Wishbone

IP Core ÒMAÓ

Wishbone
slave

IP core “SC”

Wishbone
master

IP Core ÒMAÓ

Wishbone
master

IP core “MB”

Shared bus

3. Shared bus

Wishbone

IP Core ÒMAÓ

Wishbone
master

IP Core ÒMAÓ

Wishbone
slave

IP core “SA”

Wishbone
master

IP core “MA”

Wishbone
slave

IP core “SB”

Wishbone
slave

IP core “SC”

Wishbone
master

IP core “MB”

Dotted lines
indicate one

possible connection
option

4. Crossbar switch

W
is

hb
on

e
sl

av
e

W
is

hb
on

e
m

as
te

r

IP core “A”

W
is

hb
on

e
sl

av
e

W
is

hb
on

e
m

as
te

r

IP core “A”

FIGURE 7.5 Possible Wishbone interconnections.

CPU
CPU

memory

Palmbus
controller

Cache
or

bridge

Memory
subsystem

Shared
memory

Non-DMA
peripheral

Non-DMA
peripheral

DMA
peripheral

DMA
peripheral

MBus
PalmBus

CPU bus

Non-DMA
peripheral

FIGURE 7.6 CoreFrame architecture-based system structure.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 10 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-10 Digital Systems and Applications

not use shared signal lines. Instead it uses point-to-point signals and multiplexing. Communication

between subsystems is carried out through shared memory variables.

A PalmBus represents a master–slave interface with a single master intended for communications

between the CPU and peripheral blocks. It is not used to access memories. The PalmBus is designed for

low-speed access from the CPU core and it provides the I=O backplane and allows the processor to

configure and control peripheral blocks. Timings of the bus are synchronous with the CPU core.

PalmBus is also designed with low-power consumption in mind [29].

The MBus is designed for high-speed accesses to shared memory from the CPU core and peripheral

blocks. The MBus protocol is optimized for both ASIC-type implementations and data transfers to and

from the data memory devices [30].

7.3.7 Manchester Asynchronous Bus for Low Energy

Manchester asynchronous bus for low energy (MARBLE) developed at the Manchester University is on-

chip two channel micropipeline bus with centralized arbitration and address decoding that operates

without global clock pulse. It is intended to provide interconnections of asynchronous macrocells within

the VLSI ICs [31].

MARBLE is based on a split-transfer architecture allowing transfers between different initiators and

targets to be interleaved without the needs for retries, thus giving low-energy operation and low latency.

A MARBLE consists of two asynchronous multipoint channels. One of these channels carries the

command from the initiator to the target returning either the accept status or defer status. The other

multipoint channel carries a response from the target to the initiator (and the read data or write data in

the appropriate direction). The two channels are used in a decoupled transfer scheme with loose

coupling between channels to implement split transactions [32].

The interconnection provided by MARBLE is used in AMULET3H microprocessor (see Figure 7.7). It

is intended to connect CPU core and DMA controller to RAM, ROM, and other peripherals [32]. In

general, MARBLE demonstrates that all the features of a high-speed on-chip macrocell bus can be

implemented efficiently in a fully asynchronous design style.

7.3.8 PI Bus

The PI (peripheral interconnect) bus was developed by several European semiconductor companies

(Advanced RISC Machines, Philips Semiconductors, SGS-Thomson Microelectronics, Siemens, and

TEMIC=MATRA MHS) within a framework of European project OMI (open microprocessor initiative

framework). PI bus is an open standard published by OMI. For the purpose of SoC design, PI bus

System Toolkit is developed. VHDL codes for master, slave, and control units are freely distributed. In

addition, synthesis scripts for different ASIC and FPGA technologies, and examples of system solutions

are available [9].

PI bus is a synchronous bus with unmultiplexed address and data signals that supports operation of

multiplemasters and bridges. It is an on-chip bus used inmodular, highly integrated SoC designs. PI bus is

designed for memory-mapped data transfers between its bus agents. Bus agents are on-chip modules

equipped with PI bus interface and connected via PI bus signals. A PI bus agent acts as a PI bus master

when it initiates data read=write operations because the bus ownership has been granted to the agent. A PI

bus agent who is addressed at PI bus operation acts as a PI bus slave when it performs the requested data

read=write operation. Typical masters are processor modules, coprocessors, or DMA modules, while

typical slaves are on-chip memory and input–output interfaces to the external world (see Figure 7.8) [9].

The main features of PI bus are the following: (1) processor independent implementation and design;

(2) demultiplexed operation; (3) clock synchronous; (4) peak transfer rate of 200 MHz (50 MHz bus

clock); (5) address and data bus scalable (up to 32 bits); (6) 8-, 16-, 32-bit data access; (7) broad range of

transfer types from single to multiple data transfers; and (8) multi-master capability. The PI bus does

not provide (1) cache coherency support, (2) broadcast, (3) dynamic bus sizing, and (4) unaligned data

access [9].

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 11 4.10.2007 3:44pm Compositor Name: VBalamugundan

An Overview of SoC Buses 7-11

Bus control
(arbitration/decode)

Initiator

Initiator

Initiator

Target

Target

Target

Target

Target

Instruction
bridge

RAM CPU

Data
bridge

DMA
controller

ROM

ADC

Marble
sync

bridge

Target

Data
bridge

Synchronous
peripheral

Synchronous
peripheral

Synchronous
peripheral

Target Initiator

Off-chip interface

Dram
controller

Test
controller

D
ra

m
 c

tr
l

C
hi

p
se

le
ct

s

A
dd

re
ss

D
at

a

T
es

t

M
ar

bl
e

Synchronous
peripheral ASIC

FIGURE 7.7 AMULETH3H system.

Arbitration

Address
decoding

Bus
control

Processor
module

Master I/F

Coprocessor
module

M–S I/F

DMA
module

M–S I/F

Memory
module

Slave I/F

Peripheral
module

Slave I/F

Interface
ports

Slave I/F

PI bus

FIGURE 7.8 Modules of a PI bus connected system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 12 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-12 Digital Systems and Applications

7.3.9 Open Core Protocol

Open core protocol (OCP) [14] is an interface standard that interconnects IP cores to on-chip bus. The

OCP defines a comprehensive, bus-independent, high-performance, and configurable interface between

IP cores and on-chip communication subsystems. A designer selects only those signals and features from

the palette of OCP configurations needed to fulfill all of IP core’s unique data, control, and test signaling

requirements. Existing IP cores may be inexpensively adapted. Defining a core interface using the OCP

provides a complete description for system integration. The following are the main features of

OCP interface: (1) master–slave interface with unidirectional signals; (2) driven and sampled by the rising

edge of the OCP clock; (3) fully synchronous, no multicycle timing paths; (4) all signals are strictly point-

to-point (except clock and reset); (5) simple request=acknowledge protocol; (6) supports data transfer on

every clock cycle; (7) allows master or slave to control transfer rate; (8) configurable data word width; (9)

configurable address width; (10) pipelined or blocking reads; and (11) specific description formats for

core characteristics, interfaces (signals, timing, and configuration), and performance [15].

Some of the standard on-chip buses, such as AMBA and SiliconBackplane mNetwork, use OCP.

Communication requirements concerning IP core can be described using this protocol format.

OCP interface is user settable, so the designer can define interface attribute, such as address and data

bus width. Beside basic OCP version, there are four extensions: simple extension, complex extension,

sideband extension, and debug and test interface extension. Basic OCP includes only data flow signals

and is based on simple request and acknowledge protocol. However, the optional extensions supportmore

functionality in control, verification, and testing. Simple extension and complex extension support

burst transaction and pipelined write operations. In addition, sideband extension supports user-defined

signals and asynchronous reset. Also, debug and test interface extension supports JTAG (Joint Test Action

Group) and clock control. This is the reason why, when integrated in SoC, the OCP allows debugging and

IP block test generating. Figure 7.9 presents SoC design based on the OCP.

7.3.10 Virtual Component Interface

The VCI [17] is an interface rather than a bus. Thus, the VCI specifies (1) a request–response protocol,

(2) a protocol for the transfer of requests and responses, and (3) the contents and coding of these

requests and responses. The VCI does not touch areas such as bus allocation schemes, competing for a

bus, and so forth.

There are three complexity levels for the VCI: peripheral VCI (PVCI), basic VCI (BVCI), and advanced

VCI (AVCI). The PVCI provides a simple, easily implementable interface for applications that do not

Master Master Master MasterMaster

Slave Slave

Bus initiator

SlaveSlave

Bus initiator/ targetBus initiator Bus target

On-chip bus

Core Core Core

OCP
Response

Request

Bus wrapper
interface
module

System initiator System initiator/ target System target

Initiator Target

FIGURE 7.9 Wrapped bus and OCP instances.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 13 4.10.2007 3:44pm Compositor Name: VBalamugundan

An Overview of SoC Buses 7-13

need all the features of the BVCI. The BVCI defines an interface

that is suitable for most applications. It has a powerful, but not

overly complex protocol. The AVCI adds more sophisticated

features, such as threads, to support high-performance appli-

cations. The PVCI is a subset of the BVCI, and the AVCI is a

superset of the BVCI.

BVCI and AVCI make use of a ‘‘split protocol.’’ That is, the

timing of the request and the response are fully separate. The initiator can issue as many requests as

needed, without waiting for the response. The protocol does not prescribe any connection between

issuing of requests and arrival of the corresponding responses. The only thing specified is that the order

of responses corresponds to the order of requests. In the AVCI, requests may be tagged with identifiers,

which allow such requests and request threads to be interleaved and they response to arrive in a different

order. Responses bear the same tags issued with the corresponding requests, such that the relation can be

restored upon the reception of a response. As an interface, the VCI can be used as a point-to-point

connection between two units called the initiator and the target, where the initiator issues a request and

the target responds (see Figure 7.10).

The VCI can be used as the interface to a wrapper, which means a connection to a bus. This is how the

VCI allows the VC to be connected to any bus. An initiator is connected to that bus by using a bus

initiator wrapper. A target is connected to that bus by using a bus target wrapper. Once the wrappers for

the bus have been designed, any IPs can be connected to that bus, as depicted in Figure 7.11.

7.3.11 SiliconBackplane mNetwork

Sonics mNetwork [7] consists of a set of architectures and SoC design tools. Defined architectures are

SiliconBackplane for on-chip interconnection and multichip for off-chip interconnection. SiliconBack-

plane implements two-level arbitration, based on TDMA and round-robin.

SiliconBackplane mNetwork is a network on a chip that connects IP blocks in a SoC. mNetwork

isolates the system of IP blocks from network by requiring all blocks to use single bus interface protocol,

OCP. Every IP block communicates via ‘‘wrapper,’’ which mNetwork calls an agent, using OCP.

Agents communicate with each other through mNetwork. As system’s requirements change, OCP and

mNetwork support modification of many system’s parameter in real time. System requirements relate to,

for example, selection of arbitration scheme, definition of address space, etc. An agent is generated using

the tool Fast Forward Development Environment, developed by Sonics. Basic building blocks of

SiliconBackplane mNetwork are given in Figure 7.12.

Initiator Target

Request

Response

FIGURE 7.10 VCI as a point-to-point

connection.

VCI initiator

Initiator

VCI
point-to-point

Initiator wrapper

VCI target

Bus master

VCI target

Target

VCI
point-to-point

Target wrapper

VCI initiator

Bus slave

Any bus

FIGURE 7.11 Two VCI connections used to realize a bus connection.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 14 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-14 Digital Systems and Applications

7.4 Summary

Complex VLSI IC design has been revolutionized by the widespread adoption of the SoC paradigm. The

benefits of the SoC approaches are numerous, including improvements in system performance, cost,

size, power dissipation, and design turnaround time. Many SoC designs consist of one or more IPs,

designed for a single or narrow set of applications with a highly characterizable communication. As the

level of a chip integration continues to advances at a fast pace, the desire for efficient interconnects

rapidly increases. Currently on-chip interconnection networks are mostly implemented using traditional

interconnects like buses. The wide variety of buses used in SoC designs presents the major problem for

reusable design. A number of companies and standard committees have attempted to standardize buses

and interface with mixed results.

In this chapter we have given an overview of the most popular on-chip bus-based interconnection

networks such as AMBA, Avalon, CoreConnect, STBus, Wishbone, etc. The main characteristics of the

considered buses with respect to topology, arbitration method, bus width, and types of data transfers are

discussed. In addition, we have pointed to some of the issues that SoC designers are facing in

determining the bus architecture to use to provide flexible and high bandwidth between IP cores.

References

1. Keating M. and Bricaud P., Reuse Methodology Manual for System-on-a-Chip Designs, 2=E= Kluwer

Academic Publishers, Boston, MA, 1999.

2. Ho W.H. and Pinkston T.M., A design methodology for efficient application-specific on-chip

interconnects, IEEE Trans. Parallel Distrib. Syst., 17(2): 174–190, February 2006.

3. Horspool N. and Gorman P., The ASIC Handbook, Prentice Hall, PTR, Upper Saddle River, NJ,

2001.

4. Benini L. and De Micheli G., Networks on chips: A new paradigm for component-based MPSoC

design, chapter 3, pp. 49–80, in Jerraya A.A. and Wolf W. (Eds.), Multiprocessor Systems-on-Chips,

Elsevier, Amsterdam, 2005.

5. CoreConnect Bus Architecture, IBM Microelectronics, available at http:==www.ibm.com=chips=-

products=coreconnect, January 2006.

6. ARM.AMBA Specifications v2.0, 1999, available at http:==www.arm.com, January 2006.

7. Sonics mNetwork Technical overview, January 2002, available at http:==www.sonicsinc.com, January

2006.

8. Lahiri K., Dey S., and Raghunathan A., Design of communication architectures for high-perform-

ance and energy-efficient systems-on-chip, chapter 7, pp. 187–222, in Jerraya A.A. and Wolf W.

(Eds.), Multiprocessor Systems-on-Chips, Elsevier, Amsterdam, 2005.

DMA CPU DSP MPEG

Agent Agent Agent Agent

Agent AgentAgent Agent

ASIC MEM Input Output

SiliconeBackplane µNetwork

OCP

FIGURE 7.12 SiliconBackplane mNetwork constituents.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 15 4.10.2007 3:44pm Compositor Name: VBalamugundan

An Overview of SoC Buses 7-15

9. Draft Standard OMI 324: PI-Bus, Rev. 0.3d, OpenMicroprocessor Systems Initiative, Copyright 1994

by Siemens AC, Munich, available at http:==www.cordis.lu=esprit=src=omi-home.htm, August 2005.

10. Dally W.J. and Towel B., Principles and Practices of Interconnection Networks, Elsevier, Amsterdam,

2004.

11. Shandhag N.R., Reliable and efficient system-on-chip design, IEEE Comput., 37(3): 42–50, March

2004.

12. Hennessy J. and Petterson D., Computer Architecture: A Quantitative Approach, Elsevier, Amsterdam,

2003.

13. Radulescu A. and Goossens K., Communication services for networks on chip, in Bhattacharyya S.,

Deprettere E., Teich J. (Eds.), Domain-Specific Processors: Systems, Architectures, Modeling, and

Simulation, Marcel Dekker Inc., New York, 2004, pp. 193–213.

14. Overview of Open Core Protocol (OCP-2001-9-26), OCP International Partnership Association,

Portland, OR 97221, USA, available at www.ocpip.org, January 2006.

15. Rowen C., Engineering the Complex SoC: Facts, Flexible Design with Configurable Processors, Prentice

Hall, PTR, Upper Saddle River, NJ, 2004.

16. Strano G., Tiralongo S., and Pistrito C., OCP=STBus Plug-In Methodology, available at http:==www.

techoline.com=community=tech_group=com=tech_paper=37923, January 2006.

17. Virtual Component Interface Standard Version 2 (OCB 2 2.0), VCI Alliance, April 2001, available at

www.vsi.org, March 2006.

18. Kogel T., Leupers R., and Meyr H., Integrated System-Level Modeling of Network-on-Chip enabled

Multi-Processors Platforms, Springer, Dordrecht, 2006.

19. Bertozzi D. and Benini L., Xpipes: A network-on-chip architecture for gigascale systems-on-chip,

IEEE Circ. Syst., 4(2): 18–31, Second Quarter 2004.

20. Jantasch A. and Tenhunen H., Networks on Chip, Kluwer Academic Publishers, Boston, MA,

February 2003.

21. Ayala J., Lopez-Vellejo M., Bertozzi D., and Benini L., State-of-the-art SoC communication archi-

tectures, in Zurawski R. (Ed.), Embedded Systems Handbook, CRC Press, Boca Raton, FL, 2006,

pp. 20.1–20.22.

22. ARM.AMBA Multi-Layer AHB Overview, 2001, available at http:==www.arm.com, January 2006.

23. ARM.AMBA AXI Protocol Specifications, 2003, available at http:==www.arm.com, January 2006.

24. Altera, Avalon Interface Specification, April 2005, available at www.altera.com, March 2006.

25. Altera, Avalon Bus Specification: Reference Manual, July 2003, available at www.altera.com, March

2006.

26. Pelissier G., Hersemeule R., Cambon G., Torres L., and Robert M., Bus Analysis and Performance

Evaluation on a SoC Platform at the System Level Design, available at http:=www.ra.informatik.uni.

stutgart.de=�pricopin=noc03=paper_44.pdf, January 2006.

27. WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores, Revision: B.3,

September, 2002, available at http:==www.opencores.org=projects.cgi=web=wishbone=wishbone,

March 2006.

28. Overview of the CoreFrame architecture, January 2002, available at http:==www.palmchip.com,

January 2006.

29. Palmchip, Overview of CoreFrame Architecture, White Paper, available at www.palmchip.com,

February 2006.

30. Cordon B., A Bus Architecture for System-on-Chip Designs, Palmchip Corporation, available at www.

palmchip.com, January 2006.

31. Bainbridge W., Asynchronous system-on-chip interconnect, Ph.D. Thesis, Department of

Computer Science, University of Manchester, England, March 2000, pp. 119–140, available at

www.cs.man chester.ac.uk=apt=projects=interconnect=, February 2006.

32. Bainbridge W. and Furber S., Asynchronous macrocell interconnect using marble, Technical Report,

available at www.cs.manchester.ac.uk=apt=projects=interconnect=, February 2006.

Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Final Proof page 16 4.10.2007 3:44pm Compositor Name: VBalamugundan

7-16 Digital Systems and Applications

III
Signal Processing

8 Digital Signal Processing Fred J. Taylor .. 8-1

Introduction . Digital Signals and Systems . Digital Filters .

Fourier and Spectral Analysis . DSP System Implementation .

DSP Technology . Applications

9 DSP Applications Daniel Martin ... 9-1

Introduction . Military Applications . Telecommunication Terminals .

Consumer Products . The Telecom Infrastructure . Computer, Peripherals,

and Office Automation . Automotive, Industrial . Others . Conclusions:

General Trends

10 Digital Filter Design Worayot Lertniphonphun and James H. McClellan10-1

Introduction . Digital Filters . Digital Filter Design Problem .

Conventional Design Methods . Recent Design Methods . Summary

11 Audio Signal Processing Adam Dabrowski and Tomasz Marciniak11-1

Introduction . Elements of Technical Acoustics . Parametric Modeling

of Audio Signals . Psychoacoustics and Auditory Perception . Principles of

Audio Coding . Digital Audio Signal Processing Systems . Audio Processing

Basics . Lossless Audio Coding . Transparent Audio Coding . Audio Coding

Standards . Digital Audio Transmission and Storage

12 Digital Video Processing Todd R. Reed ...12-1

Introduction . Some Fundamentals . Perception of Visual Motion .

Image Sequence Representation . Computation of Motion . Image Sequence

Compression . Conclusions

13 Low-Power Digital Signal Processing Alice Wang and

Thucydides Xanthopoulos ... 13-1

Introduction . Power Dissipation in Digital Circuits . Low-Power Design

in Programmable DSPs . Low-Power Design in Application-Specific DSPs

Vojin Oklobdzija/Digital Systems and Applications 6195_S003 Final Proof page 1 4.10.2007 4:05pm Compositor Name: VBalamugundan

III-1

Vojin Oklobdzija/Digital Systems and Applications 6195_S003 Final Proof page 2 4.10.2007 4:05pm Compositor Name: VBalamugundan

8
Digital Signal

Processing

Fred J. Taylor
University of Florida

8.1 Introduction... 8-1

8.2 Digital Signals and Systems .. 8-2

8.3 Digital Filters ... 8-3
Finite Impulse Response Filters . Infinite Impulse Response

Filters . Multirate Systems . Special Filter Cases . Digital

Filter Architecture

8.4 Fourier and Spectral Analysis... 8-9

8.5 DSP System Implementation ... 8-10

8.6 DSP Technology .. 8-12

8.7 Applications ... 8-13

8.1 Introduction

Signals are traditionally classified as being analog (continuous-time), discrete-time (sample-data), or

digital. A continuous-time signal has infinite precision in both the time- and amplitude-domain.

Discrete-time signals have infinite amplitude precision, but are discretely resolved in time (sampled).

Digital signals are of finite precision in both the time (sampled) and amplitude (quantized). Digital

signals are either synthesized by a digital system (e.g., computer) or by digitizing an analog signal

using an analog-to-digital converter (ADC). A digital-to-analog converter (DAC) converts a digital

signal into an analog signal. Signal processing refers to the science of analyzing, synthesizing, and

manipulating audio, acoustic, speech, video, image, geophysical, radar, radio signals, plus a host of other

waveforms using mathematics or technology. Signals may be an array of one-, two-, or M-dimensional

samples, of finite or infinite duration. Digital signal processing (DSP) refers to the processing of digital

or digitized signals exclusively with digital technologies and techniques. DSP systems and elements can

be linear or nonlinear, and reside in the time (e.g., filter) or transform domain (e.g., frequency). DSP

processing agents range from specialized mathematical and statistical abstractions, to software or

hardware. In practice, DSP systems are often designed to meet very restrictive real-time speed, precision,

dynamic range requirements, and operate in multisignal, multisystem environments. The design and

study of a DSP solution, therefore, requires a concurrent knowledge of signal processing theory,

application, and technology.

DSP is currently a major market force, consisting of semiconductor, hardware, software, applications,

support, and training sectors. The origins of DSP are open to debate, but a seminal moment surely

occurred when Claude Shannon developed an understanding of sample-data signal processing in the

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 1 4.10.2007 3:41pm Compositor Name: VBalamugundan

8-1

middle of the twentieth century. Shannon’s sampling theorem states that if an analog signal, having

its highest frequency bounded below B Hz, is sampled at a rate equal to or in excess of fs � 2B Hz, then

the original signal can be perfectly reconstructed from its sample values. The critical parameter fN¼ fs=2

is called the Nyquist frequency and represents a strict upper bound on the frequency content of the

sampled signal. Most DSP solutions are over-sampled, operating at a sample frequency far in excess of

the minimally required value. If a signal is under-sampled at a rate below the minimum rate of 2B Hz,

aliasing errors will occur. An aliased signal is a baseband signal whose sample values impersonate

those of the sampled higher frequency signal. Another early enabler of the DSP revolution was the

Cooley–Tukey FFT, the developers of fast Fourier transform (FFT) algorithm. The FFT made many

signal-processing tasks practical for the first time using, in many instances, only software. Another

defining DSP moment occurred when the first DSP microprocessors (DSP mp) made a marketplace

appearance in the late 1970s. These devices immediately provided an affordable and tangible means of

developing embedded solutions with a minimum risk and effort. Regardless of its origins, today DSP has

become a pervasive technology, appearing in a myriad of applications, and supported with a rich and

deep technological infrastructure. DSP is now a discipline unto itself, with its own professional societies,

academic programs, trained practitioners, and industrial infrastructure.

8.2 Digital Signals and Systems

Digital systems can process digital signals in either the time- or frequency-domain. Systems are

often characterized in the time-domain by their response to an impulse (i.e., d[k]), which is logically

called the impulse response and is denoted by h[k]¼ {h[0], h[1], h[2], . . . }. The sequence of sample

values h[k] is called a time series, which can be mathematically represented using the venerable

z-transform. The z-transform of an arbitrary time series x[k]¼ {x[0], x[1], x[2], . . . } is formally given

by X(z) ¼P1
k¼0 x[k]z

�k [7,8,9]. The z operator is defined in terms of the delay theorem of Laplace

transforms, namely z¼ esTs, where Ts is the sample period. The z-transforms of common signals are

reported in standard table of z-transforms, exemplified by Table 8.1. The common signals shown in

Table 8.1 can be manipulated and combined, using the property list shown in Table 8.2, to synthesize

higher-order and more complex signals. In addition to the properties listed in Table 8.2, the initial value

theorem x[0] ¼ lim
z!1X(z) and, with reservations, the final value theorem x[1] ¼ lim

z!1
(z � 1)X(z)

provide a convenient means of evaluating two end points of a time series. The mapping of a z-

transformed signal X(z) back into the time-domain is generally performed in a piecemeal manner.

Specifically, the inverse z-transform of X(z) is normally expressed as a partial fraction or Heaviside

expansion, having the form X(z) ¼PM
i¼1 AiXi[z], where Xi(z) is an element of Table 8.1 and corre-

sponding to a discrete-time signal xi[k]. The coefficient Ai is called a Heaviside coefficient associated

with the term Xi(z). The inverse z-transform of X(z) in partial fraction form is given by

x[k] ¼PM
i¼1 Aixi[k].

The output of a linear system to an input x[k] is the system’s impulse response h[k]. The output to the

system to an arbitrary input x[k] is defined by the discrete-time linear convolution sum:

TABLE 8.1 z-Transforms of Primitive Time Functions

Discrete-Time Signal x[k] z-Transform X(z)

d[k] (impulse) 1

u[k] (unit step) z=(z�1)

aku[k] (exponential) z=(z�a)

sin[bkTs]u[kTs] (sine wave) sin(bTs) z=(z
2 � 2z cos(bTs) þ 1)

cos[bkTs]u[kTs] (cosine wave) (z � cos(bTs)) z=(z
2 � 2z cos(bTs) þ 1)

aksin(bkTs)u[kTs] (damped sine) a sin(bTs) z=(z
2 � 2az cos(bTs) þ a2)

akcos(bkTs)u[kTs] (damped cosine) (z � a cos(bTs)) z=(z
2 � 2az cos(bTs) þa2)

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 2 4.10.2007 3:41pm Compositor Name: VBalamugundan

8-2 Digital Systems and Applications

y[k] ¼ h[k]x[k] ¼
X1
m¼0

h[m]x[k �m]

Computing the convolution sum is rare. Instead, a linear

system is generally analyzed using simulation, emulation,

or the z-transform. The convolution theorem states that

the linear convolution y[k]¼ h[k] * x[k] of a z-transform-

able impulse response h[k] (i.e., H(z) ¼P1
k¼0 h[k]z

�k)

and input x[k] (i.e., X(z) ¼P1
k¼0 x[k]z

�k), is given by

the inverse z-transform of the product Y(z)¼H(z)X(z). This method is only viable in instances where

the z-transform of h[k] and x[k] are readily computed or tabled, and the inverse z-transform of Y[z] can

be efficiently computed. While H(z) is generally known, most real signals are arbitrary and possibly

noise contaminated, making the mathematical availability of X(z) questionable. Nevertheless, the

importance of this equation has resulted in the elements being given specific titles and meaning. The

z-transform of the impulse response h[k], namely H(z), is called the system’s transfer function and has

the general form

H(z) ¼ Y (z)=X(z) ¼
XM
m¼0

bmz
�m

XM
m¼0

amz
�m ¼ N(z)=D(z)

,

The filter’s poles (pm) and zeros (zm) are the roots of D(z)¼ 0 and N(z)¼ 0, respectively. The system’s

steady-state frequency response can be determined by evaluating the transfer function H(z) along the

trajectory z¼ ejˆ, where ˆ2 [�p, p] and represents a normalized baseband frequency range [�fs=2,

fs=2] (±Nyquist frequency). Specifically, the steady-state frequency response of a linear system, in

magnitude-phase form, is H(ejˆ)¼ jH(ejˆ)jf(ejˆ).

8.3 Digital Filters

Transfer functions, when implemented in the time-domain, result in digital filters. The attributes of a

digital filter can be specified in the time-domain, frequency-domain, or both. Digital filters can be

grouped into three broad classes called finite impulse response (FIR), infinite impulse response (IIR),

and multirate filters.

8.3.1 Finite Impulse Response Filters

An FIR filter possesses an impulse response that persists only for a finite number of sample values [5,6].

The impulse response of an Nth-order FIR is given by h[k]¼ {h0, . . . , hN� 1}, and in the z-transform

domain by H(z) ¼PN�1
i¼0 hiz

�i. One of the attributes of an FIR is its simplicity, consisting of a string of

multiply-accumulations (MACs), and shift registers. The steady-state frequency response of an FIR is

given by H(ejˆ)¼ jH(e jˆ)jf(ejˆ). A system is said to possess a linear phase response if f(e jˆ)¼
aˆþb (i.e., linear in frequency). Linear phase filters are important in a number of applications,

including: (1) synchronizing phase-modulated data streams, (2) anti-aliasing filters placed in front of

signal phase-sensitive analysis subsystems (e.g., FFT), and (3) using phase-sensitive applications (e.g.,

image processing). Linear phase filtering is guaranteed whenever the coefficients of an Nth-order FIR are

symmetrically distributed about the filter’s midpoint L¼ (N� 1)=2 (i.e., hi ¼ ±hN� i, i¼ 0, . . . , L).

The resulting phase response satisfies the linear phase equation, which is given by f(ejˆ)¼�Lˆþ
{0,±p=2}. Another important phase response measure is called the group delay and is given by

tg¼�df(e jˆ)=dˆ. For a linear phase FIR, tg¼ L, which indicates that the filter propagation delay is

always L clock cycles regardless of the input signal frequency.

TABLE 8.2 Properties of z-Transforms

Property Time Series z-Transform

Linearity x1[k] þ x2[k] X1(z) þ X2(z)

Real scaling a x[k] a X(z)

Complex scaling wk x[k] X(z=w)

Time reversal x[�k] X(1=z)

Modulation e�ak x[k] X(ea z)

Shift delay x[k � 1] z�1X(z)�zx[0]

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 3 4.10.2007 3:41pm Compositor Name: VBalamugundan

Digital Signal Processing 8-3

FIR design methods are well known. The simplest design technique is called the direct or window

method. The design process begins with a specification of the desired filter frequency response H(ejˆ).

An M-harmonic (M >> 1) inverse Fourier transform (IFFT) of H(e jˆ) is computed, which results in an

M-sample time series h0[k] that produces a close approximation to the desired FIR frequency response.

The long M-sample time series is then symmetrically reduced to a desired N-sample impulse response

h[k], defined by the N central values of h0[k], N<M. The major weakness of the direct design paradigm

is that the approximation errors in the frequency-domain can be locally large at selected points as shown

in Figure 8.1. Another commonly used design criteria is based on a minimax error criterion. The

minimax criterion requires that the maximum value of the approximation error be minimized. A

minimax FIR is characterized by the frequency-domain errors having an equiripple (equal ripple)

envelope. Thus, this class of FIR is logically referred to as an equiripple filter and has a typical magnitude

frequency response shown in Figure 8.1.

Windows are tools that are sometimes used to improve the shape of an FIR’s frequency-domain

envelope. An N-sample-data window is applied to an Nth-order FIR on a sample-by-sample basis

according to the rule hw[k]¼ h[k]w[k], where h[k] is an FIR’s impulse response, w[k] is a window

function, and hw[k] is the windowed FIR impulse response. In the frequency-domain, the effect of a

window is defined by the convolution operation Hw(n)¼H(n)*W(n), which results in a tendency to

smooth the envelope of the parent FIR’s frequency response. The attributes of a window are defined by

the width of the center (main) lobe and sideband suppression in the frequency-domain (see Table 8.3).

Common window functions are rectangular, Hann, Hamming, Blackman, Kaiser, etc. The effect of a

window on the direct FIR frequency response shown in Figure 8.1 is also displayed in Figure 8.2.

1.4
Direct FIR
Equiripple

1.2

M
ag

ni
tu

de
 fr

eq
ue

nc
y

re
sp

on
se

Normalized frequency

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 8.1 Comparison of direct and equiripple FIR designs.

TABLE 8.3 Effects of Data Windows

Window Transition Width fs=N

Highest

Sidelobe in dB

Rectangular 0.9 �13

Hann 2.07 �31

Hamming 2.46 �41

Blackman 3.13 �58

Kaiser (b ¼ 2.0) 1.21 �19

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 4 4.10.2007 3:42pm Compositor Name: VBalamugundan

8-4 Digital Systems and Applications

8.3.2 Infinite Impulse Response Filters

Filters containing feedback are called infinite impulse response (IIR) filters [5,6]. With feedback, an IIR’s

impulse response can be infinitely long. The presence of feedback allows an IIR to achieve very high

frequency selectivity and near resonance behavior. An Nth-order constant coefficient IIR filter can be

modeled by the transfer function:

H(z) ¼ N(z)=D(z) ¼
XM
i¼0

biz
�i

XN
i¼0

aiz
�i ¼ K(zN�M)

YM�1

i¼0

(z � zi)
YN�1

i¼0

(z � pi)

,,

where the filter’s zeros are zi and the filter’s poles are pi. The frequency response of an Nth-order IIR is

given by

H(ejˆ) ¼
XM
i¼0

bie
�jiˆ

XN
i¼0

aie
�jiˆ ¼ K e�j(N�M)zN�M

� � YM�1

i¼0

ejˆ � zi
� � YN�1

i¼0

ejˆ � pi
� �,,

evaluated over the normalized frequency range ˆ 2 [�p, p), which defines the baseband frequency

range bounded by ±fs=2 (Nyquist frequency).

The traditional IIR design strategy is based on converting classic analog filtermodels into their digital filter

equivalents. Throughout the first half of the twentieth century, analog radio filter engineers created classic

Bessel, Butterworth, Chebyshev, and Elliptic (Cauer) filter instantiations whose magnitude frequency

response emulates that of an ideal filter. To standardize the analog filter design procedures, a set of

normalized�1 dB or�3 dB low-pass filter models, having a 1.0 rad=s passband were created. These models

were reduced to tables, charts, and graphs and are called analog prototype filters. The prototype low-pass

filters can be the frequency scaled to define an analog low-pass, high-pass, band-pass, and band-stop filters

H(s), having desired frequency-domain attributes. The classic analog filter H(s) is then converted into a

digital filter model H(z) to define a classic digital filter (see Table 8.4). The basic domain conversion

techniques (i.e., H(s)! H(z)) are (1) the impulse-invariant and (2) bilinear z-transform methods.

The impulse invariance filter design method results in a digital filter having an impulse response h[k]

that agrees with that of the parent analog filter’s impulse response ha(t), up to a scale factor at every

1.4

M
ag

ni
tu

de
 fr

eq
ue

nc
y

re
sp

on
se

Hamming
windowed FIR

Rectangular
windowed FIR

Normalized frequency

1.2

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hamming
Rectangular

FIGURE 8.2 Effects of windowing an FIR. Note that the windowed spectrum is smoothed and has an increased

transition bandwidth.

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 5 4.10.2007 3:42pm Compositor Name: VBalamugundan

Digital Signal Processing 8-5

sample instant. An impulse-invariant design can be of significant value in applications, such as

automatic control, where design objectives are defined in the time-domain (e.g., risetime, overshoot,

settling time). If the parent analog filter’s impulse response ha(t), or transfer function Ha(s) is known,

then the impulse-invariant digital filter is defined by

ha(t) , Ha(s) ¼
XN
i¼1

ai=(s þ pi) $Z (1=Ts)
XN
i¼1

ai=(1þ e�piTs z�1) ¼ (1=Ts)H(z) , (1=Ts)h[k]

and in the frequency-domain by

H ejˆ
� � ¼ (1=Ts)

X1
k¼�1

Ha j((ˆ=Ts)� (2pk=Ts))ð Þ

TABLE 8.4 Comparisons of Nth-Order Classic IIR Lowpass Filters Having fs ¼ 50 kHz, a �3 dB

15 kHz Passband, 5 kHz Transition Band, and �50 dB Stopband

Type Order Passband Stopband

Magnitude

Frequency Response

Butterworth High Smooth Smooth Generated
Desired

1.000
Frequency response

2.7E−17 6250.000 12500.000 18750.000 25000.000

M
a
g
n
i
t
u
d
e

(N ¼ 8)

Chebyshev I Medium Ripple Smooth
Generated
Desired

1.000

Frequency response

2.7E−12 6250.000 12500.000 18750.000 25000.000

M
a
g
n
i
t
u
d
e

(N ¼ 5)

Chebyshev II Medium Smooth Ripple Generated
Desired

1.000

Frequency response

0.000 6250.000 12500.000 18750.000 25000.000

M
a
g
n
i
t
u
d
e

(N ¼ 5)

Elliptic Low Ripple Ripple
Generated
Desired

1.000

Frequency response

6250.0002.1E−06 12500.000 18750.000 25000.000

M
a
g
n
i
t
u
d
e

(N ¼ 4)

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 6 4.10.2007 3:42pm Compositor Name: VBalamugundan

8-6 Digital Systems and Applications

This equation exhibits a weakness of the impulse-invariant design method. For any physically meaningful

sampling rate fs¼ 1=Ts, aliasing errors can occur whenever the analog filter passes signal components at

frequencies greater than the Nyquist frequency. Typically, analog filters have a gain that is finite for all

frequencies. The high-frequency filter energy can be aliased back into the baseband and can distort

(sometime significantly) the frequency response of an impulse-invariant filter. As a result, the impulse-

invariant method is generally only used to design frequency-selective filters that are decidedly low pass.

When meeting frequency-domain specifications is the design objective, the bilinear z-transform

method is normally used. The bilinear z-transform maps a classic analog filter Ha(s) into a digital filter

H(z) without introducing aliasing errors. The bilinear z-transform establishes a relationship between the

s- and z-domain, given by s¼ (2=Ts)(zþ 1)=(z� 1). The bilinear z-transform also defines an algebraic

connection between the analog and digital frequency axis as V¼ (2=Ts)tan(ˆ=2), where V is the analog

frequency, jVj<1, and ˆ is the normalized digital frequency range �p � ˆ<p. The mapping from

analog frequenciesV to digital frequenciesˆ is called warping, and prewarping in the opposite direction.

The bilinear z-transform design paradigm is a multistep process consisting of the following steps:

1. Define the digital filter’s frequency-domain attributes (gains at critical frequencies).

2. Prewarp the critical digital frequencies ˆ into analog frequencies V.

3. Design a prewarped classic analog filter Ha(s) that meets specified pass-band and stop-band gain

requirements.

4. Apply the bilinear z-transform to convert Ha(s) into a digital filter H(z). In the process, the pre-

warped analog filter frequencies V will be warped back to their original locations ˆ.

8.3.3 Multirate Systems

DSP systems that containmultiple sample rates are calledmultirate systems [7]. A signal x[k], sampled at a

rate fin, is said to be decimated byM if it is exported at a rate fout¼ fin=M, whereM> 1. Mathematically,

the decimated signal xd[k] can be expressed as xd[k]¼ x[Mk], indicating that only everyMth sample of the

fast sampled time series x[k] is retained in the decimated signal xd[k]. Decimation can also be modeled in

the z-transform domain as Xd(z)¼X(zM) and Xd(e
jˆ)¼Xd(e

jMˆ) in the frequency-domain as suggested

in Figure 8.3. To ensure that a signal x[k] can be reconstructed from its decimated samples of xd[k],

Shannon’s sampling theorem must be obeyed. Specifically, if the minimum sampling frequency is

bounded by fs¼ 2B Hz, the maximum decimation rate must be bounded by M � fs=2B.

0

Baseband

f = 1000
Decimartor

−1000 −500 500 1000

0

Baseband

f = 500

−1000 −500 500 1000

2:1

Interpolator

2:1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

Baseband

f = 500

−1000 −500 500 1000

0

Baseband

f = 1000

−1000 −500 500 1000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Filter

ImageImage

FIGURE 8.3 Multirate system elements showing decimation (top) and interpolation (bottom).

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 7 4.10.2007 3:42pm Compositor Name: VBalamugundan

Digital Signal Processing 8-7

Decimation is routinely found in audio signal and video data transmission and signal compression

applications, and interfacing equipment with dissimilar fixed sample rates. By reducing the system’s

sample rate by a factorM, arithmetic bandwidth requirements can often be reduced by a similar amount.

Interpolation is the antithesis of decimation. While decimation is used to reduce the sampling rate,

interpolation is used to increase the sample rate. A signal x[k], sampled at a rate fin, is said to be

interpolated byN if xi[k]¼ x[k] whenever k� 0 modulo (N), and zero elsewhere. The interpolated signal

xi[k] is a time series consisting of N�1 zeros separated by actual sample values and clocked at a rate

fout¼Nfin, N> 1. In the z-transform domain, Xi(z)¼X(zN), and Xi(e
jˆ)¼X(ejNˆ) in the frequency-

domain, as shown in Figure 8.3. It can be noted that the interpolated spectrum contains multiple copies of

the baseband spectrum X(ejˆ), where the unwanted copies can be removed using a low-pass filter.

8.3.4 Special Filter Cases

Besides baseline FIR, IIR, and multirate filters (which are based on FIR or IIR elements), other classes of

digital filters are found in common use [12]. One of the most important of these is the adaptive filter. An

adaptive filter modifies the filter coefficients during run-time in order to respond to measurable changes

in the signal and system environment. The adaptation rules and procedures, generally based on a

squared error criteria, range from simple to sophisticated, establishing trade-offs between implementa-

tion simplicity and accuracy. Adaptive filters that contain nonlinear elements are called neural networks.

Some filter classes are defined in terms of special features of their defining mathematical framework.

Wavelets, for example, are defined by basis functions that satisfy a formal set of scaling and dilatation

rules. They often appear as a multirate solution consisting of collections of subfilters defined by wavelet

basis functions that have been selected to match signal-specific signal attributes or features.

8.3.5 Digital Filter Architecture

The physical implementation of a particular FIR or IIR filter is called filter architecture [11]. Architec-

tures specify how a digital filter is assembled using a collection of DSP primitive objects, such as shift

registers, multipliers, and adders. The choice of architecture has a direct influence on the performance,

cost, power consumption, and precision of the design outcome. Common FIR architectures are the

direct, transpose, and lattice implementations. Common IIR architectures include (1) direct I and II,

(2) normal (optimized second-order section), (3) cascade (H(z)¼QHi(z),Hi(z) a first- or second-order

direct II or normal subsystem), (4) parallel (H(z)¼PHi(z), Hi(z) a first- or second-order direct II or

normal subsystem), (5) ladder–lattice, and (6) wave. Architectures are often instantiated in terms of a

state variable model. The state variable model for a single-input, single-output, Nth-order IIR having an

arbitrary architecture is given in terms of a state equation x[kþ 1]¼Ax[k]þ bu[k], and output

equation y[k]¼ cTx[k]þ du[k], where x[k] is an n-vector, y[k] and u[k] are scalars, A is an n3 n

matrix, and b and c are n-vectors, and d is a scalar. The ith state of the digital filter, xi[k] resides in the

system’s ith shift register. The coefficient Aij denotes the filter gain existing between the ith and jth shift

register, bi represents the gain between input and ith shift register, ci the gain between ith shift register

and output, and d is the direct path gain between input and output. The state variable model is

interpreted in Figure 8.4, where the n states of the system are shown stored in n shift registers.

d

OutputState model

Tb
y [k]u [k] x[k]x[k+1]

ΣΣ

A

cT

FIGURE 8.4 State variable system model where x[k] is the state vector, u[k] the input, and y[k] the output.

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 8 4.10.2007 3:42pm Compositor Name: VBalamugundan

8-8 Digital Systems and Applications

The filter complexity and run-time dynamic range requirements of a system in state variable form can be

mathematically computed or predicted. The dynamic range requirements are generally expressed in

terms of the lp norm of the states, namely jjxi[k]jjp, for p¼ 1, 2, . . . ,1, where jjxi[k]jjp¼ (
Pjxi[k]jp)1=p.

These norms are used to scale a filter in order to protect it against run-time register overflow, a serious

error condition. Errors of less severity, which can nevertheless adversely influence system performance,

are coefficient and arithmetic roundoff errors. Another minor error source is called limit cycling, a

phenomenon that relates to the least significant bits (LSBs) of the output being ‘‘toggling’’ (producing a

dynamically changing output) while the input is zero. Of the common architectural choices, cascade is

the most popular and generally provides a good balance between performance, complexity, and

precision. Direct II filters are known to be of low complexity, but often suffer from low precision.

Parallel filters exhibit certain fault-tolerance attributes, ladder–lattice have good coefficient roundoff

error immunity, but are comparatively complex.

8.4 Fourier and Spectral Analysis

The frequency-domain analysis and representation techniques can provide invaluable information about

a signal and a system’s environment. The mapping between the time- and frequency-domain is

traditionally defined by a Fourier transform [1]. The historic difficulty in computing a Fourier

transform of an arbitrary signal radically changed in 1965 when Cooley and Tukey introduced the

now celebrated FFT algorithm. For over four decades, the FFT has been used to efficiently map a time

series to and from the frequency-domain using a general-purpose digital computer. The FFT is a special

manifestation of a more general class of transform called the discrete Fourier transform (DFT). The DFT

defines a mapping of an N-sample time series xN[k] (possibly complex) into N harmonics (complex) X

[n], where X[n] is called the Nth harmonic. The DFT of the N-sample time series xN[k] is given by the

analysis equation:

X(n) ¼
XN�1

k¼0

xN [k]W
nk
N ; n 2 [0, N � 1]

where WN¼ e�j2p=N. The DFT is also known to be periodic with period N (i.e., X[n]¼X[n± kN]). The

inverse transform is given by synthesis equation:

xN [k] ¼ (1=N)
XN�1

k¼0

X[n]W�nk
N ; k 2 [0, N � 1]

The DFT is parameterized in a manner shown in Table 8.5, and computes an N-harmonic spectrum

using N2 complex-multiply accumulates. The FFT algorithm significantly reduced the computational

complexity of performing a DFT to N log2(N). In general, a long FFT can be constructed from a

TABLE 8.5 DFT Parameters

DFT Parameter Notation or Units

Sample size N samples

Sample period Ts seconds

Record length T ¼ NTs seconds

Number of harmonics N harmonics

Number of positive (negative) harmonics N=2 harmonics

Frequency spacing between harmonics Df ¼ 1=T ¼ 1=NTs ¼ fs=N Hz

DFT frequency (one-sided baseband range) f 2 (0, fs=2) Hz

DFT frequency (two-sided baseband range) f 2 (�fs=2, fs=2) Hz

Frequency of the kth harmonic fk ¼ kfs=N Hz

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 9 4.10.2007 3:43pm Compositor Name: VBalamugundan

Digital Signal Processing 8-9

collection of small DFTs. Using the Cooley–Tukey FFTordering algorithm, a DFTof length N¼P Ni can

be created. Using the Good–Thomas ordering algorithm, a length N¼P Ni (Ni and Nj relatively prime)

transforms result. For example, using a N1¼ 15, N2¼ 16, and N3¼ 17-point DFTs, an N¼ 4080-point

Cooley–Tukey or Good–Thomas DFT can be computed.

In addition to the classic FFT, there are other spectral analysis techniques found in common use. One

is called the chirp-z DFT that implements a DFTusing linear convolution. The convolution filter has an

impulse response that is equivalent to a linearly swept FM signal. Other DFT forms include filter banks

and number theoretic transforms (NTT) that can compete with the FFT only in narrowly defined

applications. Although not technically qualifying as a DFT, the discrete cosine transform (DCT) has

significance in image compression applications, and like the FFT, has been reduced to both software and

hardware instantiations.

The DFT and its derivatives are important signal analysis tools. They are sometimes used for off-line

signal processing, whereas in other applications they must operate at real-time speeds using dedicated

hardware, firmware, or software. An N-sample time series is often windowed (e.g., Hann) before being

transformed to improve the interpretability of the resulting DFT. DFTs can also be used to convolve two

time series if the DFTs are suitably modified. The DFT assumes that the signals being transformed are

periodic, with period N. As a result, the convolution theorem for DFT is expressed as the periodic

outcome y[k]¼ x[k]� h[k]¼ IDFT(DFT(x[k])3DFT(h[k])), where � denotes circular (periodic) con-

volution, and IDFT denotes an inverse DFT. A circular convolution can be functionally converted to

behave like a linear convolution by adding a string of N zeros to the time series x[k] and h[k] before

performing the DFTs. This process, called zero padding, allows an efficient FFT replace an inefficient

linear convolution sum. This advantage is exploited in high-order application, such as convolving two

large, two-dimensional images.

One of the principal uses of a DFT or FFT is in performing spectral analysis [12]. Spectral analysis

pertains to the study of signals and systems based on their frequency-domain signatures and attributes.

The frequency-domain image of a signal or system is often interpreted in terms of a power spectrum that

is a display of the power in a process on a per-harmonic basis. Spectral analysis methods generally fall into

two classes, called parametric and nonparametric. Nonparametric spectral analysis methods (e.g., period-

ogram) are based on the DFT of one or more noise contaminated time series records. The individual

spectra can be averaged or combined in various ways to create a more interpretable frequency-domain

image of the signal or systemunder study. Parametricmethods attempt to build amathematical model of a

process that approximates the measured power spectrum of a signal or system. Themoving-average (MA)

method is a parametric spectral estimation method that constructs an FIR (all zero) model of a signal

process or system. Another parametric method is called auto-regressive (AR) and produces an all-pole IIR

model of a signal or system, combining the two results in the parametric auto-regressive moving-average

(ARMA) method. Other parametric methods are based on an eigenvalue analysis and result in a highly

frequency-selective signal or system model.

8.5 DSP System Implementation

The implementation of a digital filter is an iterative process requiring design trade-off choices be made

in the statement of filter specifications, filter type, architecture, and technology to achieve a design that

meets performance, precision, and complexity (cost=power) requirements. Numerous software packages

are commercially available to automatically design a baseline FIR or IIR filter of DFTs. Fewer software

packages automatically support architectural or design optimization activities that can quantify run-

time errors and register overflow saturation events. Furthermore, the majority of hardware-enabled DSP

filters and transforms are implemented in fixed point, a point often ignored by existing design software

tools [4]. The range of an unsigned N-bit fixed-point number X is given by R¼Xmax�Xmin, and has a

resolution given by Q¼R=2N, where Q is called the quantization step-size and is the weighted value of

the LSB. The quantization error is defined to be the difference between a number’s real and fixed-point

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 10 4.10.2007 3:43pm Compositor Name: VBalamugundan

8-10 Digital Systems and Applications

representation, specifically e¼X�XQ (rounded). Statistically, the error is uniformly distributed over

[�Q=2, Q=2], with mean and variance is given as E(e)¼ 0 and s2¼Q2=12, respectively. Of all the

known fixed-point numbering systems, two’s complement (2C) is by far the most popular and

important. A 2C attribute, that makes it particularly attractive for DSP applications, is called the

modulo (2N) wraparound property. This property states that if a string of valid 2C numbers {Xi} are

added to form S¼PXi, and if S is a valid 2C number, then the final outcome will be correct regardless

of possible overflows of intermediate sums.

For cases where higher dynamic ranges are needed, floating-point solutions are employed. The

floating-point representation of a real number X is given by X � (�1)S MrE, where M is the mantissa,

r is the radix, E is the signed exponent, and S is the sign bit. The mantissa is usually normalized to a value

1=r � M< 1, and the format is defined by published standards (e.g., IEEE). A variation on the floating-

point theme is called block floating point, a format used by a number of DSP chips, especially FFTs.

A block floating-point representation of an array of numbers {x[k]} is defined in terms of a maximum

exponent E, where jx[k]jmax¼ rE. A block floating-point representation of the number x[k] is given by x

[k]¼±M[k]rE, where E is the fixed maximum exponent and M[k] is a fractional mantissa (M[k] � 1).

Since the scale factor rE is known a priori, it need not be explicitly carried in number system

representation.

The primary DSParithmetic operation is the signedMAC. Fixed-pointmultipliers cover awide range of

speed, precision, and complexity trade-offs [2]. Compact low-complexity MACs can be designed using

ripple adders. When adder area and power dissipation are not an issue, carry-lookahead adders can be

used to accelerate wide wordlength adders and, therefore improve MAC speed. Carry-save adders

(modified full adders) can also be an important element in implementing fast multipliers. Another fast

multiplier architecture is based on Booth’s algorithm and interprets strings of consecutive ‘‘ones’’ as

multiplicative NO–OP operations. Fast multipliers can also be constructed using arrays of small wor-

dlength multipliers. These architectures are referred to as cellular array multipliers, or simply array

multipliers.

General-purpose programmable DSP mps make use of multipliers that map XY ! P, where X and Y

are variables. Most DSP applications are SAXPY (S¼AXþY) intensive, which refers to multiplying a

variable X by a constant A (e.g., filter coefficients), followed by an accumulation. Implementing SAXPY

algorithms technically does not require general multiplication but rather an operation called scaling.

Several techniques have been developed to exploit scaling in the implementation of DSP algorithms.

They are particularly useful in implementing fixed-coefficient DSP algorithms with application-specific

integrated circuits (ASIC), application-specific standard parts (ASSP), and field-programmable gate-

array (FPGA) devices [10]. One scaling technique is called the reduced adder graph (RAG) method.

RAG arithmetic is based on the theory of the ternary-valued ({0, ±1}) canonical sign-digit (CSD)

numbers. For example, the 4-bit binary unsigned representation of the number 15 is 1510 $ 11112,

whereas the RAG representation is given by 1510¼ 1610� 1 $ 10001RAG, which can be implemented

using one adder and a shift register. The cost of an RAG multiplier is measured in terms of the number

of adders needed to complete a design. Another scaling method is called distribute arithmetic (DA) and

is applicable only to the implementation of constant DSP coefficient algorithms. As a point of reference,

an Nth-order FIR digital filter, having known coefficients hr , r 2 [0, N), requires N-MAC operations be

performed per cycle. The data is assumed to be coded as an M-bit 2C word, where

x[k] ¼ �x[k : 0]þ x[k : 1]2�1 þ � � � þ x[k :N � 1]2�(N�1)

where x[k : i] is the ith bit of sample x[k]. The output y[k] is given by

y[k] ¼ �
XN�1

r¼0

hrx[k � r : 0]þ
XM�1

i¼1

2�i
XN�1

r¼0

hrx[k � r : i] ¼ Q x[k : 0]½ � þ
XM�1

i¼1

2�iQ x[k : i]½ �

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 11 4.10.2007 3:43pm Compositor Name: VBalamugundan

Digital Signal Processing 8-11

here the mappingsQ[x[s : i]] are implemented using 2N-word semiconductor memory lookup table. The

lookup tableQmaps an array of binary valued digits x[k : i]¼ {x[k : i], x[k� 1 : i], . . . , x[k�M� 1 : i]},

taken from the ith common-bit location from x[k], k 2 [0, . . . , N� 1], under the rule

Q[k : i] ¼
XN�1

r¼0

hrx[k � r : i]; x[s : i] 2 [0,1]

Weighting the lookup value Q[x[s : i]] by a factor 2�i is implemented using a shift register. The result is

generally a high-speed compact design.

8.6 DSP Technology

The semiconductor revolution, which began in the twentieth century, began to shape the field of DSP

beginning in the late 1970s. Since then, DSP has been both a facilitating technology (replacing existing

solutions) as well as an enabling technology (creating new solutions). The hallmark of the DSP

technology revolution was the general-purpose DSP mp. The first generation DSP chips included

on-chip ADC and DAC and large capable multiplier. The second-generation DSP mps overcame many

of the first-generation device memory and precision limitations, and also removed the noisy on-chip

ADCs and DACs. Since then, third-generation floating-point and fourth-generation multiprocessors

have been added to the list of general-purpose DSP products [3]. Along with the DSP mp technology

explosion, came the attendant improvements in software for both uni- and multiprocessor systems.

High- and low-level software environments have been created to rapidly develop and test DSP solutions.

Since DSP problems tend to be algorithmic, stressing real-time bandwidth, optimized solutions continue

to be dominated by assembly language code solutions. Throughout these generational changes, DSP mps

have maintained their dependence on capable MACs, tightly coupled memory, and a modified Harvard

architecture. These trends continue to differentiate DSP mps from general-purpose microprocessors.

Microprocessors emphasize (1) multiple data types, (2) multilevel cache memories, (3) paged virtual

memory management in hardware, (4) support for hardware context management including supervisor

and user modes, (5) large general-purpose register files, (6) orthogonal instruction sets, and (7) simple

or complex memory addressing, depending upon whether the processor is RISC or CISC. DSP mps,

however, typically have (1) only one or two data types supported by the processor hardware; (2) limited

data cache memory; (3) no memory management hardware; (4) no support for hardware context

management; (5) exposed pipelines; (6) predictable instruction execution timing; (7) limited register

files with special-purpose registers; (8) nonorthogonal instruction sets; (9) enhanced memory address-

ing modes; (10) onboard fast RAM, ROM, and DMA; and (11) nonsequential access to data addressing

modes (e.g., bit-reversed addressing). Techniques have also been developed to exploit opportunities for

instruction-level parallelism, super-pipelining, and superscalar architectures. These innovations have led

to very long instruction word (VLIW) architectures. Because of the upward spiral of software develop-

ment costs, a significant amount of the academic and commercial activities have been directed to

automatic compiler-based optimization of high-level language code.

In parallel with the explosion of general-purpose DSP mp products, there has been a growing presence

of DSP-centric ASICs, ASSPs, and FPGAs. Although DSP mps enabled the DSP revolution, DSP technol-

ogy innovations have become increasingly driven by intellectual property (IP) supplied by semiconductor

houses, fabless semiconductor technology suppliers, and third-party IP providers. Their use and justifi-

cation is based on performance, power dissipation, cost, and time-to-market considerations. At the

beginning of the new millennium, the market value of ASICs and ASSPs exceeded that of general-purpose

DSP mps. The trend toward ASICs and ASSPs, over DSP mps, is motivated by the need to achieve rapid

system-on-a-chip (SOC) designs by integrating predefined DSP IP cores together using high-end elec-

tronic design automation (EDA) software. FPGAs are becoming an increasingly important DSP technol-

ogy but continue to remain primarily prototype tools and useful in some low-volume applications.

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 12 4.10.2007 3:44pm Compositor Name: VBalamugundan

8-12 Digital Systems and Applications

8.7 Applications

DSP has become a well-known acronym, often appearing explicitly in the marketing vernacular of

commercial electronic products. The sphere of influence and relevance of DSP continues to expand,

often enabling solutions that could only be speculated a decade earlier. Modern DSP applications areas

include general-purpose DSP (filtering, signal detection=classification, spectral analysis, adaptive filter-

ing); instrumentation (waveform analysis, transient analysis); information=communication systems

(speech, audio, voice over Internet, facsimile, modems, cellular telephones, wireless LANs); control

systems (servos, disks, printers, automotive, guidance, vibration, power systems, robots); entertainment

(sound, video, music); defense (radar, sonar, object recognition, ordinance) plus other areas such as

biomedical, transportation, entertainment, and geophysical signal processing.

References

1. Blahut, R., 1985, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA.

2. Brown, S. and Varnesic, Z., 2000, Fundamental of Digital Logic with VHDL Design, McGraw-Hill,

New York.

3. Cavicchi, T., 2000, Digital Signal Processing, John Wiley & Sons, New York.

4. Koren, I., 1993, Computer Arithmetic Algorithms, Prentice-Hall, Englewood Cliffs, NJ.

5. Mitra, S., 2001, Digital Signal Processing, 2nd ed., McGraw-Hill, New York.

6. Mitra, S., 2006, Digital Signal Processing, 3rd ed., McGraw-Hill, New York.

7. Oppenheim, A. (Ed.) 1978, Application of Digital Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ.

8. Oppenheim, A.V. and Schafer, R.S., 1975, Digital Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ.

9. Oppenheim, A. and Schafer, R., 1998, Discrete-Time Signal Processing, 2nd ed., Prentice-Hall,

Englewood Cliffs, NJ.

10. Taylor, F., 1983, Digital Filter Design Handbook, Marcel Dekker, New York.

11. Taylor, F. and Mellott, J., 1998, Hands-On Digital Signal Processing, McGraw-Hill, New York.

12. Zelniker, G. and Taylor, F., 1994, Advanced Digital Signal Processing: Theory Applicants, Marcel

Dekker, New York.

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 13 4.10.2007 3:44pm Compositor Name: VBalamugundan

Digital Signal Processing 8-13

Vojin Oklobdzija/Digital Systems and Applications 6195_C008 Final Proof page 14 4.10.2007 3:44pm Compositor Name: VBalamugundan

9
DSP Applications

Daniel Martin
Infineon

9.1 Introduction... 9-1
DSP (Digital Signal Processor) or DSP (Digital Signal

Processing)? . A DSP Can Do More Than DSP Applications .

The Importance of DSP Applications . Classifying

DSP Applications

9.2 Military Applications .. 9-3

9.3 Telecommunication Terminals ... 9-3
Phones and Answering Machines . PC as a Terminal

(Modem) . Fax . Web Access Terminals . Videophone .

Cell Phones . Wireless Terminals

9.4 Consumer Products... 9-5
Digital Cameras (and Digital Pictures) . PDAs

(Handheld Devices, Palmtops) . DVD Player (and Digital

Storage Devices) . Digital Set-Top Box (and Digital Television

Peripheral Devices) . HDTV (and Digital Television) .

GAMES (and Toys) . MP3 Player (and Listening Musical

Platforms) . Home Networking and Multimedia

9.5 The Telecom Infrastructure .. 9-9
CTI (Computer Telephony Integration) . Modem Banks .

DSL Modem Banks . Broadband Line Card

(Voice-over-Broadband) . Gateway (Voice-over-Broadband) .

Cellular Wireless Base Station . Home Gateways and ‘‘Personal

Systems’’

9.6 Computer, Peripherals, and Office Automation........... 9-11
PC as a Home Gateway . Printers . Hard Disk Drive

9.7 Automotive, Industrial.. 9-12
Engine Control . Navigation Platform . Industrial

9.8 Others ... 9-12

9.9 Conclusions: General Trends.. 9-12

9.1 Introduction

The story goes like this. In 1982, when Texas Instruments’ (TI) engineers came up with their first

general-purpose chip for DSP applications, they did not know how to call it. Terms like analog

microprocessor or signal microprocessor sounded cumbersome for the user. Therefore, an engineer

said, ‘‘why don’t we confuse the chip and its application? In other words why don’t we use the term DSP

(digital signal processing) to describe our chip?’’ Hence, the DSP (digital signal processor) was born.

Unfortunately, this still brings confusion 20 years later.

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 1 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-1

9.1.1 DSP (Digital Signal Processor) or DSP (Digital Signal Processing)?

What do we mean by DSP applications?

Applying the science of digital signal processing to the real world?

An application that uses a digital signal processor?

Although the two areas largely overlap, they are not identical. For instance, a typical digital signal

processing application such as V90 modem is performed by a general purpose DSP but also by a custom

chip or a Pentium.

9.1.2 A DSP Can Do More Than DSP Applications

A general purpose DSP can be efficient at many other tasks than pure processing of signals (Fig. 9.1).

The reason is that a DSP is low cost and very efficient at processing in general. It is also good at

processing math, bits, events, state-machines, etc. In addition, a DSP has a very deterministic behavior.

Hence, it can precisely control hardware and multiple external events. It is the main reason that hard

disk drives use a DSP as their main CPU. Disk drives and motor control represent one of the biggest

applications for a DSP. They are classified under DSP applications, in reality they are more control-like;

however, the ‘‘spread’’ of a general purpose DSPs into non-DSP applications is much less interesting

than the discovery of new DSP applications.

In the following paragraph, we will concentrate on describing applications, which recently opened

new markets thanks to some DSP techniques.

9.1.3 The Importance of DSP Applications

Over the last 20years, thedifferentmarket segmentshavemadeadifferentuseofDSPapplications (Fig. 9.2).

The next 10 yearswill also bring its changes. For instance, the consumermarket is likely to occupymore and

more space in the life of DSP engineers.

DSP

Signal processing algorithms

Bit processing algorithms

Microcontroller tasks

Control theory

Mathematics

FIGURE 9.1 A general purpose DSP can do more than DSP.

100%

80%

60%

40%

20%

0%
1980 83 86 1990 92 95 98 2000 ‘03 ‘06 2010

Computer
Consumer
Telecom
Wireless
Industrial
Military

FIGURE 9.2 Relative importance of market segments for DSP applications.

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 2 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-2 Digital Systems and Applications

9.1.4 Classifying DSP Applications

It is usually to classify DSP applications following the market segments. For the purpose of this chapter,

we conveniently classify the seven main areas of DSP applications without necessarily following the

market segments of Fig. 9.1:

1. Military

2. Telecommunication terminals

3. Consumer products

4. Telecommunication infrastructure (including networking)

5. Computers, peripherals, and office automation

6. Automotive, industrial

7. Others, such as biometrics, biomedical, etc.

9.2 Military Applications

The first DSP applications were born in the 70s and were mainly military (radar, sonar). Today, the same

applications exist with a much higher performance target. In addition, many military applications

(vocoder) are taking advantage of ‘‘civilian’’ work. An interesting development for the military is the

detection and disposal of mines [1]. It must be noted that, since the military community was the first

DSP customer, strong links were created between DSP manufacturers and these pioneers. Despite its

small size, the military community continues today to have a strong influence on the evolution of DSP

architecture (floating-point, multiprocessing).

9.3 Telecommunication Terminals

By 1995, DSP has left its original circles (military, universities) and became a household name. The most

popular DSP applications were telecommunications terminals such as cellular telephone, PC (modem),

fax, and digital-answering machine (Table 9.1). Today, the quantity of telecom terminals that is

produced per year reaches 450 M units for cell phones alone.

9.3.1 Phones and Answering Machines

The plain old residential telephone has very little DSP inside it (maybe calling ID). This is the exception

among voice communication devices. For instance, second generation cordless phones (DECT) use

digital techniques. Also all ‘‘packet telephones’’ such as Internet (IP) phones, LAN phones, are using

voice compression, echo cancellation, and modem techniques to receive=transmit voice. An extreme

telephone application can cater for up to 12 voice conference channels. This requires 12 decompression

channels and mixing. Voice compression is not new, since they allowed the development of cheap ‘‘solid-

state’’ DAM (digital answering machines). All put together, a combo device including a multi-channel

cordlessþ a DAMþ a connection to IP is a very demanding DSP application.

TABLE 9.1 List of Telecom Terminals Using DSP Techniques

Communication

Function List of Terminals

Voice (telephony) Feature phone, DAM, cordless phone, Internet phone, business phone,

LAN phone, DECT phone, combo products (LAN=POTS)

PC modem (Voiceband) modem, DSL modem, cable modem

Fax Color fax, fax=phone, fax=printer, fax=printer=scanner=copier

Web access Web station, Web phone, Web pad

Videophony Videophone

Cellular phone Standard, voice þ data cellular phone, smart phone, pager

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 3 4.10.2007 3:40pm Compositor Name: VBalamugundan

DSP Applications 9-3

9.3.2 PC as a Terminal (Modem)

The PC is the second most successful telecom terminal of all times. For that it requires a modem (most

advanced voiceband modem is V90). The modem was the application that created a mass market for

DSP devices (1982–1992). Today, all DSP devices are trying to implement broadband modems. Roughly

five classes of broadband modems are available, which all use massive amount of DSP power:

. DSL, which is made of three classes in order of difficulty (SDSL, ADSL, VDSL)

. Cable modem, which is classified as a set-top box peripheral

. Broadband wireless modem (LMDS, MMDS), which is also called the ‘‘wireless DSL’’

. Broadband satellite modems

. Gigabit Ethernet (and above), which positions itself as the cheapest technology

9.3.3 Fax

A fax can be seen as medium range modem, plus a scanner writing bits into a graphics compression

engine, and a decompression engine driving a printer. The three functions are all DSP-based. There is no

reason why fax manufacturer will not develop DSL fax. Modern networks will allow a DSL fax to speak

to a LAN fax. In fact, modern networks will allow ‘‘anything over everything’’ such as fax-over-IP and

voice-over-DSL. You can bet that DSP will be in the middle of all that.

9.3.4 Web Access Terminals

Not to be confused with an IP phone (which is limited to voice communication), a Web access device is

targeted at Web browsing and e-mail. Today (2001), all these types of devices and the so-called ‘‘Internet

appliances’’ are struggling to find a mass-market acceptance. Despite this, three classes exist: Web

station, Web phone, and Web pad.

9.3.4.1 Web Station

It is a $99–299 consumer device in the form factor of a small laptop. It allows web browsing,

send=receive e-mail, and (maybe) JPEG decode. Web browsing requires a modem (more likely V90

than DSL), which means DSP. Since V90 is less than 30 DSP MIPS and today’s DSPs give anything from

100 to 1500 DSP MIPS, the use of a full-blown DSP might not be required. On the other hand, the

unused performance can be put to good use: multimedia decode.

9.3.4.2 Web Phone

This is the same as the Web station with the addition of telephony. Note that in the IP world, phoning

requires more DSP MIPS than Web browsing.

9.3.4.3 Web Pad

This is a cordless web station with a form factor identical to the pentop of 1992–1994. The DSP

functions are fifty=fifty shared between the base and the tablet. The big advantage of a Web pad is to

be network independent or modem independent. The big disadvantage is the price of the display.

9.3.5 Videophone

Videophone shares with speech recognition the honor of being the most promising 1971 DSP applica-

tion. Thirty years later, many progresses have been made. The next 10 years will surely bring their annual

series of breakthroughs.

9.3.6 Cell Phones

The modem put DSP on the radar screen in the 80s. By comparison, cell phones put DSP in the

stratosphere in the 90s. By the end 1999, the cell phone was the star of the electronics world with more

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 4 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-4 Digital Systems and Applications

than 300 million handsets a year, some containing multiple DSPs. Multiple DSPs are needed because a

cell phone DSP function is traditionally divided into two parts: the speech coding and the channel

coding.

Speech coding is a traditional speech codec (compression=decompression) algorithm varying from 5 to

12 kbit=s depending on standards, economic forces, and target quality. Above that, several speech-

quality enhancement features are added. This includes echo cancellation and noise suppression. A

promising trend is the use of wideband codec. All together, the sum of all speech functions put in a

modern cell phone can require up to 100 DSP MIPS.

Channel coding is working on bits in transmission and (supposedly) in reception. As such, it does not

qualify as a pure DSP application; however, in the first place, the reception is mainly done on samples

and secondly equalization and other heavy DSP techniques (Viterbi algorithm) are classified under

channel coding. Finally, the channel coding problems represent DSP research at its best today.

9.3.7 Wireless Terminals

The cell phone is the first of many types of wireless terminals that will come up over the next decade. In

fact, wireless terminals are in a class of their own. Their rapid evolution differentiates them strongly

from their wired cousins. Wireless is the technology with the most development potential over the next

10 years. It is easy to explain this statement by taking any existing equipment (from telephones to

automobile) and turn it into a wireless device (Table 9.2). It is left to the reader to complete the table

based on his or her own wishes.

9.4 Consumer Products

Section 9.3 proves that wireless will revolutionize many types of equipment. This is especially true for

consumer devices. For instance, Bluetooth and GPS (both based on DSP) will be standard features on

most consumer products described in the following subsections. In addition, consumer products have

been traditionally nonconnected devices (camera, CD player) or passive devices (television). This is

changing, in the form of access to the Web. This itself gives a big push to DSP applications.

TABLE 9.2 A List of Possible Wireless Devices

Cellular

Proximity

(Bluetooth)

Home RF

(Residential)

DECT

(Cordless)

Wireless

LAN Broadband Satellite

Phone

Modem

Fax

Web access

Videophone

Digital camera

Palm-top

DVD player

DVR

Set-top

Digital TV

Games

MP3 player

Home theater

DAB

MP3 Juke-box

E-book

PC

Printer

Car

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 5 4.10.2007 3:40pm Compositor Name: VBalamugundan

DSP Applications 9-5

9.4.1 Digital Cameras (and Digital Pictures)

One of the most promising consumer DSP applications is the field of digital pictures. Its most common

incarnation is the digital camera. This very large field can be segmented in many ways, following these

characteristics:

. Fixed pictures versus moving pictures (example: digital camera versus digital camcorder)

. Picture production (camera) versus picture consumption (digital frame)

. Portable versus semi-fixed=fixed equipment (example: digital camcorder versus webcam)

. Equipment versus module (example: digital camera versus add-on to a palm-type device)

9.4.1.1 Digital Camera

A digital camera is made of several functions: an image sensor, a processing part, and a storage element.

The processing includes three main algorithms, front-end processing, image compression (DCT is

mainly used here), and coding (Huffman coding).

In theory, a digital camera requires 10 DSP MIPS. Nevertheless, higher resolution, advanced algo-

rithms (pixel by pixel) and sophisticated features such as the paparazzi effect turned the digital camera

into a big DSP MIPS consumer. The paparazzi effect is when a series of pictures are taken at high speed

(for example, 10 pictures in 1 s). In effect, we are not far from the performance of a video camera.

9.4.1.2 Digital Video Camera (Camcorder)

Big brother to the still camera, the video camera follows the same principle. It approximates the

behavior of a digital camera except it has a better resolution and a continuous automatic stream of

pictures. Another key difference is that it is a slave to the television set. Hence, decompression of pictures

is as important as compression.

9.4.1.3 Web Camera

Not all video cameras need the sophistication of a camcorder. Common examples are surveillance

cameras (slow speed, black and white) and Web cameras. The Webcam’s block diagram is very similar to

a digital (still) camera except the storage function has been replaced by a modem. Because the speed of

the network is the bottleneck, there is no need to take more than one or two pictures every 5 s. Note also

that a Web camera does not need any decompression algorithms.

9.4.1.4 PC Camera

The PC is a $10 digital video camera put on top of PC and used for video telephony or college room

broadcasting. Its consists of a very low sensor quality and a sub-dollar micro-controller. The PC has

taken the role of a DSP.

9.4.1.5 Modules and Toy Cameras

In the same spirit, any host can take the DSP role. For instance, there is the case of digital camera

modules (host independent), add-on to a PDA (palm OS is the host), and toy cameras (PC is host).

9.4.1.6 Digital Picture Frame

Not the most fascinating killer application of all times (sending baby pictures to grandparents), the

digital picture frame is exactly the opposite of the Web camera. The image first goes through a modem

function, then through decompression, and ends up its life on a picture frame display; however; contrary

to a Web camera there are large problems due to the human interface and the way we (the grandparents)

interact with this kind of device.

9.4.2 PDAs (Handheld Devices, Palmtops)

PDA is not (yet) a big DSP platform. Still serious inroads are made. Two common ones are the use of a

PDA as a common platform for digital camera and MP3 player. Also Web access (necessitating a

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 6 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-6 Digital Systems and Applications

modem) and wireless access (obviously necessitating a wireless link) are the two good classical DSP

applications, which are being pushed into these devices.

9.4.3 DVD Player (and Digital Storage Devices)

Storage devices such hard disk and CD-ROM players are basic sub-elements of the PC. The CD audio is

also a well-known element of our life. The equipment, which really puts DSP into the consumer storage

field, is the DVD player.

9.4.3.1 DVD Player

A digital versatile disk (DVD) uses MPEG2 compression to store its video and audio tracks. A DVD

player requires in the order of 200 DSP MIPS to decode the signal. Still, compared to some recent

consumer platforms the function seems relatively straightforward, but this is only one-third of the DSP

functions. The other two functions are the control of the disk (servo) and the reading and decoding of

the stored data bits (channel coding).

9.4.3.2 Universal Player=Recorder

Moreover, the DVD player is fast becoming a recorder device. MPEG2 coding algorithm necessitates

many more DSP MIPS than decoding. Finally, the number of standards (in other words the number of

DSP algorithms), which are currently supported by a DVD player, is mind-boggling. Effectively, the

DVD player is the de facto universal home player=recorder. It can do nearly everything from recording

MP3 audio to reading karaoke Chinese videodisk.

9.4.3.3 DVR (Digital Video Recorder)

Further pushing this recording trend is the emergence of the DVR. Here there is no disk to read or to

record. Or, more specifically, there is no BOUGHT disk; however, this is still a storage device (hard disk)

on which television program can be stored (recorded) and read in nearly real-time. The DSP algorithm is

the same as DVD (omnipresent MPEG2) but with the added complexity of simultaneous coding=decod-

ing. In fact, there are two coding channels and one decoding channel requiring more than 700 DSP

MIPS of DSP power.

9.4.4 Digital Set-Top Box (and Digital Television Peripheral Devices)

The DVR function just described can also be integrated in a set-top device. We will call set-top devices

any consumer devices, which sits at home between the TV operator(s) and the television set (hence the

name set top). AWeb TV fits neatly into this definition.

9.4.4.1 Digital Set Tops

Two types of digital set-top boxes are currently used, the wired and the wireless. The wired is the well-

known connection to a cable, the wireless is the satellite type. Both require a massive amount of DSP in

the demodulation=error correction schemes, followed by the good old MPEG2 decode. It must be noted

that the DSP functions have a relatively minor role to play in the whole software. Set-top boxes are

considered more of an open platform similar to a PC, than a closed device such as a DVD player. This

comment was to introduce the current evolution of set-top boxes from one-way device to two-way

devices (up-link is added to down-link).

9.4.4.2 Two-Way Set Tops—Cable Modems and Web TVs

But what about the amount of DSP functions? Intuitively both devices would require twice the number

of DSP workload since they now receive and transmit information. This is not so. The up-link is only for

data, consequently the need for compression is null and the modem speed relatively low. To summarize,

DSP did not drive the recent evolution of set-top boxes; however, this might change if they evolve into

multimedia home gateways.

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 7 4.10.2007 3:40pm Compositor Name: VBalamugundan

DSP Applications 9-7

9.4.5 HDTV (and Digital Television)

If there is a domain in which DSP is bringing a lot, this is high definition TV (HDTV). This is not due to

the high definition but to the use of digital techniques. Contrary to the current digital television, the

digital functions (read MPEG2) are not put into a peripheral device but in the TV set. Even if there is still

a lot of uncertainties in this market, there is no doubt about its massive use of DSP power.

9.4.6 GAMES (and Toys)

Although it is not the obvious place where DSP can found, games and toys have more and more needs of

DSP because of the need for communication.

9.4.6.1 Games Consoles (3D)

Games have massive amount of CPU and hardware power devoted to the manipulation of 3D graphics. It is

interesting to know the three reasons why this cannot be classified as DSP. The first one is that 3D graphics

is executed in floating point (whereas DSP is 95% fixed point). Reason number two is that graphics is a

synthesizedobjectwhereasDSPmanipulatesreal signals.Finally,DSPissoftwarewhereasgraphics isapipelined

hardware. It is obvious that a lot of DSP applications can be found, which corresponds to the three above

criteria. What about a 33-stage hardware floating point multi-channel polyphase audio synthesizer. Also,

there are a lot of graphics algorithms, which are not floating point for instance. The bottom line is that the

world of gaming, the world of video communications, and the world of image processing are now very close:

. Mixing of synthesized and real images found in modern games

. The adoption of MPEG4 as a telecom standard (MPEG4 principles rely on objects commonly

found in PC graphics)

9.4.6.2 Game Consoles as an Universal Platform

The same story as for set-top box or PDA applies here. Web browsing, modem, DVD player, MP3 player

are all good examples of DSP applications. All are finding their way into game consoles.

9.4.6.3 Toys

The first consumer device based on DSP was the Texas Instruments’ speak and spell learning aid (1981).

In fact, it was a toy disguised as a learning aid. Another TI DSP milestone was the famous ‘‘Julie doll’’

(1987). For the future, a lot of toys will be based on sophisticated electronics, adaptive behavior, and

connected to the PC (possibly Bluetooth). All these functions have strong DSP contents.

9.4.7 MP3 Player (and Listening Musical Platforms)

Traditionally, the music industry was relying on very crude DSP in the consumer product (CD player).

The explosion of MP3 portable devices is opening the doors to sophisticated DSP in mass-market audio

devices.

9.4.7.1 MP3 Player

When drawing a block diagram of a MP3 player, one can use the block diagram of a portable digital

picture frame and replace the display by the connection to the speaker. This represents the simplicity of a

MP3 player. The DSP MIPS number is low and the DSP functions pretty basic. Nevertheless, as for DVD,

the difficulty is in the number of audio format to support (each one means a different DSP algorithm)

and the security features. Note that a large number of MP3 players are built with a single DSP (no micro-

controller host), which means than its 80% of its program is used for NON DSP work.

9.4.7.2 Hi-Fi

A large number of high-fidelity equipment rely on DSP techniques. The most common is the Dolby

standard, which can be found in cinema and home (5.1 channel) theater. The most exotic could be the

digital speaker. The most difficult and resource intensive DSP application is the so-called 3D sound

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 8 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-8 Digital Systems and Applications

(PC games). Everyone knows about the difficulty of generating good 3D graphics. But one can

appreciate the difficulty of generating 3D sounds when doing the comparison. An image is still displayed

in a 2D world, whereas sound is really produced for a 3D world (by analogy: image will catch up with

sound when it will be displayed as a hologram). In effect, we are speaking of thousands of DSP MIPS.

9.4.7.3 Musical Instruments

In the professional musical world such as synthesizers, DSP first appeared as a label of quality. Music is a

field where DSP can introduces massive improvements. For instance, adaptive techniques could make a

good old country fiddle sounds like a Stradivarius. It does not sound like a very good idea, though.

9.4.8 Home Networking and Multimedia

MP3 player is the top of iceberg. The iceberg is the ‘‘connected’’ home. The infrastructure of this

connected home is partially described later (refer to home gateway heading). Here, the new ‘‘gizmos’’

that this infrastructure allows are briefly described:

MPEG4 player : This is the same as MP3, except it also allows viewing video clips.

Internet radio : listening to radio on the Internet.

MP3 juke box : listening to MP3 clips; they had been previously stored on a hard disk drive (from the

Internet Web sites). Similarly, we can add MPEG4 juke box.

Home Storage or Multimedia Storage Box : hard disk drive containing multimedia files.

E-book : Electronic book. Presently downloaded from the Web; in the future, this will done in two passes:

first to the home storage and then to the e-book.

Table 9.3 summarizes the DSP requirements of some consumer devices. Knowing that most of them

are starting their commercial life, one is impressed by the amount of work remaining for DSP engineers.

9.5 The Telecom Infrastructure

The telecom infrastructure could be divided into three spheres of influence (wired, wireless, networking).

The convergence of all networks renders this distinction illusory. Avery interesting trend is that infrastruc-

ture equipment such as servers, gateways, switches, radio relays are now finding their way into the home.

9.5.1 CTI (Computer Telephony Integration)

Before the net, CTI was the biggest infrastructure user of DSP. CTI means voice server, voice mail, and

the infamous IVR (interactive voice response) machines ‘‘please hold on, etc.’’ All these infrastructure

TABLE 9.3 Consumer Equipment—How Big Is the Market and How

Much DSP Is Required?

Consumer Equipment Units Sold per Year DSP MIPS

Digital camera 10 M 10 ! 1000

Palm top 10 M 50

DVD player 60 M 300

DVR <1 M 700

Set top 50 M 300

Digital TV <1 M 1000þþ
Games 100 M 100,000þ (graphics)

MP3 player 10 M 20

Home theater <1 M 1000þ
DAB <1 M 80

MP3 juke box <1 M 20

E-book <1 M 5

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 9 4.10.2007 3:40pm Compositor Name: VBalamugundan

DSP Applications 9-9

equipment are built using standard software modules and boards. For years CTI was the lifeline of many

DSP board manufacturers.

9.5.2 Modem Banks

This is the first of the multi-channel DSP applications. Modem banks did not appear because of PC

modems. They appeared because of the Internet (web servers) and remote workers (remote access

servers). The number of required DSP MIPS is extremely high. For instance, a typical bank of 120 V90

modems requires 3600 DSP MIPS (1203�30).

9.5.3 DSL Modem Banks

This is nothing compared to DSL, where (for instance) 30,000 DSP MIPS (1203�250) is required for a

120 channels S-HDSL modem bank.

9.5.4 Broadband Line Card (Voice-over-Broadband)

The most likely example of broadband line card is a DSL line card, which fills the same function as

modem banks plus the typical voiceband functions (echo cancellation, voice compression, DTMF

detection, fax relay) found in gateways.

9.5.5 Gateway (Voice-over-Broadband)

Under this heading are included all recent buzzword equipment such as voice-over-DSL, voice-over-IP,

voice-over-Packet, etc. A gateway can be on the periphery of the network (access), in the center (core) or

on customer premises (private). Its main use is to translate from a circuit network to a packet network

and back. A state-of-the-art gateway SOC (System-on-Chip) targets 200 channels, which translates into

4000–10,000 DSP MIPS depending on the voice compression quality. The voice quality has been the

subject of a lot of debate (and hard-learnt lessons) in the IP community over the last four years.

9.5.6 Cellular Wireless Base Station

In wireless, voice quality is not a problem (relatively speaking) since compression algorithms are

standardized. They require as low as 3 DSP MIPS (GSM full rate) to 30 DSP MIPS (third generation

such as AMR) per channel. Cellular wireless base stations are half gateway (access to network) and half

radio relay (air interface). It is this air interfaces, which presently (2001) presents a lot of challenges to

the DSP world. Many MIPS-hungry techniques have been introduced (CDMA, turbo coder) and many

more will be coming (smart antenna, multiple reception, software radio, etc.) over the next 20 years. In

essence this is 25,000 DSP MIPS per channel. In other words, each channel requires a 25 GHz general

purpose DSP. One can see the interest of application specific DSP and custom instruction set in this

market.

9.5.7 Home Gateways and ‘‘Personal Systems’’

A residential cordless base station is now the most common example of a ‘‘personal system.’’ A personal

system is a device having both characteristics of telecom terminals and telecom infrastructure. It is a

terminal because:

1. It is sold in retail stores.

2. It is targeted at a small entity (single person, family, SOHO).

It is a telecom infrastructure equipment because:

1. It has no human interface.

2. It very often acts as a point-to-multipoint access device.

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 10 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-10 Digital Systems and Applications

9.5.7.1 What Is Residential Gateway?

This is the latest trend in ‘‘personal system.’’ Two examples are given in Fig. 9.3. The first one is a DSL

(external) to Ethernet=twisted pair (internal) gateway. It could be a typical SOHO scenario where

phones are organized in star topology. Note that the LAN supports additional phones.

The second one is a HOME gateway, which differs by being driven more by entertainment than by

work. It also uses an external DSL link but the internal communications are mainly wireless. The wireless

network is used to avoid rewiring the house. The phones are organized in bus topology, which also

corresponds to a typical home.

If the architecture of the home network evolves into thin-client terminals, home gateways are going to

be a gold mine for DSP applications. DSP is required on all access points, DSP is required for voice

compression, DSP can be required to do MP3 decompression (Internet radio), MPEG4 decompression

(Internet clips), etc. The limit is one’s wallet.

9.6 Computer, Peripherals, and Office Automation

9.6.1 PC as a Home Gateway

Obviously, the home gateway market is not leaving the PC industry passive, especially after 10 years of

multimedia hype. The more likely scenario will NOT see any major integration of ‘‘telecom personal

systems’’ into PC; however, the homegateway is having severalmajor impacts onPC: integration ofwireless

functions, still more performance for multimedia (such as the typical MPEG4 clip already mentioned).

9.6.2 Printers

The benefit of a laser printer and color printer depends largely on the speed and quality of image

processing. This is typical DSP task.

9.6.3 Hard Disk Drive

In the last years, disk drives know-how has changed from complex control theory to sophisticated DSP

coding techniques. The algorithms used have more to do with wireless telecommunications than servo

control. In addition, the emergence of network attached storage requires communications, which in turn

means DSP.

Ethernet

Web phone

Web
radio

RF Home network GATEWAY

GATEWAY

Mpeg 4
player

PC

PC

Printer

Printer

Phone
Phone Phone

Phone Phone Phone Phone

PCPC

DSL

DSL
WEB

WEB

FIGURE 9.3 Two examples of residential gateways—SOHO and HOME.

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 11 4.10.2007 3:40pm Compositor Name: VBalamugundan

DSP Applications 9-11

9.7 Automotive, Industrial

Although it is often forgotten when discussing advanced digital developments, the automotive industry

could be the surprise of the decade for the DSP industry.

9.7.1 Engine Control

Due to history and real-time constraints, the automotive industry uses the principle of table interpol-

ation for engine control; however, the availability of faster CPUs and the development of sophisticated

algorithms could change that in favor of more ‘‘classical’’ DSP techniques. In fact, automotive could

become the first embedded mass-market where floating-point DSP is implemented.

9.7.2 Navigation Platform

GPS=navigation: In automotive, GPS is part of the dashboard platform. How big will this market be?

9.7.3 Industrial

A large application found in the industrial market segment is motor control. Quite a very different control

from car engine control, the two applications are strongly related since they are the domain of micro-

controllers. Identically to engine contol above, motor control is fast becoming a big DSP application.

9.8 Others

To finish, small many promising applications using DSP as their bases for new or more advanced

features include:

White appliances: Refrigerators, washing machines, or any equipment requiring closed control will

eventually be heavy DSP users.

Biomedical: A good example is the processing of image in medical equipment such as scanner.

Audio aids: This is a much larger application than previously thought. Gene FRANTZ [2] made a parallel

between visual aids (glasses) and audio aids. Let us imagine the size of the market if everybody was

wearing a hearing aid to cancel noise and unwanted conversation.

Biometrics : All recognition methods (fingerprint, retina, voice, etc.) rely on DSP.

9.9 Conclusions: General Trends

The time when a single application was driving DSP is finished. The next DSP application goal is now

several thousands of DSP MIPS, and many applications are driving it:

. Smart and multiple antennae techniques in wireless base stations

. Third generation cellular wireless phones, smart-phones, and terminals

. Broadband access devices (VDSL modem, wireless broadband, gigabit Ethernet)

. Multi-channel application of the telecommunication infrastructure (typically: voice-over-broadband

gateway).

. Multimedia home gateways, integrated access device (IAD), wireless Home=LAN access devices

. Streaming media devices (could be a MPEG4 player connected by Bluetooth to a home gateway)

. HDTV, high resolution cameras, 3D audio

Finally, even if no ‘‘broadband’’ applications existed, people would use DSP for cost reasons. When a

very good sensor is needed, an imperfect sensor is a worthless commodity. By using DSP techniques

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 12 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-12 Digital Systems and Applications

(interpolation, adaptive behavior, etc.) a worthless commodity can be turned into a production device.

The author is eager to see the day where a 30-inch 20003 4000 color LCD matrix with 80% defects will

be turned into a $100 HDTV screen. Only DSP can achieve that.

References

Except for Will Strauss’s unique (and expensive) monumental work, it is difficult to give a complete

reference covering all those applications. Personal experience and key people from various conferences

[3] were an invaluable tool. The author’s recommendation is to go to the specialized electronics Web

sites [4–12] and to type the keyword (e.g., e-book) in the search engine. Next, go to the Web sites of the

principal DSP manufacturers [14–22] and look for products, white papers, and applications. The reader

is encouraged to look into companies not so often associated with DSP, or smaller companies where the

most innovative designs are found [23–45].

Finally, the author recommends the two INFINEON sites corresponding to the DSP chips on which

he working or has recently worked: TriCore [46] and Carmel [47].

1. Strauss, Will (Aug., 1998) DSP strategies 2002—A study of markets driven by Digital Signal

Processing Technology, Forward Concept. Website: www.forwardconcepts.com.

2. Frantz, Gene (October 31, 2000) Techonline—Online Symphosium for Electronic Engineers—

Digital logic Design—SOC: A system perspective. www.techonline.com.

3. ICSPAT 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000.

4. EE TIMES: www.eetimes.com.

5. ICD magazine: icd.pennnet.com.

6. Newsletters from INSTAT: www.instat.com.

7. CHIP Center—electronics experts: www.chipcenter.com=eexpert.

8. EDTN network: www.edtn.com.

9. EDN magazine: www.ednmag.com=.

10. ELECTONIC DESIGN magazine: www.elecdesign.com.

11. ELECTRONIC NEWS online: http:==www.electronicnews.com.

12. VISION MAGAZINE: www.ce.org=vision_magazine=.

13. ANALOG DEVICES: www.analog.com=industry=Industry_Solutions.html.

14. INTEL: http:==developer.intel.com=platforms=.

15. IBM: www.chips.ibm.com.

16. INFINEON: www.infineon.com.

17. LUCENT=AGERE: www.lucent.com=micro.

18. MOTOROLA: http:==e-www.motorola.com=solutions=index.html.

19. PHILIPS: www.semiconductors.philips.com.

20. STARCORE: www.starcore-dsp.com.

21. TEXAS: www.ti.com=sc=docs=innovate=index.htm.

22. TEXAS dsp village: http:==dspvillage.ti.com=.

23. ALTERA: www.altera.com=html=products=products.html.

24. AMCC: www.amcc.com.

25. ATMEL: www.atmel.com.

26. ARM: www.arm.com.

27. BOPS: www.bopsnet.com.

28. C-CUBE: www.ccube.com=.

29. CIRRUS: www.cirrus.com.

30. CONEXANT: www.conexant.com=home.asp.

31. EQUATOR: www.equator.com.

32. IDT: www.idt.com=.

33. JACOBS PINEDA: www.jacobspineda.com.

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 13 4.10.2007 3:40pm Compositor Name: VBalamugundan

DSP Applications 9-13

34. LSI logic: www.lsilogic.com.

35. METALINK: www.metalink.co.il.

36. MITEL Semiconductor: www.semicon.mitel.com.

37. MORPHICS Technology: www.morphics.com.

38. NS: www.national.com=.

39. OAK TECHNOLOGY: www.oaktech.com.

40. PMC-SIERRA: www.pmc-sierra.com.

41. QUICKLOGIC: www.quicklogic.com.

42. SHARP: www.sharpmeg.com.

43. TERALOGIC: www.teralogic-inc.com.

44. VIRATA: www.virata.com.

45. XILINK: www.xilink.com.

46. INFINEON Universal Processor—TriCore: www.infineon.com=us=micro=tricore=.

47. INFINEON Carmel DSP: www.carmeldsp.com.

Vojin Oklobdzija/Digital Systems and Applications 6195_C009 Final Proof page 14 4.10.2007 3:40pm Compositor Name: VBalamugundan

9-14 Digital Systems and Applications

10
Digital Filter Design

Worayot Lertniphonphun
James H. McClellan
Georgia Institute of Technology

10.1 Introduction... 10-1

10.2 Digital Filters ... 10-2
Implementation . Frequency Response . FFT

Implementation . Adaptive and Time-Varying Filters

10.3 Digital Filter Design Problem 10-3
Design Specification . Error Measurement . Filter

Characteristics . Filter Design as a Norm Problem

10.4 Conventional Design Methods..................................... 10-7
IIR Filters from Analog Filters . Windowing . Weighted

Least-Squares . Remez Exchange . Linear Programming

10.5 Recent Design Methods .. 10-12
Complex Remez Algorithm . Constrained Least-Squares .

Generalized Remez Algorithm . Combined Norm .

Generalized Remez Algorithm

10.6 Summary .. 10-14
General Comment . Computer Tools

10.1 Introduction

For computer and information technology (IT) applications, signal processing is an important tool.

Nowadays, it is much more efficient and accurate to work with sampled (or digitized) signals rather than

with analog (or electrical) signals. Once a signal has been sampled, it can be treated as a sequence of

numbers that is a function of a discrete-time variable. When the sampling rate is greater than the

Nyquist rate, the digital signal will completely represent the analog signal, because the analog signal can

be reconstructed from the digital signal. Digital signal processing (DSP) implements various kinds of

mathematical operations, so that physical electrical devices are replaced by computer software or

hardware. Unlike analog systems, DSP can handle very sophisticated jobs with as much accuracy as

needed. The theory of DSP can be found in three excellent references [1–3].

One very basic DSP operation is digital filtering. It is common to use many filters inside a larger DSP

application. Digital filters have widely been used in the following applications:

. Audio: spectral shaping

. Speech: filter banks

. Image: de-blurring, edge-enhancement=detection

. Communications: bandpass filters

. Radar: matched filters

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 1 4.10.2007 3:37pm Compositor Name: VBalamugundan

10-1

10.2 Digital Filters

The theory of digital filters can be found in references [4–6]. A digital filter is defined as a linear, time

invariant operator on a discrete-time input signal, x[n], that generates an output signal, y[n]. The

filtering operation can always be written as a convolution

a[n]*y[n] ¼ b[n]*x[n] (convolution)

where b[n] and a[n] are the filter coefficients associated with the digital filter.

10.2.1 Implementation

In order to implement the filter as a causal operation, the number of filter coefficients must be finite and

the coefficients should be nonzero for only positive indices. Then the output signal can be computed via

the difference equation:

y[n] ¼
XM
k¼0

b[k]x[n� k]�
XN
k¼1

a[k]y[n� k]

where N and M are the number of poles and the number of zeros, respectively, and NþM is the total

order of the filter. If any one of the feedback coefficients a[k] is nonzero for k> 0, then the filter is called

a recursive or infinite impulse response (IIR) filter. Otherwise, the filter is called a nonrecursive or finite

impulse response (FIR) filter.

10.2.2 Frequency Response

The filtering process for linear, time-invariant (LTI) systems can be characterized by the frequency

response

H(v) ¼
X
n

h[n]e�jvn

which shows how the filter processes sinusoidal inputs. The discrete-time Fourier transform (DTFT)

decomposes a general input signal as a superposition of harmonic signals,

x[n] ¼ 1

2p

ðp
�p

X(v)ejvndv,

where the complex amplitudes of those harmonic signals are computed by the DTFT sum:

X(v) ¼
X
n

x[n]e�jvn:

Then the behavior of the system can be described as a multiplication in the frequency domain:

Y (v) ¼ H(v)X(v)

where Y(v)¼H(v)X(v) is the DTFT of the output. In terms of the filter coefficients we get

Y (v) ¼ B(v)

A(v)
X(v)

where A(v), B(v), X(v), and Y(v) are the DTFT of a[n], b[n], x[n], and y[n], respectively. The

difference between FIR and IIR filters can be summarized as follows:

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 2 4.10.2007 3:37pm Compositor Name: VBalamugundan

10-2 Digital Systems and Applications

FIR filter: An FIR filter has A(v)¼ 1, so its frequency response is formed as a linear combination

of complex exponential functions that is equivalent to a polynomial. Hence, the design problem can

be formulated on a linear vector space and very efficient mathematical optimization methods are

available for approximating the desired frequency response. The design methods are simple, and often

guarantee convergence to an optimal solution. Finally, since FIR filters do not have feedback they do not

suffer stability and sensitivity problems.

IIR filter: In contrast to the FIR case, IIR filters are rational functions, so the design problem is

inherently nonlinear. No elegant mathematical method can guarantee convergence to the global opti-

mum. In addition to the difficulty of numerical design, IIR filters might exhibit instabilities where a

finite input can generate infinite output and high sensitivity, and where roundoff noise can be amplified;

however, IIR filter design, has more design freedom, so IIR filters can have the same performance as FIR

filters but with many fewer filter coefficients.

10.2.3 FFT Implementation

It is possible to implement a digital filter in the frequency domain with the fast Fourier transform (FFT)

algorithm [7]. The implementation requires one FFT of the input signal, one multiplication of vectors,

and one inverse FFT. The length of the FFT determines a block length so the signal must be segmented

into sections for both the input and output. The frequency domain implementation actually uses

circular convolution, so some care is needed to get the correct outputs. The FFT-based method of

convolution is used in special circumstances because it is only practical for real-time systems when the

FIR filter length is rather long—the major drawback is that it requires a large amount of buffer memory

for the block processing.

10.2.4 Adaptive and Time-Varying Filters

Another important class of FIR filters is the class of adaptive filters [8], which find widespread application

in areas such as equalizers for communication channels. The filter coefficients in an adaptive filter are

continually changing as the input changes, so the filter design problem is quite different for these filters.

The methods discussed in this chapter will not handle these cases where the coefficients are time varying.

10.3 Digital Filter Design Problem

10.3.1 Design Specification

A digital filter is usually designed so that its output has a desired frequency content, i.e., the frequency

response is frequency selective. The filter coefficients are then optimized so that the frequency response

H(v) will best approximate an ideal frequency response I(v). The ideal response varies for different

applications.

Frequency selective filter: The ideal frequency response is either one or zero.

(v) ¼
1, v in the pass band

0, v in the stop bands

don’t care, v in the transition bands

(

The frequency selective filter is designed so that the actual frequency response H(v) is close to 1 in the

passband and nearly 0 in the stopband. An example of a frequency selective filter is shown in Fig. 10.1.

Equalizer: Equalizers are applied to existing systems in order to remove distortion, or to improve the

overall filter characteristic. Therefore, if the desired response of the system is D(v), the ideal frequency

response of the equalizer depends on the distortion filter HD(v), such that

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 3 4.10.2007 3:37pm Compositor Name: VBalamugundan

Digital Filter Design 10-3

IEq(v) ¼ D(v)

HD(v)

One example is shown in Fig. 10.2 where the equalizer is used to reduce the phase distortion of the filter

in Fig. 10.1. The phase equalized filter is shown in Fig. 10.3.

Filter bank: A filter bank is a set of filters that sum to 1, the identity system:

Ik(v), for k ¼ 1, . . . ,P such that
Xp
k¼1

Ik(v) ¼ 1

(a)

T
ra

ns
iti

on
 b

an
d

Pass band

Stop band Stop band

0

(b)

0

|H |

1
Dg

N_
2T

ra
ns

iti
on

 b
an

d

�c1 �c 2 ���c1 �c 2 ��

FIGURE 10.1 Frequency selective (bandpass) filter: (a) shows the ideal magnitude response (thick dashed line) and

an example of an elliptic (with 6 poles, 6 zeros) bandpass filter (thin solid line). The ideal filter has two cutoff

frequencies, vc1 and vc2, that separate the two stop bands from the pass band; (b) shows the ideal group delay

response (thick dashed line) and the group delay of the elliptic bandpass filter. Note that elliptic filters usually have

severe phase distortion (i.e., a highly nonlinear group delay) in the passband.

(a)

0

(b)

0

|H |
1

Dg

DI

�c1 �c 2 ���c1 �c 2 ��

FIGURE 10.2 The phase equalizer is designed to equalize the passband of the elliptic filter in Fig. 10.1 so that the

group delay is flat in the pass band: (a) shows the ideal equalizer response (thick dashed line) and a FIR (order 25)

equalizer; (b) shows the group delay, Dg{.}, where Dg{IEqual.(v)} ¼ Dg{I(v)} – Dg {HElliptic(v)} is the ideal group

delay (thick dashed line).

(a)

0

(b)

0

|H |
1

Dg

DI

�c1 �c 2 ���c1 �c 2 ��

FIGURE 10.3 Equalized filter. The figures show the magnitude and the group delay of the elliptic filter (with

6 poles, 6 zeros) after being equalized by the FIR (order 25) equalizer. The ideal filter for the example is a flat group

delay frequency selective filter.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 4 4.10.2007 3:37pm Compositor Name: VBalamugundan

10-4 Digital Systems and Applications

With actual filters, the sum might be approximately one. This property lets us decompose signals with a

filter bank and then reconstruct perfectly. Filter banks are now widely used as analysis, storage, and

compression tools for DSP.

Differentiator: The derivative operation is a filter whose ideal frequency response is

IDiff :(v) ¼ jv

Operators such as the first difference make poor filters because they do not work well for high-frequency

signals. Filter design, however, can create high-order numerical differentiators that have excellent wide-

band characteristics by approximating the ideal frequency response, IDiff.(v)¼ jv.

10.3.2 Error Measurement

In order to have a filter whose frequency response is very close to a given ideal response, a norm for error

measurement must be introduced. Then the filter design problem becomes a mathematical optimization

problem. Many possible error norms can be used. For example, the most popular norms are:

. Maximal magnitude error, maxkIj � jHk, for a frequency-selective filter

. Maximal phase error, max jffI�ffHj, for an allpass filter

. Weighted complex error, kW(I�H)k, for general filters where the function W(v) is a positive

weight function

The design problem is usually carried out by minimizing one of these norms, but it is also possible to

add constraints on the error magnitude, on the pole locations, the transition band overshoot, the

smoothness of the error, or the magnitude of the filter coefficients. These various criteria lead to many

different filter design methods that offer trade-offs with respect to efficiency and flexibility.

10.3.3 Filter Characteristics

Although many filter design papers and procedures have been published, only a few approaches have

found widespread use in the 35-year history of DSP.

10.3.3.1 Optimal Magnitude Response

IIR filters with optimal magnitude error are generally easy to design partially because they usually

require low order; however, these IIR filters usually have severe phase distortion that, in turn, limits the

filter’s application to cases such as audio where phase does not seem to be important.

10.3.3.2 Allpass Filters

The phase distortion of an optimal magnitude IIR filter is sometimes compensated by using an allpass

equalizer, where the numerator and denominator of H(v) have the same order, M¼N, and the filter

coefficients satisfy a[k]¼ b*[N – k]. The allpass equalizer, however, is usually not an efficient way to

implement filtering, because the equalizer usually has very high order compared to the original filter.

This not only causes the filtering to become inefficient, but also causes a long delay in the output signal.

Allpass filters can also be used for frequency selective filter design if a pair of allpass filters are connected

in parallel. Details of this clever allpass design method can be found in [9–13].

10.3.3.3 Filters Designed by Optimizing a General Weighted Norm

In the most general case, filter design can be treated as the process of approximating a complex-valued

function H(v), where the filter coefficients are the approximating parameters. This treatment gives the

filter design problemmore degrees of freedom in choosing the ideal response because bothmagnitude and

phase can be approximated. Figure 10.4 shows an example using the general weighted norm. The filter has

a much better response than the filter in Fig. 10.3 with the same order as summarized in Table 10.1.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 5 4.10.2007 3:38pm Compositor Name: VBalamugundan

Digital Filter Design 10-5

Several optimization techniques are available to solve these general problems. In addition, the error

can be controlled by the selection of an error constraint, an error weight, or a design norm; however, the

optimization of general norms is often a difficult problem, especially in the complex domain. Most

recent research has studied these general norm problems in order to improve the design when the goal is

a simultaneous approximation of the magnitude and phase.

10.3.4 Filter Design as a Norm Problem

Filter design is usually done by minimizing either the worst-case error (Chebyshev norm), or the root

mean squares (RMS) (least-squares norm) of the weighted error. Important norms from classical

mathematics are listed below:

. Chebyshev norm: kEk1 ¼ max
v

jE(v)j
. Least-squares norm: kEk2 ¼

Ð p
�p jE(v)j2dv

� �1=2
. p-norm: kEkp ¼

Ð p
�p jE(v)jpdv

� �1=p
for p 2 1,1½ �

. Combined norm: kEka ¼ akEk21 þ (1� a)kEk22
� �

for a 2 0,1½ �
where E¼W(I – H) is the weighted complex error. When optimizing the Chebyshev norm, the resulting

optimal filters have the smallest maximal error, while filters with minimal least-squares norm have the

smallest RMS error. Preference for one norm over the other will generally depend on the application. In

many cases, where both norms need to be small, filters should be designed under either the p-norm or

the combined norm. Along with the norm, the numerical optimization can be done under design

constraints, e.g., the most obvious one is a constraint on the magnitude of the error

min kEk such that jE(v)j < «(v)

where «(v) is the error constraint.

Figure 10.5 shows the error of the filter with the same specification designed under four different

norms. The RMS and maximal errors are summarized in Table 10.2.

(a)

0

(b)

0

|H |
1

Dg

DI

�c1 �c 2 ���c1 �c 2 ��

FIGURE 10.4 Filter with optimal general weighted norm. The figures show the magnitude and the group delay of

an IIR frequency selective filter (31 zeros, 6 poles) with flat delay passband. The ideal filter is the same as in Fig. 10.3,

and the filter order is the same as the equalized elliptic filter.

TABLE 10.1 Filter Design Comparison

Filter # Zeros # Poles Mag. Error GD. Error RMS GD. Error

Elliptic (Fig. 10.1) 6 6 0.082 13.90 3.57

Equalized elliptic (Fig. 10.3) 31 6 0.079 3.15 0.76

IIR (Fig. 10.4) 31 6 0.015 2.40 0.32

Note : The table shows three features: maximal magnitude error, maximal group delay error, and RMSs of the group delay

error, of the optimal response of the filter in Figs. 10.3 and 10.4 designed under different approaches.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 6 4.10.2007 3:38pm Compositor Name: VBalamugundan

10-6 Digital Systems and Applications

The norm optimization problem differs quite a bit for the FIR and IIR cases:

FIR filter: The problem is formed on a linear vector space and has been well studied. The optimal

solution is unique by convexity. Many available design methods are not only elegant, but are also

computationally efficient and have guaranteed convergence.

IIR filter: Although the IIR filter design problem does not have the same nice properties as the FIR filter

design problem, optimizing the norm is relatively easy. One iterative approach to IIR filter design relies

on a sub-procedure similar to the method for FIR filter design.

10.4 Conventional Design Methods

Although many filter design papers have been published in the 35 years of DSP, only a handful of filter

design methods are widely used. Some of the older conventional methods can design filters with

excellent magnitude response using a very simple procedure, but the variety of possible filter specifica-

tions and error norms are usually limited. More recent methods offer general design capabilities for both

magnitude and phase approximation, but are based on numerical optimization.

10.4.1 IIR Filters from Analog Filters

Originally digital filters were derived from analog filters [14] because analog filter design techniques had

been studied for a long time and the design usually involved algebraic formulas that were simple to carry

out. The two main design methods are impulse-invariance and the bilinear transformation.

0 0.2π 0.4π 0.6π 0.8π π
0

0.1

0.2

Frequency (ω)

E
rr

or

0 0.2π 0.4π 0.6π 0.8π π
0

0.1

0.2

Frequency (ω)

E
rr

or

0 0.2π 0.4π 0.6π 0.8π π
0

0.1

0.2

Frequency (ω)

E
rr

or

0 0.2π 0.4π 0.6π 0.8π π
0

0.1

0.2

Frequency (ω)

E
rr

or

 Least-squares error Chebyshev error

 Constrained least squares error Least-squares stopband error

(a) (b)

(d)
(c)

FIGURE 10.5 Different error norms. The four filters were designed to approximate the same bandpass filter of order

25 with four different norms. The filter in (c) was designed byminimizing the least-squares norm under the constraint

that the maximal error be smaller than 0.0959. Note that the filter in (c) can also be designed by minimizing the

unconstrained combined norm problemwith the norm weighting a¼ 0.4. The filter can also be designed so that both

the distortion in the pass band and the power of the stopband error are small. The filter in (d) was designed by

optimizing the combination of the Chebyshev error norm of the passband plus the least-squares norm of the stopband.

TABLE 10.2 Error Measurements for Fig. 10.5

Filter RMS Error Maximal Error in Passband RMS Error in Stopband

(a) Least-squares 0.0361 0.1793 0.0348

(b) Chebyshev 0.0657 0.0923 0.0660

(c) Constrained least-squares 0.0562 0.0959 0.0571

(d) Least-squares stopband 0.0584 0.0958 0.0374

Note: These are the passband and stopband errors in bandpass filters designedby a different normproblem.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 7 4.10.2007 3:38pm Compositor Name: VBalamugundan

Digital Filter Design 10-7

10.4.1.1 Impulse Invariance

The design is carried out by starting with an already designed analog filter that is bandlimited. Let ha(t)

denote the impulse response of the analog filter. Then the impulse response of the digital filter is

obtained by sampling, i.e., by setting h[n]¼Tdha(nTd); however, no analog filter is truly bandlimited, so

the actual frequency response involves some aliasing:

H(v) ¼
X1
k¼�1

Ha j
v

Td

þ j
2p

Td

k

� �

where Ha(s) is the Laplace transform system function of the analog filter. The aliasing effect usually

causes only a slight perturbation of the digital filter with respect to the analog filter. The system function

of the analog filter can be expressed in partial fraction form

Ha(s) ¼
XN
k¼1

Ak

s � sk

After sampling the digital filter has a frequency response that is also a rational form:

DTFT: H(v) ¼
XN
k¼1

TdAk

1� eTdSk e�jv
¼

PN�1
k¼0 b[n]e�jvn

1þPN
k¼1 a[n]e

�jvn

where b[n] and a[n] are the coefficients of the designed filter. Impulse invariance is equivalent to a linear

mapping of the analog frequency range [�p=Td, p=Td] into the digital frequency range [–p, p].

10.4.1.2 Bilinear Transform

On the other hand, the bilinear transformation performs a nonlinear mapping of the whole analog

frequency range [–1, 1] into the finite digital frequency range [–p, p]. The mapping of the s-plane to

the z-plane is done by the bilinear transform:

s ¼ 2

Td

1� z�1

1þ z�1

� �

The resulting correspondence between the analog and digital frequency domains is a tangent function:

va ¼ 2

Td

tan
v

2

� �

Despite the nonlinear nature of the mapping, it is relatively easy to turn the digital design specification

into an analog design specification. The resulting filter is IIR and the filter coefficients can be computed

with an algebraic form. The bilinear transform method is usually applied to four classical analog filter

frequency selective filters: Butterworth, Chebyshev-I, Chebyshev-II, and elliptic filters. All these are well

known for their frequency-selective behavior as lowpass, bandpass, or highpass filters. When using the

bilinear mapping, elliptic IIR filters turn out to have the best magnitude response for given filter order,

but elliptic filters have severe phase distortion, which can be a significant problem in advanced DSP

applications such as telecommunications.

10.4.2 Windowing

IIR filter designs have poor phase response, so interest in FIR filters has always been strong. If the

coefficients of an FIR filter are real and symmetric b[k]¼ b*[M – k] then the filter will have perfectly

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 8 4.10.2007 3:38pm Compositor Name: VBalamugundan

10-8 Digital Systems and Applications

linear phase. The first attempt to design FIR filters in the 1960s was to truncate the inverse DTFTof the

ideal frequency response (which is the impulse response h[n] of the ideal filter), so that the filter is

symmetric and linear-phase. This requires the ideal filter to have linear-phase with slope � 1
2
M , where

M is the FIR filter order. This method of filter design turns out to give the optimal least-squares filter.

However, the least-squares filter is not an acceptable filter, especially when the application calls for a

frequency selective filter. The reason is that the least-squares approximation exhibits an overshoot called

the Gibbs’ phenomenon, which means that the magnitude of the error is large at the cutoff frequency

regardless of the filter order. To reduce the magnitude error near the cutoff frequency, the strict

truncation (done by applying a rectangular window) can be replaced by other windowing. Windowing

for filter design involves the multiplication of a finite-length window shape times the ideal impulse

response. For example, the ideal lowpass filter with delay m ¼ 1
2
M has an impulse response that is

infinitely long:

h[n] ¼ sin (vc(n� m))

p(n� m)
, �1 < n < 1

so the windowed filter coefficients are b[n]¼w[n]h[n] for n¼ 0, 1, 2, . . . , M.

Different windows generate filter responses that allow a trade-off between the sharpness of transition

region and the error magnitude. Popular windows are: Bartlett, Hamming, vonHann (or Hanning), and

Kaiser, but for filter design the only important one is the Kaiser window, which is based on the modified

Bessel function. The Kaiser window is defined as

w[n] ¼
I0 b

ffi
1� (n� m)2=m2

q� �
I0(b)

, n ¼ 0, 1, 2, . . . , M

where I0(x) is the modified Bessel function, and the parameter b is chosen to control the ripple height in

the stopband with the relationship:

b ¼
0, ddB < 21

0:5842(ddB � 21)0:4 þ 0:07886(ddB � 21), 21 < ddB < 50

0:1102(ddB � 8:7), ddB > 50

8<
:

where ddB¼�20 log10 (dstopband) is the ripple height in dB. The design of the Kaiser window is

illustrated in Fig. 10.6. Examples of digital filters designed via windowing are shown in Fig. 10.7.

10.4.2.1 Frequency Sampling

Another common, but naive, approach to FIR design is the method of frequency sampling. In this case,

the ideal frequency response is sampled over the range �p<v � p atMþ 1 points and then the inverse

FFT is computed to get the order-M impulse response, which then contains the coefficients of the FIR

filter. It is possible to let a few of the frequency samples be free parameters for a linear program that will

optimize the resultant H(v). This, in turn, improves the filter characteristics by making the error smaller

near the cutoff frequency.

10.4.3 Weighted Least-Squares

Although frequency sampling filters and windowing designs have pretty good responses, neither one is

an optimal filter. In the general optimization approach, the transition band of the frequency response

should be treated as a ‘‘don’t care’’ region. For common frequency selective filters, the optimal filter will

have a smooth behavior in the transition band even though no optimization is done in that ‘‘don’t care’’

region. The FIR filter can be designed by minimizing any norm with a guaranteed unique solution.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 9 4.10.2007 3:38pm Compositor Name: VBalamugundan

Digital Filter Design 10-9

The design can be generalized further by using a weighting function on the error. For example, the

weight can be used in clever ways to control the error. Here is the weight definition for an inverse filter

(or equalizer).

IEq(v) ¼ D(v)

HSys(v)
, WEq(v) ¼ HSys(v)

�� ��W (v)

The weighted design problem usually involves optimizing the norm of the error over the entire

frequency domain, but that is done numerically by working on a dense frequency grid.

The easiest optimization problem is the least-squares norm minimization because the partial deriva-

tives (which are the elements of the gradient) of the least-squares norm with respect to the filter

coefficients are all linear combinations of the filter coefficients. This property implies that the optimal

0 1 2

Design parameter, β

Kaiser window FIR design: δdB VS β Kaiser windows: β = 0, 3, 5, 8

3 4 5 6 7 8
20

30

40

50

60

70

80

S
to

p
ba

nd
 a

tte
nu

at
io

n
in

 d
B

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index (n)

A
m

pl
itu

de

Kaiser(0.0)

Kaiser(3.0)

Kaiser(5.0)

Kaiser(8.0)

(a) (b)

FIGURE 10.6 The Kaiser window: (a) shows the relationship between b and the ripple height in the stop band;

(b) shows examples of length-51 Kaiser windows (i.e., filter order ¼ 50) with different parameters b. Note that,

with¼ 0, the window is the rectangular window and, withb ¼ 5, the window is very similar to theHammingwindow.

(a) (b)

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2
Windowed impulse response

Index (n)

Im
pu

ls
e

re
sp

on
se

Kaiser(5.0) Window
(scaled by 2*fc)

0

0

Lo
g

m
ag

ni
tu

de
 (

dB
)

Kaiser(0.0)

Kaiser(3.0)

Kaiser(5.0)

Kaiser(8.0)

Frequency (�)

0.1�

LPFs with cutoff at � = 0.1�

�90

�60

�30

0.2� 0.3�

FIGURE 10.7 Digital filter design via Kaiser windowing: (a) shows the impulse response of an ideal lowpass filter

(circles with dotted lines) and the filter designed by windowing (filled circles with solid lines). The windowed filter is

the product of the ideal impulse response and the Kaiser window with b ¼ 5 (dashed line); (b) shows the log

magnitude of four filters designed using the Kaiser window with different parameters b.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 10 4.10.2007 3:39pm Compositor Name: VBalamugundan

10-10 Digital Systems and Applications

filter can be found by solving the set of linear equations obtained by setting all those partial derivatives to

zero. The solution for the weighted least-squares FIR filter is

@

@b[n]

ð
v

W (I �H)j j2dv ¼ 0, for n ¼ 0, 1, . . . , M

ð
v

Wj j2 Iejvn �
X
k

b[k]ejv(n�k)

 !
dv ¼ 0, for n ¼ 0, 1, . . . , M

For IIR filters, the problem is not nearly so easy because the denominator of the frequency response

function makes the problem nonlinear. The solution can still be carried out by computing the partial

derivatives and setting them equal to zero:

ð
v

Wj j2 ejvn

A� I � B

A

� �� �
dv ¼ 0, for n ¼ 0, 1, . . . , M

ð
v

Wj j2 ejvn

A*

B*

A*
I � B

A

� �� �
dv ¼ 0, for n ¼ 0, 1, . . . , N

The solution may not exist, however, but even if it does, it is often not unique. Furthermore, it is likely

that only a locally optimal solution of the nonlinear equations can be found. Another approach is to use

an iteration to find a close-to-optimal solution using the Steiglitz–McBride method [15]:

min W I � B

A

� �����
����! min

W

jAj (IA� B)

����
����

The solution can be realized by iteratively updating the rational functions W=jAj and B=A.

10.4.4 Remez Exchange

Least-squares filters are not desirable in many applications because they exhibit large worst-case error

near the transition band. On the other hand, the worst-case error can be minimized by reformulating the

design problem as a Chebyshev (or min-max) problem.

min
b[n],a[n]

max
v

W (I �H)j j

This min-max problem is usually difficult to solve unless the problem can be transformed into a real

problem. To do this, the ideal filter needs to be a linear-phase filter with a group delay of 1
2
M . Then the

problem becomes an approximation of a real function by a sum of sinusoidal functions. For the special

case of an even-order FIR filter with symmetric coefficients, the real problem becomes:

min
ck

max
v

W (v) I(v)ejvM=2 �
XM=2

k¼0

ck cosvk

 !�����
�����

where a¼ [1] and b ¼ 1
2
cN=2, . . . ,

1
2
c1, c0,

1
2
c1, . . . ,

1
2
cN=2

	

. This min-max problem can be solved by

the Remez algorithm [16–19]. The algorithm exploits the famous Alternation Theorem, which gives the

necessary and sufficient condition for an optimal real Chebyshev solution as one that has at least Mþ 2

alternating extremal points (i.e., points where the error is maximal). The operation of the algorithm

involves an exchange that iteratively updates the extremal set and solves for the alternating error on that

set. It turns out that the Remez Exchange algorithm is very efficient and always converges, so it has

become a classical method for FIR filter design as the Parks–McClellan algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 11 4.10.2007 3:39pm Compositor Name: VBalamugundan

Digital Filter Design 10-11

10.4.5 Linear Programming

Filter design by optimizing the norm of the weighted error can be further improved by applying

constraints. However, only the magnitude constrained problem seems to be easy to solve

min kW (I �H)k or min kEk
subject to E(v)j j < «(v)

This constrained magnitude problem can be solved by Mathematical programming, which takes

different forms depending on the norm. For the least-squares norm, the solution can be found by

using quadratic programming.

Mathematical programming is also a tool for the nonlinear-phase Chebyshev problem [20], which can

be rewritten as a constrained problem:

min d

subject to

R {E(v)eju} < d, for all v and u

This problem is a semi-infinite linear minimization (SILM). Linear programming can then be applied to

the problem by sampling the parameters v and u. The algorithm is not efficient for high-order filters

because dense parameter sampling is needed to design filters with high precision. In order to improve

efficiency, the SILM can be rewritten in a dual form [21–24].

10.5 Recent Design Methods

Because conventional design methods are available for only special types of digital filters, e.g., linear-

phase, researchers have proposed various new methods that use complex approximation in filter design.

Among those, only a few are discussed because they are elegant and useful in various applications.

10.5.1 Complex Remez Algorithm

The complex Chebyshev design problem is one of the most important approaches for designing digital

filters. Unfortunately, it might need a general algorithm such as SILM, which requires a large number of

frequency samples (with resulting high computation and high memory) when high precision is desired.

For high order filters, linear programming is very inefficient for Chebyshev filter design. Instead,

modifications of the Remez Exchange algorithm would be more desirable. Therefore, the complex

Remez algorithm (CRemez) [25,26] was proposed using an exchange method search that is similar to

the Remez Exchange; however, the original CRemez is most efficient only for the special case where the

extremal error alternates. In general, nonlinear-phase filters are not guaranteed to have this strict

alternating property, so the exchange method does not converge to the optimum. In order to get the

optimum filter in the case of nonalternating extremal errors, a second stage is needed for CRemez. This

second stage has to be a general optimization method that ends up being as inefficient as the SILM

method. As a result, some filters are designed very quickly by CRemez, but others take a long time when

the general optimization step must be invoked.

10.5.2 Constrained Least-Squares

Adams [27] suggested that Chebyshev digital filters do not always have the best overall characteristics.

He found that by allowing the worst-case (Chebyshev) error to increase slightly, the least-squares error

can be reduced significantly. To design this sort of filter, a constrained least-squares problem was

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 12 4.10.2007 3:39pm Compositor Name: VBalamugundan

10-12 Digital Systems and Applications

introduced. The problem has been solved by [28–31] with an algorithm that is quite efficient for

designing FIR filters.

10.5.3 Generalized Remez Algorithm

The constrained least-squares methods have two design drawbacks: (1) error constraints are required to

set up the problem, and (2) the existing methods only handle the FIR case. The first drawback is not

severe, but it reduces the design efficiency because prior information such as a prior filter design

procedure is needed to estimate the constraints; however, both drawbacks can be eliminated by using

a different norm (called the combined norm) and by minimizing via the iterative reweighted least-

squares (IRLS) technique.

10.5.3.1 IRLS Technique

Lawson [32] proposed that the Chebyshev problem be turned into a weighted least-squares (WLS)

problem. In fact, any general norm problem can also be turned into a WLS problem

IRLS: kEk ! kVEk2

The trick is to find the correct weight, V, which is an unknown that must be found by running an

iterative update [32–34]. For example, the following iterations converge to the appropriate weight for

the Chebyshev norm and the p-norm, respectively.

. Chebyshev update: V (kþ1) ¼ V (k)
ffiffiffiffiffiffi
Ej jp

. p-norm update: V (kþ1) ¼ V (k)
ffiffiffiffiffiffi
Ej jp� �p�2

p�1

The convergence of the weight is dependent on the number of points in the frequency grid, so IRLS

alone usually converges slowly.

10.5.4 Combined Norm

It can be shown that the solution of the combined norm problem is equivalent to a constrained least-

squares problem. The solution has multiple extremals of the error similar to the Chebyshev solution. To

solve the combined norm problem, the IRLS technique can be used after the problem is turned into a

weighted least-squares problem:

kEka ! akVEk22 þ (1� a)kEk22
� �1=2

By iterating on the weight, V, the solution generally converges quickly unless a is large. The optimization

procedure can be improved by exploiting the multiple extremal error property of the optimal combined

norm solution.

10.5.5 Generalized Remez Algorithm

The optimal filter design problem can be generalized further by considering the problem of minimizing

the combined norm together with magnitude constraints. Using Lagrange multipliers, the problem can

be turned into an unconstrained least-squares problem:

min akVEk22 þ (1� a)kEk22 þ kLEk22
� �1=2

where L is the Lagrange multiplier. This problem can be solved by the basic IRLS technique, but often

converges slowly. On the other hand, it can be shown that the weight, V, and the multiplier, L, are

nonzero for only a finite number of points and those points are extremal points and points where

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 13 4.10.2007 3:39pm Compositor Name: VBalamugundan

Digital Filter Design 10-13

constraints are reached. So, the multiple exchange in the Remez algorithm can be used to find those

points. After the points are found, the IRLS technique is applied to compute the filter coefficients. The

solution will converge much more quickly than the classical IRLS because it deals with less frequency

points. The authors call this new algorithm the ‘‘generalized Remez algorithm’’ or GRemez because its

structure is equivalent to the Remez algorithm for linear phase FIR filter design [35]. Note that the

GRemez algorithm is similar to a multiple exchange algorithm for the Chebyshev problem by Tseng [36].

The GRemez algorithm is summarized as a block diagram in Fig. 10.8.

Not only can the GRemez be used for the general constrained norm problem, but IIR filters can also

be designed by the GRemez with the least-squares techniques presented in Section 10.4.3 to find either a

close-to-optimal solution or a local optimal solution.

10.6 Summary

10.6.1 General Comment

This chapter has given a brief overview of various digital filter design methods. The theoretical ideas of

frequency response and impulse response were reviewed in order to introduce the important design

methods. In addition, the mathematical idea of optimizing with respect to a norm was discussed because

many newer methods utilize numerical optimization to design general classes of filters. Readers are

encouraged to find more details in the references that include many excellent DSP and digital filtering

books [1–6].

Because digital filters must be designed for many diverse applications, a large number of design

approaches are available; however, most filter applications can be addressed with an optimization

algorithm when the general filter design problem is formed under the weighted norm of the complex

error. This general problem can be difficult to solve in some cases. Fortunately, it is quite simple to

design the most desirable filters, i.e., least-squares and Chebyshev FIR filters with linear-phase. Further-

more, filters with more general characteristics can be designed by methods presented in Section 10.5. We

introduce the generalized Remez algorithm in the Section 10.4.3 in order to design both FIR and IIR

filters under the weighted norm formulation.

Solve WLS V (k)

yes

yes

no

no
Converge?

Converge?

Solution

IRLS iteration
(one step for Remez)

Remez’s exchange iteration

Initialize �p
(0) V

(0)

Exchange �p
(1) V

(0)

FIGURE 10.8 Block diagram of the generalized Remez algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 14 4.10.2007 3:39pm Compositor Name: VBalamugundan

10-14 Digital Systems and Applications

Filter design methods presented in this paper are usually quite efficient, but some still require a fair

amount of computation. For example, even though the least-squares method requires an amount of

computation proportional to the cube of the filter order, O(M3), it is considered to be a relatively

efficient design method using a norm minimization. Fortunately, the design time is hardly noticed on

today’s desktop computers, which have very fast processors.

Many other important issues in filter design were not treated here. These include filter order selection,

filter pole location sensitivity, effect of implementing filter with fixed-point arithmetic, and multidi-

mensional filter design [37–39]. Some details about these issues can be found in the references. In

addition, the design of two-dimensional (2-D) filters has not been treated. Some of the optimization

methods discussed here will also work for the 2-D case, but much of the theory of Chebyshev

approximation no longer applies, so methods that exploit special features such as the Alternation

Theorem will no longer be efficient.

10.6.2 Computer Tools

General filter design methods that are able to handle virtually all of the desired filter characteristics of

common applications were discussed; however, most users would not want to be involved with details of

programming the optimization algorithms. So, software applications have been built to help users skip

the computer programming step and concentrate on entering the filter specifications for their applica-

tion. Two types of interface for the design software are common: (1) allow users to set up the full design

specification and (2) allow limited specifications.

The second type is generally implemented as a graphical user interface (GUI) that helps the user

visualize all the steps of the design from creating the passband and stopband, setting the filter type (FIR

or IIR), selecting the optimization tool, running the design program, and showing the designed filter

responses. GUI software hides most of the design steps in the interest of simplicity, but it imposes a

limitation on the amount of information that the user can see.

More advanced users probably need to design filters with more sophisticated specifications, more

control on the error, or a wider variety of filter types. Therefore, they may need to enter the parameters

manually in a command line to run the optimization function of the design algorithm. This normally

requires some experience in the programming language and sometimes knowledge of the design

program’s source code.

One example of filter design programs can be found in the MATLAB� environment with its signal

processing toolbox. Most of the design methods of filter design are available in the SP toolbox, and

additional ones might be obtained by contracting the author who proposed the method. In MATLAB,

the information for running the signal processing toolbox can be seen by typing ‘‘help signal.’’ One
attempt to make DSP simple to use is the MATLAB GUI program ‘‘sptool’’ that can upload and

download signals, design and apply filters, and analyze the signal spectra. By pushing the button ‘‘New
Design,’’ the filter design GUI is called and the program gives the user an ability to design frequency

selective filters by most of the conventional methods. Actually, the design GUI takes input parameters,

changes them into the proper format, and then performs the design by calling design functions such as

‘‘butter,’’ ‘‘cheby1,’’ ‘‘cheby2,’’ ‘‘ellip,’’ ‘‘firls,’’ and ‘‘remez.’’ For more varieties of filter types,

filters may be designed by calling ‘‘cremez,’’ ‘‘fircls,’’ etc., with appropriate parameters in the

MATLAB command line. The authors have also developed the function ‘‘gremez’’ and ‘‘gremez_
gui’’ as a MATLAB functions that can be downloaded from ‘‘http:==users.ece.gatech.
edu=mcclella=gremez.’’

References

1. Oppenheim, A.V., Schafer, R.W., and Buck, J.A., Discrete-time signal processing, 2nd ed., Prentice-

Hall, NJ, 1999.

2. McClellan, J.H., Schafer, R.W., and Yoder, M.A., DSP first: a multimedia approach, Prentice-Hall,

NJ, 1998.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 15 4.10.2007 3:39pm Compositor Name: VBalamugundan

Digital Filter Design 10-15

3. Proakis, J.G. and Manolakis D.G., Digital signal processing: principles, algorithms, and applications,

Prentice-Hall, NJ, 1996.

4. Hamming, R.W., Digital filters, 3rd ed., Prentice-Hall, NJ, 1998.

5. Mersereau, R.M. and Smith, M.J.T., Digital filtering: a computer laboratory textbook, John Wiley &

Sons, NY, 1994.

6. Parks, T.W. and Burrus, C.S., Digital filter design, John Wiley & Sons, NY, 1987.

7. Cooley, J.W. and Tukey J.W., An algorithm for the machine computation of complex Fourier series,

Math. Comput., 19, 297–301, April 1965.

8. Haykin, S.S., Adaptive filter theory, 3rd ed., Prentice-Hall, NJ, 1996.

9. Deczky, A.G., Recursive digital filter having equiripple group delay, IEEE Trans. Circuits Syst., CAS-

21, 131–134, Jan. 1974.

10. Deczky, A.G., Equiripple and minimax (Chebyshev) approximations for recursive digital filters,

IEEE Transactions on Acoust., Speech, Signal Processing, ASSP-22, 98–111, April 1974.

11. Ikehara, M., Tanaka, H., and Kuroda, H., Design of IIR digital filters using allpass networks, IEEE

Trans. Circuits Syst. II, 41, 231–235, March 1994.

12. Lang, M., Allpass filter design and applications, IEEE Trans. Signal Processing, 46, 2505–2513,

Sep. 1998.

13. Zhang, X. and Iwakura, H., Design of IIR digital allpass filters based on eigenvalue problem, IEEE

Trans. Signal Processing, 47, 554–559, Feb. 1999.

14. Weinberg, L., Network analysis and synthesis, R.E. Kreiger, Huntington, NY, 1975.

15. Steiglitz, K. and McBride, L.E., A technique for the identification of linear systems, IEEE Trans.

Automatic Control, 10, 461–464, Oct. 1965.

16. Parks, T.W. and McClellan, J.H., Chebyshev approximation for nonrecursive digital filters with

linear phase, IEEE Trans. Circuit Theory, CT-19, 189–194, March 1972.

17. McClellan, J.H. and Parks, T.W., A unified approach to the design of optimal FIR linear-phase digital

filters, IEEE Trans. Circuit Theory, CT-20, 697–701, Nov. 1973.

18. McClellan, J.H., Parks, T.W., and Rabiner, L.R., A computer program for designing optimum FIR

linear phase digital filters, IEEE Trans. Audio Electroacoust., AU-21, 506–526, Dec. 1973.

19. Remez, E. Ya., General computational methods of Chebyshev approximation, Atomic Energy Trans-

lation, 4491, 1957.

20. Chen, X. and Parks, T.W., Design of FIR filters in the complex domain, IEEE Trans. Acoust., Speech,

Signal Processing, ASSP-35, 144–153, Feb. 1987.

21. Alkhairy, A.S., Christian, K.G., and Lim, J.S., Design and characterization of optimal FIR filters with

arbitrary phase, IEEE Trans. Signal Processing, 41, 559–572, Feb. 1993.

22. Komodromos, M.Z., Russell, S.F., and Tang, P.T.P., Design of FIR filters with complex desired

frequency response using a generalized Remez algorithm, IEEE Trans. Circuits Syst. II, 42, 274–

278, April 1995.

23. Burnside, D. and Parks, T.W., Optimal design of FIR filters with the complex Chebyshev error

criteria, IEEE Trans. Signal Processing, 43, 605–616, March 1995.

24. Vuerinckx, R., Design of Digital Chebyshev Filters in the Complex Domain, Vrije Universiteit Brussel,

Oct. 1997.

25. Karam, L.J., Design of Complex Digital FIR Filters in the Chebyshev sense, Georgia Institute of

Technology, March 1995.

26. Karam, L.J. and McClellan, J.H., Chebyshev digital FIR filter design, Signal Processing, 76, 17–36,

1999.

27. Adams, J.W., FIR digital filters with least-squares stopbands subject to peak-gain constraints, IEEE

Trans. Circuits Syst., 39, 376–388, April 1991.

28. Sullivan, J.L. and Adams, J.W., Peak-constrained least-squares optimization, IEEE Trans. Signal

Processing, 46, 306–321, Feb. 1998.

29. Sullivan, J.L. and Adams, J.W., PCLS IIR digital filters with simultaneous frequency response

magnitude and group delay specification, IEEE Trans. Signal Processing, 46, 2853–2861, Nov. 1998.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 16 4.10.2007 3:40pm Compositor Name: VBalamugundan

10-16 Digital Systems and Applications

30. Lang, M.C., An iterative reweighted least squares algorithm for constrained design of nonlinear

phase FIR filters, Proc. IEEE ISCAS, 5, 367–370, 1998.

31. Lang, M.C., Multiple exchange algorithm for constrained design of FIR filters in the complex

domain, Proc. IEEE ICASSP, 3, 1149–1152, 1999.

32. Lawson, C.L., Contributions to the theory of linear least maximum approximations, University of

California, Los Angeles, 1961.

33. Lim, Y.C., Lee, J.H., Chen, C.K., and Yang, R.H., A weighted least squares algorithm for quasiequir-

ipple FIR and IIR digital filter design, IEEE Trans. on Signal Processing, ASSP-40, 551–558,

March 1992.

34. Burrus, C.S., Barreto, J.A., and Selesnick, I.W., Iterative reweighted least-square design of FIR filters,

IEEE Trans. Signal Processing, 42, 2926–2936, Nov. 1994.

35. Lertniphonphun, W. and McClellan, J.H., Unified design algorithm for complex FIR and IIR filters,

Proc. IEEE ICASSP, 2001.

36. Tseng, C.-Y., An efficient implementation of Lawson’s algorithm with application to complex

Chebyshev FIR filter design, IEEE Trans. Circuits Sys. II, 42, 245–260, April 1995.

37. Dudgeon, D.E. and Mersereau, R.M., Multidimensional digital signal processing, Prentice-Hall,

NJ, 1984.

38. McClellan, J.H., The design of two-dimensional digital filters by transformations, Proc. 7th Annual

Princeton Conf. on Inform. Sci. and Syst., 247–251, 1973.

39. McClellan, J.H., On the design of one-dimensional and two-dimensional FIR digital filters, Rice

University, Houston, TX, April 1973.

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 17 4.10.2007 3:40pm Compositor Name: VBalamugundan

Digital Filter Design 10-17

Vojin Oklobdzija/Digital Systems and Applications 6195_C010 Final Proof page 18 4.10.2007 3:40pm Compositor Name: VBalamugundan

11
Audio Signal

Processing

Adam Dabrowski
Tomasz Marciniak
Poznan University of Technology

11.1 Introduction... 11-1

11.2 Elements of Technical Acoustics 11-2

11.3 Parametric Modeling of Audio Signals........................ 11-3

11.4 Psychoacoustics and Auditory Perception 11-5

11.5 Principles of Audio Coding.. 11-14

11.6 Digital Audio Signal Processing Systems................... 11-17

11.7 Audio Processing Basics.. 11-19
DFT, DCT, and Related Transformations . Discrete Wavelet

Transformation . FIR Filters . IIR Filters . Filter Banks .

Sampling Rate Conversion

11.8 Lossless Audio Coding .. 11-31
Pulse Code Modulation . Entropy Coding Using

Huffman Method

11.9 Transparent Audio Coding ... 11-34

11.10 Audio Coding Standards .. 11-35
Lossless and Lossy Standards . MUSICAM and MPEG

Standards . Dolby AC-3 Standard . ATRAC Standard

11.11 Digital Audio Transmission and Storage 11-41
Digital Audio Broadcasting . Digital Radio Mondiale .

Internet Transmission . Digital Audio Storage

11.1 Introduction

Information and communication systems play bigger and bigger role in our modern society—the

so-called information society. Sound (audio and speech) is one of the most important signals in these

systems and the growing need for audio and speech processing (transmission, storing, etc.) generates

new scientific problems (e.g., formulates new questions about data acquisition, compression, and

coding), stimulates new technologies and techniques, as well as creates new areas of science and

technology in informatics, computer engineering, communications, robotics, artificial intelligence,

psychoacoustics, etc.

Applications of digital audio and digital speech processing systems are in audio production, storage,

distribution, exchange, broadcasting, transmission, telephony, multimedia systems, computer games,

Internet services, etc. Modern multimedia coding standards (e.g., moving picture expert group (MPEG)

standards—MPEG-4, MPEG-7, and MPEG-21) [1–5] cover the whole range of audio signals starting

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 1 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-1

from high-fidelity audio, through the regular quality of audio and speech, down to relatively low-quality

mobile access as well as synthetic speech and music.

To evaluate various audio coding systems, it is necessary to qualify the audio quality these systems

offer. Generally, three main parameters are used to describe the quality of audio: bandwidth, fidelity, and

spatial realism.

For high-fidelity (wideband) audio, a bandwidth of at least 20 kHz is needed. The acoustic signals

with higher frequencies are not audible by human beings. Compact disc (CD)—the today’s still most

popular standard for digital audio representation—offers a bandwidth of 20–20,000 Hz. Traditional

(analog) radio covers the bandwidth of up to 15 kHz for frequency modulation (FM) and only up to

4.5 kHz for amplitude modulation (AM). Wideband speech standard has a bandwidth of 50–7000 Hz,

whereas the standard telephone speech is reduced to a bandwidth of merely 300–3400 Hz.

Fidelity is a (subjective) measure of perceptibility of impairment (noise) present in the reproduced

audio. Audio fidelity is usually determined subjectively by means of an averaged judgment called the

mean opinion score (MOS). It is typically based on a five-point grading scale: 5—impairment impercept-

ible, 4—perceptible but not annoying, 3—slightly annoying, 2—annoying, and 1—very annoying [6].

Spatial realism of an audio representation system describes the naturalness and quality of directional

information about places of particular sound sources contained in the reproduced sound. The spatial

realism depends first of all on the number of audio channels. Typical configurations are as follows:

1-channel audio (mono); 2-channel audio (stereo); and multichannel audio (surround sound), e.g.,

4-channel (3 front and 1 rear), 5-channel (3 front and 2 rear), or 8-channel (6 front and 2 rear). An

additional low-frequency enhancement (LFE) or subwoofer channel, supplementing the low-frequency

content (in a bandwidth of approximately 15–150 Hz), can be added in any of these cases (e.g., a 5.1-

channel format is a 5-channel configuration plus subwoofer). New multichannel standards allow for

quite flexible extension of the number of channels, e.g., up to 13.1 channels for the Dolby Digital Plus

standard [7]. Resulting high bitstream rates (even up to 6.144 Mbit=s) require high speed interfaces as,

e.g., the new high-definition multimedia interface (HDMI) [8].

Thanks to modern electronic chips (first of all to digital signal processors, which are shortly described

in Section 11.6) audio compression=decompression algorithms can be realized in real time. This is, for

example, the case in well-known portable phones, audio players, and home theater systems [9,10].

Digital signal processors also give possibility for real-time noise reduction, echo cancellation, signal

separation, spatial filtering, etc., which significantly improve operation quality of speech and audio

processing systems, such as hearing aids, voice recognition, and speech recognition systems [11–16].

11.2 Elements of Technical Acoustics

For the purpose of this chapter, sound can be defined as a mechanical oscillation of an elastic medium

that potentially can be heard. If acoustic vibrations are too high in frequency to be heard, they are

referred to as ultrasonic oscillations. Consequently, if they are too low in frequency, they are called

infrasonic oscillations. The sound starts in approximately 20 Hz and extends up to 20 kHz (thus it covers

a bandwidth of approximately 10 octaves) [17–19].

A source of sound undergoes rapid changes of position (and size, or shape) that disturb positions of

adjacent molecules of the surrounding medium (in most cases the atmosphere). Thus, these molecules

start to oscillate about their equilibrium positions. These disturbances propagate elastically to neighbor-

ing particles and then gradually to larger and larger distances, thus constituting an acoustic wave

traveling through the medium. The acoustic wave speed in air equals

c ¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

273

r
(11:1)

where q is the room temperature in degree celsius and c0¼ 331 m=s is the sound speed at q0¼ 08C. At

room temperature (q¼ 208C), the speed of sound is calculated to be 343 m=s.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 2 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-2 Digital Systems and Applications

A sound wave compresses and dilates the elastic medium it passes through, generating associated

pressure fluctuations. The minimum fluctuation, to which the ear responds, is extremely small; e.g., at a

frequency of 1000 Hz, the just noticeable effective air pressure amplitude, or in other words the root

mean square (RMS) value, is approximately 20 mPa, i.e., less than 10�9 of the standard atmospheric

pressure (equal to �1000 hPa¼ 105 Pa). The limit of danger followed by the threshold of pain

corresponds to effective air pressure amplitude one million (106) times larger, but still less than one-

thousandth of the atmospheric pressure [20].

Because of this wide range of acoustic pressure amplitudes, it has become conventional to specify the

sound pressure level (SPL), Lp, in terms of a decimal logarithm with the (dimensionless) unit of the

decibel (dB)

Lp ¼ 20 log10
p

p0
(11:2)

where p0¼ 20 mPa.

Another quantity, which is often used, is the sound intensity level, LI, defined in decibel as

Ll ¼ 10 log10
l

l0
(11:3)

The reference in this case is the sound intensity I0¼ 10�12 W=m2. For a free progressive acoustic wave in

air, SPL and sound intensity level are approximately equal.

11.3 Parametric Modeling of Audio Signals

A natural representation of an audio signal is its waveform x(t) describing the sound pressure changes in

time. Signal x(t) occurs at a microphone output, excites the speaker, and generally, represents sound in

analog audio processing systems. On the other hand, in digital systems, to reduce the required bitrate,

the physical signal x(t) can be replaced by a number of parameters, e.g., describing the way the speech or

the audio signal originates (see Figure 11.1). The major problem, however, that immediately arises and

has to be overcome, consists a fact that there exists no unique plausible model for production of all kinds

of audio signals. On the contrary, for different types of audio, only different models (if any) can be

proposed [2,3,21].

For example, for speech, efficient parametric description models can be developed by means of

modeling of the human vocal tract [12]. Such parametric speech source models describe the speech

production process by first modeling an excitation (noise for unvoiced speech and a periodic signal for

voiced speech) and second, by representing the human voice tract by means of an appropriate infinite

impulse response (IIR) filter. This is the so-called linear prediction coding (LPC) scheme [22]. The coder

based on LPC concept referred to as the harmonic vector excitation coder (HVXC) is a part of the

MPEG-4 audio standard. It has been developed to code narrowband speech at 8 ksamples=s sampling

rate and bitrates of 2.0 or 4.0 kb=s [1].

Another signal example, for which an extremely efficient parametric description exists, is music. This

description is the well-known musical score notation. Indeed, a kind of such a description has been

applied in the musical instrument digital interface (MIDI). Although the musical score notation is

extremely efficient and it does not probably exist any other representation for music that would be more

efficient, the score as a means for audio coding has two major drawbacks. First, the whole information

about the individual performer is lost. Second, an automatic transcription of audio into the musical

score is very difficult. Thus, compromise solutions have to be searched for. Structured audio—a part of

the MPEG-4 standard—uses such techniques. An audio signal is split into individual, meaningful source

objects (natural audio objects, e.g., speech and music) and is treated as a composition of these [1,4,6].

This approach is also used and further developed in the newest standards MPEG-7 and MPEG-21 [2–4].

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 3 4.10.2007 3:05pm Compositor Name: VBalamugundan

Audio Signal Processing 11-3

One of the most promising approaches to the parametric description of a wide class of audio signals

consists in removing the redundancy contained in the original audio signal representation x(t). This can

be done by splitting the signal into a number of almost uncorrelated components. If these components

are computed by means of some predefined transformation, the corresponding technique is referred to

as the transform-based audio coding procedure. The simplest and the most popular method of this type

is the time-to-frequency transformation by means of an appropriate analysis filter bank [23]. For

example, in the MUSICAM standard [24] the whole audio band, which is in this case 24 kHz wide, is

split into 32 uniform subbands of the width 24,000=32¼ 750 Hz each. Another widely used uniform

filter bank is based on a modified discrete cosine transformation (MDCT) [25] (see Section 11.7).

Nonuniform, e.g., octave filter banks, can also be used. These optimized octave filter banks can be

based on the so-called wave digital filters (WDFs) [26]. Efficient parametric description of audio signals,

which is, in fact, a generalization of the octave filter bank approach and is, in other words, a simplified

and formalized score-type representation, is the so-called discrete wavelet transformation (DWT) [27].

The DWT concept is briefly presented in Section 11.7.

Another quite efficient approach for the parametric description of audio is the so-called sinusoidal

modeling often used for the analysis and synthesis of musical instrument sounds [21]. The audio signal

x(t) is modeled by a set of tones and noise

x(t) ¼
X
k

ak(t) sin

ðt
t¼0

vk(t)þ fk

� �
þ noise (11:4)

PCM
speech

Analysis

Speech
source
model

Coding

Psychoacoustic
auditory

perception
model

Bitstream

CodingAnalysis
Bitstream

SynthesisDecoding
Bitstream

PCM
audio

PCM
audio (or speech)

Audio
source
model

(a)

(b)

FIGURE 11.1 Efficient audio (and speech) compression by exploiting the knowledge about the audio (and speech)

production and perception: (a) coder scheme and (b) decoder scheme.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 4 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-4 Digital Systems and Applications

The tones have slowly varying parameters: amplitude ak(t) and frequency vk(t). Additionally, an

appropriate noise model has to be used. A perceptually acceptable noise model can be obtained by

adding some sinusoids with different frequencies and random phases. Alternative methods are based on

the noise spectrum modeling.

An additional envelope model (with particular envelope attack and decay rates) can be added for

some of the sinusoids to improve the sinusoidal model efficiency for highly nonstationary signals.

A dual approach to that described by Equation 11.4 is also possible. The signal x(t) is first transformed

into the frequency domain, e.g., by means of the discrete cosine transformation (DCT), then the

sinusoidal modeling is realized in the frequency domain [21].

The MPEG-4 audio coding standard supports a related, advanced technique named HILN (harmonic

and individual lines and noise) [28]. The HILN parametric audio encoder decomposes an audio signal

into harmonic, individual sinusoidal, and noise components. Harmonic components are determined by

means of their fundamental frequencies, amplitudes, and spectral envelopes. Sinusoidal components are

represented by their amplitudes and frequencies. Noise is described by the amplitude and spectral

envelope. Typically, frames of 32 ms duration are analyzed and information about the important

harmonic content of a single frame is extracted by means of the short-time Fourier transformation.

By matching amplitudes, phases, and frequencies of sinusoids across frames, the encoder groups them

into harmonic or individual sinusoidal components. The longer the traces of components the encoder

finds, the lower is the resulting bitrate. Finally, the encoder subtracts the superposition of all just-

determined components from the original audio. The resulting residual signal is represented as the

output of the matched linear filter excited with white noise. Such an encoder is capable of encoding a

typical 8 kHz bandwidth audio signal with bitrate of 6–16 kb=s.

A related codec, developed by Philips and named SSC (sinusoidal codec), is based on splitting the

audio signal into three objects: sinusoids, transients, and noise [29].

Other examples of parametric audio coding techniques are MPEG-4 PS (parametric stereo) and

MPEG-4 SBR (spectral band replication) [30–34]. Both methods consist in omitting parts of original

signal information and replacing it by a synthetic information such that the listener is satisfied with the

final audio quality. An idea of SBR is explained in the next section.

11.4 Psychoacoustics and Auditory Perception

Understanding of psychoacoustics phenomena occurring during the auditory perception by humans is

crucial for the design of efficient audio coding algorithms. An efficient audio coder (the so-called

perceptual coder) should not only reduce redundant components in the audio representation, using an

appropriate parametric audio model (see Section 11.3), but also remove irrelevant components from the

source signal, i.e., those that are inaudible by humans.

Signal processing, which takes place in the human auditory system, can generally be divided into two

stages: a preliminary phase realized in the acoustic auditory organs (ears) and the advanced phase done

in auditory nervous system (in the brain). The auditory part of the inner ear, known as the cochlea

because of its snail-like shape, performs a kind of the spectral analysis. The acoustic harmonic tones

generate place selective oscillations distributed along the so-called basilar membrane, which extends

down the cochlea. As a result, the frequency is mapped into a place on the basilar membrane and a

frequency scale can be laid out at the basilar membrane with low frequencies near the apex and high

frequencies near the base of the cochlea. According to the authors’ results, the cochlear response is not a

kind of a Fourier like transformation but, neglecting the nonlinearities, it is rather a kind of the nearly

continuous wavelet transformation (CWT) [27]. Consequently, the cochlear response can be interpreted

as if it were produced by a filter bank composed of highly overlapping bandpass filters with increasing

passbands. These filters are referred to as the peripheral auditory filters.

Two widely accepted approaches are used for estimation of the passbands of the peripheral auditory

filters. The older approach is based on the notion of critical bands Dfc [35–37]. The widths of the critical

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 5 4.10.2007 3:05pm Compositor Name: VBalamugundan

Audio Signal Processing 11-5

bands vary from �100 Hz for low frequencies (lower than 300 Hz) to about one-third of an octave for

high frequencies (Figure 11.2a). The critical bandwidth as a function of its center frequency can be

estimated in Hertz using the following expression:

Dfc ¼ 25þ 75(1þ 1:4f 2)0:69 (11:5)

in which frequency f is given in kilohertz [36].

The newer approach results from measurements of the frequency response shape of the peripheral

auditory filters and uses a concept of equivalent rectangular bandwidth (ERB) [17]. ERB is a bandwidth

of the equivalent ideal (rectangular) passband filter, which has the same center passband frequency as the

respective peripheral auditory filter, transmits the same amount of power when excited with the same

white noise, and has the passband gain equal to the maximum passband gain of the respective auditory

filter. ERB as a function of frequency can be approximated in hertz as

ERB ¼ 6:23f 2 þ 93:3f þ 28:52 (11:6a)

where frequency f is again given in kilohertz (see Figure 11.3b). Sometimes, a slightly simpler formula is

used [17]:

ERB ¼ 24:7(4:37f þ 1) (11:6b)

Chosen values of Dfc and ERB are listed in Table 11.1. Critical bandwidth is greater than ERB even

three times for low frequencies but for higher frequencies, starting with �500 Hz, it is only 1.3–1.5

times larger.

Approximately, 24 nonoverlapping critical bands cover the whole audible frequency range; but, it does

not mean that there exist only 24 peripheral auditory filters. In fact, they occur as nearly continuously

distributed filters along the frequency axis and any audible tone creates an individual peripheral

auditory filter centered on it.

The ear canal acts as a resonator and increases the sound pressure at the tympanic membrane in the

frequency range of 1.5–5 kHz, with a maximum at 3.5 kHz by about 10–15 dB. The sensitivity of the ear

varies strongly with the frequency and reaches the maximum exactly in this band. In Figure 11.4, equal-

loudness contours for pure tones are plotted. They are labeled in units of loudness level called phones.

By definition, the loudness level in phones is numerically equal to SPL in decibels at the frequency

10−1 100 101

102

103

C
rit

ic
al

 b
an

dw
id

th
, �

f c
 [H

z]

Center frequency, f [kHz]

ERB

a

b

1/
3-

oc
ta

ve
 b

an
dw

idt
h

1/
6-

oc
ta

ve
 b

an
dw

idt
h

ERB

a

b

1/
3—

Octa
ve

 b
an

dw
idt

h

1/
6—

Octa
ve

 b
an

dw
idt

h

FIGURE 11.2 Critical bandwidth and equivalent rectangular bandwidth (ERB) as functions of the passband center

frequency: (a) critical bandwidth according to Equation 11.5 and (b) ERB according to Equation 11.6a.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 6 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-6 Digital Systems and Applications

f¼ 1000 Hz. The lowest curve in Figure 11.4 represents the threshold of audibility (in quiet). This curve

can be approximated [38] in decibels with expression given below:

Lptq ¼ 3:64f �0:8 � 6:5e�0:6(f�3:3)2 þ 10�3f 4 (11:7)

where frequency f is as before given in kilohertz. The threshold of audibility computed with the above

equation is shown in Figure 11.5.

A kind of positive feedback improves the sensitivity and selectivity of the basilar membrane oscilla-

tions. Its function can be compared with that of the so-called reaction used in early radio receivers to

increase their amplification and to improve their frequency selectivity. The positive feedback effect

decreases as sound intensity increases. Thus, the cochlea is less selective for intense sounds than for weak

sounds. As a result, the peripheral auditory filters are nonlinear, thereby extending the overall dynamic

range of the hearing system to the range of �120 dB (see Figure 11.4).

Figure 11.6 shows the whole region of audibility extending from the threshold of audibility to the

limit of danger (and further up to the threshold of pain). It also illustrates two important subregions: the

region of speech and the region of music. The rest of the audibility area is a reserve of the human hearing

system. Speech covers the frequency band of �200 Hz to 5 kHz and the dynamic range �50 dB. Music

occupies larger area, i.e., the frequency band of 50 Hz to 10 kHz and the dynamic range of �70 dB. For

Frequency, f [Hz]

0

10

20

30

40

400 1200 2000 2800 3600

a

b

c

M
as

ki
ng

 [d
B

]

FIGURE 11.3 Simultaneous tone-masking-tone effect relative to the threshold of audibility in quiet with a masker

of frequency 1.2 kHz and of three different levels (SPL): (a) 40 dB, (b) 50 dB, and (c) 60 dB.

TABLE 11.1 Critical Bandwidth and Equivalent Rectangular

Bandwidth (ERB) as Functions of the Respective Center Frequency

Center Frequency

fc (Hz)

Critical Bandwidth

D fc (Hz) ERB (Hz) Dfc=ERB

50 100 33 3.0

100 100 38 2.7

200 100 47 2.2

500 120 77 1.5

1000 160 128 1.3

2000 300 240 1.3

5000 900 651 1.4

10,000 2300 1585 1.5

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 7 4.10.2007 3:05pm Compositor Name: VBalamugundan

Audio Signal Processing 11-7

0

20

40

60

80

100

120

10

20

30

40
50
60

70
80

90

100
110

120 phones

10
20
30

40
50
60
70
80
90

100
110
120 Phones

Frequency, f [kHz]

S
P

L,
 L

p
[d

B
]

10−2 10−1 100 101

FIGURE 11.4 Equal-loudness contours for pure tones.

0

−20

20

40

60

80

100

120

Frequency, f [kHz]

S
P

L,
 L

p
tq

 [
dB

]

10−2 10−1 100 101

FIGURE 11.5 Threshold of audibility in quiet approximated by Equation 11.8.

0

20

40

60

80

100

140

120

Frequency, f [kHz]

S
P

L,
 L

p
 [d

B
]

10−2 10−1 100 101

Threshold of pain

Limit of danger

Music
Speech

Threshold of audibility

Threshold of pain

Limit of danger

Music
Speech

Threshold of audibility

FIGURE 11.6 Region of audibility.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 8 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-8 Digital Systems and Applications

the representation of high-quality audio it is, however, necessary to cover and reproduce practically the

whole region of audibility, i.e., the frequency band of 20 Hz to 20 kHz and the dynamic range of at least

80–90 dB.

Because of diffraction produced by the head, the sound that reaches the ears depends on the sound

source direction. The difference between the arrival time of sound at each of the two ears together with the

difference in the intensity of the sound that reaches each ear is used by the auditory nervous system to

determine the location of the sound source. This ability manifests mostly in the horizontal plane. In audio

coding systems, it is represented by stereo (2-channel) ormore exactly by surround (multichannel) sound.

The spectral components of a sound are coded for intensity and time in the auditory nervous system,

but not always all components are audible. This interesting phenomenon called masking is extremely

important for efficient digital coding of audio. Masking is a kind of interference with the audibility of a

sound (called probe or maskee) caused by the presence of another sound (called masker), if both these

sounds are close enough to each other in frequency and occur simultaneously or closely to each other

in time. If a lower level probe is inaudible, because of a simultaneous existence of a higher level masker,

this effect is referred to as the simultaneous masking. If an inaudible probe precedes the masker or

follows the masker, this phenomenon is called temporal masking. Masking is typically described by the

minimum shift of the probe intensity level above its threshold of audibility in quiet, necessary for the

probe to be heard in the presence of the masker.

Four different cases for masking can be distinguished: tone-masking-tone, noise-masking-tone, tone-

masking-noise, and noise-masking-noise. The latter two cases are particularly important for the design

of effective perceptual audio coders, because masking can be exploited to make the quantization noise

inaudible. The first two cases were, however, so far, much more intensively investigated. In Figure 11.3, a

simultaneous tone-masking-tone effect relative to the threshold of audibility in quiet is illustrated.

Masker is a pure harmonic tone of frequency 1.2 kHz and of three different SPLs: 40, 50, and 60 dB. The

following effects can be observed. First, the higher the level of the masker, the greater is the masking.

Second, masking is largest for probe frequencies slightly above or below the masker frequency. Third,

masking decreases as probe frequency gets closer to that of the masker. This phenomenon is observed

only for tone-masking-tone case and is caused by audible beats between the two tones, which make the

presence of the probe more apparent. Fourth, masking is greater on frequencies above the masker

frequency than on frequencies below it. Fifth, because of the nonlinearity of the human hearing system,

the masking curve has similar shape for various masker harmonics. This phenomenon is also typical

only for the tone-masking-tone case.

Analyzing curves in Figure 11.3 and taking the threshold of audibility in Figure 11.4 or 11.5 into

account, the maximum probe-to-masker ratios (PMRs) can be determined. For example, for a 40 dB

SPL masker, the maximum PMR is 15þ 3� 40¼�22 dB (the maximum level of the fully masked probe

relative to the threshold of audibility for the curve in Figure 11.3a is almost 15 dB and the threshold of

audibility for the tone of frequency 1.2 kHz is about 3 dB SPL). Similarly, for 50 and 60 dB maskers, the

maximum PMRs are calculated to be �22.5 and �23 dB, respectively.

Masking curves for tone-masking-noise are similar but smoother, because no audible beats occur in

this case. To reduce the influence of audible beats, also in the tone-masking-tone case, a tone-like

narrowband noise instead of a pure tone should be used as masker. In practical audio signals, this

situation is observed rather than appearance of audible beats. That is why both cases with the tone as

masker can be reduced to only one: a tone-like masker. The maximum PMR can be approximated [39]

in decibels by the following expression:

PMRt ¼ �(14:5þ z) (11:8)

where z is numerically equal to the critical band index in Bark [18] defined as

z ¼ 13arctan(0:76f)þ 3:5arctan(f=7:5)2 (11:9)

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 9 4.10.2007 3:05pm Compositor Name: VBalamugundan

Audio Signal Processing 11-9

where frequency f is in kilohertz. The curve determined by Equation 11.9 is plotted in Figure 11.7.

When a wideband flat noise is used to mask a pure tone, masking is much stronger than that just

considered. It should, however, be stressed that only a narrow frequency band (the critical band) of the

noise centered at the tonal frequency causes masking of this tone. If the bandwidth of the previously

wideband masking noise is made narrower than the respective critical bandwidth (noise with the

constant power spectral density is considered) and if the previous probe tone level was just below

the masking threshold, then the intensity of this tone has to be lowered before it can be masked again.

On the other hand, if the noise bandwidth is wider than this critical bandwidth, no significant change in

the masking effect can be observed. In this case, the maximum PMR, illustrated in Figure 11.8, can be

determined in decibels [40] by the following expression:

PMRn ¼ �2:0� 20:5arctan(f=4)� 0:75arctan(f 2=2:56) (11:10)

0

5

10

15

20

25

Frequency, f [kHz]

C
rit

ic
al

 b
an

d
in

de
x,

 z
 [

B
ar

k]

10−2 10−1 100 101

FIGURE 11.7 Critical band index in Bark according to Equation 11.9.

−8

−6

−4

−2

0

Frequency, f [Hz]

10−2 10−1 100 101

P
M

R
n,

 [
dB

]

FIGURE 11.8 Maximum PMR for noise masker.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 10 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-10 Digital Systems and Applications

where frequency f is again given in kilohertz. Pessimistically, a constant value PMRn ��5.5 dB can be

used independently from frequency. Simultaneous noise-masking-tone effect relative to the threshold of

audibility in quiet with a masker of center frequency fc¼ 1.2 kHz, the critical bandwidth, and 40 dB SPL,

is illustrated in Figure 11.9.

Although masking is typically measured as a shift of the threshold level of hearing above the threshold

level of audibility in quiet, its mathematical model should be based on the additivity of signal powers

(linear scale) rather than on the additivity of levels (logarithmic scale). In this context, a notion of

psychoacoustic excitation is widely used [17]. Particular excitations are approximately additive in terms

of power; however, it is also convenient to introduce the excitation level (i.e., excitation described in the

logarithmic scale) because the masking threshold level Ltm can be modeled as the excitation level shifted

by the PMR. In all masking cases, the simplest mathematical description for the masking threshold level

Ltm is a triangular shape shown in Figure 11.10. In the abscissa axis, the critical band index z in Bark is

Masker

Frequency, f [Hz]

0

10

20

30

40

400 1200 2000 2800 3600

M
as

ki
ng

 [d
B

]

FIGURE 11.9 Simultaneous noise-masking-tone effect relative to the threshold of audibility in quiet with a masker

of center frequency of 1.2 kHz, critical bandwidth, and 40 dB SPL.

Critical band index, z [Bark]

M
as

ki
ng

, L
tm

 [d
B

]

PMR

Masker (SPL = Lp dB)

fc

S r
S f

FIGURE 11.10 Simplified model of the masking threshold level Ltm ¼ Ltm (z, zc , Lp , a).

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 11 4.10.2007 3:05pm Compositor Name: VBalamugundan

Audio Signal Processing 11-11

used. The masking threshold peak can be determined in decibel by the maximum PMR according to the

following equation [39,41]:

PMR ¼ aPMRt þ (1� a)PMRn (11:11)

where 0 � a � 1 is the masker tonality index defined in such a way that a¼ 0, if the masker is a white

noise and a¼ 1, if the masker is a tone. Parameter a can be determined using the so-called spectral

flatness measure (SFM) of the masker, defined as a decimal logarithm of the geometric average to the

arithmetic average ratio of the masker power spectral density distribution in the masker frequency band.

SFMmax¼ 0 dB for a white noise masker, and SFMmin ffi �60 dB for a practically pure tone masker.

Parameter a could be computed as

a ¼ SFM=SFMmin (11:12a)

but owing to possible computational inaccuracies the result computed using expression given

by Equation 11.20a could be greater than 1. Therefore, a slightly more complicated expression should

be used

a ¼ min (SFM=SFMmin,1) (11:12b)

The rising slope Sr (dB=Bark) of the masking threshold triangle is approximately constant and

equals [38]

Sr ¼ (25=27) (11:13a)

The falling slope Sf (dB=Bark) is smaller and depends on the masker SPL, Lp, in decibel and its center

frequency, fc , in kilohertz

Sf ¼ �24þ 0:2Lp � 0:23f �1
c (11:13b)

In most typical situations, the falling slope can be approximated as Sf��10 dB=Bark.

Consequently, the masking threshold level Ltm is a function of the critical band index z, the masker

center position zc , the masker SPL, Lp, and the masker tonality index a, i.e., Ltm¼ Ltm(z, zc, Lp, a). If

many simultaneous maskers occur together, the overall masking effect as a function of frequency can be

determined by the global threshold of hearing Lptg (Figure 11.11). To determine this threshold, additivity

of signal powers or respective psychoacoustic excitations should be taken into account. Thus, the

following approximate expression for the global threshold of hearing in decibel can be used:

Audio
input PCM

audio

Encoding
and

bitstream
formatting

Digital signal
transmission
and storage

Bitstream
unpacking

and
decoding

conversion

Bitstream Bitstream
PCM
audio

Audio
output

conversion
A/D D/A

FIGURE 11.11 General scheme of a digital audio processing system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 12 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-12 Digital Systems and Applications

Lptg ¼ 10 log10 10Lptq(z)=10 þ
X
i

10Ltm(z,zcj ,Lpj ,aj)=10

 !
(11:14)

where Lptq(z) is the threshold of audibility in quiet, Ltm(z, zcj, Lpj, aj) are particular masking threshold

levels, and index j indicates the jth masker.

Finally, the signal-to-mask ratio (SMR) can be computed in decibels as follows:

SMRj ¼ Lpj � Lptg(zj) (11:15)

where zj corresponds to the smallest Lptg within the critical band of the jth masker. This is usually the

left-hand side edge of this critical band.

Masking also occurs when the signal either precedes or follows the masker (Figure 11.12). This is the

already mentioned phenomenon of temporal masking (Figure 11.13). Note that both Figures 11.9 and

11.13 show respective cross sections of the 2D surface in Figure 11.12.

In backward masking (premasking), the signal precedes the masker, whereas in forward masking

(postmasking) the signal follows the masker. The premasking effect appears in 10–20 ms before the

masker, whereas the postmasking effect is by one order of magnitude longer, i.e., in the order of 50–200

ms after the masker ends. In order to take the postmasking into consideration, the signal power

Pj ¼ 10Lpj=10 occurring in time t should be seemingly increased according to the following equation:

M
as

ki
ng

Frequency

Time
Masker

Premasking

Postmasking

FIGURE 11.12 Combined noise-masking-tone effect in frequency and time.

−20 20 40 180 200
0

10
20
30
40
50
60
70
80
90

100

Time [ms]

M
as

ki
ng

 [d
B

]

0 0

Simultaneous masking

Masker

P
re

m
as

ki
ng

Postmasking

Ö

FIGURE 11.13 Temporal masking effect.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 13 4.10.2007 3:05pm Compositor Name: VBalamugundan

Audio Signal Processing 11-13

psj(t) ¼ Pj(t)þ cj(Dt)pj(t � Dt) (11:16)

in which the postmasking coefficient cj(Dt) is given by

cj(Dt) ¼ exp (Dt=tj) (11:17)

but tj is a time constant depending on the jth critical band. As a result, the simultaneous masking

threshold rises according to the increased level Lpsj¼ 10 log10 psj.

All described masking effects are exploited for data compression in modern perceptual audio coders

(e.g., in the MUSICAM procedure, MPEG standards, etc.).

A new audio representation and coding idea, recently approved for MPEG-4 as audio extension

standard, is the so-called SBR [32–34]. This is a bandwidth extension technique related to the way the

sounds (music and speech) originate and are perceived by humans. The SBR principle is based on

reduction of the audio signal bandwidth to the low-frequency region (e.g., to the lower half) only and,

consequently, on respective lowering (halving) of the sampling rate, then on retrieving the missing high-

frequency content (the upper bandwidth half) by mapping the low-frequency portion together with

appropriate energy shaping, and by adding some still missing information as tone and noise compon-

ents. All this should be done using as small amount of additional information as possible just to

guarantee high subjective quality of the final audio signal (Figure 11.14).

The SBR technology is very useful for low bitrate audio delivery, such as the Internet streaming for

audio on demand.

11.5 Principles of Audio Coding

To digitally process audio, it is first necessary to sample and quantize the data, i.e., to convert the analog

signal xc(t) into a digital form. This is realized in an analog-to-digital converter (ADC). The digital data

can then be compressed and encoded in a digital audio coder (transmitter), transmitted through a

communication channel, decoded in a receiver, and finally recovered in a digital-to-analog converter

(DAC). A general scheme of a digital audio processing system is shown in Figure 11.11.

Sampling of a continuous-time signal

X ¼ Xc(t), �1 < t < 1 (11:18)

is a process of time discretization. It consists in representing the signal xc(t) with a series of samples

Frequency

E
ne

rg
y

Original

SBR

Audio signal level

Masking threshold

Quantization noise level

FIGURE 11.14 Spectral band replication (SBR) principle.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 14 4.10.2007 3:05pm Compositor Name: VBalamugundan

11-14 Digital Systems and Applications

Xn ¼ X(n) ¼ Xc(tn), n ¼ 0,�1,�2, . . . (11:19)

referred to as the discrete-time signal or sampled-data signal. Uniform time discretization with sampling

period Ts> 0 and rate

FS ¼ 1=TS (11:20)

is defined by

Xn ¼ X(n) ¼ Xd(nTs) ¼ Xc(tn), tn ¼ nTs � t, n ¼ 0,�1,�2, . . . (11:21)

where t> 0 is some (usually unavoidable) system delay.

According to the sampling theory, a low-band continuous-time signal xc(t� . t), i.e., the signal, whose

spectrum extends from zero to some maximum frequency, can be reconstructed on the basis of the

discrete-time signal x(n), if the sampling rate Fs is greater or at least equal to the Nyquist sampling rate,

which is twice as high as the greatest frequency contained in the continuous-time signal spectrum, or in

other words, if the whole signal spectrum lies below Fs=2, called the Nyquist frequency. In practice,

sampling rate Fs has to be somewhat greater than the Nyquist sampling rate [22]. Typical sampling rates

for audio are 8 ksamples=s for telephony (the signal spectrum extends up to 4 kHz, and thus covers most

of the frequencies contained in speech), 32 ksamples=s for medium quality digital audio (audible

frequency band up to 16 kHz is covered), 44.1 ksamples=s for a CD standard (audio frequency band

up to 22.05 kHz is represented), 48 and 96 ksamples=s for high-quality digital audio (the represented

frequencies range up to 24 and 48 kHz, respectively).

An important generalization of the classic sampling theory applies to band signals [42]. A continuous-

time signal, whose spectrum is limited to some frequency band

Df ¼ f1 � f2, f2 > f1 (11:22)

can be sampled with a sampling rate of at least Fs¼ 2Df only (i.e., critically sampled), if both spectrum

border frequencies f1 and f2 in Equation 11.22 are consecutivemultiples of theNyquist frequency Fs=2, i.e., if

f1 ¼ kFs and f2 ¼ (k þ 1)Fs=2 (11:23)

where k is an integer. Such a signal is referred to as the integer-band signal. Audio signals are not by

themselves integer-band signals but they can be split with an analysis filter bank to some subband

signals, which all are integer-band signals, and thus, can be critically sampled. This is indeed the case in

many digital audio coders; e.g., in the MUSICAM standard the input audio signal, initially sampled with

48 ksamples=s, is split into 32 subbands with bandwidths of 24,000=32¼ 750 Hz each. Signals in each

subband are sampled with 48=32¼ 1.5 ksamples=s sampling rate.

Another signal discretization process is quantization, i.e., the procedure of converting a signal with

continuously distributed values into a signal with discrete values. Unlike sampling, which, under some

conditions, can be considered lossless, i.e., the original signal can—at least theoretically—be perfectly

recovered after sampling, quantization is an inherently lossy operation [22,42].

The error due to the quantization has a nature of noise and is referred to as the quantization noise.

Although this noise is unavoidable and cannot be removed from the signal, it can be made inaudible by

controlling its level and forcing it to lie under the threshold of audibility. Masking effects, discussed in

Section 11.4, can be very effectively exploited with this end in view.

The quantization noise is usually analyzed under the following simplifying assumptions:

. The quantization steps are uniform

. The number of quantization levels is high

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 15 4.10.2007 3:06pm Compositor Name: VBalamugundan

Audio Signal Processing 11-15

The first assumption is not fulfilled in many quantization techniques for audio signals. This is because

the perception of noise does not depend on its absolute power but on the signal-to-noise ratio (SNR).

Thus, it is reasonable to quantize audio signals nonuniformly, with quantization steps proportional to

the signal values. If the steps are not uniform, then the quantization error will be a function of the input

signal, and consequently, it will not be an additive noise any more. Fortunately, in most procedures for

the quantization of audio signals, quantization steps are at least range by range uniform and the first

assumption can be considered as approximately valid. The second assumption is usually satisfactorily

fulfilled. Owing to this assumption, the quantization noise has a uniform probability density distribu-

tion and is not correlated with the signal [43].

Denote by Q the quantization step and by p(x) the probability distribution function of the quantiza-

tion error. Then

ðQ=2

�Q=2

p(x)dx ¼ 1 (11:24)

where

p(x) ¼ 1=Q for x 2 [�Q=2,Q=2]
0 otherwise

�
(11:25)

From Equations 11.24 and 11.25, the average quantization noise power pq can be calculated as

Pq ¼
ð1
�1

x2p(x)dx ¼
ðQ=2

�Q=2

X2

Q
dx ¼ Q2

12
(11:26)

The SNR in decibels is then

SNR ¼ 10 log10
PS

Pq

� �
(11:27)

where Ps is the time-averaged signal power. Assume that the ADC has a full scale of m bits. Then the

maximum input signal amplitude is

A ¼ (2m � 1)Q (11:28)

and thus

PS / [(2m � 1)Q]2 (11:29)

From Equations 11.26, 11.27, and 11.29 it follows that

SNR(m) ¼ 20m log10 2þ constant � 6:02mþ constant (11:30)

Thus, each additional bit in the quantized signal resolution means �6 dB improvement in the SNR (or

equivalently in the dynamic range). The ‘‘constant’’ in Equation 11.30 is of secondary importance. Its

value depends on the signal probability density distribution and the ADC range. For instance, for an

ADC range equal to (� 4
ffiffiffiffiffi
pS

p
, 4

ffiffiffiffiffi
pS

p
), the respective value is constant��7.3 dB.

Representing a signal just as a stream of uniformly quantized samples is referred to as the pulse code

modulation (PCM) and is usually considered as the original digital audio signal of the maximum

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 16 4.10.2007 3:06pm Compositor Name: VBalamugundan

11-16 Digital Systems and Applications

achievable quality. Typical resolutions in bits per sample (bps) are 16, 20, 24, 32, and even 48 bps. For

instance, for a CD standard with two stereo channels, 44.1 ksamples=s sampling rate and 16-bit

resolution, the resulting audio net bitrate is 23 44, 1003 16¼ 1.41 Mb=s. In reality, the CD standard

has a large overhead bitrate due to 49-bit representation of every 16-bit sample. The resulting total

bitrate is thus equal to (49=16) (1.41)¼ 4.32 Mb=s.

PCM representation is not an efficient method for high-quality audio. In order to reduce the required

bitrate, various data compression and coding techniques can be used. Simple but not very efficient

approaches preserve the signal waveform and are therefore referred to as lossless coding techniques

(Section 11.8). Data compression facility of lossless audio coders is rather moderate. Average achievable

bit per sample values are only slightly greater than 4.5 bps [6]. Sophisticated techniques, which are still

subject of an intensive research, allow for a drastic reduction of this value—at least by one order of

magnitude. These coding techniques are lossy in the sense that they corrupt the signal; however, this

corruption can be controlled in such a way that it is inaudible. Such audio coders are called transparent

(Section 11.9). In order to efficiently and transparently compress audio or speech, the knowledge about

the speech and audio production (the parametric audio coding discussed in Section 11.3 instead of the

classic waveform audio coding) as well as the knowledge concerning the human auditory perception

(discussed in Section 11.4, resulting in the perceptual audio coding) should be exploited (Figure 11.1).

First, efficient transparent or nearly transparent audio codecs that spread around due to Internet

applications were based on waveform perceptual coding schemes. Among them are MPEG-1 layer III

standard (commonly known as MP3) and MPEG-4 AAC (advanced audio codec) standard (see Section

11.10). The first one provides compression of factor 10 and the latter around 15. Parametric audio

codecs, such as SSC and SBR (see Section 11.3), beat these results by more than three times. It is believed

that by optimization of parametric modeling of audio signals, further improvement of the compression

factor will still be possible.

11.6 Digital Audio Signal Processing Systems

Fast development of very large-scale integration (VLSI) electronic chips (digital signal processors

[DSPs], field programmable gate arrays [FPGAs], ADCs and DACs, audio codecs, sampling rate

converters, etc.) gives possibility for effective digital processing of audio signals [10,44,45].

Digital audio processing equipment can generally be divided into three groups:

. High-performance audio processing systems (e.g., high-end consumer audio devices, professional

mixers)

. Personal audio devices (e.g., car audio systems, musical instruments, multitrack recorders)

. Portable audio devices (e.g., MP3 and AAC players, toys, and handheld game players)

A simplified scheme of a typical digital audio processing system is shown in Figure 11.15. Its heart is

usually a DSP. At present, several world-leading companies manufacture various DSPs for audio. It

should be mentioned that they in particular offer:

. General-purpose (fully) programmable digital signal processors (PDSPs)

. Processor cores, which can be used to design the customer own chips

. Application-specific standard products (ASSPs), e.g., the specialized audio DSPs

Among the most popular manufacturers of PDSPs are Texas Instruments, Analog Devices, Cirrus Logic,

Freescale, LSI Logic, Microchip, NEC, Renesas, and others.

Comparison of selected fixed-point and floating-point processors is presented in Table 11.2 [46–48].

It should be taken into account that particular types of processors undergo fast changes (alike in the

common computer trade). Independent benchmark analysis of DSPs is performed by specialized

companies, e.g., Berkley Design Technology Inc. (www.bdti.com).

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 17 4.10.2007 3:06pm Compositor Name: VBalamugundan

Audio Signal Processing 11-17

A DSP can operate with fixed-point or with floating-point arithmetic. Although floating-point

processors typically with 32-bit IEEE-754 standard (or even 64-bit double-precision format), e.g., the

TMS320C67xx processors [48], offer very effective calculation performance, fixed-point processors are

also often used, because they are characterized by a much lower supply power consumption (less by

about one decimal order of magnitude than that of the floating-point processors), furthermore, because

of a very low standby power (e.g., 0.12 mW for the TMS320C5509 processor), and last but not least,

because fixed-point processors are much cheaper [48].

Using facilities of modern DSPs, not only sophisticated digital filters and filter banks but also whole

audio multichannel compression=decompression systems can usually be realized in real time with a

single processor. Real-time implementation of DSP algorithms is possible due to many important

features of modern DSPs. Among the most important are the following:

. Hardware multiplier and long accumulator

. Harvard type and multibus architecture

. An on-chip memory with no additional wait-state cycles (including cache memory)

Digital signal processor (DSP)

Central
processing

unit

External
memory

SRAM
DRAM

Audio codec
ADC
DAC

External
memory
interfaceData

interfacesDigital audio data

Analog audio
signals

Internal
memory

RAM and ROM

Control data

FIGURE 11.15 A digital audio signal processing system.

TABLE 11.2 Main Features of Selected Programmable DSPs

Processor Family Arithmetic Type

Data Formats

(bits)

Clock Speed

(MHz) Peak Performance

On-Chip

Memory

(kB)

ADSP-BF53x

Blackfin

Fixed point 16 400–750 800–1500 MIPS 52–308

ADSP-213xx

SHARC

Fixed point=

floating point

32=40 200–400 1200–2400 MFLOPS 320–1024

ADSP-TS20x

TigerSHARC

Fixed point=

floating point

8=16=32=40 500–600 3000–3600 MFLOPS 512–3072

DSP563xx Fixed point 24 120–180 120–180 MIPS 33–648

TAS3108 Fixed point 28=32 135 675 MIPS 48

TMS320C54x Fixed point 16 80–160 80–160 MIPS 20–336

TMS320C55x Fixed point 16 160–300 320–600 MIPS 64–352

TMS320C62x Fixed point 16=32=40 167–300 1336–2400 MIPS 72–896

TMS320C64x Fixed point 8=16=32=40=64 400–1000 3200–8000 MIPS 160–1056

TMS320C67x Floating point 32 150–300 900–1800 MFLOPS 72–672

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 18 4.10.2007 3:06pm Compositor Name: VBalamugundan

11-18 Digital Systems and Applications

. Bit-reversed addressing used in fast Fourier transformation (FFT) algorithms

. Circular buffers—a key feature of many DSP routines (e.g., in the realization of FIR digital filters)

. Very long instruction word (VLIW) architecture

. Flexible data flows as single instruction multiple data (SIMD), multiple instruction single data

(MISD), and multiple instruction multiple data (MIMD)

. Multiple execution units

. Integration of the complex instruction set computer (CISC) DSP core with a reduced instruction

set computer (RISC) microcontroller core in a single chip

It can be observed that the increase of the computational efficiency of new DSPs is often achieved by

means of multiple execution units, which are comprised of ALUs, multiplier, and adder=subtracter (for

address generation), and data registers (important, e.g., for storing temporary data). As illustrative

examples of architectural concepts, which are computationally very efficient, can, e.g., serve

. Texas Instruments VelociTI, which is an advanced VLIW architecture [48]

. Analog Devices Super Harvard Architecture (SHARC) with a SIMD facility [46]

Effective utilization of these highly parallel architectures needs an efficient C-compiler and an efficient

assembly optimizer.

As is shown in Figure 11.15, the overall efficiency of a digital audio system depends on effective

communication of the DSP with external peripheral units [46–48]. An appropriate digital data interface

set can consist of the following:

. Parallel host port interface of 8=16=32-bit width

. Inter-integrated circuit (I2C) interface

. Digital audio transmitter (e.g., S=PDIF, IEC958, or AES=EBU)

. Multichannel buffered serial port

. Asynchronous sampling rate converter

All the above interfaces together with the external memory interface, which is an intelligent controller

for glueless connection with external SRAMs and DRAMs, operate independently from the CPU of the

DSP and reduce the overall number of the system components.

An interesting feature of some DSPs is integration of the DSP core with the microcontroller core in a

single chip. An example is the Texas Instruments OMAP59xx processor, which consists of TMS320C55x

DSP and ARM9 microcontroller [48].

Besides the above discussed functional features of the DSPs, a very important issue for the designers is a

convenient programming environment, which should help in implementation of basic audio processing

algorithms. Examples of such DSP environments are Code Composer Studio [48] and VisualDSPþþ
[46]. DSP producers offer also specialized graphical user interface (GUI) environments, which streamline

the design of audio systems (e.g., the VisualAudio Designer [46]).

DSPs are often offered as a complete solution together with an on-chip ROM containing, e.g., audio

decoding algorithms such as Dolby, DTS, MPEG, or WMA (SHARCMelody [46]).

11.7 Audio Processing Basics

11.7.1 DFT, DCT, and Related Transformations

Discrete Fourier transformation (DFT) is a powerful tool for the analysis of discrete-time signals.

A block of N samples x(n), n¼ 0, 1, . . . , N� 1, is considered and its harmonic components are extracted

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 19 4.10.2007 3:06pm Compositor Name: VBalamugundan

Audio Signal Processing 11-19

under assumption that they also describe an infinitely long, block wise periodic extension of signal x(n).

DFT is defined as follows:

X(k) ¼ 1

N

XN�1

n¼0

x(n)Wkn
n , k ¼ 0, 1, . . . , N � 1 (11:31a)

where WN¼ ej(2p=N). The inverse DFT (IDFT) is then given by

x(n) ¼
XN�1

k¼0

X(k)W�nk
N , n ¼ 0, 1, . . . , N � 1 (11:31b)

Computation of DFT and IDFT is usually realized using the so-called FFT algorithms, which reduce the

computational complexity of DFT from / N2 to / N log N under assumption that N¼ 2K, where K is a

natural number. Two main FFT types can be distinguished: decimation in time and decimation in

frequency [22,27,49,50].

Assuming a typical DSP, realization of an FFT of the length N¼ 512 requires about 200 words of the

program memory and 4 Nþ 1050 words of data memory. Using a fixed-point DSP, the number of

necessary instruction cycles is about 33,000. Assuming a moderate instruction cycle period of 25 ns,

sampling rate of 44.1 ksamples=s (Ts¼ 22.676 ms). Accumulation time of 512 input samples is

5123Ts¼ 11.61 ms. FFT analysis takes 33,0003 25 ns¼ 0.825 ms only. This example shows that even

a multichannel ‘‘online’’ audio range FFT analysis is easily possible with common DSPs [51].

A block of N samples x(n) can be mirrored before it is periodically extended. This results in the

so-called DCT. Because of the mirroring symmetry, DCT gives sharper spectrum than DFT. This is the

main advantage of this transformation.

In perceptual audio coders, signals are often mapped into the frequency domain by means of the

so-called MDCT [25]. This is a type of DCT with overlapped power complementary time windows

(Figure 11.16). By this means, blocking and time-aliasing effects get cancelled. Denote by xl(n), n¼ 0,

1, . . . ,N� 1, time-domain signal samples in the lth block of N samples. MDCT is defined as

Xl(k) ¼
XN�1

n¼0

w(n)xl(n) cos
p

2N
2nþ 1þ N

2

� �
(2k þ 1)

� �
for k ¼ 0, 1, . . . ,

N

2
� 1 (11:32a)

where

Xl(k) are samples in the frequency domain

N is the number of input samples

N=2 is the frequency-domain blocklength

w(k) is the time window function

Division of the input signal into MDCT block is quite flexible. A long block can be split into shorter

blocks. Figure 11.16 presents possible transitions MDCTwindows between long and short block modes.

The length of the block depends on stationarity of the input signal.

The respective inverse discrete cosine transform (IMDCT) is defined as follows:

yl(n) ¼ w(n)
N

4

XN=2�1

k¼0

Xl(k) cos
p

2N
2nþ 1þ N

2

� �
(2k þ 1)

� �
for n ¼ 0, 1, . . . ,N � 1 (11:32b)

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 20 4.10.2007 3:06pm Compositor Name: VBalamugundan

11-20 Digital Systems and Applications

The input signal is recovered with an overlap and add operation

~xl(n) ¼ yl�1 nþ N

2

� �
þ yl(n) for n ¼ 0, 1, . . . ,

N

2
� 1, (11:32c)

which cancels the time-domain aliasing.

11.7.2 Discrete Wavelet Transformation

One of the newest mathematical tools, which is widely used in the area of audio signal processing, and

which is, in fact, a generalization of an octave filter bank approach, is the so-called DWT

[23,27,49,50,52]. To introduce the DWT concept, it should first be noticed that the signal x(t) can

often be expressed as a linear expansion

x(t) ¼
X
m

cmcm(t) (11:33)

where

m is an integer index

cm are the real-valued expansion coefficients (parameters describing the signal)

cm(t) is a set of real-valued functions of time t called the expansion set

The expansion set is called basis, if the representation in Equation 11.33 is unique, i.e., if functions cm(t)

are linearly independent. The most interesting case is the orthogonal or even orthonormal basis. For

example, in a Fourier series, the orthogonal basis functions cm(t) are cos kv0t and sin kv0t, where v0 is

related to the signal period T according to equation v0¼ 2p=T.

For the DWT, a two-dimensional set of coefficients akl is constructed such that

x(t) ¼
X1
k¼�1

X1
l¼�1

2k=2aklc(2
kt � l) (11:34)

100500 150
0

0.2

0.4

0.6

0.8

1

FIGURE 11.16 Overlapped, power complementary MDCT windows.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 21 4.10.2007 3:06pm Compositor Name: VBalamugundan

Audio Signal Processing 11-21

where the function c(t), called wavelet (concentrated or short wave), generates the expansion set c

(2kt� l), which is an orthogonal basis. The wavelet c(t) is an oscillating and quickly decaying function,

which has its energy sufficiently well localized in time and in frequency. Several different wavelet classes

have already been proposed [27].

Introducing another basic function c(t), called the scaling function, a multiresolution signal repre-

sentation, starting from some resolution k, can be formulated:

x(t) ¼
X1
l¼�1

2k=2bklw(2
kt � l)þ

X1
k¼k

X1
l¼�1

2k=2ak=c(2
kt � l) (11:35)

Two fundamental self-similarity equations have to be fulfilled:

w(t) ¼
X
n

ffiffiffi
2

p
h0(n)w(2t � n) (11:36a)

c(t) ¼
X
n

ffiffiffi
2

p
h1(n)w(2t � n) (11:36b)

where h0(n) and h1(n) are impulse responses of two discrete-time complementary filters—a lowpass

filter and a highpass filter, respectively. For a finite even length N, responses h0(n) and h1(n) are related

to each other by the following equation:

h1(n) ¼ (� 1)nh0(N � 1� n), n ¼ 0, . . . , N � 1 (11:37)

If resolution k is large enough, k¼ k can only be taken into account in Equation 11.35. In other words,

we can assume that

x(t) ¼
X1
l¼�1

2k=2bklw(2
kt � l)þ

X1
l¼�1

2k=2aklc(2
kt � 1) (11:38)

Thus, from Equations 11.36a and 11.36b, we conclude that x(t) is a signal of resolution kþ 1 and can be

modeled as

x(t) ¼
X1

n¼�1
2(kþ2)=2b(kþ1)nw(2

kþ1t � n) (11:39)

It should be stressed that scaling coefficients b(kþ 1)n in Equation 11.39 approximate signal samples, i.e.,

xn � b(kþ 1)n, because for high enough scale kþ 1, the scaling functions w(2kþ 1t� n) act as delta

functions. In this case, sampling period Ts¼ 1=2kþ 1.

Assuming that functions w(2kt� l) and c(2kt� l) in Equation 11.38 form an orthonormal basis, after

some manipulations, we conclude that

bkl ¼
X
n

h0(n� 2l)b(kþ1)n (11:40a)

akl ¼
X
n

h1(n� 2l)b(kþ1)n (11:40b)

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 22 4.10.2007 3:07pm Compositor Name: VBalamugundan

11-22 Digital Systems and Applications

If the signal x(t) is of finite duration, the sums in Equations 11.38 and 11.39 are finite. The sets {b(kþ 1)n}

and {bkl, akl} form alternative parametric descriptions for the signal x(t). Although both sets have the

same number of parameters, description {bkl, akl} is somehow more efficient because parameters akl are

less important than bkl and consequently {b(kþ 1)n}. From Equations 11.40a and 11.40b, we conclude that

parameters bkl and akl result from a lowpass and a highpass filtering of parameters b(kþ 1)n, respectively,

with a two-band splitting filter bank of impulse responses h0(�n) and h1(�n), respectively, followed by a

downsampling with factor 2 (Figure 11.17a). This procedure can be continued many times to obtain

even more efficient parametric representation. If only parameters bkl are split, which is the case in the

classical DWT, a kind of an octave signal analysis filter bank results (Figures 11.18a and 11.19). If also

b(k+1)n

b(k+1)n

bkl

akl

bkl

akl

∅2

∅2

+

h0(−n)

h0(n)

h1(−n)

h1(n)

(a)

(b)

2=

2=

FIGURE 11.17 Two-band filter bank: (a) analysis bank and (b) synthesis bank.

b(k+1)n

b(k+1)n

akl

akl

b(k −1)j

a(k −1)j

b(k −1)j

a(k −1)j

∅2

∅2

h0(−n)

h1(−n)

∅2

∅2

h0(−l)

h1(−l)

h0(l)

h1(l)

h0(n)

h1(n)

(a)

(b)

+

+2=

2=

2=

2=

FIGURE 11.18 Discrete wavelet transformation (DWT): (a) two-band analysis tree and (b) two-band synthesis tree.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 23 4.10.2007 3:07pm Compositor Name: VBalamugundan

Audio Signal Processing 11-23

parameters akl are split (wavelet packet) and a multiband splitting filter bank is used (multiband wavelet

system) [27], very flexible analysis filter banks can be realized (Figure 11.20), e.g., those simulating

along the frequency axis the distribution of a set of nonoverlapping peripheral auditory filters (see

Section 11.4).

11.7.3 FIR Filters

Basic operation in digital audio signal processing is frequency selective filtering. It can be realized in

frequency domain, e.g., using FFT and in time domain using finite impulse response (FIR) and IIR

filters [22,49,50,53]. Mostly FIR filters are used because they are always stable and can be easily designed

with a perfect linear phase characteristic.

Time Time

∑∑∑

a k
l

a k
(l

+1
)

a(k−1)(j+1)

b (
k

+1
)(

n
+1

)

b (
k

+1
)(

n
+1

5)

a(k−2)(i+1)

b(k−2)(i+1)

a(k−1)(j+2) a(k−1)(j+3)a(k−1)j

b (
k

+1
)n

a(k−2)i

b(k−2)i

a k
(l

+2
)

a k
(l

+3
)

a k
(l

+4
)

a k
(l

+5
)

a k
(l

+6
)

a k
(l

+7
)

(a) (b)

F
re

qu
en

cy
 (

sc
al

e)

F
re

qu
en

cy
 (

sc
al

e)
FIGURE 11.19 Time–frequency (scale) signal representation patterns: (a) an initial (kþ 1)-resolution scale pattern

corresponding to Equation 11.39 and (b) DWT pattern after three transformation steps (the first step is made

according to Equation 11.38).

F
re

qu
en

cy
 (

sc
al

e)

F
re

qu
en

cy
 (

sc
al

e)

Time Time
(a) (b)

FIGURE 11.20 Time–frequency (scale) signal representation patterns: (a) a pattern after two transformation steps

with a four-band wavelet basis and (b) an example of a two-band wavelet packet transformation.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 24 4.10.2007 3:07pm Compositor Name: VBalamugundan

11-24 Digital Systems and Applications

Assuming an ideal filter frequency response given

by the following expression:

Hd(e
jv) ¼

Xþ1

n¼�1
hd(n)e

�jvn (11:41)

where

hd(n) ¼ 1

2p

ðþ1

�1
Hd(e

jv)ejvndv (11:42)

The respective FIR filter impulse response is given

by the following expression:

hFIR(n) ¼ wN (n)hd(n) (11:43)

where wN(n) is a specially selected time window (e.g., Hanning, Hamming, Blackman, or Kaiser

window), used to reduce the so-called Gibbs phenomenon [22]. Depending on filter type, the ideal

filter coefficients can be calculated using equations listed in Table 11.3.

Another, more advanced, method for the design of FIR filters, is an optimization procedure developed

by Parks and McClellan (also known as the Remez algorithm). This method is implemented in the

MATLAB environment with two functions: remezord to estimate the filter order and remez to compute

the filter coefficients [52]. This optimization method should be used, if a relatively high stopband

attenuation is required, e.g., with a 20-bit resolution for representation of signal samples, we usually

need a stopband attenuation of approximately 120 dB. As a design example, Figure 11.21 presents the

frequency response of a lowpass FIR filter designed with the Parks–McClellan method, with the normal-

ized cutoff frequency of p=64. This filter can be used as a prototype filter for the design of analysis and

synthesis filter banks for audio coders, according, e.g., to the MUSICAM and MPEG-1 standards.

Using modern DSPs, FIR filters can easily be implemented with the MACD instruction, which realizes

multiplication, accumulation, and data move. When used with repeat next instruction (RPT), MACD

TABLE 11.3 Impulse Response of Ideal Filters

Filter Type Impulse Response

Lowpass hd(n) ¼
sin (nvc)

np n ¼ 0
vc

p n ¼ 0

�

Highpass hd(n) ¼
sin (nvc)

np n ¼ 0

1� vc

p n ¼ 0

�

Passband hd(n) ¼
sin (nv2)�sin (nv1)

np n = 0
v2�v1

p n = 0

�

Stopband hd(n) ¼
sin (nv1)�sin (nv2)

np n = 0

1þ v2�v1

p n = 0

�

−120

−100

−80

−60

G
ai

n
[d

B
]

−40

−20

0

0 0.05 0.1 0.15

Normalized frequency

0.2 0.25 0.3

Floating point
16-Bit format
20-Bit format

FIGURE 11.21 Frequency response of an FIR lowpass filter designed with the Parks–McClellan method.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 25 4.10.2007 3:07pm Compositor Name: VBalamugundan

Audio Signal Processing 11-25

becomes a single-cycle instruction once the RPT pipeline is started. The theoretical maximum length L

of the FIR filter can be computed as

L ¼ TS

Tck
(11:44)

where

Ts is the sampling period

Tc is the instruction cycle

k is the number of converted channels

Assuming sampling rate of 48 ksamples=s, 25 ns instruction cycle of the DSP and six output channels, we

can realize FIR filters with the maximum length of about 138.

Another method for the implementation of FIR filters in DSPs consists in the use of two further new

features of modern DSPs, namely the circular addressing and the FIRS instruction. This possibility can

be effectively used, if the filter has a symmetric impulse response h(n) (see Figure 11.22), i.e., if the filter

output signal is given by

y(n) ¼
XN=2�1

k¼0

h(n){x(n� k)þ x[n� (N � 1� k)]} (11:45)

The FIRS instruction can add two data values (stored in a circular buffer) in parallel with the

multiplication of this result by a filter coefficient. Once the repeat pipeline is started, this instruction

becomes also a single-cycle instruction. A computational complexity is in this case reduced by half and

makes it possible to realize FIR filters with the double length as compared with the programming

technique previously described.

11.7.4 IIR Filters

Although FIR filters have important advantages as linear phase, stability, robustness, easy design, and

implementation, their IIR counterparts will have complexity (the transfer function degree) reduced by

some decimal orders of magnitude [53]. Therefore, IIR filters are advantageous over and above

FIR filters in particular applications. IIR filters are typically designed starting with an analog reference

filter and then performing the bilinear transformation [22]. Transfer function of the analog

reference filter is denoted by H(s). Then the resulting IIR filter transfer function H(z) is calculated as

¥¥¥¥

++++

+

x (k)
z−1 z−1 z−1

z−1

z−1 z−1 z−1

h (N / 2−1)h (2)h (1)

y (k)

h (0)

FIGURE 11.22 Symmetrical FIR filter.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 26 4.10.2007 3:07pm Compositor Name: VBalamugundan

11-26 Digital Systems and Applications

H(z) ¼ H(s)js¼ 2
Ts

z�1
zþ1

(11:46)

where Ts is the sampling period. The respective transformation of the analog frequency va into the

digital frequency vd is given by

vd ¼ 2

Ts

arctan
TS

2
va

� �
(11:47)

It is reasonable to apply the bilinear transformation in Equation 11.46 directly to elements of the analog

reference filter rather than to its transfer function, thus preserving the ladder or the lattice analog circuit

structure. The resulting digital signal flow graphs realize the so-called WDFs [27,48,53], which are

famous, because of robustness in stability, small sensitivity to coefficient changes, low complexity, and

great dynamic range.

11.7.5 Filter Banks

A filter bank is a collection of digital filters with a multiple input and a multiple output [23,50]. The

filter bank with one input andM outputs is referred to as the analysis filter bank. On the other hand, the

synthesis filter bank consists ofM inputs and one output (see Figure 11.23). Splitting of the input signal

into decimated subbands via an analysis filter bank and then reconstructing the initial signal from

subband signals with a respective synthesis filter bank is referred to as the subband coding (SBC)

technique commonly used for nearly lossless data compression.

A filter bank in the main path of the MPEG-1 audio coder [54] consists of 32 subband filters with a

normalized bandwidth of p=(32Ts), where Ts is the input audio signal sampling period. The impulse

responses of particular filters in this filter bank are defined as

x (n)
H0(z)

H1(z)

HM −1(z)

...

G0(z)

G1(z)

GM −1(z)

...

+

+

(a) (b)

M

M

M

M

M

M

......

w

w

H(ejw)

2M
p

2M
p−

M
p

M
2p p

H0 H1 HM −1

(c)

M = 32

2

x (n)^

FIGURE 11.23 Filter banks: (a) analysis filter bank, (b) synthesis filter bank, and (c) subband pattern.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 27 4.10.2007 3:07pm Compositor Name: VBalamugundan

Audio Signal Processing 11-27

Hi(n) ¼ h(n) cos
(2i þ 1)(n� 16)p

64

� �
(11:48)

where h(n) is an impulse response of the prototype lowpass filter. In the analysis filter bank, the output

signal in ith subband is defined as a convolution:

Si(m) ¼
X511
n¼0

x(m� n)Hi(n) (11:49)

In the MPEG-1 encoder, an efficient polyphase filter bank realization is implemented, using the

following steps:

1. Thirty-two new input samples x(n) are shifted into a 512-point FIFO buffer.

2. Five hundred and twelve samples x(n) are multiplied by the modified (the so-called analysis

window) coefficients C(n).

Z(n) ¼ C(n)x(n) (11:50a)

where C(n)¼�h(n) if the integer part of n=64 is odd, otherwise C(n)¼ h(n), n¼ 0, 1, . . . , 511.

3. An intermediate result is calculated as follows:

Y (k) ¼
X7
j¼0

Z(k þ 64j) for k ¼ 0, 1, . . . , 63 (11:50b)

4. Thirty-two new output samples are computed

Sj ¼
X63
k¼0

Mi(k)Y (k) for i ¼ 0, 1, . . . , 31 (11:50c)

where Mi(k)¼ cos{[(2iþ 1)(k� 16)p]=64} are the modulation (or analysis) matrix coefficients.

11.7.6 Sampling Rate Conversion

Currently, digital audio signals are used with various sampling rates. Typical values are 8, 16, 22.05, 32,

44.1, 48, and even 96 ksamples=s. Thus, an online sampling rate conversion is a very important task in

digital audio signal processing algorithms [42]. This task can nowadays be realized using digital signal

processors [55] or specialized chips [10,46]. Generally, three different approaches are possible:

. Natural approach based on, first, interpolation with integer factor M, and then, decimation with

integer factor N (Figure 11.24)

. Time-domain approach based on direct interpolation (or decimation) in time, i.e., on the

realization of a sequence of noninteger delays (Figure 11.25)

. Frequency-domain approach based on, first,

a blockwise DFT; second, on respective spec-

trum modification in each block—a throw-

in of zero spectral samples in the middle of

the DFT spectrum for interpolation or cut-

ting out of some of spectral samples in the

middle of the DFT spectrum for decimation

(see Figure 11.26); and third, the backward

Lowpass filter

M N
x (m) y (n)

w

wc

M

FIGURE 11.24 Basic system for sampling rate conversion.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 28 4.10.2007 3:07pm Compositor Name: VBalamugundan

11-28 Digital Systems and Applications

blockwise IDFT transformation (refer to

the interpft function in the MATLAB

environment [52])

A scheme of the simplest system for the syn-

chronic sampling rate conversion is shown in

Figure 11.24. The output samples are calculated

using difference equations, which utilize the up-

and downsampling and the filtering in between.

Table 11.4 presents the respective up- and down-

sampling factors for the considered sampling

rate conversions. These factors are equal to the

least common multiple of a pair of sampling

rates (the input and the output sampling rates), divided by the respective sampling rate. Because the

up- and downsampling factors for the rate conversion to and from 44.1 ksamples=s are inadmissibly

large, a slightly lower sampling rate, namely 44 ksamples=s (see Table 11.5) can usually be accepted. This

would introduce a small, inaudible, error with a relative value of d¼ 0.22676%.

The filtering operation between an interpolator and a decimator should be realized via a lowpass filter

with gain M and the normalized cutoff frequency vc¼min(p=M, p=N) [23]. The respective FIR filter

can be designed, e.g., using the Parks–McClellan method. Depending on the converted rates and the

desired signal resolution (16 or 20 bits, corresponding to the stopband attenuation of 96 or 120 dB,

respectively) the required length L of FIR filters varies between 154 and 198. Depending on

the upsampling coefficient M, the number of effective filter taps, which have to be calculated, is

reduced to L=2M.

Sampling rate alteration using the time-domain approach can be applied in asynchronic systems. An

output signal sample can be determined using the following relationship:

Dtiþ1 ¼ (Dti þ Tout)modTin (11:51)

where

Tin is the input sampling interval

Tout¼ tiþ 1� ti is the output sampling interval

tiþ 1 is the instant in which a new output sample should occur

The above relationships are illustrated in Figure 11.25. Input samples are indicated with solid lines and

output samples with dotted lines.

One of the simplest time-domain sampling rate conversion methods is a high oversampling and then

choosing appropriate output samples (those, which are the nearest to the required positions in time). A

multistage approach of this type is illustrated in Figure 11.27 [56]. Interpolators with factors 64 and 128

are controlled by a time-analysis unit, which measures the ratio between the input and the output

sampling rates. An advantage of this method (in comparison with the natural method) is the possibility

for the use of the same filter coefficients for different sampling rate conversion ratios, and thus, a

simplified realization of the interpolation filters.

Time-domain conversion can also be based on various numerical methods, e.g., on polynomial

interpolation. Lagrange interpolation or spline interpolation can effectively be used [56,57]. In the

case of an Nth-order spline with a function defined in interval [xk, . . . , xkþm] as

MN
k (x) ¼

Xkþm

i¼k

aifi(x) (11:52)

Tin

ti ti+1ToutDti

Dti+1

Time......

FIGURE 11.25 Time relationships between input and

output samples.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 29 4.10.2007 3:07pm Compositor Name: VBalamugundan

Audio Signal Processing 11-29

x0(m)

xu(n)

x (n)

X0(ejwT0)

Xu(ejwT)

X (ejwT)
2

2

2

m

n

n w

w
w0

w
0
/2

(a)

w

w

w

x0(m)

xd(n)

x (n)

X0(ejwT0)

Xd(ejwT)

X (ejwT)

2

2

2

n

n

m w

w

w

w

w

w0

w0/2

(b)

FIGURE 11.26 Sampling rate conversion in frequency domain: (a) interpolation and (b) decimation. These first

two approaches can be mixed, resulting in substantial reduction of the required intermediate sampling rate.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 30 4.10.2007 3:07pm Compositor Name: VBalamugundan

11-30 Digital Systems and Applications

where

fi(x) ¼ (x � xi)
N
þ ¼ 0 x < xi

(x � xi) x � xi

�

a sixth-order interpolation is used with a simple FIR filter to compensate sinc7 distortion in the

frequency domain caused by the spline interpolator [56].

11.8 Lossless Audio Coding

11.8.1 Pulse Code Modulation

The most typical digital waveform coding is the PCM, in which a stream of uniformly distributed digitally

coded samples, which represent a given analog continuous-time signal is used. Basic PCM coder consists

of an antialiasing filter, sampling device, and a quantizer. In practice, to improve the subjective audio

quality, the quantizer should have a nonlinear (logarithmic) characteristic based on, e.g., a 13-segment

A-law or a 15-segment m-law used in telephone systems [49]. The normalized characteristics are given by

. A-law

f (x) ¼
Ax

1þlnA
0 � x � 1

A
1þlnAx
1þlnA

1
A
� x � 1

�
(11:53)

TABLE 11.4 Sampling Rate Conversion Factors

Sampling Rate

Conversion [ksamples=s]

Upsampling

Coefficient M

Downsampling

Coefficient N

Least Common

Multiple of a Pair of

Sampling Rates

16 ! 48 3 1 48,000

32 ! 48 3 2 96,000

16 ! 44.1 441 160 7,056,000

32 ! 44.1 441 320 14,112,000

44.1 ! 48 160 147 7,056,000

Interpolation Interpolation Interpolation Interpolation

2 2 64 128

Decimation
Input
signal

Output
signal

FIGURE 11.27 Sampling rate conversion with multistage oversampling.

TABLE 11.5 Sampling Rate Conversion to=from 44

ksamples=s

Sampling Rate

Conversion

[ksamples=s]

Upsampling

Coefficient M

Downsampling

Coefficient N

16 ! 44 11 4

32 ! 44 11 8

44 ! 48 12 11

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 31 4.10.2007 3:07pm Compositor Name: VBalamugundan

Audio Signal Processing 11-31

. m-law

f (x) ¼ ln (1þ mx)

ln (1þ m)
for 0 � x � 1 (11:54)

For the compression from 16 to 8 bits, typical values of the coefficients are A¼ 87.6 and m¼ 255.

In most cases, PCM bitstream has highly redundant information. Thus, using a number of previous

samples of the input signal, we can predict the next sample with a relatively small error. This feature is

used in differential pulse code modulation (DPCM), in which a difference between input sample and its

estimation is coded. The prediction is realized with appropriate FIR filter. In the case, in which the

statistics of the input signal changes in time is unknown, the prediction should be made adaptive. An

adaptive coding is realized in an adaptive difference pulse code modulation (ADPCM). The respective

schemes, i.e., those of the ADPCM encoder and the ADPCM decoder are shown in Figure 11.28.

A special case of the DPCM approach is delta modulation (DM). The DM encoder is very simple to

implement because it uses a 1-bit quantizer and a first-order predictor (see Figure 11.29). The encoder is so

strongly simplified that high sampling rates are required. Among disadvantages of DM are possible slope

overload and granularity noise. Both can, however, be easily reduced by adaptive versions of DM, i.e., ADM.

Continuous variable slope delta modulation (CVSDM) is an example of the ADM. CVSDM effectively

reduces the DM slope overload [12]. An interesting advantage of this method is its resistance to

transmission errors. Figure 11.30 presents the structure of the CVSDM encoder.

The output signal of the CVSDM encoder is given by

y(n) ¼ sgn{x(n)-x̂(n-1)} (11:55)

where x(n) is the input PCM sample and (n) is the estimated sample.

The parameter a depends on the signal slope, i.e., J bits in K output bits of y(n):

a ¼ 1 j bits are the same

0 else

n
(11:56)

+
+
_

PCM
audio

PCM
audio

x (n+1)
e~(n)

e~(n)

e~(n)

ADPCM
data

ADPCM
data

Adaptive
dequantization

Adaptive
dequantization

+
+

e(n)

x̂ (n+1)

x̂ (n)

x̂ (n)

ê (n)

Adaptive
quantization

Adaptive
prediction

Adaptive
prediction

+

+

+
+

(a)

(b)

(n)ê

FIGURE 11.28 ADPCM: (a) encoder and (b) decoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 32 4.10.2007 3:08pm Compositor Name: VBalamugundan

11-32 Digital Systems and Applications

The quantization step D(n) is increased or decreased using parameter a:

D(n) ¼ min {D(n� 1)þ Dmin, Dmax} for a= 1

max {bD(n� 1), Dmin} for a= 0

�
(11:57)

where

b¼ step decreasing coefficient

Dmin¼minimum step size

Dmax¼maximum step size

The estimated value x̂(n� 1) is given by

x̂(n� 1) ¼ hd(n� 1) (11:58)

where

d(n� 1) ¼ min {d̂(n� 1), dmax} for d̂(n� 1) � 0

max {d̂(n� 1), dmin} for d̂(n� 1) < 0

�

h is the accumulator decay coefficient.

11.8.2 Entropy Coding Using Huffman Method

The entropy coding is a lossless bitstream reduction and can be used on its own or as a supplement to

other methods, e.g., after the DPCM. This coding approach is based on the statistical redundancy, when

the signal samples or sequences (blocks) have different probabilities. The entropy of a signal is defined

as the following average:

H(pl , . . . ,pn) ¼ �
Xn
i¼1

pi log2 pi (11:59)

+
+

e(n)

DM
data1-Bit

quantization

First-order
prediction +

+

First-order
prediction

Channel

PCM
data

PCM
data

x (n)

x̂(n)

x̂ (n)

FIGURE 11.29 Delta modulation system.

+
+

PCM
data
x(n)

1-Bit
quantization

+SAT¥ ¥

h

d(n−1) d̂(n−1)

x̂(n−1)

d̂(n)
z−1 Step size

adapter

y (n)

y(n)

D (n)

−

FIGURE 11.30 CVSDM encoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 33 4.10.2007 3:08pm Compositor Name: VBalamugundan

Audio Signal Processing 11-33

where �log2 pi is an information of the ith code word and pi is the probability of its occurrence. The

most popular method for the entropy coding is the Huffman coding method [58,59], in which

the optimal code can be found using an iterative procedure based on the so-called Huffman tree. The

Huffman coding is, e.g., used in MPEG-1 audio standard to reduce the amount of output data in layer

III. The set of 32 Huffman tables is specially tuned for statistics of the MDCT coefficients (see Section

11.7) divided into some regions and subregions [60].

11.9 Transparent Audio Coding

A need for reduction of bitrate required for the transmission of high-quality audio signals draws a

growing attention to lossy audio coding techniques. Lossy audio coding will be fully acceptable, if it is

perceptually transparent, i.e., if the corruption of the audio signal waveform is inaudible. An efficient

transparent audio coding algorithm (Figure 11.1) should

1. Remove redundancy contained in the original audio signal

2. Remove the perceptual irrelevancy

The first task requires an efficient parametric description of audio, e.g., a plausible mathematical model

of its production, as the signal should be split into almost uncorrelated components. Although this is a

relatively simple task for speech, and at least a conceivable one for music, for general audio signals this

is a very complex problem. Therefore, instead of a real audio production model, a compromise solution

can be used, namely a general signal analysis model, e.g., in the frequency domain or in the scale-of-

resolution domain (see Section 11.7), reducing redundancy (correlation) of the signal components.

In case of waveform audio codecs, this is done by means of a proper analysis filter bank. At the

receiver side, the signal components are recombined via the corresponding synthesis filter bank. This

procedure should allow perfect or at least nearly perfect signal reconstruction under ideal conditions.

In case of parametric audio codecs, parameters of the signal components are not predefined and are to

be searched for with the encoding algorithm.

The second task listed above should be realized by means of a precise psychoacoustic hearing model,

which should take all masking effects into account. This subject has been discussed in Section 11.4. The

hearing model provides information about the dynamic range, which is necessary for the proper

representation of parameters (signal components) contained in the signal analysis model. Thus, it allows

for efficient dynamic bit allocation to particular signal parameters or components to guarantee that the

quantization noise is inaudible.

A general scheme of the typical transparent audio coder is shown in Figure 11.31. The input audio

signal is first analyzed via an analysis filter bank. Taking different possible analysis filter banks into

account, state-of-the-art waveform coders can be divided into two historically relevant categories:

subband coders (SBCs) and transform coders (TCs). TCs operate usually with much greater frequency

resolution than SBCs. In typical SBCs, uniform polyphase analysis filter banks are used (see Section

11.7). On the other hand, TCs typically employ the MDCT [25]. Other types of analysis filter banks,

Analysis
filter bank

Quantization
and

coding

Psychoacoustic
model

filter bank

Dynamic
bit

allocation

PCM
audio

Encoded
bitstreamFrame

packing

MNR

FIGURE 11.31 General scheme of the transparent audio coder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 34 4.10.2007 3:08pm Compositor Name: VBalamugundan

11-34 Digital Systems and Applications

e.g., octave filter banks, can also be very efficiently used. They can be realized with the DWT discussed in

Section 11.7, or with WDFs [27,48]. Another approach, which is implemented in MPEG-1 layer III

audio coder, is a hybrid filter bank, which is combination of a coarse frequency resolution subband filter

bank followed by a fine frequency resolution transformation (MDCT in this case).

Parallelly, the input signal is also analyzed with a psychoacoustic model filter bank. This filter bank

should estimate a number of nonoverlapping peripheral auditory filters, which cover the whole audible

frequency range. In these audio coders, which for parametric signal description exploit octave analysis

filter banks, this can be just the same filter bank; however, typically, the psychoacoustic model filter bank

is realized separately with the FFT.

Using the psychoacoustic auditory model, a global dynamic threshold of hearing is computed, e.g., by

using the way shown in Equation 11.14 or more precisely in Equation 11.66. Then in each analysis filter

subband, the respective SMRi is computed with Equation 11.67. Finally, the mask-to-noise ratio (MNR)

is computed as

MNRi(m) ¼ SNR(m)� SMRi (11:60)

where, SNR(m), the SNR determined by Equation 11.30, resulting from an m-bit quantization is

denoted. Within the ith critical band, the quantization noise will be inaudible as long as the

MNRi(m) is positive. This observation can be used for efficient dynamic bit allocation, which can be

realized, e.g., with the following procedure:

. The bit allocation unit searches for the analysis filter subband with the lowest MNR and allocates

code bits to this subband; then the SNR(m) value is updated for this subband and the actual

MNR is computed with Equation 11.60.

. The process is repeated until no more code bits can be allocated.

An important problem, resulting from the transformation of the audio signal (via an analysis filter bank)

into the frequency domain, is the appearance of preechoes, occurring in silent signal periods followed by

sudden sound attacks (e.g., of a percussive character). This phenomenon is caused by quantization

errors, which are irrelevant in loud and stationary signal parts but are immediately audible in silent

signal parts. In TCs, the inverse transform in the receiver distributes the quantization errors over the

whole block of samples cut with the respective time window. In SBCs, this effect occurs due to transients.

A possible method for suppression of preechos is the adaptive window switching (see Figure 11.16) [9].

Windows of short lengths should be used in nonstationary parts of the signal, whereas in stationary

parts of the signal, wide windows (improving the overall coding efficiency) should be used. Typically, the

block size varies between N¼ 64 and N¼ 1024.

Further reduction of audio bitrate is still possible by resignation from the full perceptual transparency. In

many cases, especially inmultimedia or inmobile-access applications, a not annoying reduction of fidelity of

some audio components of secondary importance is acceptable. The whole audio scene can be divided into a

number of individual audio objects: a conversation, a background noise, a background music, sounds

produced by particular sources, etc. These objects can be coded and transmitted separately. Furthermore,

some of them may be added synthetically at the receiver. Such coding philosophy is used in the so-called

structured audio format implemented in the MPEG-4 standard (see Section 11.10). By this means, a very

flexible scalability of audio quality can be realized. This is very useful when audio has to be transmitted

through channels of varying capacity or is to be received with decoders of various quality and complexity.

11.10 Audio Coding Standards

11.10.1 Lossless and Lossy Standards

Despite the popularity of lossy coders, there also exists a group of lossless standards. Selected lossless

standards are listed in Table 11.6 [61]. Is should be noticed that average maximum compression factor in

this case is only about 50% [62].

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 35 4.10.2007 3:08pm Compositor Name: VBalamugundan

Audio Signal Processing 11-35

11.10.2 MUSICAM and MPEG Standards

Among standards for digital coding of high-quality audio, the most important role play MPEG

standards are designed for various communications and multimedia applications. They are elaborated

as a result of efforts of the working group WG 11 within the International Organization for Standard-

ization (ISO=IEC).

The first result was MPEG-1 standard IS 11172 designed (in its audio part) for a 2-channel audio,

approximately with a CD quality [54]. This standard consists of three layers—I, II, and III, of increasing

efficiency. For transparent transmission, they enable bitrates of 384, 192, and 128 kb=s, respectively.

MPEG-1 supports sampling rates of 32, 44.1, and 48 ksamples=s. Layer II of MPEG-1 is based on the

masking-pattern universal subband integrated coding and multiplexing (MUSICAM) standard designed

for digital audio broadcasting (DAB) system [24,63]. Layer III of MPEG-1 (commonly called MP3) has

become very popular in Internet due to very widely spread *.mp3 audio files [64].

The next step of the standardization was MPEG-2 AAC standard IS 13818 designed for high-

definition television (HDTV) [64,65]. In comparison with MP3, it offers a multichannel (surround)

sound for high spatial realism (up to 48 channels), provides low bitrate audio (below 64 kb=s), supports

low sampling rates of 16, 22.05, and 24 ksamples=s, and uses higher efficiency and simpler filterbank

(pure MDCT instead of hybrid). Higher coding efficiency of AAC in relation to MP3 by factor 1.5 is also

result of better selected blocksizes: 1024 samples for stationary signals (MP3: 576 samples) and 128

samples for transient signals (MP3: 192 samples).

SSC coder (Figure 11.32) developed by PHILIPS is one of the first very efficient parametric audio

coders (see Section 11.3). Its coding efficiency comparing to that of the MP3 is higher by factor 3.5 [29].

Expanded ACC system is MPEG-4 AAC-Plus, which has two versions:

. Version 1, which is a combination of AACþ SBR

. Version 2, which is a combination of AACþ SBRþPS (parametric stereo)

Version 2 has found important applications, e.g., in DRM (digital radio mondiale) broadcasting and

Internet streaming (see Section 11.11).

TABLE 11.6 Audio Coders

Lossless Lossy

Apple Lossless ADPCM

Audio Lossless Coding (MPEG-4 ALS) AAC & AACþ (MPEG-2, MPEG-4)

FLAC ATRAC

Meridian Lossless Packing Dolby Digital (AC3)

Monkey’s Audio MP3 (MPEG-1 Audio layer III)

Shorten Ogg Vorbis

Windows Media Audio Windows Media Audio

Transients
module

SSC frame formatting

PCM
audio

SSC bitstream

Sinusoids
module

Noise
module

Transient
parameters

Sinusoids
parameters

Noise
parameters

FIGURE 11.32 Structure of SSC encoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 36 4.10.2007 3:08pm Compositor Name: VBalamugundan

11-36 Digital Systems and Applications

In the frame of MPEG-4 audio lossless standard (ALS) can also be found [62]. A simplified scheme of

an ALS encoder is shown in Figure 11.33. The ALS coder works using forward-adaptive linear prediction

with estimation of the optimal predictor coefficients and calculation of a suitable prediction order.

Entropy coding is realized using Rice codes (simple mode) and block Gilbert–Moore codes (more

complex but more efficient) [62]. An interesting feature of ALS coder is the possibility of floating-point

data processing.

The third generation standard MPEG-4 has been designed for a broad area of various communica-

tions (especially mobile-access) and multimedia applications and is characterized by high flexibility,

scalability, and universality [1]. It supports bitrates between 2 and 64 kb=s and offers additional services

as text-to-speech (TTS) conversion, structured audio format, and interface between TTS and synthetic

moving face models (talking heads), which are driven from speech.

A new standard MPEG-7, named the multimedia content description interface, is aimed to support as

broad range of communications and multimedia applications as possible [2]. MPEG-7 audio merges five

different technologies: the audio description framework (scalable series, low-level descriptors, and

uniform silence segments), musical instrument timbre descriptors, sound recognition tools, spoken

content descriptors, and melody descriptors. To describe the low-level audio features, regions of

similarity and dissimilarity within the sound are searched for. This can be done using either samples

taken at regular intervals or segments of samples. The relevant samples are then further manipulated to

form a scalable series, which allows to progressively downsample the data contained in a series,

according to the application, bandwidth, or storage requirements.

The scope of newest MPEG-21 standard is the integration of technologies enabling transparent and

augmented use of multimedia resources across a wide range of networks and devices to support

functions, such as content creation, content production, content distribution, content consumption

and usage, content packaging, intellectual property management and protection, content identification

and description, financial management, user privacy, terminals and network resource abstraction,

content representation, and event reporting [3].

MUSICAM as well as MPEG-1 layers I and II coders have the same structure shown in Figure 11.34.

The input audio signal is transmitted via a 32-band polyphase analysis filter bank (Figure 11.23a) with

equally spaced passbands, according to Equations 11.50a through 11.50c. All subband filters with

impulse responses Hi(n), i¼ 0, 1, . . . , 31, determined by Equation 11.48, are obtained by modulation

of a single prototype lowpass filter with the impulse response h(n), as is illustrated in Figure 11.23c.

Their output signals are critically decimated. For a 48 ksamples=s sampling rate, each subband filter has

a passband width of 750 Hz. Although these filters are highly overlapping, they can guarantee a perfect

(or at least a nearly perfect) signal reconstruction (via the synthesis filter bank in Figure 11.23b) due to

Linear
predictor

Buffer

Quantized
coefficients
calculation

MPEG-4 ALS frame formatting

PCM
audio

Lossless encoded
bitstream

+−

FIGURE 11.33 Structure of MPEG-4 ALS encoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 37 4.10.2007 3:08pm Compositor Name: VBalamugundan

Audio Signal Processing 11-37

the power complementarity. For instance, at multiples of 750 Hz the respective filters, i.e., those with

neighboring passbands exhibit a 3 dB attenuation.

Samples of subband signal components are quantized with a number of uniform midtread quantizers

with 3, 5, 7, . . . , 65, 535 possible levels. Blocks of samples are formed (e.g., blocks of 12 samples in layer

I) and divided by a scalefactor ssf selected in such a way that the sample with the largest magnitude is

scaled to 1. By this means, a quite large overall dynamic range of approximately 126 dB is reached.

Proper quantizers are selected with the dynamic bit allocation algorithm described in Section 11.9,

controlled by a psychoacoustic audibility model, to meet the bitrate and the global threshold of hearing

requirements. The whole procedure is described below.

The psychoacoustic model filter bank is based on a 512-point FFT for layer I and on a 1024-point FFT

for layers II and III. First, samples of the spectral power density P(k) and the respective level LP(k) in

decibels are computed:

p(k) ¼ jX(k)j2 (11:61a)

Lp(k) ¼ 10 log10 p(k) (11:61b)

where X(k) are DFT spectrum samples defined by Equation 11.31a. Next in each of i¼ 0, 1, . . . , 31

subbands, the signal SPL is computed as follows:

Lpi ¼ max [LPmax i ,20 log10 (32768ssf maxi)� 10] (11:62)

where LPmaxi is the maximum LP(k) value in ith subband.

Next, the relevant masker levels LPm(zj) are searched for: tone masker levels LPtm(zj), j¼ 1, 2, . . . , mtm

and noise masker levels LPnm(zj), j¼ 1, 2, . . . , mnm. Then, the masking indices are computed (in dB):

atm(zj) ¼ �1:525� 0:275zj � 4:5 (11:63a)

anm(zj) ¼ �1:525� 0:175zj � 0:5 (11:63b)

Analysis
filter bank

(time-to-fequency
mapping)

PCM
audio

Scaling,
bit allocation,

and
quantization

FFT

Psychoacoustic
perception

model

Ancillary data
(optional)

Bitstream
formatting

Encoded
bitstream

Sythesis
filter bank

(frequency-to-time
mapping)

Dequantization
and

descaling

Bitstream
unpacking

Encoded
bitstream

Ancillary data
(if included)

PCM audio
(reconstructed)

(a)

(b)

FIGURE 11.34 Structure of MUSICAM and MPEG-1 layer I and II coders: (a) encoder and (b) decoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 38 4.10.2007 3:08pm Compositor Name: VBalamugundan

11-38 Digital Systems and Applications

where by zj the jth critical band index in Bark is denoted.

Individual masking threshold levels are computed (in dB) as

Lttm(z, zj , Lpm) ¼ LPtm(zj)þ atm(zj)þ V (Dz, zj) (11:64a)

Ltnm(z, zj , Lpm) ¼ LPnm(zj)þ anm(zj)þ V (Dz, zj) (11:64b)

for tonemaskers and for noisemaskers, respectively. The so-calledmasking function v(Dz, zj) is defined by

V (Dz, zj) ¼
17(Dz þ 1)� 0:4Lpm(zj)þ 6 for Dz < �1

(0:4Lpm(zj)þ 6)Dz for� 1 � Dz < 0

�17Dz for 0 � Dz < 1

(Dz � 1)(�17þ 0:15Lpm(zj))þ 17 for 1 � Dz

8>><
>>: (11:65)

where Dz¼ z� zj. The above equation gives significant values in range �3 � Dz � 8 only. Outside this

region we can assume that v(Dz, zj) ! �1.

Using Equation 11.14, the global threshold of hearing Lptg (Figure 11.35) can now be computed

(in dB):

Lptg(z) ¼ 10 log10 10Lptq(z)=10 þ
Xmtm

j¼1

10Lttm(z,zj ,LPm)=10 þ
Xmnm

j¼1

10Ltnm(z,zj ,LPm)=10

 !
(11:66a)

where Lptq(z) is the threshold of audibility in quiet. Consequently,

Lptgmin(i) ¼ min (Lptg(zj)) (11:66b)

for ith subband is computed over all critical bands j contained in this subband. Now in each subband,

the SMRi can be computed (in dB):

SMRi ¼ Lpi � Lptgmin(i) (11:67)

Finally, the dynamic bit allocation algorithm based on maximization of the mask-to-noise ratio

MNRi(m) defined with Equation 11.60 assign bits to each block and each subband.

10−2 10−1 100 101
−20

0

20

40

60

80

100

120

S
P

L,
 L

p
 [d

B
]

Frequency, f [kHz]

FIGURE 11.35 Global hearing threshold Lptg for several simultaneous maskers as a function of frequency.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 39 4.10.2007 3:08pm Compositor Name: VBalamugundan

Audio Signal Processing 11-39

11.10.3 Dolby AC-3 Standard

Dolby AC-3 standard gives the possibility for multichannel audio compression (from 1 to 5.1 channels)

[66]. The bitstream ranges from 32 to 640 kb=s. Coding operation in AC-3 format is realized using time

division aliasing cancelation (TDAC) filter bank. The sample block of length 512 is transformed into the

frequency domain and each sample block is overlapped by 256 samples. Spectral components are

represented in a floating-point format and the exponents and mantissas are coded separately. A set of

exponents is coded into the spectral envelope. One AC-3 synchronization frame is composed for six

audio blocks (1536 audio samples). Simplified AC-3 encoder is presented in Figure 11.36. The psychoa-

coustic model used in the AC-3 standard divides the audio band (0–24 kHz) into 50 subbands.

11.10.4 ATRAC Standard

An adaptive transform acoustic coder (ATRAC) developed by Sony has been designed for the MiniDisk

system [67]. The bitstream of 16-bit audio signal with sampling rate 44.1 ksamples=s (705.6 kb=s) is

reduced to 146 kb=s. The input audio signal (512 samples per channel) is decomposed into spectral

coefficients, which are grouped into 52 block floating units (BFUs). The spectral coefficients are

Analysis
filter
bank

Spectral
envelope
encoding

Bit
allocation

Mantissa
quantization

AC-3 frame formatting

PCM
audio Exponents

Mantissas

Quantized
mantissas

AC-3
bitstream

Bit allocation information

Spectral
envelope

parameters

FIGURE 11.36 AC-3 encoder.

Spectrum
quantization

Bit
allocation

PCM
audio Time–frequency

analysis
Parameters

Quantized
spectra

FIGURE 11.37 ATRAC encoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 40 4.10.2007 3:08pm Compositor Name: VBalamugundan

11-40 Digital Systems and Applications

normalized in each BFU, which are then quantized to the specified word length. Using QMF filters, the

time–frequency analysis unit divides the input signal into three subbands: 0–5.5 kHz, 5.5–11 kHz, and

11–22 kHz. Each subband is transformed into the frequency domain using the MDCT. Figure 11.37

presents the general scheme of the ATRAC encoder.

New versions of ATRAC coder, i.e., ATRAC3 (the signal analysis in 4 bands) and ATRAC3plus (the

signal analysis in 16 bands with longer windows) can compress audio data to, respectively, �10% and

5% of the CD data rate. The ATRAC family includes also ATRAC advanced lossless coder [67].

11.11 Digital Audio Transmission and Storage

11.11.1 Digital Audio Broadcasting

Digital audio broadcasting (DAB) system has been developed as a result of the EUREKA-147 Project—a

worldwide consortium [63]. More than 30 countries are members of the World DAB forum (excluding

the United States, where the system called HD [high-definition] radio is promoted). DAB uses two

(terrestrial and satellite) frequency bands: band III (174–240 MHz) and L-band (1452–1492 MHz).

Audio coding is performed with MPEG-1 layer II standard (MP2) at 192 kb=s. Six radio program

channels (each 192 kb=s) are organized in a DAB multiplex. Radio modulation is based on the coded

orthogonal frequency division multiplexing (COFDM) and the coding is realized using the Viterbi

algorithm [63].

11.11.2 Digital Radio Mondiale

Digital radio mondiale (DRM) is an open standard digital radio system, which is designed for

revitalization of the old analog radio transmission, which uses the long and short frequency bands

below 30 MHz (120 MHz limit has been voted) [68]. The DRM uses also the COFDM transmission and

is fitted into the old AM band with the existing broadcasting band plan based on a 10 kHz bandwidth.

The DRM can use three different types of audio coding:

. HE-AAC (high efficiency advanced audio codec) for audio transmission

. CELP (code excited linear predicyion) for voice transmission only

. HVXC in the case of speech programs

It is possible to enhance the performance of DRM encoders by application of the SBR technology (see

Sections 11.3 and 11.4).

11.11.3 Internet Transmission

Development of broadband Internet access (more than 256 kb=s) using a cable modem or a digital

subscriber loop (DSL) facilities gives the possibility of Internet radio broadcasting. Nowadays hundreds

of radio stations can already be found in the Internet. They mainly transmit music. Organizing your own

radio station is very simple—there exists an open source and free-of-charge software (see www.

shoutcast.com).

Two types of transmissions are used: live and on demand. The audio coding transmission is mainly

realized with MP3 (stereo signals with typical bitrate of 128 kb=s) or AAC-Plus (stereo signals with

64 kb=s or 5.1 channels with 160 kb=s).

11.11.4 Digital Audio Storage

It can be observed that in the era of Internet, the digital audio files in lossless and lossy formats can be

stored on hard disk drives (HDDs) of personal computers or computer servers. An HDD with capacity

of, e.g., 200 GB can store 3640 h of digital music with 128 kb=s bitstream. Next popular storing medium

is flash memories (used mainly in personal players) with bigger and bigger capacity (e.g., 4 MB).

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 41 4.10.2007 3:08pm Compositor Name: VBalamugundan

Audio Signal Processing 11-41

The data storing costs are the lowest for optical disks [69]. Perhaps, therefore, the most popular

format is still the compact disk digital audio (CD-DA) with stereo PCM signals with 16-bit resolution

and sampling rate of 44.1 ksamples=s.

Multichannel coding (1–5.1 channels) with high resolution of 16, 20, or 24 bits can be found in DVD-

audio (digital versatile disk audio) format that uses lossless compression: LPCM (linear pulse coded

modulation) or MLP (meridian lossless packing) [70]. Sampling rate in this standard may be set at 44.1,

48, 88.2, 96, 176.4, or 192 ksamples=s (two highest sampling rates only for two channels).

Second multichannel (stereo or 5.1) optical standard is SACD (super audio compact disk), which uses

1-bit sigma-delta modulation called direct stream digital standard with sampling rate of 2.8224 MHz.

SACD gives a possibility for hybrid recording, i.e., CD-DA together with SACD.

Audio data streams (up to 8) can also be recorded on DVD-video with maximal data rate of

6.144 Mb=s. In this format mainly lossy standards are used (Dolby Digital [7]).

References

1. ISO=IEC JTC1=SC29, MPEG-4 audio, Doc. N2431, 1998.

2. ISO=IEC JTC1=SC29, MPEG-7, Martı́nez, J.M. (Ed.), Doc. WG11, N4031, 2001.

3. ISO=IEC JTC1=SC29, MPEG-21, Bormans, J. and Hill, K. (Eds.), Doc. WG11 N4041, 2001.

4. MPEG home page, http:==www.chiariglione.org=mpeg=, 2006.

5. Noll, P., MPEG audio coding standards, IEEE Signal Process. Mag., 1997.

6. Noll, P. and Liebchen, T., Digital audio: From lossless to transparent coding, Dabrowski, A. (Ed.),

IEEE Poland Section, Chapter Circuits and Systems, Proceedings of the IEEE Signal Processing

Workshop, Poznan, Poland, 1999, 53.

7. Dolby Digital Plus, Dolby Laboratories Inc., www.dolby.com, 2006.

8. High-Definition Multimedia Interface (HDMI) Specification, Version 1.2, 2005.

9. Audio and Multimedia Realtime Systems, Fraunhofer IIS, http:==www.iis.fraunhofer.de=amm=

download=index.html, 2006.

10. Audio Solutions Guide—Analog and Digital Amplifiers, Clock Distribution Circuits, Data Con-

verters, Digital Signal Processors, Interface, Power Management, Texas Instruments, www.ti.com,

2006.

11. Dabrowski, A., Marciniak, T., and Pawlowski, P., Chosen digital signal procedures for hearing aids,

Arch. Control Sci., 15 (LI), 3, 2005, 291.

12. Gold, B. and Morgan, N., Speech and Audio Signal Processing—Processing and Perception of Speech

and Music, John Wiley & Sons, New York, 2000.

13. Huang, Y. and Benesty, J., Audio Signal Processing for Next Generation Multimedia Communication

Systems, Kluwer Academic Publishers, Boston, MA, 2004.

14. Marciniak, T., Dabrowski, A., and Cetnarowicz, D., Voice signal enhancement for human–machine

interfaces, Foundations of Control and Management Sciences, Publishing House of Poznan University

of Technology, Poznan, Poland, 02, 2004, 45.

15. Rochowniak, R., Marciniak, T., and Dabrowski, A., Recognition of noised speech using HMM-based

approach, IEEE Poland Section, Chapter Circuits and Systems, Proceedings of the IEEE Signal

Processing Workshop, Poznañ, Poland, 2005, 133.

16. Schroeter, J., Mehta, S.K., and Carter, G.C., Acoustic signal processing, The Electrical Engineering

Handbook, Chapman & Hall=CRCnetBASE, Boca Raton, FL, 2000, 19.1.

17. Moore, B.C.J., An Introduction to the Psychology of Hearing, 4th ed., Academic Press, London, 1997.

18. Zwicker, E. and Fastl, H., Psychoacoustics, 2nd ed., Springer-Verlag, Berlin, 1999.

19. Zwicker, E. and Feldtkeller, R., Das Ohr als Nachrichtenempfänger, Hirzel-Verlag, Stuttgart, 1967.

20. Kinsler, L., Frey, A., Coppens, A., and Sanders, J., Fundamentals of Acoustics, John Wiley & Sons,

New York, 2000.

21. Purnhagen, H., Advances in parametric audio coding, Proceedings of the IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, 1999, W99–1.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 42 4.10.2007 3:08pm Compositor Name: VBalamugundan

11-42 Digital Systems and Applications

22. Oppenheim, A., Schafer, R., and Buck, J., Discrete-Time Signal Processing, 2nd ed., Prentice-Hall,

Englewood Cliffs, NJ, 1998.

23. Vaidyanathan, P.P., Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, NJ, 1993.

24. Dehery, Y.F., Stoll, G., and Kerkhof, L.V.D., MUSICAM source coding for digital sound, Proceedings

of the 17th International Television Symposium, Montreux, Switzerland, 1991, 612.

25. Princen, J., Johnson, A., and Bradley, A., Subband transform coding using filter bank designs based

on time domain aliasing cancellation, Proceedings of ICASSP, 1987, 2161.

26. Fettweis, A., Wave digital filters: Theory and practice, Proc. IEEE, 74(2), 1986, 270.

27. Burrus, C.S., Gopinath, R.A., and Guo, H., Introduction to Wavelets and Wavelet Transforms,

Prentice-Hall, Upper Saddle River, NJ, 1998.

28. Purnhagen, H., Meine, N., HILN—the MPEG4 parametric audio coding tools, Proceedings of

International Symposium on Circuits and Systems (ISCAS), Geneva, 3, 2000, 2001.

29. Muzzi, M.G., Improvement of the Audio Quality of a Parametric Coder, Philips Digital System

Laboratories, Eindhoven, The Netherlands, 2003.

30. Chong, K.S., et al. Low power spectral band replication technology for the MPEG-4 audio standard,

Proceedings of ICICS-PCM, Singapore, 2003, 1408.

31. Dietz, M. and Meltzer, S., CT-aacPlus—a State-of-the-Art Audio Coding Scheme, EBU Technical

Review, Coding Technologies, Germany, 2002, 1=7.

32. Ekstrand, P., Bandwidth extension of audio signals by spectral band replication, Proceedings of the 1st

IEEE Workshop on Model Based Processing and Coding of Audio, Leuven, Belgium, 2002.

33. ISO=IEC JTC1=SC29=WG11 N6130, Parametric coding of high quality audio, text 14496–3,

approved 2003.

34. Kunz, O., Spectral Band Replication Explained: White Paper, Coding Technologies, http:==www.

codingtechnologies.com=products=sbr.htm, 2006.

35. Fletcher, H., Auditory patterns, Rev. Mod. Phys., 12, 1940, 47.

36. Scharf, B., Critical bands, Foundations of Modern Auditory Theory, Vol. 1, Tobias, J.V. (Ed.),

Academic Press, New York, 1970, 157.

37. Zwicker, E., Flottrop, G., and Stevens, S.S., Critical bandwidth in loudness summation, J. Acoust.

Soc. Am., 29, 1957, 548.

38. Terhardt, E., Calculating virtual pitch, Hear. Res., 1, 1979, 155.

39. Hellman, R.P., Asymmetry in masking between noise and tone, Percept. Psychophys., 11, 1972, 241.

40. Kapust, R., A human ear related objective measurement technique yields audible error and error

margin, Proceedings of the 11th International AES Conference on Test and Measurement, Portland,

1992, 191.

41. Johnston, J.D., Transform coding of audio signals using perceptual noise criteria, IEEE J. Sel. areas

Commun., 6(2), 1988, 314.

42. Dabrowski, A., Multirate and Multiphase Switched-Capacitor Circuits, Chapman and Hall, London,

1997.

43. Jayant, N.S. and Noll, P., Digital Coding of Waveforms: Principles and Applications to Speech and

Video, Prentice-Hall, Englewood Cliffs, NJ, 1984.

44. Audio DSPs, Cirrus Logic, http:==www.cirrus.com=en=products=pro=techs=T6.html, 2006.

45. DSP Device Overview, Altera, www.altera.com, 2006.

46. Audio=Video Products, Analog Devices, www.analog.com, 2006.

47. Digital Signal Processors and Controllers, Freescale Semiconductor, www.freescale.com, 2006.

48. DSP Selection Guide, Texas Instruments, www.ti.com, 2006.

49. Bellanger, M., Digital Processing of Signals: Theory and Practice, 3rd ed., John Wiley & Sons,

New York, 2000.

50. Mitra, S.K., Digital Signal Processing, 3rd ed., McGraw-Hill, New York, 2006.

51. Marciniak, T. and Dabrowski, A., Aspects of audio processing, Online Symposium for Electronics

Engineers (OSEE), www.techonline.com, 2000.

52. MATLAB: Signal Processing Toolbox User’s Guide Ver. 6, The MathWorks Inc., Natick, MA, 2006.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 43 4.10.2007 3:08pm Compositor Name: VBalamugundan

Audio Signal Processing 11-43

53. Dabrowski, A., Figlak, P., Golebiewski, R., and Marciniak, T., Signal Processing Using Signal Proces-

sors (in Polish), PUT Press, Poznan, Poland, 2001.

54. ISO=IEC JTC1=SC29, MPEG-1, Information technology—coding of moving pictures and associated

audio for digital storage media at up to about 1.5 Mbit=s—IS 11172 (Part 3, Audio), 1992.

55. Beckmann, P. and Stilson, T., An efficient asynchronous sampling-rate conversion algorithm for

multi-channel audio applications, Proceedings of the 119th AES Convention, New York, 2005.

56. Zölzer, U., Digitale Audiosignalverarbeitung, Teubner, Stuttgart, 1997.

57. Ramstadt, T.A., Digital methods for conversion between arbitrary sampling frequencies, IEEE

Trans. Acoust., Speech Signal Process., ASSP-32, 3, 1984, 577.

58. Huffman, D.A., A method for the construction of minimum redundancy codes, Proc. IRE, 40, 1952,

1098.

59. Salomon, D. Data Compression: The Complete Reference, 3rd ed., Springer-Verlag, New York, 2004.

60. Pan, D.Y., A tutorial on MPEG=audio compression, IEEE Multimedia, 2, 1995, 60.

61. List of codecs, en.wikipedia.org, 2006.

62. Liebchen, T., The MPEG-4 audio lossless coding (ALS) standard-technology and applications,

Proceedings of the AES 119th Convention, New York, 2005.

63. Hoeg, W. and Lauterbach, T., Digital Audio Broadcasting—Principles and Applications of Digital

Radio, 2nd ed., John Wiley & Sons, West Sussex, England, 2003.

64. Brandenburg, K., MP3 and AAC explained, Proceedings of AES 17th International Conference on High

Quality Audio Coding, Erlangen, Germany, 1999.

65. ISO=IEC JTC1=SC29, MPEG-2, Information technology—generic coding of moving pictures and

associated audio information—IS 13818 (Part 7, Audio), 1997.

66. Jayant, N., Digital audio communications, Digital Signal Processing Handbook (Part IX), CRC Press

LLC, Boca Raton, FL, 1999.

67. ATRAC Technology, Sony, http:==www.sony.net=Products=ATRAC3=, 2006.

68. ETSI ES 201 980 V2.2.1, Digital Radio Mondiale (DRM) System Specification, 2005.

69. Delux Media Global Services, www.deluxmedia.com, 2006.

70. Stuart, J., Craven, P., Gerzon, M., Law, M., and Wilson, R., MLP lossless compression, Proceedings of

the AES 9th Regional Convention, Tokyo, http:==www.meridian-audio.com=lib_pap.htm, 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C011 Final Proof page 44 4.10.2007 3:09pm Compositor Name: VBalamugundan

11-44 Digital Systems and Applications

12
Digital Video

Processing

Todd R. Reed
University of Hawaii at Manoa

12.1 Introduction... 12-1
Some Historical Perspective . Video . Image Sequences

as Spatiotemporal Data

12.2 Some Fundamentals .. 12-4
A 3-D System . 3-D Fourier Transform . Moving

Images in the Frequency Domain . Three-Dimensional

Sampling

12.3 Perception of Visual Motion 12-10
Anatomy and Physiology of Motion Perception .

Psychophysics of Motion Perception . Effects of

Eye Motion

12.4 Image Sequence Representation................................. 12-14
What Does Representation Mean? . Spatial=

Spatial-Frequency Representations . Spatial=Scale

Representations (Wavelets) . Resolution

12.5 Computation of Motion... 12-18
Motion Field . Optical Flow . Calculation of

Optical Flow

12.6 Image Sequence Compression.................................... 12-24
Motion Compensated Prediction=Transform Coders .

Perceptually-Based Methods

12.7 Conclusions.. 12-28

12.1 Introduction

Rapid increases in performance and decreases in cost of computing platforms and digital image

acquisition and display subsystems have made digital images ubiquitous. Continued improvements

promise to make digital video as widely used, opening a broad range of new application areas. In this

chapter, some of the key aspects of this evolving data type are examined.

12.1.1 Some Historical Perspective

The use of image sequences substantially predates modern video displays [1]. As might be expected, the

primary initial motivation for using these sequences was the depiction of motion. One of the earlier

approaches to motion picture display was invented by the mathematician William George Horner in 1834.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 1 4.10.2007 3:01pm Compositor Name: VBalamugundan

12-1

Originally called the Daedaleum (after Daedalus, who was supposed to have made figures of men that

seemed to move), it was later called the zoetrope (life turning) or the wheel of life. The Daedaleum works

by presenting a series of images, one at a time, through slits in a circular drum as the drum is rotated.

Although this device is very simple, it illustrates some important concepts. First and foremost, the

impression of motion conveyed by a sequence of images is illusory. It is the result in part of a property of

the human visual system (HVS) referred to as persistence of vision. An image is perceived to remain for a

period after it has been removed from view. This illusion is the basis for all motion picture displays. When

the drum in the device is rotated slowly, the images appear (as they are) as a disjoint sequence of still

images. As the speed of rotation increases (the images are displayed at a higher rate), a point is reached at

which motion is perceived, even though the images appear to ‘‘flicker’’. Further increasing the speed of

rotation, a point is reached at which flicker is no longer perceived (the critical fusion frequency). Finally,

the slits in the drum illustrate a critical aspect of this illusion. To perceive motion from a sequence of

images, the stimuli that are represented by the individual images must be removed for a period between

each presentation. If not, the sequence of images simply merges into a blur, and no motion is perceived.

These concepts (rooted in the nature of human visual motion perception) are fundamental, and are

reflected in all motion picture acquisition and display systems.

12.1.2 Video

Unlike image sequences on film, video is represented as a 1-D signal, derived by scanning the camera

sensor. The fact that the signal is derived by scanning imposes a particular signal structure, an example

of which is shown in Figure 12.1 for a noninterlaced system.

In principle, there are many ways in which scanning could be done. The simplest in concept is

noninterlaced, line-continuous scanning (which yields the video signal just discussed). This approach is

also referred to as progressive scanning. Viewed in the 2-D plane (either at the camera or display), this

approach appears as shown in Figure 12.2.

Line blanking
(for line retrace)

Frame blanking
(for frame retrace)

FIGURE 12.1 A noninterlaced video signal.

Retrace
(not visible)

FIGURE 12.2 A noninterlaced scanning raster.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 2 4.10.2007 3:01pm Compositor Name: VBalamugundan

12-2 Digital Systems and Applications

The bandwidth of the resulting video signal is relatively high. Transmitting a frame of 485 lines*,

with 4:3 aspect ratio (NTSC resolution), at 60 frames=s requires roughly twice the available channel

bandwidth (6 MHz). 60 updates=s are needed to avoid wide area flicker, dictated by the temporal

response of the HVS. One approach to reducing the signal bandwidth is to send half as many

samples (lines). This cannot be accomplished by reducing the frame rate to 30 fps, because an

unacceptable degree of flicker is introduced. Reducing the spatial resolution of each frame results

in unacceptable blurring. Interlaced scanning is a compromise between the two approaches.

As used in NTSC television, each complete scan (a frame) contains 525 lines, and occurs every 1=30 s.

The frame consists of two fields (even and odd), 262 1
2
lines each. These fields are interlaced to form the

frame. Fields are scanned every 1=60 s (reducing flicker). Because two fields are interlaced to form one

frame, this is called 2:1 interlace. Two interlaced fields (NTSC) are shown in Figure 12.3.

Image acquisition and display via scanning have several disadvantages. Nonideal aspects of the

scanning system (e.g., nonzero spot size), and under some circumstances the act of scanning itself,

leads to a reduction in vertical resolution below that predicted by the sampling theorem. The ratio of the

actual to ideal resolution is called the Kell factor k, 0 � k � 1. Typical values of k are .6< k< .8, with

interlaced systems having lower k. Scanning also causes distortion when objects in the scene are in

motion. For example, a vertical line in motion will result in a tilted scanned image (not because of the

tilt of the scan line, but because points on the line at the bottom of the screen are reached later than

points at the top). Finally, different points in space within the frame do not correspond to the same

point in time. Viewed in the spatiotemporal volume, each frame is tilted, with the upper left corner of

the frame corresponding to a significantly earlier time than the lower right corner. This can make the

accurate analysis of the image sequence difficult.

Interlaced scanning has additional disadvantages. Interlaced display systems suffer from interline

flicker (particularly in regions of the image with nearly horizontal structure). Interlacing results in

reduced vertical resolution that increases aliasing. It also increases the complexity of subsequent

processing or analysis (such as motion estimation). Interoperability with other systems, such as

computer workstations (which use noninterlaced displays) is made difficult. Still images extracted

from interlaced video (freeze fields) are generally of poor quality. Often, only freeze fields are provided.

This last point can be seen by considering the case of an edge in horizontal motion (Figure 12.4). To

merge two fields to get a still image of reasonable quality, or to get a good progressively scanned

sequence from an interlaced one, is a nontrivial problem.

1
3

5

7

521

523

525

519

FIGURE 12.3 An NTSC frame, formed by interlacing two fields (2:1 interlace).

*NTSC consists of 525 lines, but only �485 lines are active.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 3 4.10.2007 3:01pm Compositor Name: VBalamugundan

Digital Video Processing 12-3

12.1.3 Image Sequences as Spatiotemporal Data

As discussed above, the scanning process makes the precise specifications of an image sequence difficult

(since every spatial point exists at a different time). Interlace complicates matters further. In the

remainder of this chapter, the simplifying assumption that each point in a frame corresponds to

the same point in time is made. This is analogous to the digitization of motion picture film, or the

sequence that results from a CCD camera with a shutter. It is a reasonable assumption in progressive or

interlaced video systems when scene motion is slow compared to the frame rate. The series of frames are

no longer tilted in the spatiotemporal domain, and can be ‘‘stacked’’ in a straightforward way to form a

spatiotemporal volume (see Figure 12.5).

12.2 Some Fundamentals

Following are some notational conventions and basic principles used in the remainder of this chapter.

A continuous sequence is denoted as u(x, y, t), v(x, y, t), etc., where x and y are the continuous spatial

variables and t is the continuous temporal variable. Similarly, a discrete sequence is denoted as u

(m, n, p), v(m, n, p), etc., where m and n are the discrete (integer) spatial variables and p is the discrete

(integer) temporal variable.

Direction
of motion

Serration due
to interlace

FIGURE 12.4 Effect of interlace on an edge in horizontal motion.

FIGURE 12.5 An image sequence represented as a spatiotemporal volume, raytraced to exhibit its internal

structure.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 4 4.10.2007 3:01pm Compositor Name: VBalamugundan

12-4 Digital Systems and Applications

12.2.1 A 3-D System

As in 1-D and 2-D, a 3-D discrete system can be defined as

y(m, n, p) ¼ H[x(m, n, p)] (12:1)

where H is the system function. In general, this function need be neither linear nor shift invariant. If

the system is both linear and shift invariant (LSI), it can be characterized in terms of its impulse response

h(m, n, p). The linear shift invariant system response can then be written as

y(m, n, p) ¼
X1

m 0¼�1

X1
n 0¼�1

X1
p 0¼�1

x(m0, n0, p0)h(m�m0, n� n0, p � p0)

� x(m, n, p)*h(m, n, p) (12:2)

where ‘‘*’’ denotes (discrete) convolution. Similarly, for the continuous case,

g(x, y, t) ¼
ð1
�1

ð1
�1

ð1
�1

f (x0, y 0, t 0)h(x � x0, y � y 0, t � t 0)dx0 dy 0 dt 0 (12:3)

12.2.2 3-D Fourier Transform

The 3-D continuous Fourier transform can be expressed as

F(jx , jy , jt) ¼
ð1
�1

ð1
�1

ð1
�1

f (x, y, t)e�j2p(xjxþyjyþtjt)dx dy dt (12:4)

where jx, jy, and jt are the spatiotemporal-frequency variables and f (x, y, t) is a continuous spatiotem-

poral signal. As in the 2-D case, the 3-D Fourier transform is separable:

F jx , jy , jt
� � ¼ ð1

�1

ð1
�1

ð1
�1

f (x, y, t)e�j2pxjxdx

� �
e�j2pyjydy

� �
e�j2ptjtdt (12:5)

Also as in the 1-D and 2-D cases, if

g(x, y, t) ¼ h(x, y, t)*f (x, y, t) (12:6)

then

G jx , jy , jt
� � ¼ H jx , jy , jt

� �
F jx , jy , jt
� �

(12:7)

If h(x, y, t) is the LSI system impulse response then H(jx, jy, jt) is the frequency response of the system.

The spatiotemporal discrete Fourier transform is defined as

v(h, k, l) ¼
XN�1

m¼0

XN�1

n¼0

XN�1

p¼0

u(m, n, p)Whm
N Wkn

N W
lp
N (12:8)

where 0 � h, k, l � N� 1 and WN ¼ e
�j2p
N .

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 5 4.10.2007 3:01pm Compositor Name: VBalamugundan

Digital Video Processing 12-5

The inverse transform is

u(m, n, p) ¼ 1

N 3

XN�1

h¼0

XN�1

k¼0

XN�1

l¼0

v(h, k, l)W�hm
N W�kn

N W
�lp
N (12:9)

where 0 � m, n, p � N� 1.

12.2.3 Moving Images in the Frequency Domain

Following the discussion in Ref. [2], a moving monochrome image can be represented by an intensity

distribution f(x, y, t). The image is static if f(x, y, t)¼ f(x, y, 0) for all t. The velocity of the image can be

expressed via the image velocity vector

~r ¼ (rx , ry) (12:10)

If the (initially static) image translates at a constant velocity~r then

fr(x, y, t) ¼ f (x � rxt , y � ry t , t) (12:11)

Consider the case of a simple 2-D ‘‘image’’ f(x, t). Let

~a ¼ x

t

� �
and ~b ¼ jx

jt

� �
(12:12)

where jx and jt are the spatial and temporal frequency variables. Then the transform pair can be

written as

f (~a) !F F(~b) (12:13)

Now, translation can be represented as a coordinate transformation:

~a0 ¼ x � rxt

t

� �
¼ A~a (12:14)

where

A ¼ 1 �rx
0 1

� �
(12:15)

and rx is the horizontal speed.

Using the expression for the Fourier transform after an affine coordinate transformation (any

combination of scaling, rotation, and translation),

f (~a0) !F F (A�1)T~b
h i

(12:16)

where

(A�1)T ¼ 1 0

rx 1

� �
(12:17)

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 6 4.10.2007 3:01pm Compositor Name: VBalamugundan

12-6 Digital Systems and Applications

so that

f (x � rxt , t) !F F(jx , jt þ rxjx) (12:18)

Example

Consider a simple static image with only two components (Figure 12.6). As the image undergoes

translation with horizontal speed rx, all temporal frequencies are shifted by �rx jx. Spatial frequency

components remain unchanged. That is, all frequency components of an image moving with velocity rx
lie on a line through the origin, with slope �rx.

Extending the analysis to the 3-D case (f(x, y, t)), let the velocity~r ¼ (rx , ry) Then

f (x � rxt , y � ry t , t) !F F jx , jy , jt þ rxjx þ ryjy
� �

(12:19)

Each temporal frequency is shifted by the dot product of the spatial frequency vector~s ¼ (jx , jy) and

the image velocity vector~r ¼ (rx , ry). If the image was originally static, then

jt ¼ �~r �~s ¼ �(rxjx þ ryjy) (12:20)

Geometrically, the image motion changes the static image transform (which lies in the (jx, jy) plane)

into a spectrum in a plane with slope �ry in the (jy, jt) plane and �rx in the (jx , jt) plane. As in the 2-D

case, the shifted points lie on a line through the origin. Note that this represents a relatively sparse

occupation of the frequency domain (of interest for compression applications) (Figure 12.7). A 3-D

(Temporal frequency)

(Spatial frequency)

rx xx0

−xx0

−r
x
xx0

xx0 xx

ξ
t

FIGURE 12.6 A two component 1-D signal in translational motion.

(−xx0
, −xy0

, rxxx0
+ ryxy0

)

xt

(xx0
, xy0

, −rxxx0
− ryxy0

)

(xx0
, xy0

, 0)

xx
(−xx0

, −xy0
,0)

xy

FIGURE 12.7 A two component 2-D signal in translational motion.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 7 4.10.2007 3:02pm Compositor Name: VBalamugundan

Digital Video Processing 12-7

volume of data has been compressed into a plane. This compactness is not observed in the spatiotem-

poral domain.

In summary, the spectrum of a stationary image lies in the (jx, jy) plane. When the image undergoes

translational motion, the spectrum occupies an oblique plane which passes through the origin. The

orientation of the plane indicates the speed and direction of the motion. It is therefore possible to

associate energy in particular regions of the frequency domain with particular image velocity compon-

ents. By filtering specific regions in the frequency domain, these image velocity components can be

detected. As will be seen shortly, other effects (such as the visual impact of temporal aliasing) can also be

understood in the frequency domain.

12.2.4 Three-Dimensional Sampling

In its simplest form (regular sampling on a rectangular grid, the method used here), 3-D sampling is a

straightforward extension of 2-D (or 1-D) sampling (Figure 12.8). Given a band-limited sequence

f (x, y, t) !F F jx , jy , jt
� �

(12:21)

with

F jx , jy , jt
� � ¼ 0 whenever jjx j > jx0 , jjy j > jy0 , or jjt j > jt0 (12:22)

the continuous sequence can be reconstructed from a discrete set of samples whenever

jxs > 2jx0 , jys > 2jy0 , and jts > 2jt0 (12:23)

where jxs, jys, jzs are the sampling frequencies. Equivalently, the sequence can be reconstructed if the

intervals between samples are such that

Dx <
1

2jx0
, Dy <

1

2jy0
, and Dt <

1

2jt0
: (12:24)

y

t

x

∆y

∆x

∆t

f(x, y, t)

FIGURE 12.8 A sampled spatiotemporal signal (image sequence).

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 8 4.10.2007 3:02pm Compositor Name: VBalamugundan

12-8 Digital Systems and Applications

If any of the sampling frequencies fall below the specified rates, then the neighboring spectra (replica-

tions of the continuous spectrum, produced by the sampling process) overlap, and aliasing results.

A case for which the temporal sampling frequency is too low is shown in Figure 12.9. The appearance of

aliasing in the spatial domain, where it commonly manifests as a jagged approximation of smooth, high

contrast edges, is relatively familiar and intuitive. The effect of sampling at too low a rate temporally is

perhaps less so.

Consider the earlier simple example of a 1-D image with only two components, moving with velocity

rx. The continuous case, as derived previously, is shown in Figure 12.10. jx0 is the frequency of the static

image. Suppose this image is sampled along the

temporal dimension at a sampling frequency jts less

than the Nyquist rate (jtN¼ 2rx jx0), and the image is

reconstructed via an ideal lowpass filter with tem-

poral cutoff frequencies at plus and minus half the

sampling frequency (Figure 12.11). What is the vis-

ual effect of the aliased components?

As seen previously, the velocity of motion is

reflected in the slope of the line connecting the com-

ponents. For the situation shown, a sinusoidal grid

xy

∆X

xt

xx

F (xx , xy , xt)

1

∆t
1

∆y
1

FIGURE 12.9 An image sequence with insufficiently high sampling in the temporal dimension.

−rxxx0

A line with slope −r,
passing through the

origin

xt

xx
xx0

−xx0

−rxxx0

FIGURE 12.10 A continuous two component 1-D

signal in translational motion.

xt

rx xx0
− (xtN

− xtS
)

−rx xx0
+ (xtN

− xtS
)

rx xx0

−rx xx0

−xx0

xx0

xx

Slope = rx

xtN
− xtS

xtS

xX0

−

1
2

xtS
1
2−

FIGURE 12.11 A reconstruction of a sampled 1-D

signal with temporal aliasing.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 9 4.10.2007 3:02pm Compositor Name: VBalamugundan

Digital Video Processing 12-9

(of the same frequency as the original) moving in the opposite direction, with speed rx jx0� (jtN� jts) is

observed. As the sampling frequency drops, the velocity decreases, eventually reaching zero. Continued

reduction in jts results in motion in the same direction as the original image, increasing in velocity until

(at jts¼ 0) the velocities of the two components are identical.

In the simple example just considered, the image was spatially homogeneous, so that the effects of

aliasing were seen throughout the image. In general, this is not the case. As in the 1-D and 2-D cases, the

temporal aliasing effect is seen in regions of the sequence with sufficiently high temporal frequency

components to alias. Circumstances leading to high temporal frequencies include high velocity (large

values of rx in our simple example) and high spatial frequency components with some degree of motion

(high jx0 in our example). Higher spatial frequency components require slower speeds to cause aliasing.

A well-known example of temporal aliasing is the so-called wagon wheel effect, in which the wheels of

a vehicle appear to move in a direction opposite to that of the vehicle itself. The wheels have both high

spatial frequency components (due to their spokes) and relatively high rotational velocity. Hence,

aliasing occurs (the wheels appear to rotate in reverse). The vehicle itself, however, which is moving

more slowly and is also generally composed of lower spatial frequency components, moves forward

(does not exhibit aliasing effects).

12.3 Perception of Visual Motion

Visual perception can be discussed at a number of different levels: the anatomy or physical structure of

the visual system, the physiology or basic function of the cells involved, and the psychophysical behavior

of the system (the response of the system to various stimuli). Following is a brief discussion of visual

motion perception. A more extensive treatment can be found in Ref. [3].

12.3.1 Anatomy and Physiology of Motion Perception

The retina (the hemispherical surface at the back of the eye) is the sensor surface of the visual system,

consisting of two major types of sensor elements. The rods are long and thin structures, numbering

approximately 120 million. They provide scotopic ‘‘low-light’’ vision and are highly sensitive to motion.

The cones are shorter and thicker and substantially fewer in number (approximately six million

per retina). They are less sensitive than the rods, providing photopic ‘‘high-light’’ and color vision.

The cones are much less sensitive to motion.

The rods and cones are arranged in a roughly hexagonal array. However, they are not uniformly

distributed over the retina. The cones are packed in the fovea (hence color vision is primarily foveal).

The rods are primarily outside the fovea. As a result, motion sensitivity is higher outside the fovea,

corresponding to the periphery of the visual field.

Visual information leaves each eye via the optic nerve. The nerves from each eye split at the optic

chiasma, pass through the lateral geniculate nucleus, and continue to the visual cortex. Information is

retinotopically mapped on the cortex (organized as in the original scene, but reversed). Note, however,

that the mapping is not one-to-one (one retinal rod or cone to one cortical cell). As mentioned above,

there are approximately 120 million rods and 6 million cones in each eye, but only 1 million fibers in

the associated optic nerve. This 126:1, apparently visually lossless compression is one of the motivations

for studying perceptually inspired image and video compression techniques, as discussed later in

this chapter.

To achieve this compression, each cortical cell receives information from a set of rods or cones. This

set makes up the receptive field for that cell. The response of a cortical cell to stimuli at different points

in this field can be measured (e.g., via a moving spot of light), and plotted just as one might plot the

impulse response of a 2-D filter.

Physiologically, nothing mentioned so far seems specifically adapted to the detection (or measure-

ment) of motion. It might be reasonable to expect to find cells that respond selectively to, e.g., the

direction of motion. There appear to be no such cells in the human retina (although other species do

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 10 4.10.2007 3:02pm Compositor Name: VBalamugundan

12-10 Digital Systems and Applications

have retinal cells that respond in this way). There are, however, cells in the mammalian striate cortex that

exhibit this behavior (the complex cells).

How these cells come to act this way remains under study. However, most current theories fit a

common organizational structure [4], shown in Figure 12.12. The input receptive fields are sensitive

both to the spatial location and spatial frequency of the stimulus. The role, if any, of orientation is not

widely agreed upon. The receptive field outputs are combined, most likely in a nonlinear fashion, in the

directionally sensitive subunits to produce an output highly dependent either on the direction or

velocity (or both direction and velocity) of the stimulus. The output of these subunits is then integrated

both spatially and temporally.

Consider the hypothetical directionally sensitive mechanism in more detail for the case of rightward

moving patterns (Figure 12.13). For example, suppose the receptive fields are symmetric, and C is a

comparator that requires both inputs to be high to output a high value. If a pattern that stimulates

receptive field 1 (RF1) moves a distance Dx in time Dt (so that it falls within receptive field 2 [RF2]),

then the comparator will ‘‘fire.’’

Although it is simple, such a model establishes a basic link between moving patterns on the retina and

the perception of motion. Additional insight can be obtained by considering the problem from a systems

perspective.

12.3.2 Psychophysics of Motion Perception

12.3.2.1 Spatial Frequency Response

In the case of spatial vision, much can be understood by modeling the visual system as shown in Figure

12.14. The characteristics of the filterH(jx, jy) have been estimated by determining the threshold visibility

of sine wave gratings. The resulting measurements indicate visual sensitivity as a function of spatial

frequency that is approximately lowpass in nature. The response peaks in the vicinity of 5 cycles=degree,

and falls off rapidly beyond 10 cycles=degree.

Input receptive field

Directionally sensitive
subunits

Spatial and temporal
integration

FIGURE 12.12 A common organizational structure for modeling complex cell behavior.

Motion

RF1 RF2

∆x

∆t C

“Combine” - multiplicative
or additive (comparator)
depending on the theory

FIGURE 12.13 A mechanism for the directionally sensitive detection of motion.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 11 4.10.2007 3:02pm Compositor Name: VBalamugundan

Digital Video Processing 12-11

If it were separable (i.e., H(jx, jy) could be determined by finding H(jx) and H(jy) independently),

with H(jx)¼H(jy), or isotropic, the spatial response could be characterized via a single 1-D function.

Although the assumption of separability is often useful, the spatial contrast sensitivity function (CSF) of

the human visual system is not, in fact, separable. It has been shown that visual sensitivity is reduced at

orientations other than vertical and horizontal. This may be due to the predominance of vertical and

horizontal structures in the visual environment, leading to the development or evolution of the visual

system to be particularly sensitive at (or conversely, less sensitive away from) these orientations. This is

referred to as the ‘‘oblique effect.’’

12.3.2.2 Temporal Frequency Response

The most straightforward approach to extending the above spatial vision model to include motion is to

modify the CSF to include temporal frequency sensitivity, so that H(jx, jy) becomes H(jx, jy, jt).

One way to estimate the temporal frequency response of the visual system is to measure the flicker

response. Although the flicker response varies with intensity and with the spatial frequency of the

stimulus, it is again generally lowpass, with a peak in response in the vicinity of 10 Hz. The attenuation

of the response above 10 Hz increases rapidly, so that at 60 Hz (the field rate of NTSC television), the

flicker response is very low.

It is natural, as in the 2-D case, to ask whether the spatiotemporal-frequency response H (jx, jy, jt) is

separable with respect to the temporal frequency. There is evidence to believe that this is not the case.

The flicker-response curves for high and low spatial frequency patterns do not appear consistent with a

separable spatiotemporal response.

12.3.2.3 Reconstruction Error

To a first approximation, the data discussed above indicate that the HVS behaves as a 3-D lowpass filter,

with bandlimits (for bright displays) at 60 cycles=degree along the spatial frequency axes, and 70 Hz

temporally. This approximation is useful in understanding errors that may occur in reconstructing a

continuous spatiotemporal signal from a sampled one. Consider the case of an image undergoing simple

translational motion. This spatiotemporal signal occupies an oblique plane in the frequency domain.

With sampling, the spectrum is replicated (with periods determined by the sampling frequencies along

the respective dimensions) to fill the infinite 3-D volume. The spectrum of a sufficiently sampled

(aliasing-free) image sequence produced in this way is shown in Figure 12.15.

The 3-D lowpass reconstruction filter (the spatiotemporal CSF) can be approximated as an ideal

lowpass filter, as shown in Figure 12.16. As long as the cube in Figure 12.16 completely encloses the

spectrum centered at DC, without including neighboring spectra, there is no reconstruction error.

This case included no aliasing. If aliasing is included (the sample rate during acquisition is too low)

then the aliased components will be visible only if they fall within the passband of the CSF filter.

Luminance Brightness
g (·)

Contrast
 c(x, y)

b(x, y)f (x, y)

Nonlinear function
(typically

logarithmic or
power law)

Contrast sensitivity
function (CSF),

sometimes called the
modulation transfer

function (MTF)

H (xx, xy)

FIGURE 12.14 A simple block diagram of the modeling spatial vision.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 12 4.10.2007 3:02pm Compositor Name: VBalamugundan

12-12 Digital Systems and Applications

The above frequency domain analysis explains some important aspects of human visual motion

perception. Other observations are not as easily explained in this way, however. As observed in Ref. [5],

perceived motion is local (different motions can be seen in different areas of the visual field) and spatial-

frequency specific (individual motion sensors respond differently (selectively) to different spatial

frequencies). These two observations suggest an underlying representation that is local in both the

spatiotemporal and spatiotemporal-frequency domains. Examples of such representations are discussed

in the following section.

12.3.3 Effects of Eye Motion

The analysis of motion perception above assumed a ‘‘passive’’ view. That is, any change in the pattern of

light on the retinal surface is due to motion in the scene being viewed. That this is not the case can be

seen by considering the manner in which static images are viewed. They are not viewed as a whole, but in

a series of ‘‘jumps’’ from position to position. These jumps are referred to as ‘‘saccades’’ (meaning jolt or

jerk in French).

Even at the positions where the eye is at rest, it is not truly static. It undergoes very small motions

(microsaccades) of 1–2 min of arc. In fact, the eye is essentially never at rest. It has been shown that if

the eye is stabilized, vision fades away after about a second. The relevance of this to the current

discussion is that although the eye is in constant motion, so that the intensity patterns on the retina

are constantly changing, when viewing a static scene no motion is perceived. Similar behavior is

observed when viewing dynamic scenes [6]. Obviously, however, in the case of dynamic scenes, motion

is often perceived (even though the changes in intensity patterns on the retina are not necessarily greater

than for static images).

Two hypotheses might explain these phenomena. The first is that the saccades are so fast that they are

not sensed by the visual system. However, this does not account for the fact that motion is seen in

dynamic scenes, but not static ones. The second is that the motion sensing system is turned off under

some circumstances (the theory of corollary discharge). The basic idea is that the motor signals that

control eye movement are also involved in the perception of motion, so that when intensity patterns on

the retina change and there is a motor signal present, no motion is perceived. When intensity patterns

change but there is no motor signal, or if there is no change in intensity patterns but there is a motor

signal, motion is perceived. The later situation corresponds to the tracking of moving objects (smooth

pursuit). The first hypothesis (the less plausible of the two) can be easily modeled with temporal linear

filters. The second, more interesting behavior can be modeled with a simple comparator network.

xx

xy

xys

xts

−xts

xt

−xxs

−xys

xxs

FIGURE 12.15 Spectrum of a sampled image

undergoing uniform translational motion.

xCSFy

−xCSFt

xCSFx

−xCSFy

−xCSFx

−xCSFt

xx

xt

xy

FIGURE 12.16 An ideal 3-D lowpass reconstruction

filter, with cutoff frequencies determined by the spa-

tiotemporal contrast sensitivity function (CSF).

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 13 4.10.2007 3:02pm Compositor Name: VBalamugundan

Digital Video Processing 12-13

12.4 Image Sequence Representation

12.4.1 What Does Representation Mean?

The term ‘‘representation’’ may require some explanation. Perhaps the best way to do so is to consider

some examples of familiar representations. For simplicity, 2-D examples are used. Extension to 3-D is

relatively straightforward.

12.4.1.1 Pixel Representation

The pixel representation is so common and intuitive that it is usually considered to be ‘‘the image.’’ More

precisely, however, it is a linear sum of weighted impulses:

u(m, n) ¼
XN�1

m 0¼0

XN�1

n 0¼0

u(m0, n0)d(m�m0, n� n0) (12:25)

where u(m, n) is the image, u(m0, n 0) are the coefficients of the representation (numerically equal to the

pixel values in this case) and the d(m�m0, n� n 0) play the role of basis functions.

12.4.1.2 DFT

The next most familiar representation (at least to engineers) is the DFT, in which the image is expressed

in terms of complex exponentials:

u(m, n) ¼ 1

N 2

XN�1

h¼0

XN�1

k¼0

v(h, k)W�hm
N W�kn

N (12:26)

where 0 � m, n � N� 1 and

WN ¼ e
�j2p
N (12:27)

In this case, v(h, k) are the coefficients of the representation and the 2-D complex exponentials

W�hm
N W�kn

N are the basis functions.

The choice of one representation over the other (pixel vs. Fourier) for a given application depends on

the image characteristics that are of most interest. The pixel representation makes the spatial organization

of intensities in the image explicit. Since this is the basis of the visual stimulus, it seems more natural. The

Fourier representation makes the composition of the image in terms of complex exponentials (frequency

components) explicit. The two representations emphasize their respective characteristics (spatial vs.

frequency), to the exclusion of all others. If a mixture of characteristics is desired, different representations

must be used.

12.4.2 Spatial=Spatial-Frequency Representations

A natural mixture is to combine frequency analysis with spatial location. An example of a 1-D

representation of this type (a time=frequency representation) is a musical score. The need to know

not only what the frequency content of a signal is but also where in the signal the frequency components

exist is common to many signal, image, and image sequence processing tasks [7]. There are a variety of

approaches [8,9] that could be taken to developing a representation to facilitate these tasks. The most

intuitive approach is the finite-support Fourier transform.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 14 4.10.2007 3:02pm Compositor Name: VBalamugundan

12-14 Digital Systems and Applications

12.4.2.1 Finite-Support Fourier Transform

This approach to local frequency decomposition has been used for many years for the analysis of time-

varying signals. In the 2-D continuous case,

Fx, y(jx , jy) ¼
ð1
�1

ð1
�1

fx, y(x
0, y 0)e�j2p(jx x

0þjy y
0)d x0 d y 0 (12:28)

where

fx, y(x
0, y 0) ¼ f (x0, y 0)h(x � x0, y � y 0), (12:29)

f(x 0, y 0) is the original image, and h(x� x 0, y� y 0) is a window centered at (x, y).

The properties of the transform depend a great deal on the properties of the window function. Under

certain circumstances (i.e., for certain windows), the transform is invertible. The most obvious case is for

nonoverlapping (e.g., rectangular) windows.

The windowed transform idea can, of course, be applied to other transforms, as well. An example that

is of substantial practical interest is the discrete cosine transform, with a rectangular nonoverlapping

window:

F(h, k) ¼ a(h)a(k)
XN�1

m¼0

XN�1

n¼0

f (m, n) cos
(2mþ 1)hp

2N

� �
cos

(2nþ 1)kp

2N

� �
(12:30)

where h, k¼ 0, 1, . . . , N� 1,

a(h) ¼
ffiffiffi
1
N

q
for h = 0ffiffiffi

2
N

q
otherwise,

8<
: (12:31)

a(k) is defined similarly, and the window dimensions are N3N. This transform is the basis for the well-

known JPEG and MPEG compression algorithms.

12.4.2.2 Gabor Representation

This representation was first proposed for 1-D signal analysis by Dennis Gabor in 1946 [10]. In 2-D [11],

an image can be represented as the weighted sum of functions of the form

g(x, y) ¼ ĝ(x, y)ej2p jx0 (x�x0)þjy0 (y�y0)½ � (12:32)

where

ĝ(x, y) ¼ 1

2psxsy

e
�1

2

x�x0
sxð Þ2þ y�y0

sy

� 	
2

h i
(12:33)

is a 2-D Gaussian function, sx and sy determine the extent of the Gaussian along the respective axes,

(x0, y0) is the center of the function in the spatial domain, and (jx0, jy0) is the center of support in the

frequency domain. A representative example of a Gabor function is shown in Figure 12.17.

Denoting the distance between spatial centers as D and the distance between their centers of support

in the frequency domain as W, the basis is complete if W3D¼ 2p. These functions have a number of

interesting aspects. They achieve the lower limits of the Heisenberg uncertainty inequalities:

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 15 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-15

Dx � Djx �
1

4p
, Dy � Djy �

1

4p
(12:34)

where Dx, Dy, Djx, and Djy are the effective widths

of the functions in the spatial and spatial-fre-

quency domains. By this measure, then, these

functions are optimally local. Their real and

imaginary parts also agree reasonably well with

measured receptive field profiles. However, the

basis is not orthogonal. Specifically, the Gabor

transform is not equivalent to the finite-support

Fourier transform with a Gaussian window. For a

cross section of the state of the art in Gabor trans-

form-based analysis, see Ref. [12].

12.4.2.3 Derivative of Gaussian Transform

In 1987, Young [13] proposed a receptive field model based on the Gaussian and its derivatives. These

functions, like the Gabor functions, are spatially and spectrally local and consist of alternating regions of

excitation and inhibition in a decaying envelope. Young showed that Gaussian derivative functions more

accurately model the measured receptive field data than do the Gabor functions [14].

In Ref. [15], a spatial or spatial-frequency representation based on shifted versions of the Gaussian

and its derivatives was introduced (the derivative of Gaussian transform [DGT]). As with the Gabor

transform, although this transform is nonorthogonal, with a suitably chosen basis it is invertible. The

DGT has the significant practical advantage over the Gabor transform that both the basis functions and

coefficients of expansion are real valued.

The family of 2-D separable Gaussian derivatives centered at the origin can be defined as

g0,0(x, y) ¼ g0(x)g0(y)

¼ e�(x2þy2)=2s2
(12:35)

gm,n(x, y) ¼ gm(x)gn(y)

¼ d(m)

dx(m)
g0(x)

d(n)

dy(n)
g0(y)

(12:36)

This set can then be shifted to any desired location. The variance s defines the extent of the functions in

the spatial domain. There is an inverse relationship between the spatial and spectral extents, and the

value of this variable may be constant or may vary with context.

The 1-D Gaussian derivative function spectra are bimodal (except for that of the original Gaussian

which is itself a Gaussian) with modes centered at ±Vm rad=pixel:

Vm ¼
ffiffiffiffi
m

p
s

(12:37)

where m is the derivative order. The order of derivative necessary to center a mode at a particular

frequency is therefore

m ¼ (Vms)
2 (12:38)

FIGURE 12.17 Real (top) and imaginary (bottom)

parts of a representative 2-D Gabor function.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 16 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-16 Digital Systems and Applications

12.4.2.4 Wigner Distribution

The examples above indicate that a local frequency representation need not have an orthogonal basis. In

fact, it need not even be linear. The Wigner distribution (WD) was introduced by Eugene Wigner in

1932 [16] for use in quantum mechanics (in 1-D). In 2-D, the WD can be written as

Wf (x, y, jx , jy) ¼
ð1
�1

ð1
�1

f x þ a

2
, y þ b

2

� �
f * x � a

2
, y � b

2

� �
e�j2p(ajxþbjy)da db (12:39)

where the ‘‘*’’ (asterisk) denotes complex conjugation. The WD is real valued, so does not have an

explicit phase component (as seen in, e.g., the Fourier transform). A number of discrete approximations

to this distribution (sometimes referred to as pseudo-WDs) have also been formulated.

12.4.3 Spatial=Scale Representations (Wavelets)

Scale is a concept that has proven very powerful in many applications, and may under some circum-

stances be considered as fundamental as frequency. Given a set of (1-D) functions

Wjk(x) ¼ W (2jx � k) (12:40)

where the indices j and k correspond to dilation (change in scale) and translation, respectively, a signal

decomposition

f (x) ¼
X
j

X
k

bjkWjk(x) (12:41)

emphasizes the scale (or resolution) characteristics of the signal (specified by j) at specific points along x

(specified by k), yielding a multiresolution description of the signal.

A class of functions Wjk(x) that have proven extremely useful are referred to as wavelets. A detailed

discussion of wavelets is beyond the scope of this chapter (refer to Refs. [17–19] for excellent treatments

of this topic). However, an important aspect of any representation (including wavelets) is the resolution

of the representation, and how it can be measured.

12.4.4 Resolution

In dealing with joint representations, resolution is a very important issue. It arises in a number of ways.

In discussing the Gabor representation, it was noted that the functions minimized the uncertainty

inequalities, e.g.,

Dx � Djx �
1

4p
(12:42)

Note that it is the product that is minimized. Arbitrarily high resolution cannot be achieved in

both domains simultaneously, but can be traded between the two domains at will. The proper

balance depends on the application. It should be noted that the effective width measures Dx, Djx, etc.,

(normalized second moment measures) are not the only way to define resolution. For example, the

degree of energy concentration could be used (leading to a different optimal set of functions, the prolate

spheroidal functions). The appropriateness of the various measures again depends on the application.

Their biological (psychophysical) relevance remains to be determined.

All the above points are relevant for both spatial=spatial-frequency and spatial=scale representations

(wavelets). Wavelets, however, present some special considerations. Suppose one wishes to compare the

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 17 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-17

resolutions of time=frequency and wavelet decompositions? Specifically, what is the resolution of a

multiresolution method? This question can be illustrated by considering the 1-D case, and examining

the behavior of the two methods in the time–frequency plane (Figure 12.18).

In the time=frequency representation, the dimensions Dt and Djt remain the same throughout the

time–frequency plane. In wavelet representations, the dimensions vary but their product remains

constant. The resolution characteristics of wavelets may lead one to believe that the uncertainty of a

wavelet decomposition may fall below the bound in Equation 12.42. This is not the case. The trade-off

between Dt and Djt simply varies. The fundamental limit remains.

A final point relates more specifically to the representation of image sequences. The HVS has a

specific (band-limited) spatiotemporal-frequency response. Beyond indicating the maximum perceivable

frequencies (setting an upper bound on resolution), it seems feasible to exploit this point further,

to achieve a more efficient representation. Recalling the relationship between motion and temporal

frequency, a surface with high spatial frequency components, moving quickly, has high temporal fre-

quency components. When it is static, it does not. The characteristics of the spatiotemporal CSF may

lead us to the conclusions that static regions of an image require little temporal resolution, but high spatial

resolution, and that regions in an image undergoing significant motion require less spatial resolution

(due to the lowered sensitivity of the CSF), but require high temporal resolution (for smooth motion

rendition).

The first conclusion is essentially correct (although not trivial to exploit). The second conclusion,

however, neglects eye tracking. If the eye is tracking a moving object, the spatiotemporal-frequency

characteristics experienced by the viewer are very similar to those in the static case. That is, visual

sensitivity to spatial structure is not reduced significantly.

12.5 Computation of Motion

There are many approaches to the computation of motion (or, more precisely, the estimation of

motion based on image data). Before examining some of these approaches in more detail, however, it is

worthwhile to review the relationship between the motion in a scene and the changes observed in an image

of the scene.

12.5.1 Motion Field

The motion field [20] is determined by establishing a correspondence between the motion of points in

the scene (the real world) and the motion of points in the image plane. This correspondence is found

xt xt

∆xt

∆xt ∆xt

∆xt

∆xtb

∆xta

∆xtb

∆t

∆t ∆t

∆t

xt2

xt2

xt1

∆tb

∆ta

∆tb

t1 t1 t2 t3 t4 t5 t6 t7

t
t2

t

xt1

FIGURE 12.18 Resolution of a time=frequency representation and a wavelet representation in the time–frequency

plane.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 18 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-18 Digital Systems and Applications

geometrically, and is independent of the brightness patterns in the scene (e.g., the presence or absence of

surface textures, changes in luminance, etc.).

Consider the situation in Figure 12.19. At a particular instant of time, a point Pimage in the image

corresponds to some point Pobject on the surface of an object. The two points are related via the

perspective projection equation. Now, suppose the object point Pobject has velocity (vx , vy, vz) relative

to the camera. The result is a velocity (v0x , v
0
y) for the point Pimage in the image plane. The relationship

between the velocities can be found by differentiating the perspective projection equation with respect to

time. In this way, a velocity vector can be assigned to each image point, yielding the motion field.

12.5.2 Optical Flow

Usually, the intensity patterns in the image move as the objects to which they correspond move. Optical

flow is the motion of these intensity patterns. Ideally, optical flow and the motion field correspond.

However, this need not always be the case. For a perfectly uniform sphere rotating in front of an imaging

system, there is shading over the surface of the sphere (because of the shape of the sphere), but it does

not change with time. The optical flow is zero everywhere, while the motion field is not. For a fixed

sphere illuminated by a moving light source, the shading changes with time, although the sphere is not

in motion. The optical flow is nonzero, while the motion field is zero.

Furthermore, optical flow is not uniquely determined by local information in the changing image.

Consider, for example, a region with uniform brightness that does not vary with time. The most likely

optical flow value is zero, but (as long as there are corresponding points of equal brightness in both

images) there are many correct flow vectors. What we would like is the motion field, but what we have

access to is optical flow. Fortunately, the optical flow is usually not too different from the motion field.

12.5.3 Calculation of Optical Flow

There are a wide variety of approaches to the calculation of optical flow. The first, below, is a

conceptually simple yet very widely used method. This approach is particularly popular for video

compression, and is essentially that used in MPEG-1, 2, and 4.

12.5.3.1 Optical Flow by Block Matching

The calculation of optical flow by block matching is the most commonly used motion estimation

technique. The basic approach is as follows. Given two successive images from a sequence, the first

image is partitioned into nonoverlapping blocks (e.g., 83 8 pixels in size, Figure 12.20 [left]). To find

the motion vector for each block, the similarity (e.g., via mean squared error) between the block and

the intensities in the neighborhood of that block in the next frame (Figure 12.20 [right]) is calculated.

The location that shows the best match is considered the location to which the block has moved. The

motion vector for the block is the vector connecting the center of the block in frame n to the location of

the best match in frame nþ 1.

Image plane

Pinhole

Pimage

(vx
9, vy

9)dt

(vx, vy, vz)dt

Pobject

Optical axis

FIGURE 12.19 Motion field based on a simple pinhole camera model.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 19 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-19

The approach is simple. There are, however, a number of things to consider. The size of the search

neighborhoodmust be established, which in turn determines themaximumvelocity that can be estimated.

The search strategymust be decided, including the need to evaluate every potential match location and the

precision with which the match locations must be determined (e.g., is each pixel a potential location? Is

subpixel accuracy required?). The amount of computation time=power available is a critical factor in these

decisions. Even in its simplest form, block matching is computationally intensive. If motion estimates

must be computed at frame rate (in 1=30 of a second or less) this will have a strong effect on the algorithm

design. A detailed discussion of these and related issues can be found in Ref. [21].

12.5.3.2 Optical Flow via Intensity Gradients

The calculation of optical flow via intensity gradients, as proposed by Horn and Shunck [22], is a

classical approach to motion estimation.

Let f(x, y, t) be the intensity at time t for the image point (x, y), and let rx (x, y) and ry (x, y) be the x

and y components of the optical flow at that point. Then for a small time interval dt,

f

�
x þ rxdt|{z}

dx

, y þ rydt|{z}
dy

, t þ dt

�
¼ f (x, y, t): (12:43)

This single equation is not sufficient to determine rx and ry. It can, however, provide a constraint on

the solution. Assuming that intensity varies smoothly with x, y, and t, the left-hand side of Equation

12.43 can be expanded using Taylor’s series:

f (x, y, t)þ dx
@f

@x
þ dy

@f

@y
þ dt

@f

@t
þ higher-order terms ¼ f (x, y, t) (12:44)

Ignoring the higher-order terms, canceling f(x, y, t), dividing by dt, and letting dt ! 0,

@f

@x

dx

dt
þ @f

@y

dy

dt
þ @f

@t
¼ 0 (12:45)

or

fxrx þ fyry þ ft ¼ 0 (12:46)

where fx , fy, and ft are estimated from the image sequence.

This equation is called the optical flow constraint equation, since it constrains rx and ry of the optical

flow. The values of (rx , ry) that satisfy the constraint equation lie on a straight line in the (rx, ry) plane.

Frame n Frame n + 1

Search neighborhood
for the block in the

previous frame

FIGURE 12.20 Motion estimation by block matching.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 20 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-20 Digital Systems and Applications

A local brightness measurement can identify the

constraint line, but not a specific point on the

line. Note that this problem cannot really be

solved via, e.g., adding an additional constraint.

It is a fundamental aspect of the image data.

A true solution cannot be guaranteed, but a

solution can be found.

To view this limitation in another way, the

constraint equation can be rewritten in vector

form, as

(fx , fy) � (rx , ry) ¼ �ft (12:47)

so that the component of optical flow in the

direction of the intensity gradient (fx , fy)
T is

ftffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q (12:48)

However, the component of the optical flow perpendicular to the gradient (along isointensity contours)

cannot be determined. This is a manifestation of the aperture problem. If the motion of an oriented

element is detected by a unit that is small compared with the size of the moving element, the only

information that can be extracted is the component of motion perpendicular to the local orientation of

the element. For example, looking at a moving edge through a small aperture (Figure 12.21), it is

impossible to tell whether the actual motion is in the direction of a or b.

One way to work around this limitation is to impose an explicit smoothness constraint. Motion was

implicitly assumed smooth earlier, when a Taylor’s expansion was used and when the higher-order terms

were ignored. Following this approach, an iterative scheme for finding the optical flow for the image

sequence can be formulated:

rx(k, l)
nþ1 ¼ rx(k, l)

n � lf 2x rx(k, l)
n þ lfx fyry(k, l)

n þ lfx ft

1þ l(f 2x þ f 2y)

¼ rx(k, l)
n � lfx

fxrx(k, l)
n þ fy ry(k, l)

n þ ft

1þ l(f 2x þ f 2y)
(12:49)

and

ry(k, l)
nþ1 ¼ ry(k, l)

n � lfy
fxrx(k, l)

n þ fy ry(k, l)
n þ ft

1þ l(f 2x þ f 2y)
(12:50)

where the superscripts n and nþ 1 indicate the iteration number, l is a parameter allowing a trade-off

between smoothness and errors in the flow constraint equation, and rx(k, l) and ry(k, l) are local averages

of rx and ry . The updated estimates are thus the average of the surrounding values, minus an adjustment

(which in velocity space is in the direction of the intensity gradient).

The previous discussion relied heavily on smoothness of the flow field. However, there are places in

image sequences where discontinuities should occur. In particular, the boundaries of moving objects

should exhibit discontinuities in optical flow. One approach taking advantage of smoothness but allowing

Edge

Aperture

a

b

FIGURE 12.21 An instance of the aperture problem.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 21 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-21

discontinuities is to apply segmentation to the flow field. In this way, the boundaries between regions with

smooth optical flow can be found, and the algorithm can be prevented from smoothing over these

boundaries. Because of the ‘‘chicken-and-egg’’ nature of this method (a good segmentation depends on

a good optical flow estimate, which depends on a good segmentation, etc.), it is best applied iteratively.

12.5.3.3 Spatiotemporal-Frequency-Based Methods

It was shown in Section 12.2.3 that motion can be considered in the frequency domain, as well as in

the spatial domain. A number of motion estimation methods have been developed with this in mind.

If the sequence to be analyzed is very simple (has only a single motion component, for example) or if

motion detection alone is required, the Fourier transform can be used as the basis for motion analysis, as

examined in Refs. [23–25]. However, owing to the global nature of the Fourier transform, it cannot be

used to determine the location of the object in motion. It is also poorly suited for cases in which multiple

motions exist (i.e., when the scene of interest consists of more than one object moving independently),

since the signatures of the different motions are difficult (impossible, in general) to separate in the

Fourier domain. As a result, although Fourier analysis can be used to illustrate some interesting

phenomena, it cannot be used as the basis of motion analysis methods for the majority of sequences

of practical interest.

To identify the locations and motions of objects, frequency analysis localized to the neighborhoods of the

objects is required.Windowed Fourier analysis has been proposed for such cases [26]. However, the accuracy

of a motion analysis method of this type is highly dependent on the resolution of the underlying transform,

in both the spatiotemporal and spatiotemporal-frequency domains. It is known that the windowed Fourier

transform does not perform particularly well in this regard. Filterbank-based approaches to this problem

have also been proposed, as in Ref. [27]. The methods examined below each exploit the frequency domain

characteristics of motion, and provide spatiotemporally localized motion estimates.

12.5.3.4 Optical Flow via the 3-D Wigner Distribution

Jacobson and Wechsler [28] proposed an approach to spatiotemporal-frequency-based derivation of

optical flow using the 3-DWD. Extending the 2-D definition given earlier, the 3-DWD can be written as

Wf (x, y, t , jx , jy , jt) ¼
ð1
�1

ð1
�1

ð1
�1

f x þ a

2
, y þ b

2
, t þ t

2

� �
:

f * x � a

2
, y � b

2
, t � t

2

� �
:e�j2p(ajx þbjy þ tjt)da db dt (12:51)

It can be shown that the WD of a linearly translating image with velocity~r ¼ (rx , ry) is

Wf (x, y, t , jx , jy , jt) ¼ d(rxjx þ ryjy þ jt) �Wf (x � rxt , y � ry t , jx , jy) (12:52)

which is nonzero only when rxjxþ ry jyþ jt¼ 0.

For a linearly translating image, then, the local spectraWfx,y,t (jx , jy , jt) contain energy only in a plane

(as in the Fourier case) the slope of which is determined by the velocity. Jacobson and Wechsler [28]

proposed to find this plane by integrating over the possible planar regions in these local spectra (via a

so-called velocity polling function), using the plane of maximum energy to determine the velocity.

12.5.3.5 Optical Flow Using 3-D Gabor Filters

Heeger [29] proposed the use of 3-D Gabor filters to determine this slope. Following the definition

discussed for 2-D, a 3-D Gabor filter has the impulse response

g(x, y, t) ¼ ĝ(x, y, t)ei2p[jx0 (x�x0)þ jy0 (y�y0)þ jt0 (t�t0)] (12:53)

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 22 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-22 Digital Systems and Applications

where

ĝ(x, y, t) ¼ 1

(2p)
3
2sxsyst

e�
1
2

x�x0
sxð Þ2þ y�y0

syð Þ2þ t�t0
st

ð Þ2

 �

(12:54)

To detect motion in different directions, a family of these filters is defined, as shown in Figure 12.22.

To capture velocities at different scales (high velocities can be thought of as occurring over large

scales, since a large distance is covered per unit time), these filters are applied to a Gaussian pyramidal

decomposition of the sequence. Given the energies of the outputs of these filters, which can be thought

of as sampling spatiotemporal=spatiotemporal-frequency space, the problem is analogous to that

shown in Figure 12.23. The slope of the line (corresponding to the slope of the plane that characterizes

motion) must be found via a finite set of observations. In this method, this problem is solved under

the assumption of a random texture input (the plane in the frequency domain consists of a single

constant value).

xy

xx

xt

FIGURE 12.22 The (stylized) power spectra of a set of 3-D Gabor filters.

xt

xx

FIGURE 12.23 Velocity estimation in the frequency domain via estimation of the slope of the spectrum.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 23 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-23

12.5.3.6 Optical Flow via the 3-D Gabor Transform

One shortcoming of a filterbank approach (if the filters are not orthogonal or do not provide a complete

basis) is the possibility of loss. Using the 3-D Gabor functions as the basis of a transform resolves this

problem. A sequence of dimension N3M3 P can then be expressed at each discrete point (xm, yn, tp) as

f (xm, yn, tp) ¼
XJ�1

j¼0

XK�1

k¼0

XL�1

l¼0

XQ�1

q¼0

XR�1

r¼0

XS�1

s¼0

cxq , yr , ts , jxj , jyk , jtl
� gxq , yr , ts , jxj , jyk , jtl (xm, yn, tp) (12:55)

where JKLQRS¼NMP for completeness, the functions gxq , yr , ts , jxj , jyk , jtl
(xm, yn, tp) denote the

Gabor basis functions with spatiotemporal and spatiotemporal-frequency centers of (xq, yr, ts) and

(jxj , jyk , jtl), respectively, and cxq , yr , ts , jxj , jyk , jt1
are the associated coefficients. Note that these coefficients

are not found by convolving with the Gabor functions, since the functions are not orthogonal. See Ref.

[30] for a survey and comparison of methods for computing this transform.

In the case of uniform translational motion, the slope of the planar spectrum is sought, yielding the

optical flow vector~r. A straightforward approach to estimating the slope of the local spectra [31,32] is to

form vectors of the jx , jy, and jt coordinates of the basis functions that have significant energy for each

point in the sequence at which basis functions are centered. From Equation 12.20, the optical flow vector

and the coordinate vectors ~jx , ~jy , and ~jt at each point are related as

~jt ¼ � rx~jx þ ry~jy

� 	
¼ �S~r (12:56)

where S ¼ (~jx j~jy). An LMS estimate of the optical flow vector at a given point can then be found using

the pseudoinverse of S:

~rest ¼ �(STS)�1ST~jt (12:57)

In addition to providing a means for motion estimation, this approach has also proven useful in

predicting the apparent motion reversal associated with temporal aliasing [33]. It has also been extended

to provide dense [34] and rotational [35] motion estimates.

12.5.3.7 Wavelet-Based Methods

A number of wavelet-based approaches to this problem have also been proposed. In Refs. [36–39], 2-D

wavelet decompositions are applied frame-by-frame to produce multiscale feature images. This view of

motion analysis exploits the multiscale properties of wavelets, but does not seek to exploit the frequency

domain properties of motion. In Ref. [40], a spatiotemporal (3-D) wavelet decomposition is employed,

so that some of these frequency domain aspects can be utilized. Leduc et al. explore the estimation of

translational, accelerated, and rotational motion via spatiotemporal wavelets in Refs. [41–45]. Decom-

positions designed and parameterized specifically for the motion of interest (e.g., rotational motion) are

tuned to the motion to be estimated.

12.6 Image Sequence Compression

Image sequences represent an enormous amount of data (e.g., a 2 h movie at the U.S. HDTV resolution

of 12803 720 pixels, 60 frames=s progressive, with 24 bits=pixel results in 1194 GB of data). This data

is highly redundant, and much of it has minimal perceptual relevance. One approach to reducing this

volume of data is to apply still image compression to each frame in the sequence (generally referred to as

intraframe coding). For example, the JPEG still image compression algorithm can be applied frame by

frame (sometimes referred to as motion-JPEG or M-JPEG). This method, however, does not take

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 24 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-24 Digital Systems and Applications

advantage of the substantial correlation which typically exists between frames in a sequence. Com-

pression techniques that seek to exploit this temporal redundancy are referred to as interframe

coding methods.

12.6.1 Motion Compensated Prediction=Transform Coders

Predictive coding is based on the idea that to the degree that all or part of a frame in a sequence can be

predicted, that information need not be transmitted. As a result, it is usually the case that the better the

prediction, the better the compression that can be achieved. The simplest possible predicator is to

assume that successive frames are identical (differential coding). However, the optical flow, which

indicates the motion of intensity patterns in the image sequence, can be used to improve the predictor.

Motion compensated prediction uses optical flow information, together with a reconstruction of the

previous frame, to predict the content of the current frame.

Quantization (and the attendant loss of information) is inherent to lossy compression techniques.

This loss, if introduced strategically, can be exploited to produce a highly compressed sequence, with

good visual quality. Transforms (e.g., the DCT), followed by quantization, provide a convenient

mechanism to introduce (and control) this loss. Following this approach, a hybrid (motion compen-

sated prediction=transform) encoder and decoder are shown in Figures 12.24 and 12.25. This hybrid

algorithm (with the addition of entropy coders and decoders) is the essence of the H.261, MPEG-1,

MPEG-2, MPEG-4, and U.S. HDTV compression methods [46].

Frame
delay

Motion
compensation

Motion
estimation

Motion vectors

+

--

+

+

DCT Quantizer

Inverse
quantizer

IDCT

Σ

Σ

DCT(fDN
) + nNfDN

fN

fPN

fRN

fRN−1

FIGURE 12.24 An hybrid (predictive=transform) encoder.

Frame
delay

Motion
compensation

Motion
vectors

Σ
+

+

Inverse
quantizer

IDCT

DCT(fDN
)+nN

fRN−1

fDN
+n�N

fPN

fRN

FIGURE 12.25 A predictive=transform decoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 25 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-25

12.6.2 Perceptually-Based Methods

Although algorithms such as MPEG exploit the properties of visual perception (principally in the

formulation of quantization matrices), it is not especially central to the structure of the algorithm.

There is, for example, no explicit model of vision underlying the MPEG-1 and -2 algorithms. In

perceptually-based (sometimes called second-generation) methods, knowledge of the HVS takes a

much more central role. This view of the problem is particularly effective (and necessary) when

designing compression algorithms intended to operate at very high compression ratios (e.g., over 200:1).

The methods in this subsection are inspired by specific models of visual perception. The first is an

approach based on a very comprehensive vision model, performing spatial and temporal frequency

decomposition via filters designed to reflect properties of the HVS. The second and third are techniques

using visually relevant transforms (the Gabor and derivative of Gaussian transforms, respectively)

in an otherwise conventional hybrid (predictive=transform) framework. Finally, one of the earlier devel-

oped methods based on spatiotemporal segmentation (following the contour=texture model of

vision) is discussed. Certain aspects of the segmentation-based coding idea are supported in the

MPEG-4 standard.

12.6.2.1 Perceptual Components Architecture

The perceptual components architecture [47] is a framework for the compression of color image

sequences based on the processing thought to take place in the early HVS. It consists of the following

steps. The input RGB image sequence is converted into an opponent color space (white=black [WB],

red=green [RG], and blue=yellow [BY]). The sequence is filtered spatially with a set of frequency and

orientation selective filters, inspired by the frequency and orientation selectivity of the HVS. Filters

based on the temporal frequency response of the visual system are applied along the temporal

dimension. The filtered sequences are then subsampled using a hexagonal grid, and subsampled by a

factor of two in the temporal dimension. Uniform quantization is applied within each subband, with

higher frequency subbands quantized more coarsely. The WB (luminance) component is quantized less

coarsely overall than the RG and BY (chrominance) components. The first-order entropy of the result

provides an estimate of the compression ratio.

Note that there is no prediction or motion compensation. This is a 3-D subband coder, where temporal

redundancy is exploited via the temporal filters. For a 2563 256, 8 frame segment of the ‘‘football’’ sequence

(a widely used test sequence depicting a play from an American football game), acceptable image quality

was achieved for about 1 bit=pixel (from 24 bits=pixel). Although this is not very high compression, the

sequence used is more challenging thanmost. Another contributing factor is that the subsampled representa-

tion is eight-thirds the size (in terms of bits) of the original, whichmust be overcome before any compression

is realized.

12.6.2.2 Very Low Bit-Rate Coding Using the Gabor Transform

In discussing the Gabor transform previously, it was stated that the basis functions of this transform are

optimally (jointly) local. In the context of coding, there are three mechanisms that can be exploited to

achieve compression, all of which depend on locality: the local correlation between pixels in the

sequence; the bounded frequency response of the human visual system (as characterized by the CSF);

and visual masking (the decrease in visual sensitivity near spatial and temporal discontinuities). To take

advantage of local spatial correlation, the image representation upon which a compression method is

based must be spatially local (which is why images are partitioned into blocks in JPEG, MPEG-1 and -2,

most implementations of MPEG-4, H.261-4, etc.). If the CSF is to be exploited (e.g., by quantizing high

frequency coefficients coarsely), localization in the spatial-frequency domain is required. To exploit

visual masking, spatial locality (of a fairly high degree) is required.

Since the Gabor transform is inherently local in space, the partitioning of the image into blocks is not

required (hence no blocking artifacts are observed at high compression ratios). Its spatial locality also

provides a mechanism for exploiting visual masking, while its spatial-frequency locality allows the band-

limited nature of the HVS to be utilized.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 26 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-26 Digital Systems and Applications

An encoder and decoder based on this transform are shown in Figures 12.26 and 12.27 [48]. Note that

they are in the classic hybrid (predictive=transform) form. This codec does not include motion

compensation and is for monochrome image sequences.

Applying this method to a 128-by-128, 8 bit=pixel version of the Miss America sequence resulted in

reasonable image quality at a compression ratio of approximately 335:1.* At 24 frames=s, the associated

bit rate is 9.4 Kbits=s (a bitrate consistent, e.g., with wireless videotelephony).

12.6.2.3 Video Coding Using the Derivative of Gaussian Transform

As mentioned previously, the DGT has properties similar to the Gabor transform, but with the practical

advantage that it is real valued. This makes it particularly well suited to video compression. In Ref. [49]

the hybrid codec structure shown in Figures 12.24 and 12.25 is adapted to the DGT, replacing the DCT

(and IDCT), and adapting the quantization scheme to fit the visibility of the DGT basis, via a simple

quantization mask.

Comparable results to those of the standard H.261 (DCT-based) codec are obtained for bitrates

around 320 Kbits=s (five channels in the p * 64 model).

12.6.2.4 Object-Based Coding by Split and Merge Segmentation

Object-based coding reflects the fact that scenes are largely composed of distinct objects, and that

these objects are perceived as boundaries surrounding fields of shading or texture (the contour=texture

theory of vision). Encoding an image or sequence in this way requires segmentation to identify the

constituent objects. This view of compression, which also facilitates interaction and editing, underlies

the MPEG-4 video compression standard [50]. Although the method that will be described is different

in detail from MPEG-4, as one of the earliest documented object-based systems, it illustrates many

important aspects of such systems.

In this approach [51], 3-D (spatiotemporal) segmentation is used to reduce the redundant informa-

tion in a sequence (essentially identifying objects within the sequence), while retaining information

Frame
delay

+

--

+

+

Inverse
quantizer

Σ

Σ

Gabor
transform

Inverse
gabor

transform

Quantization

Gabor(fDN
)+nN

fPN

fDNfN

fR
N

FIGURE 12.26 A Gabor transform-based video encoder.

Gabor(fDN
)+nN

fPN

fDN
 +n9N

Frame
delay

Σ
+

+
Inverse

quantizer

Inverse
gabor

transform

fRN

FIGURE 12.27 Associated Gabor transform-based decoder.

*Not including the initial frame, which is intracoded to 9.1 Kbits (a compression ratio of 14).

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 27 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-27

critical to the human observer. The sequence is treated as a single 3-D data volume, the voxels of which

are grouped into regions via split and merge. The uniformity criterion used for the segmentation is the

goodness of fit to a 3-D polynomial. The sequence is then encoded in terms of region boundaries (a

binary tree structure) and region interior intensities (the coefficients of the 3-D polynomial).

The data volume is first split such that each region is a parallelepiped over which the gray level

variation can be approximated within a specified mean squared error (Figure 12.28). Regions are split by

quadrants, following the octree strategy. A region adjacency graph is constructed, with nodes corre-

sponding to each region and links between the nodes assigned a cost indicating the similarity of the

regions. A high cost indicates low similarity. Regions are merged, starting with regions with the lowest

cost, and the region adjacency graph is updated. The resulting regions are represented using a pyramidal

(binary tree) structure, with the regions labeled so that adjacent regions have different labels.

Using 16 frames from the Secretary sequence, the compression ratio achieved was 158:1 (a bitrate of

83 Kbits=s). A total of 5740 parallelepipeds (1000 regions) were used.

12.7 Conclusions

In this chapter, we examined some of the fundamental aspects and algorithms in the processing of digital

video. Continued improvements in computing performance make many methods that previously

required specialized platforms (or were primarily of research interest due to computational require-

ments) practical. In addition to bringing high-end applications to the desktop, numerous new applica-

tions are thus enabled, in areas as diverse as medical imaging, entertainment, and human–computer

interaction.

References

1. J. Wyver. The Moving Image—An International Histoy of Film, Television and Video. BFI Publishing,

London, 1989.

2. A.B. Watson and A.J. Ahumada. A look at motion in the frequency domain. SIGGRAPH=SIGART

Interdisciplinary Workshop MOTION: Representation and Perception, pp. 1–10, Toronto, Canada,

April 4–6,1983.

FIGURE 12.28 Split phase.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 28 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-28 Digital Systems and Applications

3. A.T. Smith and R.J. Snowden (Eds.).Visual Detection of Motion. Academic Press, San Diego, CA, 1994.

4. K. Nakayama. Biological image motion processing: A review. Vision Research, 25(5):625–660, 1985.

5. A.B. Watson and A.J. Ahumada. Model of human visual-motion sensing. Journal of the Optical

Society of America A, 2(2):322–342, 1985.

6. L.B. Stelmach, W.J. Tam, and P. Hearty. Static and dynamic spatial resolution in image coding: An

investigation of eye movements. Proceedings of the SPIE=SPSE Symposium on Electronic Imaging

Science and Technology, vol. 1453, pp. 147–152, San Jose, CA, 1995.

7. T.R. Reed. Local frequency representations for image sequence processing and coding. In A.B.

Watson (Ed.), Digital Images and Human Vision. MIT Press, Cambridge, MA, 1993.

8. L. Cohen. Time–Frequency Analysis. Prentice Hall PTR, Englewood Cliffs, NJ, 1995.

9. R. Tolimieri and M. An. Time–Frequency Representations. Birkhäuser, Boston, MA, 1998.

10. D. Gabor. Theory of communication. Proceedings of the Institute of Electrical Engineers, 93(26):429–

457, 1946.

11. J.G. Daugman. Complete discrete 2-D Gabor transforms by neural networks for image analysis and

compression. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(7):1169–1179, 1988.

12. H.G. Feichtinger and T. Strohmer (Eds.). Gabor Analysis and Algorithms. Birkhäuser, Boston, MA,

1998.

13. R.A. Young. The Gaussian derivative model for spatial vision: I. retinal mechanisms. Spatial Vision,

2:273–293, 1987.

14. R.A. Young, oh say can you see? the physiology of vision. Proceedings of the SPIE-Human Vision,

Visual Processing, and Digital Display II, vol. 1453, pp. 92–123, 1991.

15. J.A. Bloom and T.R. Reed. A Gaussian derivative-based transform. IEEE Transactions on Image

Processing, 5(3):551–553, 1996.

16. E. Wigner. On the quantum correction for thermodynamic equilibrium. Physical Review, 40:749–

759, June 1932.

17. M. Vetterli and J. Kovačvic.Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs, NJ, 1995.

18. G. Strang and T. Nguyen.Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, MA, 1996.

19. S. Mallat. AWavelet Tour of Signal Processing. Academic Press, San Diego, CA, 1998.

20. B.K.P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.

21. G. Tziritas and C. Labit. Motion Analysis for Image Sequence Coding. Elsevier, Amsterdam, 1994.

22. B.K.P. Horn and B.G. Shunck. Determining optical flow.Artificial Intelligence, 17(1–3):185–203, 1981.

23. H. Gafni and Y.Y. Zeevi. A model for separation of spatial and temporal information in the visual

system. Biological Cybernetics, 28:73–82, 1977.

24. A. Kojima, N. Sakurai, and J. Kishigami. Motion detection using 3D-FFT spectrum. Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 213–216,

Minneapolis, MN, April 27–30, 1993.

25. B. Porat and B. Friedlander. A frequency domain algorithm for multiframe detection and estimation

of dim targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(4):398–401, 1990.

26. H. Gafni and Y.Y. Zeevi. A model for processing of movement in the visual system. Biological

Cybernetics, 32:165–173, 1979.

27. D.J. Fleet and A.D. Jepson. Computation of component image velocity from local phase informa-

tion. International Journal of Computer Vision, 5(1):77–104, 1990.

28. L. Jacobson and H. Wechsler. Derivation of optical flow using a spatiotemporal-frequency approach.

Computer Vision, Graphics, and Image Processing, 38:29–65, 1987.

29. D.J. Heeger. Optical flow using spatiotemporal filters. International Journal of Computer Vision,

1:279–302, 1988.

30. T.T. Chinen and T.R. Reed. A performance analysis of fast Gabor transforms. Graphical Models and

Image Processing, 59(3):117–127, 1997.

31. T.R. Reed. The analysis of motion in natural scenes using a spatiotemporal=spatiotemporal-

frequency representation. Proceedings of the IEEE International Conference on Image Processing,

pp. I–93–I–96, Santa Barbara, CA, October 26–29, 1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 29 4.10.2007 3:03pm Compositor Name: VBalamugundan

Digital Video Processing 12-29

32. T.R. Reed. On the computation of optical flow using the 3-D Gabor transform. Multidimensional

Systems and Signal Processing, 9(4):115–120, 1998.

33. T.R. Reed. A spatiotemporal=spatiotemporal-frequency interpretation of apparent motion reversal.

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1140–1145,

Stockholm, Sweden, July 31–August 6, 1999.

34. J. Magarey and N. Kingsbury. Motion estimation using a complex-valued wavelet transform.

IEEE Transactions on Signal Processing, 46(4):1069–1084, 1998.

35. Y.-T. Wu, T. Kanade, J. Cohn, and C.-C. Li. Optical flow estimation using wavelet motion model.

Proceedings of the IEEE International Conference on Computer Vision, pp. 992–998, Bombay, India,

January 4–7, 1998.

36. G. Van der Auwera, A. Munteanu, G. Lafruit, and J. Cornelis. Video coding based on motion

estimation in the wavelet detail image. Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, vol. 5, pp. 2801–2804, Seattle, WA, May 12–15, 1998.

37. C.P. Bernard. Discrete wavelet analysis: A new framework for fast optic flow computation. Proceed-

ings of the fifth European Conference on Computer Vision, vol. 2, pp. 354–368, Freiburg, Germany,

June 2–6, 1998.

38. T.J. Burns, S.K. Rogers, M.E. Oxley, and D.W. Ruck. Discrete, spatiotemporal, wavelet multiresoltion

analysis method for computing optical flow. Optical Engineering, 33(7):2236–2247, 1994.

39. J.-P. Leduc. Spatio-temporal wavelet transforms for digital signal analysis. Signal Processing,

60(1):23–41, 1997.

40. J.-P. Leduc, J. Corbett, M. Kong, V. Wickerhauser, and B. Ghosh. Accelerated spatio-temporal

wavelet transforms: An iterative trajectory estimation. Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 2781–2784, Seattle, WA, May

12–15, 1998.

41. J.-P. Leduc, J.R. Corbett, and M.V. Wickerhauser. Rotational wavelet transforms for motion analysis,

estimation and tracking. Proceedings of the IEEE International Conference on Image Processing, vol. 2,

pp. 195–199, Chicago, IL, October 4–7, 1998.

42. J.-P. Leduc and J.R. Corbett. Spatio-temporal continuous wavelets for the analysis of motion on

manifolds. Proceedings of the IEEE-SP International Symposium on Time–Frequency and Time-Scale

Analysis, pp. 57–60, Pittsburgh, PA, October 6–9, 1998.

43. J.-P. Leduc, J.R. Corbett, and M.V. Wickerhauser. Rotational wavelet transforms for motion analysis,

estimation and tracking. Proceedings of the IEEE International Conference on Image Processing, vol. 2,

pp. 195–199, Chicago, IL, October 4–7, 1998.

44. M. Kong, J.-P. Leduc, B.K. Ghosh, J. Corbett, and V.M. Wickerhauser. Wavelet based analysis of

rotational motion in digital image sequences. Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, vol. 5, pp. 2777–2780, Seattle, WA, May 12–15, 1998.

45. J. Corbett, J.-P. Leduc, and M. Kong. Analysis of deformational transformations with spatio-

temporal continuous wavelet transforms. Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, vol. 6, pp. 3189–3192, Phoenix, AZ, March 15–19, 1999.

46. A.N. Netravali and B.G. Haskell. Digital Pictures—Representation, Compression, and Standards.

Plenum Press, New York, 1995.

47. A.B. Watson and C.L.M. Tiana. Color motion video coded by perceptual components. SID ‘92

Digest of Technical Papers, vol. 23, pp. 314–317, 1992.

48. T.R. Reed and A.E. Soohoo. Very-low-bit-rate coding of image sequences using the gabor transform.

Journal of the Society for Information Display, 3(2):77–81, 1995.

49. J.A. Bloom and T.R. Reed. On the compression of video using the derivative of Gaussian transform.

Proceedings of the Thirty Second Annual Asilomar Conference on Signals, Systems, and Computers,

vol. 1, pp. 865–869, Pacific Grove, CA, November 1–4, 1998.

50. R. Koenen (Ed.). MPEG-4 Overview. ISO=IEC JTC1=SC29=WG11 N3747, La Baule, October 2000.

51. P. Willemin, T.R. Reed, and M. Kunt. Image sequence coding by split and merge. IEEE Transactions

on Communications, 39(12):1845–1855, 1991.

Vojin Oklobdzija/Digital Systems and Applications 6195_C012 Final Proof page 30 4.10.2007 3:03pm Compositor Name: VBalamugundan

12-30 Digital Systems and Applications

13
Low-Power Digital
Signal Processing

Alice Wang
Texas Instruments

Thucydides Xanthopoulos
Cavium Networks

13.1 Introduction... 13-1

13.2 Power Dissipation in Digital Circuits.......................... 13-2

13.3 Low-Power Design in Programmable DSPs................ 13-3
Voltage Scaling . Architectural Power Optimizations .

Low-Power Standby Modes . Circuit Power Optimizations

13.4 Low-Power Design in Application-Specific DSPs 13-6
Variable Supply Voltage Schemes . Optimum Energy and

Subthreshold Circuits . Nonstandard Arithmetic Structures .

Algorithmic=Architectural Exploitation of Data Distribution

Properties . Approximate Processing

13.1 Introduction

During the last few years, signal processing integrated circuits have always introduced the newest low-

power digital design techniques. Two main factors motivate this design trend. The first is the abundant

proliferation and market penetration of cellular phones. During the first phase in the life cycle of cellular

systems, programmable digital signal processors (DSPs) were used to implement the voice coding

component. As DSPs became more powerful and flexible, they took over most of the baseband tasks

within a cellular handset such as channel coding (convolutional coding and decoding), encryp-

tion=decryption, and demodulation=equalization [1]. Consumer preferences placed significant import-

ance on handset size and battery life and this in turn created pressure in the design community to

produce higher performance and lower power signal processors. The second motivating factor is the

introduction of a new breed of consumer electronic devices such as digital cameras, portable digital

video and audio players, and wireless-enabled personal digital assistants that require substantial signal

processing capability and at the same time are battery-powered and can benefit substantially from

reduced energy consumption.

The low-power trends in the signal processing domain has continued with the introduction of 3G

wireless and the corresponding wideband code-division multiple-access (WCDMA) physical transmis-

sion channel. Another emerging wireless computing platform for low-power DSPs is the sensor data

processing system [2].

Low-power design involves a vertical design process and a global optimization across algorithmic,

architectural, circuit, and physical design boundaries. The best algorithm must be selected, which

minimizes a weighted average of the number of arithmetic operations, memory accesses, on-chip

communication, and silicon area. The right boundary must be achieved between programmability

and predefined functionality. Architectural, circuit, and physical design techniques that fully support

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 1 4.10.2007 2:57pm Compositor Name: VBalamugundan

13-1

the algorithmic selection must then be applied, but at the same time should be allowed to influence such

selection in order to achieve optimum results.

A few case studies demonstrate concurrent optimization across all design phases and as a result have

achieved impressive results in a few key DSP application areas.

. A low-power chipset for a portable multimedia terminal is power optimized from a system

perspective and performs a number of functions such as protocol conversion, synchronization,

and video decompression, among others, while consuming under 5 mW of power [3].

. An ultra-low-power programmable DSP for physiological monitoring (heartbeat detection and

classification) [4]. The techniques demonstrated include algorithmic design, a balanced hybrid

architecture containing both customized and programmable units, and appropriate circuits

supporting such architectural choices. The DSP consumes 220 nW at 1.0 V, 1.2 kHz and includes

embedded support for harvesting energy from ambient sources.

. A low-power single chip video encoder with embedded dynamic memory uses wavelet filtering

and a combination of zero-tree and arithmetic coding of filter coefficients. Hooks for motion

estimation are also provided [5]. The chip dissipates on the order of 0.5 mW while compressing

an 8-bit gray scale 30 frames=s, 1283 128 video stream.

. A programmable reconfigurable public key processor demonstrates 2–3 orders of magnitude of

power reduction compared to software and programmable-logic based implementations while

providing similar flexibility and freedom in algorithm selection [6].

. A DSP for a hearing aid chipset featuring 77 MOPS=mW [7]. Algorithmic and architectural

optimizations were heavily employed to achieve such a result.

In this chapter, an overview of commonly used low-power techniques in programmable digital signal

processors, as well as embedded DSP subsystems for custom applications, are presented.

13.2 Power Dissipation in Digital Circuits

This section provides a brief overview of power dissipation basics to render this document self-

contained. Five major sources of power dissipation are present in digital circuits:

. Switching or dynamic power (Psw)

. Short-circuit or direct-path power (Psc)

. Leakage power (Pleak)

. Gate induced drain leakage (PGIDL)

. Static power (Pstat)

The total chip power is given by the following equation:

Ptotal ¼ Psw þ Psc þ Pleak þ PGIDL þ Pstat (13:1)

The switching power dissipation is the dominant component and is because of the charging and

discharging of all capacitive nodes in the circuit. It is given by the following equation:

Psw ¼ aCV 2
DD f (13:2)

where

a is the switching activity (0 � a � 1)

C is the total capacitance of all capacitive nodes in the circuit

VDD is the supply voltage

f is the clock frequency

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 2 4.10.2007 2:57pm Compositor Name: VBalamugundan

13-2 Digital Systems and Applications

Short-circuit power (Psc) is dissipated when

there is a transient direct path from VDD to ground

during switching: During the rising (or falling)

transition of static CMOS gates from VTN to (VDD

�VTP) (VDD�VTP toVTN) a direct path fromVDD

to ground exists through a PMOS andNMOS stack

that are both in their ON region. If the rise and fall

times of the digital circuit are kept well under

control (a small fraction of the period), short-cir-

cuit power is rarely a design issue. A comprehensive

analysis on short-circuit power in static CMOS

circuits can be found in Ref. [8].

There are three main types of leakage powers. The first is subthreshold leakage and involves finite

channel conductance in the NMOS and PMOS OFF regions. The second is reverse bias junction leakage

and it involves source and drain-to-substrate PN junction leakage. The third is gate-induced drain

leakage that starts at the drain and terminates in the body. It occurs for large drain-to-source voltage and

small gate-to-source voltage [9]. Figure 13.1 shows the subthreshold and junction leakage components.

The subthreshold current is typically the dominant component of leakage power. A simplified

subthreshold leakage power model is given by

Pleak ¼ VDDI0 exp
VGS � VT

nVth

� �
1��VDS

Vth

� �
(13:3)

where

I0 is the drain current when VGS¼VT

VT is the transistor threshold voltage

n is the subthreshold slope factor and

Vth is the thermal voltage

Low-voltage process technologies that rely on reduced threshold voltages to maintain performance are

especially susceptible to increased subthreshold leakage. Leakage currents can be especially important in

low activity embedded DSP systems that are mostly in standby mode. In such cases, system battery life is

mainly dependent on Pleak. Techniques for reducing Pleak include the use of multiple VT devices

(MTCMOS) [10] and substrate bias control variable threshold CMOS [11]. Commercial signal proces-

sors use such techniques for leakage reduction [12].

13.3 Low-Power Design in Programmable DSPs

Over the last 20 years, integrated circuits have experienced substantial power reductions as technology

scaled to deep submicron dimensions. Figure 13.2 plots the operating voltage of microprocessors, DSPs,

and other specialized ICs from 1985 to 2005 that were published in the International Solid-State Circuits

Conference or the Journal of Solid-State Circuits [13]. To prevent large power-density problems as more

and more transistors were packed onto one die, the voltage started dropping in the sub-1 mm process

technologies. Because DSP applications tend to be highly energy constrained, many innovative power

reduction techniques were first introduced in DSPs. In this section, we examine several design trends

that have contributed to increased power efficiency.

13.3.1 Voltage Scaling

As shown in Figure 13.2, the design supply voltage of programmable DSPs has been reduced substan-

tially during the last 20 years. DSP performance is mostly driven by the sample data rate on which

Subthreshold
current

Reverse bias
junction
leakage
current

FIGURE 13.1 Leakage current components.

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 3 4.10.2007 2:57pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-3

the processor operates as opposed to pure clock frequency, as is the case in the general-purpose

microprocessor world. Adding multiple execution units in parallel to speedup DSP computational

kernels with small code dependencies permits designers to reduce the required clock frequencies and

in response reduce the supply voltage with important power benefits [13–15]. Voltage scaling may also

be implemented without proportional performance degradation if the threshold voltages are scaled

accordingly. Voltage scaling has a dramatic effect on power efficiency due to the square law dependence

on VDD in Equation 13.2.

13.3.2 Architectural Power Optimizations

Traditionally, programmable DSP chips have included support for frequently used DSP operations and

addressing modes. Such operations include parallel multiply-accumulate operations used to implement

efficiently computation kernels such as FIR=IIR filters and linear transformation operations [16]. In the

last few years, we have seen programmable DSPs that include native support for Viterbi decoding [13].

The Viterbi algorithm [17] is a computationally efficient maximum likelihood estimator for convolu-

tional decoding used in cellular phone and modem applications. Programmable DSPs usually include

hardware support for an add compare select (ACS) operation used to eliminate the nonoptimal

trellis paths during the decoding process [16]. The TI TMS320C54x architecture includes an explicit

compare, select, and store unit (CSSU), which decouples the path metric computation from the path

selection process.

Maximum datapath efficiency and minimum control overhead have become of paramount import-

ance in DSPs because of reduced power dissipation in addition to performance benefits [18]. Increased

datapath parallelism can allow the DSP designer to reduce the clock frequency and power supply for

additional power benefits. Efficient hardwired instructions can reduce control overhead and minimize

communication among functional units thus reducing the switched capacitance term in Equation 13.2.

DSP algorithms usually involve the repetitive execution of a small set of instructions (kernel). Most

programmable DSPs include hardware support for tight loops. A standard software loop implementa-

tion requires the maintenance and update of a loop index, a compare instruction, and a conditional

1985 1990 1995 2000 2005
0

1

2

3

4

5

6

Year of publication

S
up

pl
y

vo
lta

ge
 (

V
)

Processor
DSP

FIGURE 13.2 Supply voltage trends of microprocessors, DSPs, and research from ISSCC and JSSC publications.

(From Wang, A., Calhoun, B., and Chandrakasan, A., Sub-Threshold Design for Ultra Low-Power Systems, Springer,

Norwell, MA, 2006. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 4 4.10.2007 2:58pm Compositor Name: VBalamugundan

13-4 Digital Systems and Applications

branch to the beginning of the loop. The loop overhead can easily slow down a DSP kernel by a

substantial factor. DSPs include hardware support for both single and multiple instruction loops (i.e.,

REPEAT instruction) [18]. A single instruction loop repeats a single instruction multiple times without

maintaining a loop index and by fetching it only once from memory. A multiple instruction loop on the

other hand must repeatedly fetch the instructions from memory each time the processor executes the

loop. Addition of a small decoded instruction buffer (DIB) to store decoded instructions during the first

iteration into the loop is used in DSPs to lower the power dissipation. Subsequent iterations do not

engage the instruction memory and decode unit, but fetch the decoded instructions from the DIB. Case

studies have indicated 40% power savings when a DIB is implemented in a DSP for certain multimedia

applications [19].

The Berkeley Pleiades project [20] introduced a 1 V heterogeneous reconfigurable DSP targeted

for wireless baseband processing. The architecture consists of multiple satellite arithmetic processors,

on-chip FPGA sections, on-chip memory banks, address generators, and an embedded ARM core. All

these heterogeneous units are interconnected with a hierarchical reconfigurable network. The ARM core

is responsible for the online reconfiguration through a dedicated bus. According to the Pleiades

computation model, the embedded microprocessor core executes the high-level control and spawns

arithmetic-intensive DSP kernels to the satellites. The flow of control is returned to the ARM core when

all the satellite operations have completed. Run-time reconfiguration makes such an architecture very

power-efficient compared to conventional programmable DSPs. A Pleiades silicon implementation is

reported to implement baseband wireless functions at 10–100 MOPS=mW.

13.3.3 Low-Power Standby Modes

General-purpose DSPs typically include instructions that place them in multiple levels of standby modes

[21]. As an example, the OMAP2 application processor, used to run cell phone applications is designed to

have various low-power modes such as idle (clock stopped), retention for low leakage, and fast restart and

power off mode for ultra low leakage. In its ultra low leakage state, leakage was reduced by up to 403.

Fine-grain standby is achieved by partitioning the SoC into multiple power domains that can

individually be powered down to reduce leakage power dissipation [21]. Examples of power domains

in an application processor include the processor core, graphics core, always-on core, and peripherals. To

quickly power down a domain, a grid of power switches is inserted between a global and local power

mesh. The global mesh is always on power, whereas the local power mesh is switched on and off quickly.

Other power management cells are also needed such as isolation cells between domains and always-on

buffers to route signals through a domain that is powered off. Retention flip-flops and RAM is also used

to save state during low-power modes.

13.3.4 Circuit Power Optimizations

Most of the DSPs available in the market today include some form of fine-grain, clock-gating mechan-

ism for power reduction. The regular datapath structure and the small control structures of DSPs make

them well suited for clock-gating. A typical datapath pipeline stage employing clock-gating is shown in

Figure 13.3.

Signals EN0 and EN1 are the stage clock enables that are latched 1808 ahead of time and computed by

the control section. A master clock is distributed to the gating clock drivers, which are typically

amortized across the entire datapath width of the pipeline. Clock-gating not only saves clock and flip-

flop power but also prevents the combinational logic between pipeline stages from switching. Clock-

gating reduces the switching activity factor a in Equation 13.2.

On-chip memory blocks (SRAMs and ROMs) are typically optimized for low power. Memory blocks

are partitioned in multiple banks so that a small fraction of the total memory array is activated during a

memory access [12,15]. Moreover, address bits are typically allocated in such a fashion among row

decoders and column decoders such that sequential memory accesses do not activate the row decoders

during each cycle [15].

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 5 4.10.2007 2:58pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-5

13.4 Low-Power Design in Application-Specific DSPs

Low-power design approaches in application-specific DSPs exhibit more breadth and innovation owing

to the fact that such designs target a well-defined problem as opposed to a wide range of possible

applications. Classification of such design techniques can by no means be complete due to continuous

novelties in circuit and system designs improving DSP system power performance. In this section,

technology and low-level circuit issues are not addressed as they were briefly addressed earlier and are

also relevant to general-purpose DSP systems. Instead, the focus is on unique application-specific power

reduction techniques that have been reported in the literature during the last few years.

13.4.1 Variable Supply Voltage Schemes

Embedded adaptive supply scaling has been the focus of multiple investigators due to the potential for

substantial power savings in both fixed and variable throughput systems.

Nielsen et al. [22] have demonstrated a self-timed adaptive supply voltage system that takes advantage

of variable computational loads (Figure 13.4a). The self-timed system operates in a synchronous

environment and is enclosed between rate-matching FIFO buffers. The state detecting circuit monitors

the state of the input FIFO, which is an indicator of remaining workload. If the buffer is relatively full,

the supply voltage is increased and the circuit operates faster to keep up with the load. If the FIFO is

relatively empty, the supply voltage is reduced because the circuit is operating too quickly. In this way,

the supply voltage is optimally adjusted to the actual workloads maintaining the throughput require-

ments at all times. Wei and Horowitz [23] have investigated techniques for low-power switching supplies

for similar applications.

D Q D Q Combinational
logic

Master CLK

EN0 EN1I1 I2 I3 I0

FIGURE 13.3 Clock-gating.

Synchronous
DSPFIFO

Ring
osc

Voltage
reg

Rate
control

Workload
filter

CLKVDD

(b) Synchronous adaptive supply scheme(a) Asynchronous adaptive supply scheme

FIFO FIFOAsynchronous
DSP

State
detect

DC/DC
converter

VDD

FIGURE 13.4 Adaptive supply voltage schemes. (From Gutnik, V. and Chandrakasan, A., IEEE Transactions on

VLSI Systems, pp. 425–435, December 1997. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 6 4.10.2007 2:58pm Compositor Name: VBalamugundan

13-6 Digital Systems and Applications

Gutnik [24] has demonstrated a synchronous implementation of a variable supply voltage scheme

that uses FIFO state to generate both a supply voltage and a corresponding variable clock using a closed-

loop ring oscillator (Figure 13.4b). As the FIFO fills up, the clock speed increases to sustain the higher

workload and as the FIFO empties, the clock slows and the supply voltage decreases for quadratic power

reduction. Power savings are higher than simple clock-gating mechanisms due to the square law

dependence of power dissipation on supply voltage. Buffering and workload averaging makes this

scheme applicable to fixed throughput but variable algorithmic load applications (i.e., video compres-

sion=decompression and digital communication applications).

Goodman and Dancy [25] have demonstrated a low-power encryption processor with an embedded

high-efficiency DC–DC converter that takes advantage of the time-varying data rates found in wireless

encryption applications. Power reduction varying from 13 up to 5.333 has been reported depending on

data throughput variations.

13.4.2 Optimum Energy and Subthreshold Circuits

In highly energy-constrained DSP applications, minimizing energy consumption is the principal metric,

and often in these applications performance is sacrificed to optimize for power. Subthreshold circuits

that operate at supply voltages below the device threshold voltage are ideal for extremely energy-starved

applications [13]. Examples of areas where subthreshold circuits are targeted are RFID, microsensor

networked nodes, and systems that operate off of the energy-harvested sources.

Optimizing for minimum energy consumption often means that slower is better. As we reduce the

supply voltage, switching power is decreased quadratically as seen in Equation 13.2. At the same time,

lower supply voltage means reduced transistor drive current leading to slower circuit speeds. Therefore,

if an application can run at a slower speed, it trades-off speed for switching power. There is a limit to

how slow the circuit can run before it either fails functionally or power dissipation increases due to

leakage current. Below the threshold voltage, both delay increases and the amount of leakage power

begins to surpass the switching power dissipation. There is an optimum supply voltage level where

energy is minimized [13,26]. Figure 13.5 shows a simulation of switching, leakage, and total power of a

0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

9

N
or

m
al

iz
ed

 e
ne

rg
y

Supply voltage (V)

Total energy
Switching energy
Leakage energy

FIGURE 13.5 Minimum energy point of a 2-input NAND circuit. (FromWang, A., Calhoun, B., and Chandrakasan,

A., Sub-Threshold Design for Ultra Low-Power Systems, Springer, Norwell, MA, 2006. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 7 4.10.2007 2:58pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-7

nand circuit. The minimum operating point occurs at �150 mV, which is much lower than the

threshold voltages of a typical device.

The minimum energy point occurrence depends highly on the ratio of switching energy to leakage

energy. The amount of switching depends highly on the activity factor, which is either related to the

workload or the duty cycle. The leakage energy depends on the process conditions such as the threshold

voltage of the devices or the operating conditions such as the temperature. The optimal supply voltage to

minimize energy has been analytically derived from switching and subthreshold current models [13,27]

and confirmed using curve-fitting [28].

Subthreshold digital circuits are designed to operate below the threshold voltage. A study of the

minimum voltage operation of an inverter shows that operation is possible at as low as 55 mV, if sized

properly [13]. However, across process variations, the minimum operation increases to 200 mV. Figure

13.6 shows the minimum voltage for which the inverter maintains 10%–90% output voltage swing. The

upper bound on size occurs because the subthreshold leakage through a large pMOS device limits the

extent to which the smaller nMOS can pull down the voltage at the output. The curve denoted by

diamonds (Wp[max]) shows the maximum pMOS width for which the output-low voltage of the

inverter achieves 10% or less of VDD. Similarly, the lower bound on size occurs because the subthreshold

leakage through a large nMOS device limits the extent to which the smaller pMOS can pull up the

voltage at the output. The curve marked with circles (Wp[min]) shows the minimum pMOS width for

which the output-high voltage achieves 90% of VDD. Wp(max) in Figure 13.6 is defined at the weak

nMOS, strong pMOS (WS) corner, where the nMOS is much weaker than the pMOS devices to show the

worst-case sizing for this condition. Likewise, Wp(min) is defined at the strong nMOS, weak pMOS

(SW) corner to provide the worst-case for pull-up.

This pair of curves essentially gives the worst-case bounds for the process. On the basis of this analysis,

the worst-case minimum supply voltage is VDD¼ 200 mV. The pMOS=nMOS sizing ratio (Wp¼Wn) to

achieve this minimum voltage is 12. Since minimum voltage operation occurs for symmetrical pMOS

and nMOS currents, this optimum ratio tells us that the pMOS transistor in the inverter needs 12 times

the width of the nMOS to equalize the subthreshold currents in this technology.

100 200 300 400 500
0

10

20

30

40

50

60

V
DD

 (mV)

W
p

/W
n

Minimum Wp

Maximum Wp

FIGURE 13.6 Minimum achievable voltage retaining 10%–90% output swing for inverter across worst-case

process corners (simulation). (From Wang, A., Calhoun, B., and Chandrakasan, A., Sub-Threshold Design for Ultra

Low-Power Systems, Springer, Norwell, MA, 2006. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 8 4.10.2007 2:58pm Compositor Name: VBalamugundan

13-8 Digital Systems and Applications

Studies on CMOS logic families have shown certain logic families are more suitable for subthreshold

operation. For example, ratioed logic flip-flops have shown to fail at 450 mV due to process variations

and the inability of the devices to overcome the feedback associated with ratioed logic [13]. Upsizing the

transistors may help the circuit to function at lower voltages, but a better approach is to use CMOS flip-

flops, which eliminate the feedback path when writing to the cell. Logic family analysis in light of process

variations shows that transmission gate logic and static CMOS logic are robust to variation while in

subthreshold, whereas dynamic logic and psuedo-NMOS logic are not energy efficient and fail at low

voltage [13].

Subthreshold SRAMs are also necessary to optimize energy dissipation. With technology scaling to

smaller dimensions, the amount of RAM integration is also increasing. 6T SRAM bit-cell dimensions are

often smaller than the standard cell dimensions leading to worsening effect of process variations on the

SRAM performance and functionality. Also, the 6T SRAM bit-cell suffers from the same problems as

ratioed logic at low voltage. It is difficult to write the cell due to the feedback of the cross-coupled

inverters. Read stability is compromised at low voltage due to large bit-line leakage. The bit-line leakage

is acerbated in deep submicron technologies.

One way to further scale the voltage to subthreshold levels is to replace SRAMs with register files [30].

Register files use static CMOS registers that are able to operate at as low as 200 mV. Analysis of bit-lines

showed that increasing the number of bits on a bit-line increases the minimum voltage operation of the

SRAM. Partitioning the bit-line hierarchically using 2-to-1 muxes extends the bit-line operation down

to 100 mV in simulation.

However, this RAM design is equivalent to an 18T design and not suitable for large designs where large

areas are not acceptable. A subthreshold 10T SRAM bit-cell design is shown in Figure 13.7 [29,13]. The

10T bit-cell consists of a 6T traditional bit-cell with a 4T read buffer. This scheme separates the read port

from the write port, and the read buffer is both low-leakage and does not compromise read static noise

margin (SNM). Results from a 65 nm testchip of the 10T SRAM showed functionality down to 300 mV

making it suitable for subthreshold designs. At 300 mV, the 10T cell saves 2.253 leakage power relative

to the 6T at 0.6 V [13].

Many of these subthreshold techniques were used to implement a subthreshold fast Fourier transform

(FFT) processor [30]. The variable bit-precision FFT processor was designed to operate as low as 100 mV.

The FFT has two operating modes, 8-bit and 16-bit precision. For 8-bit precision, the minimum energy

operating point occurred at 350 mV; and for 16-bit precision at 400 mV [13]. The FFT energy versus

voltage is shown in Figure 13.8.

BLB

RWL

RBL
WL

M6M3

M2 M5

M4M1

M9

M10

M7

M8

BL

Q
QB

VVDD

QBB

FIGURE 13.7 10T SRAM bit-cell schematic. (From Calhoun, B.H. and Chandrakasan, A., IEEE International Solid-

State Circuits Conference (ISSCC) Digest of Technical Papers, 49, 628, 2006. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 9 4.10.2007 2:58pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-9

13.4.3 Nonstandard Arithmetic Structures

Fixed-function DSP VLSI implementations (i.e., digital filters with constant coefficients, frequency

domain data transformations such as FFT and DCT) can reduce power significantly when designed

with hardwired arithmetic structures, which are different from standard multipliers and adders. One

such important structure is the distributed arithmetic (DA) implementation [31,32].

DA [33,34] is a bit-serial operation that computes the inner product of two vectors (one of which is a

constant) in parallel. In the DSP domain, this operation finds applications in FIR computations, linear

transform computation, and any other DSP kernel, which involves dot products. Its main advantage

is the efficiency of storing precomputed values in a ROM and the fact that no power-hungry multiplica-

tions are necessary. DA has an inherent bit serial nature but this additional latency can be hidden if

the number of bits in each variable vector element is equal or similar to the number of elements in

each vector. In other words, DA is very efficient in computing long dot products of relatively low

precision numbers.

Figure 13.9 shows a detailed example of a DA computation. The structure shown computes the dot

product of a 4-element vector X and a constant vector A. All 16 possible linear combinations of the

constant elements (Ai) are stored in a ROM. The variable vector X is forming the ROM address, MSB-

first. The figure assumes that the Xi elements are 4-bit 2’s complement integers (bit 3 is the sign bit).

Every clock cycle, the RESULT register adds 23 its previous value to the currently addressed ROM

contents. In addition, the 4-shift registers that hold the variable vector X are shifted to the right. The sign

timing pulse Ts is activated when the ROM is addressed by the sign bit (bit 3) of the vector elements. In

this case, the accumulator subtracts the addressed ROM contents to implement the first negative term of

the dot product. After four cycles, the dot product has been produced within the RESULT register.

The power advantages of DA versus multiply-accumulate can be summarized as follows:

1. ROM accesses can be more energy efficient than multiplications.

2. A ROM and accumulator (RAC) structure can be much more area efficient than a multiplier and

accumulator (MAC) structure. In such case, wires tend to be shorter and less capacitive.

200 300 400 500 600 700 800 900

10
2

10
3

VDD (mV)

E
ne

rg
y/

F
F

T
 (

nJ
)

Min energy point
@ 350 mV

Min energy point
@ 400 mV

FFT energy

FIGURE 13.8 FFTmeasuredminimumenergy point for 8-bit and 16-bit processing. (FromWang, A., Calhoun, B., and

Chandrakasan, A., Sub-Threshold Design for Ultra Low-Power Systems, Springer, Norwell, MA, 2006. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 10 4.10.2007 2:58pm Compositor Name: VBalamugundan

13-10 Digital Systems and Applications

3. If the number of elements in the vectors forming the dot product is greater than the bit precision

of the variable vector, then DA structure can be clocked slower than the sample rate and

advantage of voltage scaling techniques can be taken. Essentially, such a configuration is an

interesting form of parallelism.

4. A DA RAC structure is an ideal arithmetic unit for approximate processing (trading-off power

dissipation vs. output quality).

13.4.4 Algorithmic=Architectural Exploitation of Data
Distribution Properties

Fixed-function DSP systems typically operate on data streams that exhibit common distribution

properties. The following are some examples:

1. Data streams related tohumanaural andvisual perception (uncompressed audioandvideo samples):

Such streams typically exhibit large spatial and temporal correlation and reduced dynamic range.

2. Data streams of compressed video or image data in the frequency domain: Typically, such streams

contain large numbers of zero-valued coefficients indicating the lack of high spatial frequencies in

natural images.

A priori knowledge of data stream distribution can be exploited at the algorithmic and architectural

level for computation minimization and power reduction.

It has been observed that 16-bit sampled speech data samples exhibit significant correlation, in

addition to a predominance of small signal values [35]. As a result, a sliced datapath for a digital

hearing aid filter bank is used to exploit the small magnitude of the input samples. The arithmetic

datapath is partitioned into an MSB and an LSB slice. The MSB slice is only engaged when the input bit-

width requires it. The slices are activiated by using special data tags that indicate the presence of sign

extension bits in the MSB input slice. Additional circuit overhead is required for the computation and

update of the tags. Dynamic bit-width adaptation is coarse and can only be performed on a per-slice

basis. This scheme results in data-dependent power reduction and processing time.

0
A0
A1

A1 + A0
A2

A2 + A0
A2 + A1

A2 + A1 + A0
A3

A3 + A0
A3 + A1

A3 + A1 + A0
A3 + A2

A3 + A2 + A0
A3 + A2 + A1

A3 + A2 + A1 + A0

X00 X01 X02 X03

X10 X11 X12 X13

X20 X21 X22 X23

X30 X31 X32 X33

X2

Result

Ts

FIGURE 13.9 Distributed arithmetic ROM and accumulator (RAC) structure. (From Xanthopoulos, T. and

Chandrakasan, A., IEEE Journal of Solid-State Circuits, 35(5), 740, May 2000. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 11 4.10.2007 2:58pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-11

A DA-based discrete cosine transform (DCT) architecture that exploits correlation in the incoming

image or video samples for computation minimization and power reduction has been demonstrated [36].

DCT [37] is a frequency domain data transformwidely used in video and still image compression standards

such as MPEG [38] and JPEG [39]. The 8-point one-dimensional DCT transform is defined as follows:

X[u] ¼ c[u]

2

X7
i¼0

X[i] cos
(2i þ 1)up

16

� �
(13:4)

where c[u] ¼ 1=
ffiffiffi
2

p
if u¼ 0 and 1 otherwise.

Image pixels are locally well correlated and exhibit a certain number of common most significant bits.

These bits constitute a common-mode DC offset that only affects the computation of the DC DCT

coefficient (X[0] in Equation 13.4) and is irrelevant for the computation of the higher spectral (AC)

coefficients (X[1] . . .X[7] in Equation 13.4). The DCT chip in Ref. [36] includes adaptive bit-width DA

computation units that reject common most significant bits for all AC coefficient computations

resulting in arithmetic operations with reduced bit-width operands, thus reducing switching activity.

The bit-serial nature of the DA operation allows very fine-grain (1-bit) adaptation to the input dynamic

range as opposed to the coarse slice-level adaptation [35].

An interesting algorithmic adaptation to data distribution properties has been demonstrated in Ref.

[40]. The chip computes the inverse discrete cosine transform (IDCT) and is targeted to MPEG-

compressed video data. The 8-point, one-dimensional IDCT is defined as follows:

X[i] ¼
X7
u¼0

c[u]

2
X[u] cos

(2i þ 1)up

16

� �
(13:5)

where c[u] ¼ 1=
ffiffiffi
2

p
if u¼ 0 and 1 otherwise.

Numerous fast IDCT algorithms can minimize the number of multiplications and additions implied

by Equation 13.5 [41,42]. Yet, the statistical distribution of the input DCT coefficients possesses unique

properties that can affect IDCT algorithmic design. Typically, 64-coefficient DCT blocks of MPEG-

compressed video sequences have only 5–6 nonzero coefficients, mainly located in the low spatial

frequency positions due to the low pass characteristics of frame sequences [40]. The histogram of Figure

13.10 shows the frequency of 64-coefficient block occurrence plotted versus the number of nonzero

coefficient content for a typical MPEG sequence. The mode of such distributions is invariably blocks

with a single nonzero spectral coefficient (typically the DC).

Given such input data statistics, we observe that direct application of Equation 13.5 will result in

a small average number of operations since multiplication and accumulation with a zero-valued

0
0 16 32 48 64

10,000

20,000

30,000

40,000

50,000

Number of nonzero DCT coefficients

N
um

be
r

of
 b

lo
ck

s

FIGURE 13.10 Histogram of Nonzero DCT coefficients in sample MPEG stream. (From Xanthopoulos, T. and

Chandrakasan, A., IEEE Journal of Solid-State Circuits, 34, 693, 1999.With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 12 4.10.2007 2:58pm Compositor Name: VBalamugundan

13-12 Digital Systems and Applications

coefficient X[k] constitutes a NOP [43]. The chip in Ref. [40] uses such a direct coefficient-by-coefficient

algorithm coupled with extensive clock-gating techniques to implement the implied NOPs. IDCT

computation power of 4.5 mW for MPEG-2 sample rates has been reported.

13.4.5 Approximate Processing

In many DSP applications, lower quality in visual or audio output can be tolerated for reduced power

dissipation. Recently, a number of researchers have resorted to approximate processing as a method for

reducing average system power. An approximate filtering technique has been demonstrated to reduce the

filter order dynamically based on the input data characteristics [44]. More specifically, the number of

taps of a frequency-selective FIR filter is dynamically varied based on the estimated stopband energy of

the input signal. The resulting stopband energy of the output signal is always kept under a predefined

threshold. This technique results in power savings of a factor of six for speech inputs. An adaptive

scheme dynamically reduces the input amplitude of a booth-encoded multiplier to the lowest acceptable

precision level in an adaptive digital equalizer [45]. The scheme simply involves an arithmetic shift

(multiplication=division by a power of two) of the multiplier input depending on the value of the error

at the equalizer output. They report power savings of 20%.

When theDAoperation is performedMSB-first, it exhibits stochasticallymonotonic successive approxi-

mation properties. In other words, each successive intermediate value is closer to the final value in a

stochastic sense. An analytical derivation is presented inRef. [46]. As an example, let us assume thatwehave

a DA structure computing the dot product of two vectors. Each vector element is 8-bits 2’s complement

integer. If we clock the DA structure of Figure 13.9 for eight full cycles, the full precision value of the dot

productwill form into the RESULTregister. If insteadwe clock theDA structure for four cycles and perform

a 4-bit arithmetic left shift of the output in the RESULT register (multiplication by 24), we obtain an

approximation of the actual dot product. If we clock the structure oncemore (total of five cycles) and then

perform a 3-bit arithmetic left shift of the output (multiplication by 23), we obtain a better approximation.

In this way, a DA structure can implement a fine-grain trade-off between power and precision.

A DCT application can use this property extensively for power reduction [36]. In image and video

compression applications not all spectral coefficients have the same visual significance. Typically, a large

number of high spatial frequencies are quantized to zero in a lossy image=video compression environ-

ment (i.e., JPEG and MPEG) with no significant change in visual quality. The DCT processor in Ref. [36]

exploits such different precision requirements on a coefficient basis by reducing the number of iterations

of the DA units that compute the visually insignificant spectral coefficients in a user-programmable

fashion. Figure 13.11 plots average power chip dissipation versus compressed image quality in terms of

the image peak SNR (PSNR), a widely used quality measure in image processing. The data points in the

graph have been obtained by chip power measurements at different RAC maximum iteration settings.

3

3.5

4

4.5

5

5.5

20 25 30 35 40 45 50
PSNR (dB)

P
ow

er
 (

m
W

)

FIGURE 13.11 DCT chip average power versus compressed image quality. (From Xanthopoulos, T. and

Chandrakasan, A., IEEE Journal of Solid-State Circuits, 35(5), 740, May 2000. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 13 4.10.2007 2:58pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-13

The data implies that the chip can produce on average 10 additional decibels of image quality per

milliwatt of power dissipation. Figure 13.12 displays the actual compressed images for three (power,

PSNR) data points of Figure 13.11 for visual appreciation.

A similar DA-based approximate processing technique is used in a programmable ultra-low-power DSP

targeted to physiologicalmonitoring [47,4]. ReducedRAC iterations reduce the signal-to-noise ratio of the

input signal (effectively increasing the quantization noise) and result in less reliable heartbeat detection.

Yet, the reduced performance results in linear power savings, which may be desirable in certain situations.

Variable bit-precision was explored in conjunction with a real-valued FFT design for sensor networks

[13]. Energy-aware computing meant that when energy resources were plentiful, the sensor could

compute a highly accurate FFT. However, when energy resources were low and being depleted, the

sensor can compute a lower bit-precision FFT, sacrificing accuracy for less power dissipated. Variable

bit-precision allowed for graceful degradation of sensor signal processor over time.

Figure 13.13 shows a block diagram of a variable bit-precision Baugh–Wooley (BW) multiplier

[30,13]. The multiplier design partitions the 16-bit BW multiplier into quadrants. The MSB quadrant

is an 8-bit BW multiplier, thus during 8-bit processing, inputs are directly fed into the MSB quadrant.

23.99 dB 3.07 mW 32.46 dB 4.30 mW 44.84 dB 5.11 mW

FIGURE 13.12 Compressed image quality and power. (From Xanthopoulos, T. and Chandrakasan, A., IEEE

Journal of Solid-State Circuits, 35(5), 740, May 2000. With permission.)

00000

0
0

0
0

0
0

0
0

000
X[7:0]

Y[7:0]

Y[15:8]

Z[31:0]

X[15:8]

1

Logic used in 8b and
16b processing

Logic used only in
16b processing

FIGURE 13.13 Variable bit-precision Baugh–Wooley multiplier allows for energy-scalable 8-bit and 16-bit pro-

cessing. (From Wang, A. and Chandrakasan, A., IEEE Journal of Solid-State Circuits, 40(1), 310, January 2005. With

permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 14 4.10.2007 2:58pm Compositor Name: VBalamugundan

13-14 Digital Systems and Applications

The inputs to remaining quadrants and outputs from the 8-bit BW are gated, to prevent additional

switching power overhead. When 16-bit processing is required, the entire BW multiplier is used. In

traditional nonscalable techniques, one multiplier is created that operates over the largest required bit-

precision and an 8-bit multiplication would have switching power overhead.

References

1. A. Gatherer, T. Stetzler, M. McMahan, and E. Auslander. DSP-based architectures for mobile

communications: Past, present and future, IEEE Communications Magazine, Vol. 38, No. 1, Jan.

2000, pp. 84–90.

2. B. Calhoun et al., Design considerations for ultra-low energy wireless microsensor nodes, IEEE

Transactions on Computers, 54(6), Jun 2005, pp. 727–740.

3. A. Chandrakasan, A. Burstein, and R. Brodersen. A low-power chipset for a portable multimedia

I=O terminal, IEEE Journal of Solid-State Circuits, 29(12), Dec. 1994, 1415–1428.

4. R. Amirtharajah. Design of low power VLSI systems powered by ambient mechanical vibration. PhD

Thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1999.

5. T. Simon and A. Chandrakasan, An Ultra low power adaptive wavelet video encoder with integrated

memory, IEEE Journal of Solid-State Circuits, 35(4), April 2000, 572–582.

6. J. Goodman and A. Chandrakasan, An energy-efficient IEEE 1363-based reconfigurable public-key

cryptography processor, In 2001 IEEE International Solid-State Circuits Conference Digest of Tech-

nical Papers, Feb. 2001, pp. 330–331.

7. P. Mosch et al., A 660-m W 50-Mops 1-V DSP for a hearing aid chip set, IEEE Journal of Solid-State

Circuits, 35(11), Nov. 2000, 1705–1712.

8. H. Veendrick, Short-circuit dissipation of static CMOS circuitry and its impact on the design of

buffer circuits, IEEE Journal of Solid-State Circuits, SC-19(4), Aug. 1984, 468–473.

9. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Leakage current mechanisms and leakage

reduction techniques in deep-submicrometer CMOS circuits, Proceedings of the IEEE, 91(2), Feb.

2003, 305–327.

10. S. Mutoh et al., 1-V power supply high-speed digital circuit technology with multithreshold-voltage

CMOS, IEEE Journal of Solid-State Circuits, 30(8), Aug. 1995, 847–854.

11. T. Kuroda et al., A 0.9-V, 150-MHz, 10-mW, 4 mm2, 2-D discrete cosine transform core processor

with variable threshold-voltage (VT) scheme, IEEE Journal of Solid-State Circuits, 31(11), Nov. 1996,

1770–1779.

12. W. Lee et al., A 1-V programmable DSP for wireless communications. IEEE Journal of Solid-State

Circuits, 32(11) Nov. 1997, 1766–1776.

13. A. Wang, B. Calhoun, and A. Chandrakasan, Sub-Threshold Design for Ultra Low-Power Systems,

Springer, Norwell, MA, 2006.

14. K. Ueda et al., A 16 b low-power-consumption digital signal processor, In 1993 IEEE International

Solid State Circuits Conference Digest of Technical Papers, Feb. 1993, pp. 28–29.

15. T. Shiraishi et al., A 1.8 V 36 mW DSP for the half-rate speech CODEC, In Proceedings of the 1996

IEEE Custom Integrated Circuits Conference, May 1996, pp. 371–374.

16. I. Verbauwhede and C. Nikol, Low power DSPs for wireless communications, In Proceedings of the

2000 International Symposium on Low Power Electronics and Design, July 2000, pp. 303–310.

17. B. Sklar. Digital Communications. Prentice-Hall, Englewood Cliffs, NJ, 1988.

18. P. Lapsley, J. Bier, A. Shoham, and E. Lee. DSP Processor Fundamentals. IEEE Press, Piscataway, NJ,

1997.

19. M. Hiraki et al., Stage-skip pipeline: A low power processor architecture using a decoded instruction

buffer, In Proceedings of the 1996 International Symposium on Low Power Electronics and Design, Aug.

1996, pp. 353–358.

20. H. Zhang et al., A 1-V Heterogeneous reconfigurable DSP IC for wireless baseband digital signal

processing, IEEE Journal of Solid-State Circuits, 35(11), Nov. 2000, 1697–1704.

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 15 4.10.2007 2:58pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-15

21. P. Royannez et al., 90 nm low leakage SoC design techniques for wireless applications, Technical.

Digest ISSCC, Feb. 2005, pp. 138–139.

22. L. Nielsen et al., Low-power operation using self-timed circuits and adaptive scaling of the supply

voltage, IEEE Transactions on VLSI Systems, Dec. 1994, pp. 391–397.

23. G. Wei and M. Horowitz, A low power switching power supply for self-clocked systems,

In Proceedings of the 1996 International Symposium on Low Power Electronics and Design,

Aug. 1996, pp. 313–318.

24. V. Gutnik and A. Chandrakasan, Embedded power supply for low-power DSP, IEEE Transactions on

VLSI Systems, Dec. 1997, pp. 425–435.

25. J. Goodman, A. Dancy, and A. Chandrakasan, An energy=security scalable encryption processor

using an embedded variable voltage DC=DC converter, IEEE Journal of Solid-State Circuits, 33(11),

Nov. 1998, 1799–1809.

26. A. Wang, A. Chandrakasan, and S. Kosonocky, Optimal supply and threshold scaling for

sub-threshold CMOS circuits, In IEEE Computer Society Annual Symposium on VLSI, Apr. 2002,

pp. 7–11.

27. B. Calhoun, A. Wang, and A. Chandrakasan, Modeling and sizing for minimum energy operation in

subthreshold circuits, IEEE Journal of Solid-State Circuits, 40(9), Sept. 2005, 1778–1786.

28. B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, Theoretical and practical limits of dynamic voltage

scaling, In ACM=IEEE Design Automation Conference (DAC) Digest of Technical Papers, 2004,

pp. 868–873.

29. B.H. Calhoun and A. Chandrakasan, A 256 kb Sub-threshold SRAM in 65nm CMOS, In IEEE

International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, Vol. 49, 2006,

pp. 628–629.

30. A. Wang and A. Chandrakasan, A 180-mV subthreshold FFT processor using a minimum energy

design methodology, IEEE Journal of Solid-State Circuits, 40(1), Jan 2005, 310–319.

31. M. Sun, T. Chen, and A. Gottlieb, VLSI Implementation of a 163 16 Discrete Cosine Transform,

IEEE Transactions on Circuits and Systems, 36(4), April 1989, 610–617.

32. S. Uramoto et al., A 100 MHz 2-D discrete cosine transform core processor, IEEE Journal of Solid-

State Circuits, 36(4), April 1992, pp. 492–499.

33. A. Peled and B. Liu, A new hardware realization of digital filters, IEEE Transactions on Acoustics

Speech and Signal Processing, ASSP-22(6), Dec. 1974, 456–462.

34. S. White. Applications of distributed arithmetic to digital signal processing: A tutorial review, IEEE

ASSP Magazine, July 1989.

35. L. Nielsen and J. Sparso, An 85 mWasynchronous filter bank for a digital hearing aid, In 1998 IEEE

International Solid State Circuits Conference Digest of Technical Papers, Feb. 1998, pp. 108–109.

36. T. Xanthopoulos and A. Chandrakasan, A low-power DCT core using adaptive bitwidth and

arithmetic activity exploiting signal correlations and quantization, IEEE Journal of Solid-State

Circuits, 35(5), May 2000, 740–750.

37. K. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press,

San Diego, 1990.

38. D. LeGall, MPEG: A video compression standard for multimedia applications, Communications of

the ACM, 34(4), April 1991, 46–58.

39. G. Wallace, The JPEG still picture compression standard, Communications of the ACM, 34(4), April

1991, 30–44.

40. T. Xanthopoulos and A. Chandrakasan, A low-power IDCT macrocell for MPEG-2 MP@ML

exploiting data distribution properties for minimal activity, IEEE Journal of Solid-State Circuits,

34(5), May 1999, 693–703.

41. W. Chen, C. Smith, and S. Fralick, A fast computational algorithm for the discrete cosine transform,

IEEE Transactions on Communications, 25(9), Sept. 1977, 1004–1009.

42. E. Feig, and S. Winograd, Fast algorithms for the discrete cosine transform, IEEE Transactions on

Signal Processing, 40(9), Sept. 1992, 2174–2193.

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 16 4.10.2007 2:58pm Compositor Name: VBalamugundan

13-16 Digital Systems and Applications

43. L. McMillan and L. Westover, A forward-mapping realization of the inverse discrete cosine

transform, In Proceedings of the 1992 Data Compression Conference, IEEE Computer Society Press,

March 1992, pp. 219–228.

44. J. Ludwig, S. Nawab, and A. Chandrakasan, Low-power digital filtering using approximate process-

ing, IEEE Journal of Solid-State Circuits, 31(3), March 1996, 395–400.

45. C. Nikol, P. Larsson, K. Azadet, and N. O’Neill, A low-power 128-tap digital adaptive equalizer for

broadband modems, IEEE Journal of Solid-State Circuits, 32(11), Nov. 1997, 1777–1789.

46. R. Amirtharajah, T. Xanthopoulos, and A. Chandrakasan, Power scalable processing using distrib-

uted Arithmetic, In Proceedings of the 1999 International Symposium on Low Power Electronics and

Design, Aug. 1999, pp. 170–175.

47. R. Amirtharajah, S. Meninger, O. Mur-Miranda, A. Chandrakasan, and J. Lang, A micropower

programmable DSP powered using a MEMS-based vibration-to-electric energy converter, In 2000

IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2000, pp. 362–363.

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 17 4.10.2007 2:58pm Compositor Name: VBalamugundan

Low-Power Digital Signal Processing 13-17

Vojin Oklobdzija/Digital Systems and Applications 6195_C013 Final Proof page 18 4.10.2007 2:58pm Compositor Name: VBalamugundan

IV
Communications
and Networks

14 Communications and Computer Networks Anna Hać ..14-1

Architecture . Technology . Routing . Applications Support

Vojin Oklobdzija/Digital Systems and Applications 6195_S004 Final Proof page 1 4.10.2007 4:05pm Compositor Name: VBalamugundan

IV-1

Vojin Oklobdzija/Digital Systems and Applications 6195_S004 Final Proof page 2 4.10.2007 4:05pm Compositor Name: VBalamugundan

14
Communications and
Computer Networks

Anna Hać
University of Hawaii

14.1 Architecture.. 14-1
OSI Reference Model . Networks . TCP=IP . Mobile IPs

14.2 Technology ... 14-5
Broadband Networks . Wireless Networks

14.3 Routing... 14-9
Routing in Terrestrial Networks . Routing in

Wireless Networks . Routing in Wireless Sensor Networks

14.4 Applications Support .. 14-12
Multimedia . Mobile and Wireless . Sensor Networks

14.1 Architecture

The set of layers and the corresponding set of protocols are called the architecture of a network. In

designing a layered architecture, there are problems that must be solved in several layers. These problems

include addressing and connection establishment, connection termination, nature of channel (e.g., full

or half-duplex), error control and sequencing, flow control, and multiplexing.

14.1.1 OSI Reference Model

Open systems interconnect (OSI) reference model consists of seven layers: physical, data link, network,

transport, session, presentation, and application.

The physical layer is responsible for transmitting bits over a communication channel.

The data link layer is responsible for providing an error-free line to the higher layers. It provides error

and sequence checking, and implements a system of time-outs and acknowledgments that enables a

transmitter to determine the frames that need to be retransmitted due to error or dropout. In addition,

flow control is provided in data link layer.

The network layer provides routing and congestion control services to higher layers. The network

accounting function is obtained in this layer.

The transport layer accepts data in message form from the session layer above it, breaks it into smaller

pieces, usually called packets, and passes the packets to the network layer. It must then ensure that the

packets arrive correctly at the destination host. The transport layer is an end-to-end protocol, as

opposed to layers below it, which are chained. The transport layer may multiplex several sessions over

a single network connection, or it may utilize several connections to provide a high data-rate for a

session that requires it. The transport layer may provide either virtual circuit or datagram service to the

session layer. In a virtual circuit, messages are delivered in the order in which they were sent, whereas in a

datagram service there is no guarantee concerning order of delivery. The transport layer also has the

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 1 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-1

responsibility for establishing and terminating connections between hosts across the network and for

providing host-to-host flow control.

The session layer is responsible for establishing and managing connections between two processes.

Session establishment typically requires authentication, billing authorization, and agreement on a set of

parameters that will be in effect for the session. The session layer is also responsible for recovery from a

transport failure, and for providing virtual circuit service if the transport layer does not do so.

The presentation layer performs services that are commonly requested by users, such as text com-

pression, code conversion, file formatting, and encryption.

The application layer contains routines specific to a particular application.

14.1.2 Networks

14.1.2.1 LAN

Local area network (LAN) is a privately owned network of up to a few kilometers in size. LANs are used

to connect computers, workstations, and file servers, and attach printers and other devices. The

restricted size of LANs allows for prediction of transmission time, and simplifies network management.

Traditional LANs run at speeds of 10–100 Mbps and have low delay of tens of milliseconds.

Broadcast topologies include bus and ring. In a bus network, at any instant one machine is the master

and is allowed to transmit. At the same time, all other machines are required to refrain from sending.

IEEE 802.3, which is the Ethernet, is a bus-based broadcast network with decentralized control operating

at 10 or 100 Mbps. Computers on an Ethernet can transmit at any time. If two or more packets collide,

each computer waits for a random time and tries again later.

In a ring network, each bit propagates around on its own, not waiting for the rest of the packet

to which it belongs. IEEE 802.5, which is the IBM token ring, is a ring-based LAN operating at 4 and

16 Mbps.

14.1.2.2 WAN

Wide area network (WAN) covers a large area, a country, or a continent. The hosts in WAN are used to

run application programs and are connected by a communication subnet, which consists of transmis-

sion lines and switching elements. A switching element, also called router, is used to forward packets to

their destinations.

14.1.2.3 Cellular Network

The most widely employed wireless network topology is the cellular network. This network archi-

tecture is used in cellular telephone networks, personal communication networks, mobile data net-

works, and wireless local area networks (WLAN). In this network configuration, a service area, usually

over a wide geographic area, is partitioned into smaller areas called cells. Each cell, in effect, is a

centralized network, with a base station (BS) controlling all the communications to and from each

mobile user in the cell. Each cell is assigned a group of discrete channels from the available frequency

spectrum (usually radio frequency). These channels are in turn assigned to each mobile user,

when needed.

Typically, BSs are connected to their switching networks using landlines through switches. The BS is

the termination point of the user-to-network interface of a wireless cellular network. In addition, the BS

also provides call setups, cell handoffs, and various network management tasks, depending on the type

of network.

14.1.3 TCP=IP

Transmission control protocol=Internet protocol (TCP=IP) suite is used in the network and transport

layers. TCP=IP is a set of protocols allowing computers to share resources across the network. Although

the protocol family is referred to as TCP=IP, user datagram protocol (UDP) is also a member of this

protocol suite.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 2 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-2 Digital Systems and Applications

TCP=IP protocol suite used as network and transport layers has the following advantages:

1. It is not vendor-specific.

2. It has been implemented on most systems from personal computers to the largest supercom-

puters.

3. It is used for both LANs and WANs.

Using TCP=IP also makes the network system portable, and program portability is one of the system

design goals.

The network layer uses IP. IP is responsible for routing individual datagrams and getting datagrams to

their destination. The IP layer provides a connectionless and unreliable delivery system. It is connection-

less because it considers each IP datagram independent of all others and any association between

datagrams must be provided by the upper layers. Every IP datagram contains the source address and

the destination address so that each datagram can be delivered and routed independently. The IP layer is

unreliable because it does not guarantee that IP datagrams ever get delivered or that they are delivered

correctly. Reliability must be provided by the upper layers.

Transport layer uses UDP and TCP. TCP is a connection-oriented protocol that provides a reliable,

full-duplex, byte stream for the multimedia communication process. TCP is responsible for breaking up

the message into datagrams, reassembling them at the other end, resending anything that got lost, and

putting everything back in the right order. TCP handles the establishment and termination of connec-

tions between processes, the sequencing of data that might be received out of order, the end-to-end

reliability (checksums, positive acknowledgments, timeouts), and the end-to-end flow control.

UDP is a connectionless protocol for user processes. Unlike TCP, which is a reliable protocol, there is

no guarantee that UDP datagrams ever reach their intended destination. UDP is less reliable than TCP

but transfers data faster as they are not held up by earlier messages awaiting retransmission. TCP

protocol is used for file transfer that requires reliable, sequenced delivery, where real-time delivery may

not be of utmost importance.

14.1.4 Mobile IPs

In TCP=IP an application is connected with another application through a router. Each host in Internet

has a unique address. An IP address is a 32-bit binary number that can also be used in a dotted notation.

IP addresses contain two parts: network address, which identifies the network to which the host is

attached and local address, which identifies the host. Local address can be separated into two parts,

subnet address and local address.

The hierarchical address makes routing simple. A host that wants to send packets to another host only

needs to send packets to the network to which the target host is attached. The host does not need to

know the inside of the network; however, a computer’s IP address cannot be changed during connection

and communication. If the user wants to move the computer to the other area while using it, this will be

difficult because the physical IP address of the computer must be changed in a different subnet. To solve

this problem, a number of protocols have been proposed: virtual IP (VIP), loose source routing IP

(LSRIP), and Internet engineering task force mobile IP (IETF-MIP).

14.1.4.1 VIP

VIP uses two 32-bit IP-style addresses to identify mobile hosts: one is named virtual IP (VIP) address

and the other temporary IP (TIP) address. VIP address is the IP address that mobile hosts get from

their home network. Mobile hosts always use VIP as their source address inside IP packet. When mobile

hosts move to another network, they get another IP address from the foreign network, it is a TIP address.

Each VIP packet contains information to combine VIP and TIP, so the packet target to VIP can be

routed through general Internet to its temporary network by reading its TIP. VIP uses additional space

inside packet to carry this information: a new IP option to identify VIP while original address fields

carry TIP.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 3 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-3

When a mobile host moves to a foreign network, the information about mobile host’s current location

is sent to the mobile host’s home network. During the transmission, each intermediate router that

supports VIP protocol can receive this information and update this router’s cache. This cache is a

database that stores information about mobile hosts’ current location.

If a host wants to send a packet to a mobile host, it only knows the VIP address of the mobile host and

does not know its TIP, which is its current location. The packet will be sent to the mobile host’s home area.

If any intermediate router that supports VIP receives this packet, it will modify this packet according to its

cache so that the new packet will include information of TIP and can be routed to themobile host’s current

location. If the packet does not reach any intermediate router that supports VIP and has cache information

about the mobile host, the packet will be routed to mobile host’s home network. The gateway in mobile

host’s home network can modify this packet according to this gateway’s cache and route the packet to the

mobile host’s current network. This gateway always has the mobile host’s current location, because each

time when the mobile host moves to a new network, the mobile host notifies its home network about the

mobile host’s current location. The optimized path in VIP is mainly based on the number of intermediate

VIP routers. If many intermediate routers support VIP, the optimized routing path should be obtained.

The option VIP uses to carry information of VIP is an option of IP, and not all of the routers will support

this option. Some computers even discard all of the options IP packets carry. VIP also needs many extra IP

addresses for foreign network to assign to the mobile hosts.

14.1.4.2 LSRIP

LSRIP uses one of the IP options to cause the IP packets to be routed through a series of intermediate

routers to the destination. This IP option is loose source and record route (LSRR). For example, if host A

wants to send a packet to host C with LSRR option, the packet can reach host B through general IP

routing. Then host B replaces the destination IP address in IP header with the first IP address C in LSRR

option, and routes the packet to a new destination C. Also, host B puts the pointer to the second IP

address in LSRR option. Host C can perform the same procedure: replace destination IP address with

next IP address in LSRR option, increase pointer to next IP address in LSRR option, and reroute the

packet to a new destination. Until the pointer points to the last IP address in LSRR option, the packet is

sent to its destination address. LSRIP uses LSRR option to carry the information of a mobile host.

When a mobile host moves to a foreign network, the information about the mobile host’s current

location is sent to the mobile host’s home network. During the transmission, each intermediate router

that supports LSRIP protocol can receive this information and update this router’s cache.

If a host wants to send a packet to a mobile host, which is not at its home area, the packet will be first

sent to the mobile host’s home network. During the path to the home network, if an intermediate router

has the cache of the mobile host, this router can put the LSRIP option into the packet and cause it to be

routed to the current network of the mobile host. The gateway of current network reads information

from LSRIP option and can determine that the mobile host is the destination of this packet’s destination.

Thus, the gateway can route the packet to mobile host that is connected to current network.

If the packet does not reach any intermediate router that supports LSRIP and has cache information

about the mobile host, the packet will be routed to mobile host’s home network. The gateway in mobile

host’s home network can add the LSRIP option to this packet according to the gateway’s cache and route

the packet to the mobile host’s current network. This gateway always has the mobile host’s current

location because each time when the mobile host moves to a new network, the mobile host notifies its

home network about the mobile host’s current location.

LSRIP needs more intermediate routers to achieve optimized routing path. Also, the option used by

LSRIP is not compatible with current routers. This can be tested by sending a packet using traceroute, a

tool to check the path of a passed packet. Traceroute uses LSRR option to record the path of the packet

and the transmission time to each intermediate host. If any intermediate host does not support LSRR

option, traceroute bypasses this host. After sending a packet, it can be found from the messages sent back

that some sites are not displayed correctly, which means that these sites do not support LSRR option.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 4 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-4 Digital Systems and Applications

14.1.4.3 IETF-MIP

IETF-MIP is the most usable protocol for mobile IP in the Internet. The basic idea is to use two agents to

handle the job related to the mobile host. When the mobile host moves to the other networks, it will

notify foreign network’s agent, foreign agent, and its home agent about its current location. Then, when

the packet to mobile host is sent to the home agent using general IP, the home agent will modify the

header of IP packet: change the destination address to foreign agent’s address and add some fields to the

packet including the mobile host’s permanent address. When the foreign agent receives this packet, it

will know this is for one mobile host that is now at its location, the foreign agent will modify this packet

again and send it directly to the mobile host through the local network. In IETF-MIP, there are cache

agents to optimize the performance. A cache agent is a host that can maintain a database that stores the

mobile hosts’ current location. This database can be changed according to the location change of

the mobile host.

In this protocol, it is difficult to achieve the optimized routing path, especially in a WAN. For

example, a user in London wants to send a packet to a mobile host in London, whose home network

is in New York. This packet will be first sent to New York, then modified by the home agent, and then

sent back. This takes about one half of the circle of the whole Earth. The optimized path can only be

about 100 ft. Thus, the only solution for IETF-MIP is to set up as many cache agents as possible in the

entire Internet. When the cache agents receive a packet, they can modify the packet instead of sending it

to the home agent of the mobile host.

Mobile IP should be compatible with current IPs; that means the current protocols and applications

do not need to be changed. Mobile IP also needs to have optimized routing path that means the protocol

should be efficient in routing packets. VIP and LSRIP use the option of IP to carry the information of

mobile hosts. But some of the current hosts do not support an IP option. When these hosts receive a

packet that includes options, they discard the options of the IP packet. Meanwhile, IETF-MIP only uses

basic IP header and packet, and does not use any IP option. From the compatibility point, IETF-MIP is

the best out of these three protocols. From the point of optimized routing path, all three protocols

depend on intermediate cache hosts. If enough intermediate cache hosts are inside the Internet, the three

protocols can find optimized routing path. The IETF-MIP is the best out of the three mobile IPs

considering both the compatibility and optimized routing path. IETF-MIP is also the mobile IP protocol

that is used in the Internet.

14.2 Technology

14.2.1 Broadband Networks

Broadband integrated services digital network (B-ISDN) based on asynchronous transfer mode (ATM)

is used for transport of information from multimedia services and applications.

14.2.1.1 ATM

ATM is a cell-based, high-bandwidth, low-delay switching and multiplexing technology that is designed

to deliver a variety of high-speed digital communication services. These services include LAN intercon-

nection, imaging, and multimedia applications as well as video distribution, video telephony, and other

video applications.

ATM standards define a fixed-size cell with a length of 53 bytes comprised of a 5-byte header and a

48-byte payload.

The virtual path identifiers (VPIs) and virtual channel identifiers (VCIs) are the labels to identify a

particular virtual path (VP) and virtual channel (VC) on the link. The switching node uses these values

to identify a particular connection and then uses the routing table established at connection setup to

route the cells to the appropriate output port. The switch changes the value of the VPI and VCI fields to

the new values that are used on the output link.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 5 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-5

14.2.1.2 SONET

Synchronous optical network (SONET) is used for framing and synchronization at the physical layer.

The basic time unit of a SONET frame is 125 ms. The basic building block of SONET is synchronous

transport signal level 1 (STS-1) with a bit rate of 51.84 Mbps. Higher-rate SONETsignals are obtained by

byte-interleaving n frame-aligned STS-1s to form an STS-n (e.g., STS-3 has a bit rate of 155.52 Mbps).

Owing to physical layer framing overhead, the transfer capacity at the user-network interface (UNI) is

155.52 Mbps with a cell-fill capacity of 149.76 Mbps. Because the ATM cell has 5 bytes of overhead, the

48 bytes information field allows for a maximum of 135.631 Mbps of actual user information. A second

UNI interface is defined at 622.08 Mbps with the service bit rate of approximately 600 Mbps. Access at

these rates requires a fiber-based loop.

14.2.1.3 ATM Services

Users request services from the ATM switch in terms of destinations, traffic types, bit rates, and quality

of service (QoS). These requirements are usually grouped together and categorized in different ATM

traffic classifications. The ATM services are categorized as follows:

. Constant bit rate (CBR): Connection-oriented constant bit rate service such as digital voice and

video traffic.

. Real-time variable bit rate (rt-VBR): Intended for real-time traffic from bursty sources such as

compressed voice or video transmission.

. Non-real-time variable bit rate (nrt-VBR): Intended for applications that have bursty traffic but do

not require tight delay guarantee. This type of service is appropriate for connectionless data traffic.

. Available bit rate (ABR): Intended for sources that accept time-varying available bandwidth.

Users are only guaranteed a minimum cell rate (MCR). An example of such traffic is LAN

emulation traffic.

. Unspecified bit rate (UBR): Best effort service that is intended for noncritical applications. It does

not provide traffic-related service guarantees.

ATM networks are fixed (optical) point-to-point networks with high bandwidth and low error rates.

These attributes are not associated with the limited bandwidth and error prone radio medium. Although

increasing the number of cables (copper or fiber optics) can increase the bandwidth of wired networks,

wireless telecommunications networks experience a more difficult task. Owing to limited usable radio

frequency, a wireless channel is an expensive resource in terms of bandwidth. For wireless networks to

support high-speed networks such as ATM, a multiple access approach is needed for sharing this limited

medium in a manner different from the narrowband, along with the means of supporting mobility and

maintaining QoS guarantees.

14.2.2 Wireless Networks

Media access control (MAC) is a set of rules that attempt to efficiently share a communication channel

among independent competing users. Each MAC uses a different media (or multiple) access scheme to

allocate the limited bandwidth among multiple users. Many multiple access protocols have been

designed and analyzed both for wired and wireless networks. Each has its advantages and limitations

based on the network environment and traffic. These schemes can be classified into three categories:

fixed assignments, random access, and demand assignment. The demand assignment scheme is the most

efficient access protocol for traffic of varying bit rate in the wireless environment.

Because of the limited radio frequencies available for wireless communication, wireless networks have

to maximize the overall capacity attainable within a given set of frequency channel. Spectral efficiency

describes the maximum number of calls that can be served in a given service area. To achieve high

spectral efficiency, cellular networks are designed with frequency reuse. If a channel with a specific

frequency covers an area of a radius R, the same frequency can be reused to cover another area. A service

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 6 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-6 Digital Systems and Applications

area is divided into seven cell clusters. Each cell in the cluster, designated one through seven, uses a

different set of frequencies. The same set of frequencies in each cell can be reused in the same service area

if it is sufficiently apart from the current cell. Cells using the same frequency channels are called co-cells.

In principle, by using this layout scheme, the overall system capacity can be increased as large as desired

by reducing the cell size, while controlling power levels to avoid co-channel interference. Co-channel

interference is defined as the interference experienced by users operating in different cells using the same

frequency channel. Smaller size cells called microcells are implemented to cover areas about the size of a

city block. Research has been done on even smaller cells called picocells.

14.2.2.1 TDMA

Time-division multiple access (TDMA) and frequency-division multiple access (FDMA) are fixed

assignment techniques that incorporate permanent subchannel assignments to each user. These tradi-

tional schemes perform well with stream-type traffic, such as voice, but are inappropriate for integrated

multimedia traffic because of the radio channel spectrum utilization. In a fixed assignment environment,

a subchannel is wasted whenever the user has nothing to transmit. It is widely accepted that most

services in the broadband environment are VBR service (bursty traffic). Such traffic wastes a lot of

bandwidth in a fixed assignment scheme.

14.2.2.2 ALOHA

Typical random assignment protocols like ALOHA and carrier sense multiple access with collision

detection (CSMA=CD) schemes are more efficient in servicing bursty traffic. These techniques allocate

the full channel capacity to a user for short periods, on a random basis. These packet-oriented

techniques dynamically allocate the channel to a user on a per-packet basis.

Although a few versions of the ALOHA protocol are used, in its simplest form it allows the users to

transmit at will. Whenever two or more user transmissions overlap, a collision occurs and users have to

retransmit after a random delay. The ALOHA protocol is inherently unstable due to the random delay, i.

e., it is possible that a transmission may be delayed for an infinite time. Various collision resolution

algorithms were designed to stabilize and reduce contention in this scheme.

Slotted ALOHA is a simple modification of the ALOHA protocol. After a collision, instead of

retransmitting at a random time, slotted ALOHA retransmits at a random time slot. Transmission can

only be made at the beginning of a time slot. Obviously, this protocol is implemented in time-slotted

systems. Slotted ALOHA is proven to be twice as efficient as a regular or pure ALOHA protocol.

14.2.2.3 CSMA=CD

CSMA=CD, taking advantage of the short propagation delays between users in a typical LAN, provides a

very high throughput protocol. In a plain CSMA protocol, users will not transmit unless it senses that the

transmission channel is idle. In CSMA=CD, the user also detects any collision that happens during a

transmission. The combination provides a protocol that has high throughput and low delay; however,

carrier sensing is a major problem for radio networks. The signal from the local transmitter will overload

the receiver, disabling any attempts to sense remote transmission efficiently. Despite some advances in this

area, sensing still poses a problemdue to severe channel fading in indoor environments. Similarly, collision

detection proves to be a difficult task in wireless networks. Although it can be easily done on a wired

network by measuring the voltage level on a cable, sophisticated devices are required in wireless networks.

Radio signals are dominated by the terminal’s own signal over all other signals in the vicinity preventing

any efficient collision detection. To avoid this situation, a terminal transmitting antenna pattern has to be

different from its receiving pattern. This requires sophisticated directional antennas and expensive

amplifiers for both the BS and the mobile station (MS). Such requirements are not feasible for the low-

powered mobile terminal end.

14.2.2.4 CDMA

Code-division multiple access (CDMA) is a combination of both fixed and random assignment. CDMA

has many advantages such as near zero channel access delay, bandwidth efficiency, and excellent

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 7 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-7

statistical multiplexing, but it suffers from significant limitations such as limited transmission rate,

complex BS, and problems related to the power of its transmission signal. The limitation in transmission

rate is a significant drawback touse CDMA for integrated wireless networks.

14.2.2.5 Demand Assignment

In demand assignment protocol, channel capacity is assigned to users on demand basis, as needed. Demand

assignment protocols typically involve two stages: a reservation stage where the user requests access and a

transmission stage where the actual data is transmitted. A small portion of the transmission channel, called

the reservation subchannel, is used solely for users requesting permission to transmit data. Short reservation

packets are sent to request channel time by using some simple multiple access schemes, typically, TDMA or

slotted ALOHA. Once channel time is reserved, data can be transmitted through the second subchannel

contention-free. Unlike a random access protocolwhere collisions occur in the data transmission channel, in

demand assignment protocols, collisions occur only in the small-capacity reservation subchannel.

This reservation technique allows demand assignment protocols to avoid bandwidth waste due to

collisions. In addition, unlike fixed assignment schemes no channels are wasted whenever a VBR user

enters an idle period. The assigned bandwidth will simply be allocated to another user requesting access.

Owing to these features, protocols based on demand assignment techniques are most suitable for

integrated wireless networks.

Demand assignment protocols can be classified into two categories based on the control scheme of the

reservation and transmission stages. They can be either centralized or distributed. An example of a

centralized controlled technique in demand assignment is polling. Each user is sequentially queried by the

BS for transmission privileges. This scheme, however, relies heavily on the reliability of the centralized

controller.

An alternative approach is to use distributed control, where MSs transmit based on information

received from all the other MSs. Network information is transmitted through broadcast channels. Every

user listens for reservation packets and performs the same distributed scheduling algorithm based on the

information provided by the MS in the network. Requests for reservation are typically made using

contention or fixed assignment schemes.

14.2.2.6 Network Support for Wireless Sensors

The essence of ubiquitous computing is the creation of environments saturated with computing and

communication in an unobtrusive way. WWRF (Wireless world research forum) and ISTAG (Informa-

tion society technologies advisory group) envision a vast number of various intelligent devices, embed-

ded in the environment, sensing, monitoring, and actuating the physical world, communicating with

each other and with the humans.

The main features of the IEEE 802.15.4 standard are network flexibility, low cost, and low power

consumption. This standard is suitable for many applications in the home requiring low-data-rate

communications in an ad hoc self-organizing network.

Wireless sensor networks are used in a wide range of different applications where numerous sensor

nodes are linked to monitor and report distributed event occurrences. In contrast to traditional

communication networks, the single major resource constraint in sensor networks is power, due to

the limited battery life of sensor devices. Data-centric methodologies can be used to solve this problem

efficiently. In data-centric storage (DCS), data dissemination framework, all event data is stored by type

at designated nodes in the network and can later be retrieved by distributed mobile access points in the

network. Resilient data-centric storage (R-DCS) is a method to achieve scalability and resilience by

replicating data at strategic locations in the sensor network.

This scheme leads to significant energy savings in reasonably large-sized networks and scales well with

increasing node-density and query rate. R-DCS realizes graceful performance degradation in the

presence of clustered as well as isolated node failures, hence making the sensornet data robust.

Wireless sensor networks require low-power, low-cost devices that accommodate powerful processor,

a sensing unit, wireless communication interface, and power source in a robust and tiny package. These

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 8 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-8 Digital Systems and Applications

devices have to work autonomously, to require no maintenance and to adapt to environment. For

example, the MEMS (micro electro mechanical systems) technology enables production of very small

sensing units with low power consumption.

Sensor network management protocol has to support control of individual nodes, network configuration

updates, location information data exchange, network clustering, and data aggregation rules.

Sensor network gateway has to provide tools and functions for presentation of network topology,

services, and characteristics to the users and to connect the network to other networks and users.

The IEEE 802.15.4 standard defines a low-rate wireless personal area network (LR-WPAN), which has

ultra-low complexity, cost, and power for low-data-rate wireless connectivity among inexpensive fixed,

portable, and moving devices. The IEEE 802.15.4 standard defines the physical (PHY) layer and media

access control (MAC) layer specifications.

The IEEE 802.15.4 standard targets the residential and industrial market. LR-WPAN is designed as an

enabler technology. The IEEE 802.15.4 is complementary to the other wireless networking technologies

by occupying the lower end of the power consumption and data throughput space.

Data-centric storage (DCS) is a data-dissemination paradigm for sensor networks. In DCS, data is

stored, according to event type, at corresponding sensornet nodes. All data of a certain event type (e.g.,

humidity measurements) is stored at the same node. A significant benefit of DCS is that the queries for

data of a certain type can be sent directly to the node storing data of that type, rather than flooding the

queries throughout the network (unlike data-centric routing proposals). DCS is based on the low-level

routing functionality provided by the GPSR (greedy perimeter stateless routing) geographic routing

algorithm, and on distributed hash-table functionality provided by peer-to-peer lookup algorithms.

DCS offers reduced total network load and very good network usage.

14.3 Routing

14.3.1 Routing in Terrestrial Networks

Routing refers to the determination of a set of paths to be used for carrying messages from a source node

to all destination nodes. It is important that the routes used for such communications consume a

minimal amount of resources. In order to use network resources as little as possible while meeting the

network service requirements, the most popular solution involves the generation of a tree spanning the

source and destination nodes.

Routing algorithms for constructing trees have been developed with two optimization goals in

mind. Two measures of the tree quality are in terms of the tree delay and tree cost, and are defined as

follows:

1. The first measure of efficiency is in terms of the cost of the tree, which is the sum of the costs on

the edges in the tree.

2. The second measure is the minimum average path delay, which is the average of minimum path

delays from the source to each of the destinations in the group.

Optimization objectives are to minimize the cost and delay; however, the two measures are individually

insufficient to characterize a good routing tree. For example, when the optimization objective is only to

minimize the total cost of the tree, a minimum cost tree is built. Although total cost as a measure of

bandwidth efficiency is certainly an important parameter, it is not sufficient to characterize the quality of

the tree, because networks, especially those supporting real-time traffic, need to provide certain QoS

guarantees in terms of the end-to-end delay along the individual paths from source to destination node.

Therefore, both cost and delay optimization goals are important for the routing tree construction. The

performance of such a route is determined by two factors:

1. Bounded delay along the path from source to destination

2. Minimum cost of the tree, for example, in terms of network bandwidth utilization

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 9 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-9

The goal of the routing algorithm is to construct a delay constrained minimum cost tree. In order to

provide a certain quality of service to guarantee end-to-end delay along the path from source to

destination node, the algorithm sets the delay constraint on the path, instead of trying to minimize

the average path delay. The two measures of the tree quality, the tree edge delay and tree edge cost, can

be described by different functions. For example, edge cost can be a measure of the amount of buffer

space or channel bandwidth, and edge delay can be a combination of propagation, transmission, and

queuing delay.

The shortest path algorithm can be used to generate the shortest paths from the source to destination

nodes; this provides the optimal solution for delay optimization. Routing algorithms that perform cost

optimization have been based on computing the minimum Steiner tree, which is known to be an NP-

complete problem.

14.3.1.1 DDBMA

A heuristic algorithm called DDBMA (dynamic delay bounded multicasting algorithm) is used for

constructing minimum-cost multicast trees with delay constraints. The algorithm sets variable delay

bounds on destinations and can be used to handle the network cost optimization goal: minimizing the

total cost (total bandwidth utilization) of the tree. The algorithm can also be used to handle a dynamic

delay-bounded minimum Steiner tree, which is accomplished by updating the existing multicast tree

when destinations need to be added or deleted.

During the network connection establishment, DDBMA can be used to construct a feasible tree for a

given destination set. For certain applications, however, nodes in the network may join or leave the

initial multicast group during the lifetime of the multicast connection. Examples of these applications

such as teleconferencing, mobile communication, etc., allow each user in the network to join or leave the

connection at any time without disrupting network services to other users.

The DDBMA is based on a feasible search optimization method, which starts with the minimum delay

tree and monotonically decreases the cost by iterative improvement of the delay-bounded tree. Then the

algorithm starts to update the existing tree when nodes in the network request to join or leave. The

algorithm will stay steady when there is no leaving or joining requests from nodes in the network.

Multimedia, multiparty communication services are supported by networks having the capability to

setup=modify the following five basic types of connections: point-to-point, point-to-multipoint (also

called multicast), multipoint-to-point (also called concast), multipoint-to-multipoint, and point-to-

allpoint (also called broadcast).

Many types of communication require transmission of certain information from the source to a

selected set of destinations. This could be the cast of multipoint video conference, the distribution of a

document to a selected number of persons via a computer network or the request for certain informa-

tion from a distributed database.

14.3.2 Routing in Wireless Networks

Wireless personal communication networks use a general routing procedure, a rerouting procedure, and

a handoff. Along with the features of wireless communication, the user mobility control function

tracking locations of networks subscribers should be associated with routing schemes during commu-

nication connection. In wireless communications networks, the network topology is established by

virtual paths. Virtual paths are logical direct radio links between all switch nodes. The bandwidth of

virtual path can consist of a number of virtual channels. Because of the features of wireless communi-

cations networks, the network topology is highly dynamic. The bandwidth of wireless communications

networks is limited, the traffic increases quickly, and it is hard to schedule incoming traffic on time in the

centralized approaches, which are not efficient when network size increases and the network services

are enhanced.

The subscribers in wireless communications networks roam. To create connections between all

communication parties to deliver incoming and outgoing calls, the first consideration is the current

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 10 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-10 Digital Systems and Applications

location of mobile users and hosts. In wireless communications networks, the key service for providing

seamless connectivity to mobile hosts is creation and maintenance of a message forwarding the path

between two known locations of calling and called mobile hosts. A routing decision in wireless

communications networks is made using not only the states of paths and internal switching nodes

but also the location of available information.

Geographical area covered by wireless communications networks is partitioned into a set of cells. A

routing path may be inefficient whereas a mobile host hands off to another cell coverage area. The

connection paths need to be reestablished each time to continue communication. As a result, the

network call processor can become involved many times during the lifetime of mobile connection.

When wireless communications networks move toward smaller size cells to accommodate more mobile

hosts or to provide higher capacity, the handoff becomes a more frequent part of communications.

Conventional routing procedures for connecting mobile hosts fail due to frequent handoff when the

network call processor becomes a bottleneck. Hence, routing efficiency in wireless communications

networks depends critically on the propagation of location information into the network; however,

excessive information propagation can waste network resources, while insufficient location information

leads to inefficient routing.

Wireless communications networks can provide different personal communications services, which

have different transmission time delay requirements. For cellular telephone communication, the shortest

time delay or strict time delay to transmit voice message is required. In portable computer communi-

cations or other data communications, the requirements of transmitted time delay are not very strict.

Transmitted data can be stored in buffers and be transmitted later when channels are available; however,

to provide a high QoS, transmission time delay is an important factor in wireless communications

networks. Routing procedure in wireless communications networks should depend on different require-

ments of transmission time delay, and on how to balance transmission load and find minimum cost

transmission paths.

14.3.3 Routing in Wireless Sensor Networks

Networking of a large number of low power mobile nodes involves routing, addressing, and support for

different classes of service at the network layer. Energy aware routing (EAR) protocol is built on the

principle of attribute-based addressing. EAR and directed diffusion belong to the class of reactive

routing protocols (RRP). In RRP, the routing information between nodes is set up only on demand

and maintained as long as it is needed. This eliminates the need to maintain permanent routing tables.

This way, before any communication can take place, a route discovery has to be performed.

In RRP, the consumers of data (called sinks) initiate the route discovery.

The database generic query interface for data aggregation can be applied to ad hoc networks of

sensor devices. Aggregation is used as a data reduction tool. Networking approaches have focused on

application-specific solutions. The network aggregation approach is driven by a general-purpose, SQL

(structured query language) style interface that can execute queries over any type of sensor data while

providing opportunities for significant optimization.

The topology discovery algorithm for wireless sensor networks selects a set of designated nodes, called

cluster heads. The algorithm then constructs a reachability map based on the cluster heads information.

The cluster heads reply back to the topology discovery probes, thereby minimizing the communication

overhead. The topology discovery algorithm logically organizes the network in the form of clusters.

A tree of clusters rooted at the monitoring node is built. This organization is used for efficient data

dissemination and aggregation, duty cycle assignments, and network state retrieval. The topology

discovery algorithm is distributed, uses only local information, and is highly scalable.

The vision of ubiquitous computing is based on the idea that future computers merge with their

environment until they become completely invisible to the user. Distributed wireless microsensor

networks are an important component of the ubiquitous computing. Small dimensions are a

design goal for microsensors. The energy supply of the sensors is a main constraint of the intended

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 11 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-11

miniaturization process. It can be reduced only to a specific degree since energy density of conventional

energy sources increases slowly. In addition to improvements in energy density, energy consumption can

be reduced. This approach includes the use of energy-conserving hardware. Moreover, a higher lifetime

of sensor networks can be accomplished through optimized applications, operating systems, and

communication protocols. Particular modules of the sensor hardware are turned off when they are

not needed. Routing and data dissemination in sensor networks requires a simple and scalable solution.

14.4 Applications Support

14.4.1 Multimedia

Multimedia communications is the field referring to the representation, storage, retrieval, and dissem-

ination of machine-processable information expressed in multimedia, such as voice, image, text,

graphics, and video. With high-capacity storage devices, powerful, and yet economical, computer

workstations and high-speed integrated services digital networks, providing a variety of multimedia

communication services, is becoming not only technically but also economically feasible. Multimedia

conference systems can help people to interact with each other from their homes or offices while they

work as teams by exchanging information in several media, such as voice, text, graphics, and video.

Multimedia conference system allows a group of users to conduct a meeting in real time. The

participants can jointly view and edit relevant multimedia information, including text, graphics, and

still images distributed throughout the LAN. Participants can also communicate simultaneously by voice

to discuss the information they are sharing. This multimedia conference system can be used in a wide

variety of cooperative work environment, such as distributed software development, joint authoring,

and group decision support.

Multimedia is the integration of information that may be represented by several media types, such as

audio, video, text, and still images. The diversity of media involved in a multimedia communication

system imposes strong requirements on the communication system. The media used in the multimedia

communications can be classified into two categories: discrete media and continuous media.

Discrete media are those media that have time-independent values, such as text, graphics, or

numerical data, bit mapped images, geometric drawings, or any other non-time-dependent data format.

Capture, storage, transmission, and display of non-real-time media data does not require that it happen

at some predictable and fixed time or within some fixed period.

Continuous media data may include sound clips, video segments, animation, or timed events. Real-

time data requires that any system that is recording or displaying be able to process the appropriate data

within a predictable and specified time. In addition, the display of real-time data may need to be

synchronized with other data or some external (real-world) event.

Multimedia data can be accessed by the user either locally or remotely during multimedia commu-

nication. Locally stored data typically resides in conventional mass storage systems such as hard disk,

CD-ROMs, optical disk, or high-density magnetic tape. It can also be stored to and recalled from analog

devices that are under the control of the system, video tape disks, videodisk players, CD-audio disks,

image scanners, and printers. In addition, media data can be synthesized locally by the systems or its

peripherals. Multimedia data is typically recorded and edited on local systems for distribution on some

physical media and is later played back using local devices.

Remotely stored multimedia data is accessed via a network connection to a remote system. The data

is stored on that remote server and recalled over the network for viewing, editing, or storage on the

user’s system.

Multimedia communications cover a large set of domains including office, electronic publishing,

medicine, and industry. Multimedia communication can be classified into real-time applications and

non-real-time applications.

Multimedia conferencing represents a typical real-time multimedia communication. In general, high

conductivity is needed for real-time multimedia communications. A guaranteed bandwidth is required

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 12 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-12 Digital Systems and Applications

to ensure real-time consistency, and to offer the throughput required by the different media. This

bandwidth varies depending on the media involved in the application. There is also a need for

synchronization between different users and between different flows of data at a user workstation.

Non-real-time multimedia communications, such as multimedia mail, are less demanding than

real-time applications in terms of throughput and delay, but edition tools, exchange formats, and

exchange protocols are essential. Multicast service and synchronization at presentation time has to

be offered.

Local non-real-time multimedia characterizes most typical personal computer applications, such as

word processing, and still image editing. Typical text-based telecommunications can be described as

remote non-real-time. Database of text and still image may be interactively viewed and searched, and

audio or video data (perhaps included in mail messages) can be downloaded for display locally.

Multimedia workstations are generally characterized by local real-time applications. Data from video

and audio editing and annotations, interactive animated presentations, and music recording are stored

on local devices and are distributed on physical media for use locally.

Networks that can provide real-time multimedia communication via a high-speed network connec-

tion enable the new generation of multimedia applications. Real-time remote workstation-based multi-

media conferencing, video and audio remote database browsing, and viewing of movies or other video

resources on demand are typical for these systems.

14.4.2 Mobile and Wireless

The support for bandwidth intensive (multimedia) services in mobile cellular networks increases the

network congestion and requires the use of micro=picocellular architectures in order to provide higher

capacity in regard to radio spectrum. Micro=pico cellular architectures introduce the problem of

frequent handoffs and make resource allocation difficult. As a result, availability of wireless network

resources at the connection setup time does not necessarily guarantee that wireless resources are

available throughout the lifetime of a connection. Multimedia traffic imposes the need to guarantee a

predefined QoS to all calls serviced by the network.

In microcellular networks supporting multimedia traffic, the resource allocation schemes have to be

designed such that a call can be assured a certain QoS once it is accepted into the network. The resource

allocation for multimedia traffic becomes quite complex for different classes of traffic comprising

multimedia traffic. These classes of traffic have different delay and error rate requirements. Resource

allocation schemes must be sensitive to traffic characteristics and adapt to rapidly changing load

conditions. From a service point of view, multimedia traffic can be categorized into two main categories:

real-time traffic with stringent time delays and relaxed error rates, and non-real-time traffic with relaxed

time delays and stringent error rates.

It is important to note that provisioning of QoS to different classes of traffic necessitates a highly

reliable radio link between the mobile terminal and its access point. This requires efficient communi-

cation techniques to mitigate the problems of delay sensitivity, multipath fading, shadow fading, and

co-channel interference. Some methods such as array antennas and optimal combining can be used to

combat these problems.

14.4.2.1 CAC

Schemes have been proposed to address the problem of resource allocation for multimedia traffic

support in microcellular networks. In these schemes, real-time traffic being more delay sensitive is

given priority over non-real-time traffic.

In these schemes, the central approach used is call admission control (CAC). CAC imposes a limit on

the number of calls accepted into the network. Each cell site only supports a predetermined number of

call connections. This call threshold is periodically calculated depending on the number of existing calls

in the cell in which the call arrives and its adjoining cells and the resources utilized by all calls in the cell.

Once the threshold is reached, all subsequent requests for new call connections are refused.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 13 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-13

14.4.2.2 AT

In an admission threshold (AT)-based scheme, resource management is done by periodically calculating

the admission threshold and by blocking all new call connection requests once the threshold is reached.

The call admission decision is made in a distributed manner whereby each cell site makes a decision by

exchanging state information with adjoining cells periodically. A cell with a base station and a control

unit is referred to as cell site.

14.4.2.3 RS

In a resource sharing (RS)-based scheme, to support traffic classes with different delay and error

requirements, resource sharing provides a mechanism to ensure a different grade of service to each

class of traffic. This scheme employs a resource sharing mechanism that reacts to rapidly changing traffic

conditions in a cell. An adaptive call admission control policy that reacts to changing new call arrival

rates can be used to keep the handoff dropping rate and forced call termination rate acceptably low.

The call admission control scheme differentiates the new call on the basis of its traffic class and a

decision is based on traffic class of the new call connection request and number of call connections of

each class already being serviced in the cell cluster.

For real-time call connections, a new call is blocked if no bandwidth is available to service the request.

A similar algorithm is used to service a handoff request. The QoS metrics for real-time calls are handoff

dropping probability and forced call termination probability. For non-real-time calls, the available

bandwidth is shared equally among all non-real-time call connections in the cell. Handoff queuing

or delaying is not used in this scheme. CAC keeps the probability of a call being terminated before

its lifetime is acceptably low. Resource sharing algorithms provide better performance for a particular

class of traffic.

14.4.2.4 RRN

Resource reservation and renegotiation (RRN) scheme provides QoS guarantee to real-time traffic and

at the same time guarantees a better performance to non-real-time traffic. The resource allocation

scheme uses resource reservation in surrounding cells for real-time calls and renegotiation of bandwidth

assigned to non-real-time calls. The resource allocation scheme is simple enough and can be imple-

mented in a distributed manner to ensure fast decision making.

In RRN scheme, for service applications requiring smaller bandwidths, a shared pool of bandwidth

is used for reservation. For applications requiring greater bandwidth, the largest of requested band-

width is reserved. This helps in keeping the call blocking rate low and does not affect the handoff

dropping rate.

In microcellular networks, calls require handoffs at much faster rates in comparison to networks with

larger cells. On the other hand, microcellular networks provide a higher system capacity. The RRN

scheme supports real-time calls and non-real-time calls along with a variety of service type for each class.

Real-time calls are delay sensitive and hence cannot be queued or delayed. Resources must be available

when a handoff is requested. To guarantee that real-time calls are not forced to terminate at the time of

handoff, a resource reservation mechanism is used. Resource reservation guarantees acceptably low

handoff dropping rate and forced call termination rate for real-time traffic.

For a real-time call, bandwidth is reserved in all cells adjacent to the cell in which the call arrives.

When a call hands off to another cell, if enough bandwidth is not available to service the handoff, it uses

the bandwidth reserved in the target cell and thus the likelihood that a call will be dropped is reduced.

When a call is successfully handed off to another cell, the bandwidth of old cell is released and reserved

in the cell cluster of new cell.

Non-real-time calls are more tolerant to delay as compared to real-time calls. Delay tolerance is

equivalent to accepting variable service rate. This property of data traffic makes resource renegotiation

possible in microcellular networks. Non-real-time calls receive higher service rates under low traffic

conditions whereas, under heavy traffic conditions, the service rate available to them is kept at a

minimum. Thus, the resource renegotiation scheme adapts to changing traffic conditions in the network.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 14 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-14 Digital Systems and Applications

14.4.3 Sensor Networks

Wireless sensor nodes are deployed in areas and environments where they may be hard to access, yet

those nodes need to provide information about measurements of temperature, humidity, biological

agents, seismic activity, pictures, and many other activities. Macrosensor nodes usually provide accurate

information about measured activity. The accuracy of individual microsensor nodes is lower, yet a

network of hundreds or thousands of nodes deployed in an area enables to achieve fault-tolerant, high-

quality measurements.

Wireless sensor nodes are designed by using microelectromechanical systems (MEMS) technology and

its associated interfaces, signal processing, and radio frequency (RF) circuitry. Communication occurs

within a wireless microsensor network, which aggregates the data to provide information about the

observed environment.

Low energy dissipation is particularly important for wireless microsensor nodes, which are deployed in

hundreds or thousands, and are often hard to read in inhospitable terrain. A power-aware system design

employs a systemwhose energy consumption adapts to constraints and changes in the environment. These

power-aware design methods offer scalable energy savings in wireless microsensor environment.

There is a trade-off between battery lifetime and quality-performance of data collection and trans-

mission. A scalable system enables a user to trade-off system performance parameters as opposed to hard

wiring them. Scalability allows the end-user to implement operational policy, which may change over

the system lifetime. Power-awareness allows a well-designed system to gracefully degrade its quality and

performance as energy resources are depleted.

Activity in the observed environment may lead to tremendous measurement diversity in the sensor

node microprocessor. Node functionality may also vary, for instance, a sensor networking protocol

may request the node to act as a data gatherer, aggregator, relay, or any combination of these. This way,

the microprocessor can adjust the energy consumption depending on the activity in the measured

environment.

Several devices have been built to perform sensor node functions. A software and hardware frame-

work includes a microprocessor, low power radio, battery, and sensors. Data aggregation and network

protocols are processed by using a micro operating system.

Data aggregation is used as a data reduction tool. Aggregates summarize current sensor values in

sensor network. Computing aggregates in sensor network preserves network performance and saves

energy by reducing the amount of data routed through the network.

The computation of aggregates can be optimized by using SQL (structured query language). The data

are extracted from the sensor network by using declarative queries.

Examples of database aggregates (COUNT, MIN, MAX, SUM, and AVERAGE) can be implemented in

a sensor network. Aggregation in SQL-based database systems is defined by an aggregate function and a

grouping predicate. The aggregate function specifies how to compute an aggregate.

Aggregation can be implemented in a centralized network by using a server-based approach where all

sensor readings are sent to the host PC (personal computer), which computes the aggregates. A more

efficient approach is distributed, in-network computing of aggregates where the readings are routed

through the network to the host PC.

Lifetime of sensor networks is defined by using the following three metrics: first node dies (FND), half

of the nodes alive (HNA), and last node dies (LND). FND denotes an estimated lifetime for this event. In

this case, adjacent sensors can take over the functions, and the quality of network service may not be

diminished. HNA denotes an estimated half-lifetime for the sensor network. LND gives a value of sensor

network lifetime.

A topology discovery algorithm can be used to find a set of nodes to construct the network topology.

Those nodes reply to the topology discovery probes, thereby minimizing the wireless communication

overhead. A tree of clusters rooted at the monitoring node is built.

The small battery-powered sensor devices have limited computational and communication resources.

This makes it impractical to use secure algorithms designed for powerful workstations. A sensor node

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 15 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-15

memory is not capable of holding the variables required in asymmetric cryptographic algorithms, and

perform operations by using these variables.

The sensor nodes communicate by using RF (radio frequency), thus trust assumptions and minimal

use of energy are important for network security. The sensor network communication patterns include

sensor readings, which involve node to base station communication, specific requests from the base

station to the node, and routing or queries from the base station to all sensor nodes.

We assume that the sensor nodes are not trusted, but the base stations belong to the trusted

computing base. The senor nodes trust the base station and are given a master key that is shared with

the base station. The possible threats to network communication security are an insertion of malicious

code, an interception of the messages, and injecting false messages.

Wireless technologies enabling communications with sensor nodes include Bluetooth and LR-WPAN

(low-rate wireless personal area network).

Bluetooth enables seamless voice and data communication via short-range radio links. Bluetooth

provides a nominal data-rate of 1 Mbps for a piconet, which consists of one master and up to seven

slaves. The master defines and synchronizes the frequency hop pattern in its piconet. Bluetooth operates

in the 2.4 GHz ISM (industrial, scientific, and medical) band.

Low-rate wireless personal area network (LR-WPAN) is defined by the IEEE 802.15.4 standard.

This network has ultra-low complexity, cost, and power for low data-rate sensor nodes. The IEEE

802.15.4 offers two physical layer options, the 2.4 GHz physical layer, and the 868=915 MHz physical

layer. The 2.4 GHz physical layer specifies operation in the 2.4 GHz ISM band. The 868=915 MHz

physical layer specifies operation in the 868 MHz band in Europe, and in 915 MHz band in the

United States.

The main features of the IEEE 802.15.4 standard are network flexibility, low cost, and low power

consumption. This standard is suitable for many applications in the home requiring low-data-rate

communications in an ad hoc self-organizing network.

The major resource constraint in sensor networks is power, due to the limited battery life of sensor

devices. Data-centric methodologies can be used to solve this problem efficiently. Data-centric storage

(DCS) is used as a data-dissemination paradigm for sensor networks. In DCS, data is stored, according

to event type, at corresponding sensornet nodes. All data of a certain event type is stored at the same

node. A significant benefit of DCS is that queries for data of a certain type can be sent directly to the

node storing data of that type. Resilient data-centric storage (R-DCS) is a method to achieve scalability

and resilience by replicating data at strategic locations in the sensor network.

This scheme leads to significant energy savings in networks and scales well with increasing node-

density and query rate.

Sensor network management protocol has to support control of individual nodes, network configuration

updates, location information data exchange, network clustering, and data aggregation rules.

Sensor network gateway has to provide tools and functions for presentation of network topology,

services, and characteristics to the users and to connect the network to other networks and users.

Further Reading

1. E. Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Naeve, B. Heile, and V. Bahl, Home networking

with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks, IEEE

Communications Magazine, Vol. 40, No. 8, August 2002, pp. 70–77.

2. A. Ghose, J. Grossklags, and J. Chuang, Resilient data-centric storage in wireless ad-hoc sensor

networks, Proceedings of the 4th International Conference on Mobile Data Management (MDM 2003),

Melbourne, Australia, January 21–24, 2003, Lecture Notes in Computer Science 2574 Springer 2003,

pp. 45–62.

3. A. Hać, Network centric designs in sensor networks, Proceedings of the AIAA Infotech@Aerospace

Conference, Arlington, VA, September 26–29, 2005, pp. 1–4.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 16 4.10.2007 2:52pm Compositor Name: VBalamugundan

14-16 Digital Systems and Applications

4. A. Hać, Embedded systems and sensors in wireless networks, Proceedings of the International IEEE

Conference on Wireless Networks, Communications, and Mobile Computing WirelessCom 2005,

Maui, Hawaii, June 13–16, 2005, pp. 330–335.

5. A. Hać, Multimedia Applications Support for Wireless ATM Networks, Prentice-Hall, Englewood

Cliffs, NJ, 2000.

6. A. Hać, Wireless Sensor Network Designs, John Wiley & Sons, New York, 2003.

7. W.B. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient communication proto-

col for wireless microsensor networks, Proceedings of the 33rd Hawaii International Conference on

System Sciences (HICSS), Maui, Hawaii, January 2000, pp. 3005–3014.

8. W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan, An application-specific protocol

architecture for wireless microsensor networks, IEEE Transactions on Wireless Networking, 1(4):

660–670, October 2002.

9. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture directions for

networked sensors, Proceedings of the 9th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems ASPLOS-IX, Cambridge, MA, November 2000,

pp. 93–104.

10. IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs). URL: http:==www.

ieee802.org=15.

11. R. Jain, A. Puri, and R. Sengupta, Geographical routing using partial information for wireless ad hoc

networks, IEEE Personal Communications, 8(1): 48–57, February 2001.

12. P.-A. Larson, Data reduction by partial preaggregation, Proceedings of the International Conference on

Data Engineering, San Jose, CA, 2002 pp 706–715.

13. S. Lindsey, C. Raghavendra, and K.M. Sivalingam, Data gathering algorithms in sensor networks

using energy metric, IEEE Transactions on Parallel and Distributed Systems, 13(9): 924–935,

September 2002.

14. V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava, Energy-aware wireless microsensor

networks, IEEE Signal Processing Magazine, Vol. 19, No. 2, March 2002, pp. 40–50.

15. R.C. Shah and J.M. Rabaey, Energy aware routing for low energy ad hoc sensor networks, Proceed-

ings of the IEEE Wireless Communications and Networking Conference (WCNC), Vol. 1, Orlando, FL,

March 2002, pp. 350–355.

16. S. Singh, M. Woo, and C.S. Raghavendra, Power aware routing in mobile ad hoc networks,

Proceedings of the ACM=IEEE International Conference on Mobile Computing and Networking

(MobiCom 1998), Dallas, TX, October 1998, pp. 181–190.

17. A.S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, NJ, 1996.

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 17 4.10.2007 2:52pm Compositor Name: VBalamugundan

Communications and Computer Networks 14-17

Vojin Oklobdzija/Digital Systems and Applications 6195_C014 Final Proof page 18 4.10.2007 2:52pm Compositor Name: VBalamugundan

V
Input=Output

15 Circuits for High-Performance I=O Chik-Kong Ken Yang ..15-1

Transmission Lines . Transmitters . Receivers . Timing Generation

and Recovery . Conclusion

16 Algorithms and Data Structures in External Memory Jeffrey Scott Vitter16-1

Introduction . Parallel Disk Models . Related Memory Models, Hierarchical

Memory, and Caches . Fundamental I=O Operations and Bounds . Disk

Striping for Multiple Disks . External Sorting and Related Problems .

Matrix and Grid Computations . Batched Problems in Computational

Geometry . Batched Problems on Graphs . External Hashing for Online

Dictionary Search . Multiway Tree Data Structures . Spatial Data Structures

and Range Search . String and Text Algorithms . TPIE External Memory

Programming Environment . Dynamic Memory Allocation . Conclusions

17 Parallel I=O Systems Peter J. Varman ... 17-1

Introduction . Parallel I=O Organization . Performance Model for

Parallel I=O . Mechanisms for Improving I=O Performance . Limitations

of Simple Prefetching and Caching Strategies . Optimal Parallel-Disk

Prefetching . Optimal Parallel-Disk Caching . Randomized Data Placement .

Out-of-Core Computations . Conclusion

18 A Read Channel for Magnetic Recording Bane Vasić, Miroslav Despotović,

Pervez M. Aziz, Necip Sayiner, Ara Patapoutian, Brian Marcus, Emina Šoljanin,

Vojin Šenk, and Mario Blaum .. 18-1

Recording Physics and Organization of Data on a Disk . Read Channel

Architecture . Adaptive Equalization and Timing Recovery . Head Position

Sensing in Disk Drives . Modulation Codes for Storage Systems . Data Detection .

An Introduction to Error-Correcting Codes

Vojin Oklobdzija/Digital Systems and Applications 6195_S005 Final Proof page 1 4.10.2007 4:03pm Compositor Name: VBalamugundan

V-1

Vojin Oklobdzija/Digital Systems and Applications 6195_S005 Final Proof page 2 4.10.2007 4:03pm Compositor Name: VBalamugundan

15
Circuits for High-
Performance I=O

Chik-Kong Ken Yang
University of California

15.1 Transmission Lines .. 15-1
Reflections, Termination, and Crosstalk . Frequency

Response and ISI . Methods of Signaling

15.2 Transmitters ... 15-4
Large-Swing Output Drivers . Small-Swing Output

Drivers . Impedance, Current, and Slew-Rate Control .

Transmitter Pre-Emphasis

15.3 Receivers ... 15-10
Receiver Designs . dc Offsets . Noise . Receiver Equalization

15.4 Timing Generation and Recovery.............................. 15-13
Architectures . Minimizing Jitter . Phase Detection

and Static Phase Offsets

15.5 Conclusion ... 15-16

The speed of off-chip I=O circuits plays a significant role in the overall performance of a computer

system. To keep up with the increasing clock rates in processors, designers target I=O data rates that are

exceeding gigabits per second per pin for memory busses [26], peripheral connections [29], and

multiprocessor interconnection networks [17]. This chapter examines the issues and challenges in the

design of these high-performance I=O subsystems.

As illustrated in Fig. 15.1, an I=O subsystem consists of four components: a transmitter, a transmis-

sion medium, a receiver, and a timing-recovery circuit. A transmitter converts the binary sequential bit

stream into a stream of analog voltages properly sequenced in time. The medium such as a cable or PCB

trace delays and filters the voltage waveform. The receiver recovers the binary values from the output of

the medium. As part of the receiver, a clock samples the data to recover the bit sequence compensating

for the arbitrary delay of the medium.

This chapter focuses on the transmission over an electrical medium* and begins by reviewing the

electrical characteristics of transmission lines. The design issues and design techniques for each link

component will be described, beginning with the transmitter (Section 15.2) continuing with the receiver

(Section 15.3), and ending with the timing-recovery circuits (Section 15.4).

15.1 Transmission Lines

A transmission medium confines the energy of a signal and propagates it [33]. The energy is stored

as the electric and magnetic field between two conductors, the transmission line. The geometric

*Optical local interconnects are emerging as an alternative for short haul systems.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 1 4.10.2007 2:53pm Compositor Name: VBalamugundan

15-1

configuration of the conductors for a segment of the transmission line determines the voltage and

current relationship in that segment defining an effective impedance (Zo¼V=I). A signal source driving

the segment only sees this impedance as a sink of the signal energy and has no immediate knowledge of

other parts of the line.

The two conductors can be either two signals wires driven differentially or a single signal wire over a

reference plane where an image current* flows in the plane coupled to the signal. A coaxial cable has a

center conductor for the signal and the outer shield as the reference (Fig. 15.2a). Similarly a PCB trace

forms a microstrip line with a ground plane as the reference (Fig. 15.2b).

An effective way to model a transmission line is to use capacitances and inductances to represent the

electrical and magnetic energy storage and propagation. The entire line is modeled using multiple LC

segments as illustrated in Fig. 15.2c.y The impedance of the line and the propagation velocity can be

represented as Z ¼ ffiffiffiffiffiffiffiffiffi
L=C

p
and n ¼ 1=

ffiffiffiffiffiffi
LC

p� �
. An ideal transmission line propagates a signal with no

added noise or attenuation. Imperfections in the construction of the line such as varying impedance or

neglecting the image current path cause noise in the signal transmission.

15.1.1 Reflections, Termination, and Crosstalk

When a signal wave encounters a segment with a different impedance, a portion of the signal power

reflects back to the transmitter and can interfere with future transmitted signals. The reflection occurs

because the boundary condition at a junction of two impedances must be preserved such that (1) the

voltage is the same on both sides of the junction and (2) the signal energy into and out of the junction is

t bit

Predriver

D Q
dataout

DriverSynchronize

+
DQ

Vin+

Vref

datain

clkref clktx

clkrx

Clock
generation

Phase-locked
loop

Amplifier
Synchronize

Z
o

Vsw

Channel

clkref

Receiver

Transmitter

Timing recovery

FIGURE 15.1 Components of an I=O subsystem.

L

C

(a) (b) (c)

ReferenceReference
Signal

Signal

FIGURE 15.2 Cross-sectional view of transmission line: (a) coaxial, (b) microstrip (PCB), and (c) LC model of a

transmission line.

*Image current, also called return current, is equal to the signal current.
yThe L’s and C’s are per unit length.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 2 4.10.2007 2:53pm Compositor Name: VBalamugundan

15-2 Digital Systems and Applications

conserved. For instance, if a lower impedance is seen by a signal, a lower voltage must be propagated

along the new segment so that the propagated power is less than the original power. The lower voltage at

the junction implies that a negative voltage wave is propagated in the reverse direction. Similarly, at the

end of a transmission line, the receiver appears as an open circuit (high impedance) and would cause a

positive reflection of the entire signal energy. The equation

Vreflect ¼ GVin ¼ Zout � Zin

Zout þ Zin

Vin

represents the reflected wave, where G is the reflection coefficient.

Using a termination resistance at the end of the line that is equal to that of the transmission line

impedance eliminates the reflection by dissipating the signal power. A reflection only poses a problem if

the transmitter reflects the wave again causing the old signal energy from a previous bit to add to the

signal of a newly transmitted data bit.* Allowing the entire signal to reflect at the receiver is acceptable as

long as the line is properly terminated at the transmitter. So proper termination of a transmission line

includes matching the resistance either at the receiver (end termination) or at the transmitter (source

termination). Noise in the signal results either from imperfect termination at the ends of the line or from

variations in the impedance along the line.y

A second source of noise is due to the leakage of signal energy from other transmission lines

(aggressors) known as crosstalk. Improper design of transmission line often neglects the image current

path. Image current can flow on closely routed signal traces on a PCB or nearby signal pins on a

connector instead of the reference plane. The coupling appears as noise when the nearby signal

transitions. The worst often occurs in the chip carrier where a reference plane is not readily available.

The noise source is modeled as either mutual inductance or capacitance in the LC model. The amount

of noise is proportional to the aggressor’s signal amplitude. Because the coupling is reactive, the noise is

proportional to the frequency of the aggressor signal. This motivates the design of transmitters and

receivers to filter frequencies above the data bandwidth, as will be discussed.

15.1.2 Frequency Response and ISI

An ideal transmission-line segment delays a signal perfectly; however, real transmission media

attenuate the signal because of the line conductor’s resistance and the loss in the dielectric between

the conductors. Both loss mechanisms of wires increase at higher signal frequencies. Hence, a wire low-

pass filters and the filtering increases with distance. The transfer function of a 6-m and 12-m cable,

shown in Fig. 15.3a, illustrates increasing attenuation with frequency and distance. Figure 15.3b

illustrates the effects of that frequency-dependent attenuation in the time-domain. The signal ampli-

tudes are reduced and the energy of each bit is spread in time. If the bit time is short, the spreading

causes interference between subsequent bits known as inter-symbol interference (ISI). As data rates

increase beyond gigabits per second, the design of transmitters and receivers must incorporate add-

itional filtering to compensate for this low-pass filtering.

15.1.3 Methods of Signaling

The characteristics of the transmission medium influence the trade-off between various signaling

methods. In DRAM or backplane applications where a data word connects between multiple chips,

multi-drop busses save considerable pins over point-to-point connections; however, each drop of a bus

structure introduces a splitting of a transmission line that causes reflections and increases noise.

A similar trade-off exists with differential and single-ended signaling. Differential signaling is more

*This noise can be compensated if the length of the delay and amount of reflection can be measured, but it adds

significant complexity to the system.
yImpedance variations can be due to vias, changing of reference plane, connectors, etc.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 3 4.10.2007 2:53pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-3

robust to common-mode noise by using the second wire as the explicit image current path. A third

trade-off involves whether or not signaling occurs in both directions on a pin simultaneously (full-

duplex). Typically, an I=O link contains both a transmitter and a receiver on each end. Only one pair is

operating at one time (half-duplex). Operating full-duplex halves the number of pins but degrades the

signal amplitude and increases noise because the receiver must now compensate for the transmitted

values. All three of these common choices are trading between the number of I=O pins and the signal-to-

noise ratio (SNR). For high performance, system designers often opt for the more expensive options of

point-to-point and differential links that are half-duplex. Some designers use single-ended signaling that

has an explicit and dedicated ground pin for a signal’s image current since perfectly differential

structures are difficult to maintain in a PCB environment.

The following sections focus on the design of high-performance link circuitry in a high-performance

system of point-to-point links. Many of the design techniques are applicable to busses and bidirectional

links as well.

15.2 Transmitters

Transmitters convert the digital bits into analog voltages. Figure 15.4 illustrates the major pieces of a

transmitter. Prior to the conversion by the output driver, transmitters commonly synchronize the data to

that of a stable, noise-free clock so the resulting waveform has well-defined timing. Because I=Os often

operate at a higher rate than the on-chip clock, the synchronization also multiplexes the data. The

0.0 0.5ns 1.0ns 1.5ns 2.0ns 2.5ns 3.0ns
0.0

0.2

0.4

0.6

0.8

1.0
12 m
0 m

100 MHz
−21.0

−15.0

−9.0

−3.0

1 GHz 10 GHz

6 m-RG58
12 m-RG58 (~1m-PCB)

Time

A
m

pl
itu

de
 (

V
)

A
tte

nu
at

io
n

(d
B

)

Frequency

sample points

(a) (b)

FIGURE 15.3 Frequency (a) and time (b) domain of an RG-55U cable illustrating filtering and ISI.

D Q

Clock
generation

D Q

DriverPre-driver

0

1

Mux

To
Channel

FIGURE 15.4 Transmitter components.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 4 4.10.2007 2:53pm Compositor Name: VBalamugundan

15-4 Digital Systems and Applications

simplest and most commonly used is 2:1 multiplexing, using each half-cycle of the clock to transmit a

data bit.* A pre-driver follows the multiplexing and provides any pre-conditioning of the data signal.

The output voltage range depends on the signaling specification. If the voltage range nears or exceeds

that of the on-chip supply voltage, the design must convert the voltage and ensure the reliability to the

over-voltage. In addition to protection against electrostatic discharge (ESD), transistors that are not built

to handle large voltages across the gate oxide or source=drain junctionmust be appropriately protected by

cascoding and well-biasing. This section begins with discussing these large output-swing transmitters. The

section follows with low-swing transmitters, which are more common for high-performance designs.

Noise is the primary challenge. Techniques that reduce noise such as impedance matching, swing

control, and slew-rate control are described next. The last part addresses techniques that can be used to

reduce intersymbol interference due to a band-limiting transmission channel.

15.2.1 Large-Swing Output Drivers

A simple push-pull architecture, as shown in Fig. 15.5, can drive a signal as large as the voltage provided

for the I=O, Vs. When driving a transmission line, the initial output voltage is the result of a voltage

division

Vo ¼ Vs
Ro

Rdrv þ Ro

� �

where Rdrv is the on-resistance of the driving device. The initial voltage is also the final voltage if the line

is terminated appropriately at the receiver. In which case, the driver draws continuous current even with

the absence of signal transitions. With only source termination (Rdrv equal to Ro), the line voltage settles

to Vs. The power dissipation is less since no current flows when the signal is constant. If the line is

unterminated on either end, the signal will reflect several times before settling to Vs. Because the bit

period must be long enough for the signal to settle, high-performance links avoid this penalty.

Impedance matching at the transmitter is challenging because (1) process, voltage, and temperature

(PVT) varies, and (2) the impedance changes significantly as the device is switched from on to off. To

minimize the net variation, designers over-design the size of the device for an impedance much lower

than Ro. And then, by adding an external but constant resistance Rext¼Ro�Rdrv, the net impedance

varies within an acceptable tolerance.

Many chips are required to interface with chips that operate at different power supply voltages. As on-chip

supplies lower with CMOS technology scaling, the disparity between on-chip and off-chip voltages

increases. Unfortunately, for high reliability, the on-chip devices cannot tolerate excessive over-voltage.

Catastrophic breakdown of gate oxide occurs at 12 MV=cm of oxide thickness.

Zo

VS

Rdrv

Rdrv
Rext

Off-chip Vss

Vdd

Vdd

Gnd

do

FIGURE 15.5 Push-pull I=O driver with level shifting pre-drivers.

*For memories, the 2:1 multiplexing is known as double-data rate (DDR). The duty cycle of the clock is critical in

guaranteeing a constant width of each bit. Even higher multiplexing has been demonstrated using multiple clock

phases [52].

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 5 4.10.2007 2:53pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-5

Device technologists address the issue by providing transistors that are slower but high-voltage

tolerant. One of the tasks of the pre-driver is to shift the level of the input so that the output-driver

devices are fully turned off. Figure 15.5 illustrates an example of level-shifting using cross-coupled

PMOS devices in the pre-driver.

To avoid over-voltage, circuit designers add a cascode transistor in series with the output switch to

reduce the voltage drop [39]. Figure 15.6a shows a bottom device that switches with the data. The upper

cascoding device uses a constant high gate voltage that is commonly the core Vdd. As long as the output

voltage does not exceed VddþVoxide(max), the gate oxide is preserved. Vx remains below Vdd�VT(eff),

hence avoiding source=drain punchthrough of N1.* To avoid a source=drain punchthrough of N2 during

an output high-low transition, the size of the cascode device needs to be large enough so that Vx does not

fall too quickly.y

PMOS devices for the pull-up pose an additional challenge. In a half-duplex configuration, the system

tri-states the transmitter by pulling the gate of the driving device to the I=O supply voltage, Vs; however,

with reflections and inductive ringing, line voltages can exceed Vs. To avoid forward biasing the drain–

well junction, designers leave the well floating, as shown in Fig. 15.6b [8]. Transistors P1 and P2 allow

the well to be charged up to either the pad voltage or Vs depending on which is higher. To avoid

conduction of the driving device when pad voltage is high, Pdrv, transistor P3 pulls the gate input to the

pad voltage.

15.2.2 Small-Swing Output Drivers

I=O standards are migrating toward smaller output voltage swings due to several advantages. There is

less concern regarding over-voltages on I=O devices. Using smaller devices and fewer over-voltage

protection devices reduces output capacitance and improves bandwidth. The device stays in a single

region of operation (either in triode or saturation) reducing impedance mismatches. The transmitter

also dissipates less power because of the lower-swing and smaller drive devices; however, reducing signal

swing directly reduces the SNR making the designs more sensitive to noise.z The following describes two
commonly used driver architectures: low-impedance and high-impedance drivers.

A simple extension of the large-swing push-pull driver to low-swing is shown in Fig. 15.7, where Vs is

a low voltage that determines the signal swing. The transistors operate in the linear region of their I–V

curve appearing as a low-impedance signal source. With signal swings under 1 V, a smaller NMOS device

can have the same pull-up resistance as PMOS devices. The impedance matching is better than the large

signal driver because the device impedance varies less with Vds [19].

However, with low-impedance drivers, power-supply noise appears directly on the signal. By con-

necting the power supply as the signal’s return connection, the noise would appear as common-mode.

Vdd

do

Pull up

Vwell

Pad

Pad

Pull down

do

(a) (b)

N2

N1

P2

P1

Pdrv

P3
Vx

FIGURE 15.6 Cascoding (a) and well-biasing (b) to protect driving devices.

*Feedthrough from output to the Vgate of N2 can dynamically elevate Vx so N2 cannot be excessively large.
yN2 can often be a size 43 larger than N1.
zFortunately, many noise sources are proportional to the signal swing, so the SNR degradation is not overly severe.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 6 4.10.2007 2:53pm Compositor Name: VBalamugundan

15-6 Digital Systems and Applications

Unfortunately, the connection is difficult because multiple I=Os (and sometimes the core logic) share

the ground to minimize cost. Furthermore, signal current flows through two supplies. To reduce noise,

designers trade-off area and pin by (1) bypassing Vs to ground with a large capacitance, (2) limiting the

number of I=Os sharing a single ground, and (3) carefully minimizing the inductive loop formed by the

current return path (ground connection).

A second style of drivers, high-impedance drivers, switch currents instead of voltages. By keeping

transistors in the saturated-current region, the devices appear as current sources. The current can be

switched either differentially in PECL type drivers (Fig. 15.8a) or single-ended in open-drain type

drivers (Fig. 15.8b). To provide source termination, a resistor (Ro) can be placed in parallel with

the output. These drivers have several advantages over their low-impedance counterparts. The outputs

have less noise because the high-impedance isolates the output from one of the power supplies, but it is

critical for the current to remain constant. The output bandwidth is higher because the saturated device

(with a higher Vds) is smaller in size, for a given current than a triode device (with low Vds); however,

because of the higher Vds, these drivers dissipate more power, I � Vs.

For both high- and low-impedance drivers, switching currents inject noise onto the supply via di=dt.

Instead of using purely single-ended drivers, complementary single-ended drivers approximates a

constant current and reduces the noise. Differential drivers such as PECL force a constant current

over time and eliminate the problem.*

15.2.3 Impedance, Current, and Slew-Rate Control

Process, voltage, and temperature (PVT) variations can cause drive resistance (of low-impedance

drivers) and currents (of high-impedance drivers) to deviate from the design target causing offsets

and noise. For robust operation, control loops are often used to dynamically maintain the proper

impedance or current. To minimize coupled and reflected noise, designers also limit the high-frequency

spectral content of the output signal. This section describes these noise reduction methods.

Rext

Vs

Zo

do

do

Pre-driver

dout

FIGURE 15.7 Low-swing, push-pull driver with supply bypassing.

Ro

Vtt

Zo

o

iVbias

Vbias

p_o
Zo

Vtt

o

i i

p_o

Vdd

(a) (b)

FIGURE 15.8 High-impedance drivers: PECL (a) and open-drain (b).

*The drawback is that differential drivers have slightly larger output capacitance because the differential input

devices have smaller Vgs and need to be larger to switch the output current.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 7 4.10.2007 2:53pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-7

Figure 15.9 illustrates the block diagram of a loop that controls the current of a high-impedance

driver [28]. The output driver device is divided into binary-weighted segments. A digital control word,

stored in a register, sets the number of transistors used by the driver. A replica driver determines the

control word. The replica drives half the output impedance. A comparator compares the output voltage

with a reference voltage set at Vs�Vsw=2, where Vsw is the desired voltage swing of the output. The

comparison result increments or decrements the control word until reaching the desired output current.

A similar loop can control the output impedance by adjusting the resistance of driving devices using

binary-weighted segments [7].

As mentioned earlier, filtering the high-frequency spectral content of the output signal reduces

coupling noise. This is equivalent to limiting the output slew rate, but an excessively low slew rate

may filter the signal’s desired spectral frequencies and cause ISI. The difficulty arises when the slew rate is

designed for the fastest operating condition. The slowest operating condition would cause excessive ISI.

Early designs of drivers use devices that correlate inversely with transistor speed. In the example shown

in Fig. 15.10a, an output device can be broken into segments and each segment turns on sequentially

[41]. The delay can be introduced using polysilicon resistors, which are not very sensitive to PVT. More

recent methods (Fig. 15.10b) control the rate at which the pre-driver turns on the output device. By

using a control voltage that tracks PVT,* the pre-driver resistance or current stays constant and

consequently the slew-rate.

15.2.4 Transmitter Pre-Emphasis

When the data rate exceeds the channel bandwidth, designers compensate for the filtering by equaliza-

tion. Because of the ease of implementation, many high-speed links equalize at the transmitter by pre-

distorting the signal to emphasize higher frequencies [6,14,50]. Early pre-emphasis designs were known

as advanced pull up=down (APU=D) [12], which were applied to driving large capacitances. The

Setting the control register

Replica
driver

Ro

Vs

Vref =Vsw/2 FSM

U/D

cnt
d[N:1]

Control
register

To real
buffers

LoadEn

d0

df

d1

S0

S1

sig

Control
register

Vbias

F w 2wdf d1d0

N binary sized
devices

do

Ro

Vs

F should give /max< /Idrv at FF corner
(2N− 1)�W+F should give /min> /drv at SS corner (S0= .. = SN= 1)

FIGURE 15.9 Current-control feedback loop.

*The control voltage can be the voltage of a VCO whose frequency is locked to an external reference clock via a

PLL [49].

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 8 4.10.2007 2:54pm Compositor Name: VBalamugundan

15-8 Digital Systems and Applications

technique turns on the driver more strongly for a period immediately after a data transition so that the

transmitter drives higher frequency components with more signal power. For more complex channel

responses, a programmable filter precedes the actual line driver and inverts the effect of the channel.

Figure 15.11a illustrates an example of an analog filter. The length of the optimal filter depends on the

tail of the pulse response. For many cables (less than 10 m) one or two taps is sufficient [6,13,14]. Figure

15.11b shows the effect of transmitter equalization. The small, negative pulses before and after the

original pulse eliminates the tails of the pulse response.

A digital-FIR filter would output a quantized word that represents the output voltage. Instead of

transmitting two levels, the driver is a high-speed D=A converter. Because current or impedance control

uses binary-weighted driver segments, designs for a D=A converter are not significantly different;

however, a design with linearity of >6 bits at multi-GSamples=sec faces challenging issues: device

mismatches limit linearity, transmit clock jitter limits the SNR, and the switching of output transitions

induce glitches. Thermal noise for a 50-V environment is approximately 1 nV=
ffiffiffiffiffiffi
Hz

p
and only limits

resolution at very high resolution. Recent research has demonstrated this potential with <6-bit D=A

converters [10,13].

Two system issues must be considered when implementing transmitter pre-distortion. First, transmit

power is limited, so the low-frequency signal energy must be attenuated to that of the worst-case

attenuation of the channel. This leads to significant loss of SNR. Second, the channel characteristic is not

known to the transmitter. Accurate filter coefficients are dynamically trained with loopback information

sent from the receiver, which adds complexity to the system.

Pre-driver

Output
voltage

Time
ctrl

VCO

ckref

ph comp
+ filter

PLL

Pre-driver

(a) (b)

FIGURE 15.10 Slew-rate control using resistors (a) and controlled pre-driver (b).

0.0 0.3 0.6 0.9 1.2

0.1

0.3

0.5

0.7 Unequalized
Equalization pulse
End of cable

Time (ns)

A
m

pl
itu

de
 (

V
)

Programmable currents(a) (b)

a1 a2a0

out[n]

Ro

Vs

FIGURE 15.11 Transmitter pre-distorted waveform (a) and implementation (b).

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 9 4.10.2007 2:54pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-9

15.3 Receivers

The task of the receiver is to convert the analog waveform from the channel into a sequence of binary data.

Figure 15.12 illustrates the common components of a receiver. First, an input amplifier conditions the

signal. A sampling circuit follows and captures the analog value of each bit. A comparator amplifies

the sampled value to digital values. Similar to the transmitter, the sampling block often demultiplexes the

data so that the on-chip clock rate can be slower than the off-chip data rate. Themost simple and common

design uses two samplers operating on opposite edges of a digital clock for 2:1 demultiplexing.

The primary difficulty in high-performance receiver design is maintaining low noise, both static and

dynamic. The noise of a signal at the receiver can be illustrated by an eye diagram (Fig. 15.13), which

overlays the waveform of each bit of a random sequence. The transmitter design and the channel

contributes the majority of the signal’s amplitude and timing noise. The receiver should compare the

signal with a proper reference voltage. Static offsets reduce the effective signal amplitude reducing the

SNR. To minimize dynamic noise, the receiver should reject supply and common-mode noise, filter

high-frequency input noise, and avoid any bandwidth limitation and ISI. Sampling the data at the

optimal point will be addressed in Section 15.4. This section describes several examples of high-

performance receiver designs. Then techniques to reduce noise and ISI are addressed.

15.3.1 Receiver Designs

Figure 15.14 illustrates an example of a receiver design. The first stage performs several tasks: (1) filtering

the noise, (2) level-shifting the output, and (3) amplifying the signal. An amplifier with appropriate

bandwidth can filter input noise frequencies above the data bandwidth. Furthermore, using a differential

+

−

Vi

ref

Precharge
Sample/
amplify

clk

din0

din1

din0
Cmp0

Cmp1

clk

ref

din1

clk

A

clk

ViA

ViA

Zo

Vtt

Iref

FIGURE 15.12 Receiver components.

Sample
timing

Voltage
reference

Timing
noise

Voltage
noise

FIGURE 15.13 Eye diagram at the receiver.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 10 4.10.2007 2:54pm Compositor Name: VBalamugundan

15-10 Digital Systems and Applications

structure improves the common-mode and supply noise rejection even though the input may be single-

ended. The outputs of the first stage [5,9] are differential for good supply noise sensitivity and are level-

shifted* to accommodate the clocked comparator that follows [34]. A high clock level resets the

comparator shown in Fig. 15.14. The negative clock edge samples the data and starts a positive feedback

that regeneratively amplifies the sampled value to digital values during the low clock phase. To

demultiplex the data, the comparators operate on different clock phases. The amplification is exponen-

tially dependent on the duration of the low phase. Because the comparator has high gain, the first stage

does not need significant gain. Some gain reduces the effective input offset voltage since the contribution

of the comparator’s offset is divided by the gain. Mismatch in the feedback devices and clock coupling of

the comparators can introduce significant offsets. For very high data rates, the drawback of the design is

that the first stage must have sufficient bandwidth to minimize ISI. Furthermore, delay variation of the

first stage can add timing noise.

A simple design can avoid ISI by eliminating the first stage and sampling=demultiplexing the input

with comparators directly [24,52]. Because the comparators are reset before each sample, no signal

energy from previous bits remains hence removing ISI; however, direct sampling is noisier and has larger

static offsets. Figure 15.15 illustrates an alternate design that clocks the first stage to remove ISI but still

conditions the signal [26,43]. During the low phase of the clock, the amplifier output is reset. During the

high phase of the clock, the amplifier conditions the data. For demultiplexing, two clocked amplifiers

loads the input. A comparator samples the amplifier output to further amplify to digital levels. The clock

used for the clocked amplifier must be timed with the arriving signal to amplify the proper bit. The

timing issue will be discussed in Section 15.4.

15.3.2 dc Offsets

Random dc offsets limit the voltage resolution of the receiver. These offset are due to random

mismatches in the devices and scales inversely with the size of the device [35]. Because minimum size

devices are often used to minimize pin capacitance and power dissipation, input-referred offset of

amplifiers and comparators can be tens of millivolts.

To compensate for the error, devices are added that can create an offset in either the first amplifier or

the comparator. The control can be open-loop where the compensation value is determined with an

initial calibration [10]. Figure 15.16a shows a comparator with digitally controllable switches that

Vi+

clk

Latch/comparator 08

Latch/comparator 1808

clk

Vo+
Bias

ref

FIGURE 15.14 Receiver design with receiving amplifier.

*The input common-mode voltage depends on the transmitter and the I=O specification.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 11 4.10.2007 2:54pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-11

differentially inject an error current. The open-loop compensation is commonly digital so the value does

not drift in time. Alternatively, the control can be continuously operating and closed-loop [51]. As shown

in Figure 15.16b, a third nonoverlapping clock phase, clk1, is added to the reset and amplify (clk0) phases

of operation. Clk1 reconfigures the amplifier to short the inputs and to store the value of the offset on

capacitors,Cos. If data is encoded so that averaged dc is a constant (dc-balanced), a similar technique finds

the offset by averaging of the received data [22] instead of wasting a phase to short the inputs.

15.3.3 Noise

The main sources of noise for a receiver are mutual coupling between I=O signals and differences

between chip ground and board ground. Large image currents that flow through the supply pins to

support the output drivers cause significant voltage differences.* Some of the supply noise inevitably

appears at the input to the receiver. Signaling differentially and carefully routing the two signals together

can effectively reduce noise to the order of tens of millivolts. Supply noise couple capacitively as

common-mode noise. Furthermore, mutual coupling from other signals is at least partially compensated

by coupling from its complement.

Vi+

clk

ref

clk

Vo

Vo

Bias

Clocked amplifier 0�

Clocked amplifier 180°

FIGURE 15.15 Receiver design using clocked amplifier=sampler as first stage.

ctrl register

D
A

C

clk

clk

clk clk

Vo+

Vi+

ctrl register

D
A

C

Aos

Ao

_

+
_

Vi

ref

din0
clk0

clk1

Reset

clk1

Cos

(a) (b)

FIGURE 15.16 Offset cancellation using digital controllable switches (a) and using feedback control (b).

*On-chip bypass capacitance only reduces chip VDD to chip ground noise, and has no effect on the noise between

chip ground and board ground.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 12 4.10.2007 2:54pm Compositor Name: VBalamugundan

15-12 Digital Systems and Applications

Single-ended signaling can achieve nearly the same performance if the return current supply connection

is brought on-chip, tightly coupled to the signal through a separate pin. The receiver’s reference can be

derived from the return connection, but this requires the same number of pins as differential signaling. To

save pins, most single-ended systems use the chip supplies (Vdd and ground) to derive the reference. Or,

several receivers share a single return current connection. Unfortunately, since the reference signal is

shared, the capacitance between the supplies to the input pad and to the reference voltage differ. The larger

capacitance to the reference couples more high-frequency supply noise [26,42,46]. Single-ended systems

typically require larger input swings than differential systems for the same performance.

A band-limited receiving amplifier can filter some of the noise. One approach to control the

bandwidth is to bias the effective load transistors with a control signal that tracks the bit time.* To

maintain constant output swing, the bias current of the differential amplifier must also track. An ideal

filter for square-wave inputs averages the input signal over the bit time with an integratory [43]. An
integrating receiver replaces the load elements with capacitors. The capacitors integrate the current that

is switched by the input value. At the end of the bit time, a comparator samples and compares the values

on the capacitors before the integrator is reset.

15.3.4 Receiver Equalization

With data rates above the bandwidth of the channel, an alternative to transmitter pre-emphasis is to build

the inverse channel filter at the receiver. Designers can increase the gain of the first amplifier at high-

frequencies to flatten the system response [45]. The required high-pass filter can also be implemented

digitally by first feeding the input to an analog-to-digital converter (ADC) and digitally post-processing the

ADC’s output. An ADC is commonly used in disk-drive read channels since it also allows one to

implement more complex nonlinear receive filters. Although this approach works well at frequencies

lower than 1 GHz, it is very challenging with gigahertz signals because of the required GSamples=sec

converters. Recent research demonstrated a multi-GSamples=sec 4-bit ADC [10] (1 W of power), which

indicates the potential of high data rate conversion albeit with high power dissipation. Instead of a digital

implementation, for less area and power overhead at these high bit rates, a simple 1-tap FIR filter (1�aD)

has been implemented as a switched-current filter [13] or a switched capacitor filter [47].

15.4 Timing Generation and Recovery

The task of timing recovery essentially determines the timing relationship between the transmitter and the

receiver so that the data can be received with minimal error. Typically, the burden of adjusting the timing

relationship falls on the receiver. Transmitter clocking is much easier where one primarily needs a low-jitter

clock source.z The receiver has a more difficult task of recovering the timing from the received signals.

The prior receiver discussion does not address how to generate the clock for the amplifiers and

samplers. Recovering a clock signal with low timing noise (jitter) and with accurate phase position is the

most difficult challenge for high data rates. The same eye diagram in Fig. 15.13 illustrates the timing

margin of a receiver. To maximize the timing margin, the receiver should sample the data in the middle

of the data-eye.§ If clocked amplifiers are used, the clock should be in-phase with the data to maximize

the settling time of the amplifier. Furthermore, designs should minimize the jitter of both the sampling

clock and the clock used at the transmitter. Almost all clock recovery circuits use a feedback loop known

*Similar to transmitter slew-rate control, one can leverage the fact that buffers in the clock generator have been

adjusted to have a bandwidth related to the bit rate [49].
yMost signals are not perfect square waves. In addition to finite signal slew rate, bit boundaries contain timing

uncertainty. Integrating over a portion of the bit-time (‘‘window’’) can reduce noise.
zIf data is multiplexed, clock phases must be properly positioned. For 2:1 multiplexing, the duty cycle needs to be

50%.
§The eye may not be symmetric. Off-center sampling may increase the amplitude of the sampled signal.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 13 4.10.2007 2:54pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-13

as a phase-locked loop (PLL) to adjust the clock phase position and minimize jitter. This section

discusses different PLL architectures and methods to reduce offsets from the ideal sampling position

(static phase offsets) and jitter.

15.4.1 Architectures

A PLL is often used to synchronize the transmitter clock’s phase and frequency* to that of a system

clock. In order to transmit phase information along with the data, two methods are commonly used.

For short distances of a wide data bus, source synchronous clocking is a method that transmits a clock

in-phase with the data. Otherwise, prior to transmission, data is encoded to contain periodic data

transitions that can be used to align the receive clock [13,15]. In some systems, the receiver and the

transmitter use clocks with slightly different frequencies. Then the timing recovery PLL has the

additional task of recovering the frequency from the data transitions.

Figure 15.17 shows the architecture of a PLL. Two basic approaches are used: oscillator-based PLLs,

and delay-line-based PLLs or delay-locked loops (DLLs). Both systems are similar feedback loops where

a control voltage (Vctl) adjust the phase of the periodic output signal (clkint) to have a fixed phase

relationship with the input signal (inpref). To distribute the clock to many receivers, a buffer chain drives

the clock line, clksamp.

DLLs control the output phase by directly adjusting the delay of a voltage-controlled delay line

(VCDL) [25]. The control loop integrates the control voltage to drive the phase error to zero. This

feedback loop is a first-order loop and is guaranteed stability, but it is constrained in that the frequency

of the input clock (clkext or inpref) determines the frequency of the output signal. Furthermore, the delay

elements limit the maximum and minimum delay of the line. Designing the range to be large enough for

all PVT and starting the loop at the correct delay often require auxiliary circuits. Using an oscillator-

based PLL provides more flexible in frequency and phase. The oscillator is often implemented using a

ring of controllable delay elements,y but an oscillator-based system is more complex to design. The phase

of the output signal is adjusted by integrating the change in frequency of the oscillator. Thus, an

oscillator-based PLL is a higher-order control system that has stability constraints [3,38].

Phase detector designs vary depending on whether the input reference is a clock or a data sequence.

Recovering the phase from an input clock is easier because a transition is guaranteed every cycle. An

example shown in Fig. 15.18a is an SR-latch where the Q and Q outputs have equal pulse widths when

the input clocks are spaced 1808 apart [44]. When the phases deviate from 1808, the difference in pulse

width indicates the phase difference. For data input, the added difficulty is recovering the transitions. A

common design technique shown in Fig. 15.18b uses XORs to compare consecutive bits [20]. When

Filter

VCO or VCDL

inpref

Phase
detector

Vctl

(clkext)

Clock
buffer

clkint

Dummy
buffer

clksamp

FIGURE 15.17 Phase-locked loop architecture using oscillator (a) and delay-line (b).

*PLLs are often used to generate a multiplied frequency.
yWith the availability of on-chip inductors, LC-type oscillators often used in RF applications are being considered

in large digital ICs.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 14 4.10.2007 2:54pm Compositor Name: VBalamugundan

15-14 Digital Systems and Applications

the XOR output is high, a phase difference is present. PD1 is high starting on a transition of the input to

the rising edge of the clock. PD2 is high for half the clock period whenever data transitions. The phase

difference is the difference between the pulse width of PD1 and PD2.*

15.4.2 Minimizing Jitter

Jitter in the sampling clock is primarily due to the sensitivity of the loop elements to supply noise.

Although the feedback system can correct for noise with frequencies below the bandwidth of the loop,

high-frequency noise can appear as jitter on the output clocks. Loop elements, especially oscillator or

delay-line buffer elements, are often differential and have high common-mode and supply rejection to

minimize the noise. Oscillators in particular are carefully designed because noise causes errors in

frequency [32]. Phase error accumulates because it is the integral of the frequency error.

Many clocks drive large capacitances. Clock buffers are typically CMOS inverters for power efficiency,

but they have much higher supply sensitivity than the delay buffersy and cause over half of the total

jitter of the output clock. Dummy clock buffers are often included in the feedback of the PLL (Fig.

15.17) to use the feedback loop to track out the low frequency portion of the noise [1,21]. A well-

designed loop in a system with 5% supply noise will often have a jitter roughly 0.5 of the delay of a FO-4

inverterz of the clock period. Intrinsic jitter without supply noise can be more than three times less.

15.4.3 Phase Detection and Static Phase Offsets

In addition to the jitter, dc phase offsets are equally important in maximizing the timing margin. Using a

loop that integrates the phase error helps reduce any inherent offsets. The offset primarily depends on

any errors in the time spacing between sampling clocks when demultiplexing, and the mismatch between

the phase detector and the receiver.

In a 1:2 demultiplexing receiver, the clock (08) and its complement (1808) are used. Duty cycle errors

can cause one receiver to not sample at its optimal location. Typically, a correction loop is added to the

data
PD1

PD2

clk
D Q

D Q XORA

XORB

d1

d2

data

PD1

PD2

clk

d1

d2

Q

Q

cint

cint

cref

cref

clkint

clkint

clkref

clkref

One-shot

One-shot

Q

Q

(a) (b)

FIGURE 15.18 Phase-detection using SR-latch (a) or XOR (b) to detect data transition.

*In order to recover frequency where the input data frequency is significantly different from the oscillator natural

frequency, phase detection alone is often not sufficient. An entire class of circuits aids frequency acquisition

[13,36,40].
yA 1% change in supply yields roughly a 1% change in delay, which can be 103 that of delay buffers.
zFor a figure relatively insensitive to PVT, the time can be normalized relative to the delay of a FO-4 inverter.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 15 4.10.2007 2:54pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-15

PLL output to guarantee 50% duty cycle* [31]. The loop averages a clock waveform to determine the

duty cycle. Using the information, the duty cycle can be adjusted by changing the logical threshold of a

clock buffer.

To sample at the middle of a data bit, a clock must be 908 shifted with respect to the data. This shift

can be achieved by either (1) using a phase detector that indicates zero error when the difference is 908

[42], or (2) locking to 08 and shifting the clock by 908. The first method employs XORs in the design of

the phase detector. Figure 15.19a illustrates a simple case, when the reference input and loop output

are two clock waveforms. The XOR output has equal high and low durations when the clocks are 908

apart. In the second method shown in Fig. 15.19b, reference and loop output are locked in-phase.

Using a ring-oscillator with even number of stages, an internal clock phase in the ring can be tapped for

the 908 clock [27,49].

A common error in phase locking is that the receiving comparator has a nonzero setup time. To

optimally sample the data, the clock position should be adjusted for the setup time.y An additional delay

at the input of the phase detector can compensate for the setup delay. The most accurate compensation

is to use a replica of the receiver as the phase detector since the setup time is inherent to the receiver;

however, this poses challenge because a receiver does not give phase information proportional to the

phase difference. The output only indicates that the loop clock is either earlier or later than an reference

clock transition. An oscillator-based loop is not stable with this type of bang-bang control so only DLLs

can be built. In order to also lock to the input frequency, a clever design uses a dual-loop architecture

that locks to the input frequency using a core loop [21,27,44]. Coarsely-spaced clock phases from the

core loop are interpolatedz to generate a clock phase that can be finely controlled. This loop clock is

locked to the input phase using a receiver replica phase detector. Using these techniques, phase offsets

can be smaller than 2% of the bit time.

15.5 Conclusion

This chapter has described the design goals and challenges for high-performance I=O. Performance

using 2:1 multiplexing of greater than 5 Gb=s has been demonstrated using a 0.18-mm CMOS

technology [16,18,40]. Higher bit-rates have been shown using higher degree of multiplexing and

demultiplexing. Because transistor speeds will scale with technology, link speeds are expected to scale

as well. Unfortunately, noise coupling due to parasitic capacitances and inductances increases with

frequency requiring designs to be even more robust to noise. Designs employ many of the noise

XOR
in

ref
up
down

Edge lock
to input

(a) (b)

Up/Down pulses are equal width
only when in and ref are clocks
with phase differecnce of 90�

Quadrature output from
oscillator/delay line

phase relationship of
180�

90� data
sampling edge

FIGURE 15.19 908 locking using XOR (a) and ring-oscillator (b).

*A higher degree of demultiplexing requires multiple phases to be generated and tuning of each phase position

[52].
yAn error that is not easily dealt with is any data dependent setup time variations. This can be minimized by

designing the receiver for low input-offset voltage and hysteresis.
zInterpolation takes two clock phases and performs a weighted average to generate an intermediate clock phase

[32,52].

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 16 4.10.2007 2:54pm Compositor Name: VBalamugundan

15-16 Digital Systems and Applications

reductions techniques described in this chapter and have continued to scale. Figure 15.20 illustrates the

scaling so far. Future designs will need to improve these noise reducing and filtering techniques.

Furthermore, wire bandwidth does not scale with technology scaling so the compensating for the

low-pass filtering will be even more important.

Methods are being researched that can squeeze more bits into existing bandwidth. Given an SNR,

Shannon’s limit shows the maximum channel capacity to be Capacity=fbw¼ log (1þ SNR). Researchers

are beginning to show that multilevel (4þ PAM) can be encoded in each bit period at the gigabits per

second broadband data rate [10,13]. This and many techniques [37] that have been demonstrated in

phone modems [4,23] can dramatically increase capacity to 10 bits=Hz in extremely noisy conditions,

but all require accurate A=D and D=A converters. Research has shown that they are feasible but require

extremely accurate timing. Low-jitter PLLs that lock accurately to the data phase are critical in

maintaining the resolution at the gigahertz sampling rates.

Power of these links is becoming an important issue. For many digital systems, the aggregate off-chip

bandwidth is expected to exceed terabits per second in 2010. The data rate is not expected of a single link

but over hundreds of I=Os. Each I=O cannot afford power more than a few tens of milliwatts.

These issues challenge the next generation of higher-performance link designs. The availability of

faster and more abundant transistor as CMOS technology scales will help designers face the challenges.

References

1. Alvarez, J. et al., ‘‘Awide-bandwidth low-voltage PLL for PowerPC microprocessors,’’ IEEE Journal of

Solid-State Circuits, vol. 30, no. 4, pp. 383–391, April 1995.

2. Banu, M., and A. Dunlop, ‘‘A 660Mb=s CMOS clock recovery circuit with instantaneous locking for

NRZ data and burst-mode transmission,’’ in 1993 IEEE International Solid-State Circuits Conference.

Digest of Technical Papers, San Francisco, CA, pp. 102–103, Feb. 1993.

3. Best, R., Phase-Locked Loops, 3rd ed., McGraw Hill, New York, 1997.

4. Boxho, J. et al., ‘‘An analog front end for multi-standard power line carrier modem,’’ in 1997 IEEE

International Solid-State Circuits Conference. Digest of Technical Papers, pp. 84–85.

5. Chappell, B. et al., ‘‘Fast CMOS ECL receivers with 100-mV worst case sensitivity,’’ IEEE Journal of

Solid State Circuits, vol. 23, no. 1, pp. 59–67, Feb. 1988.

6. Dally, W.J. et al., ‘‘Transmitter equalization for 4-Gbps signaling,’’ IEEE Micro, vol. 17, no. 1, pp. 48–

56, Jan.–Feb. 1997.

7. DeHon, A. et al., ‘‘Automatic impedance control,’’ in 1993 IEEE International Solid-State Circuits

Conference. Digest of Technical, pp. 164–165, Feb. 1993.

0.0 0.2 0.4
Feature size (µm)

0.6 0.8 1.0 1.2
0

500

1000

1500

B
it

tim
e

(p
se

c)
[

[14]
[29]

2000
[21]

[2]

3 FO-4

1 FO-4

[52]
[52]

[52]

[16,18,30]
[40]

[49]

FIGURE 15.20 Scaling of link performance with process technology.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 17 4.10.2007 2:54pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-17

8. Dobberpuhl, D. et al., ‘‘A 200-MHz 64 b dual-issue microprocessor,’’ IEEE Journal of Solid-State

Circuits, vol. 27, no. 11, p. 1555, Nov. 1992.

9. Donnelly, K.S. et al., ‘‘A 660 MB=s interface megacell portable circuit in 0.3 mm–0.7 mm CMOS

ASIC,’’ IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp. 1995–2003, Dec. 1996.

10. Ellersick, W. et al., ‘‘A serial-link transceiver based on 8 GSa=s A=D and D=A converters in 0.25-mm

CMOS,’’ in 2001 IEEE International Solid-State Circuits Conference. Digest of Technical, pp. 58–59,

Feb. 2001.

11. Enam, S.K., and A.A. Abidi, ‘‘NMOS ICs for clock and data regeneration in gigabit-per-second

optical-fiber receivers,’’ IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1763–1774, Dec. 1992.

12. Esch, G.L., Jr. et al., ‘‘Theory and design of CMOS HSTL I=O pads,’’ Hewlett-Packard Journal

Hewlett-Packard, vol. 49, no. 3, pp. 46–52, Aug. 1998.

13. Farjad-Rad, R. et al., ‘‘A 0.3-mm CMOS 8-GS=s 4-PAM serial link transceiver,’’ IEEE Journal of Solid-

State Circuits, vol. 35, no. 5, pp. 757–764, May 2000.

14. Fiedler, A. et al., ‘‘A 1.0625 Gbps transceiver with 2x-oversampling and transmit signal preem-

phasis,’’ in 1997 IEEE International Solid-State Circuits Conference. Digest of Technical Papers,

pp. 238–239.

15. Franaszek, P., A. Widmar, ‘‘Byte oriented DC balanced (0,4) 8B=10B partitioned block transmission

code,’’ US Patent 4486739, Dec. 04, 1984.

16. Fukaishi, M. et al., ‘‘A 4.25-Gb=s CMOS fiber channel transceiver with asynchronous tree-type

demultiplexer and frequency conversion architecture,’’ IEEE Journal of Solid-State Circuits, vol. 33,

pp. 2139–2147, Dec. 1998.

17. Galles, M. et al., ‘‘Spider: a high-speed network interconnect,’’ IEEE Micro, vol. 17, no. 1, pp. 34–39,

Jan.–Feb. 1997.

18. Gu, R. et al., ‘‘A 0.5–3.5 Gb=s low-power low-jitter serial data CMOS transceiver,’’ in 1999 Inter-

national Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, pp. 352–353,

Feb. 1999.

19. Gunning, B. et al., ‘‘A CMOS low-voltage-swing transmission-line transceiver,’’ in 1992 International

Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, Feb. 1992.

20. Hogge, Jr., C.R., ‘‘A self-correcting clock recovery circuit,’’ IEEE Transation on Electron Devices,

vol. ED-32, pp. 2704–2706, Dec. 1985.

21. Horowitz, M. et al., ‘‘PLL design for a 500 MB=s interface,’’ in 1993 IEEE International Solid-State

Circuits Conference. Digest of Technical Papers, pp. 160–161.

22. Hu, T.H. et al., ‘‘A monolithic 480 Mb=s parallel AGC=decision=clock-recovery circuit in 1.2-mm

CMOS,’’ IEEE Journal of Solid-State Circuits, vol. 28, no. 12, pp. 1314–1320, Dec. 1993.

23. Ishida, H. et al., ‘‘A single-chip V.32 bis modem,’’ in 1994 IEEE International Solid-State Circuits

Conference. Digest of Technical Papers, pp. 66–67.

24. Johansson, H.O. et al., ‘‘Time resolution of NMOS sampling switches used on low-swing signals,’’

IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 237–245, Feb. 1998.

25. Johnson, M.G. et al., ‘‘A variable delay line PLL for CPU-coprocessor synchronization,’’ IEEE Journal

of Solid-State Circuits, vol. 23, no. 5, pp. 1218–1223, Oct. 1988.

26. Kushiyama, N. et al., ‘‘A 500-megabyte=s data rate 4.5 M DRAM,’’ IEEE Journal of Solid-State

Circuits, vol. 28, no. 4, pp. 490–498, April 1993.

27. Larsson, P. et al., ‘‘A 2–1600 MHz 1.2–2.5 V CMOS clock-recovery PLL with feedback phase-

selection and averaging phase-interpolation for jitter reduction,’’ in 1999 IEEE International Solid-

State Circuits Conference. Digest of Technical Papers, pp. 356–357, Feb. 1999.

28. Lau, B. et al., ‘‘A 2.6 GB=s multi-purpose chip to chip interface,’’ in 1998 IEEE International Solid-

State Circuits Conference. Digest of Technical Papers, pp. 162–163.

29. Lee, K. et al., ‘‘A jitter-tolerant 4.5 Gb=s CMOS interconnect for digital display,’’ in 1998 IEEE

International Solid-State Circuits Conference. Digest of Technical, pp. 310–311, Feb. 1998.

30. Lee, M.J., W. Dally, and P. Chang, ‘‘Low-power area-efficient high-speed I=O circuit techniques,’’

IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1591–1599, Nov. 2000.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 18 4.10.2007 2:54pm Compositor Name: VBalamugundan

15-18 Digital Systems and Applications

31. Lee, T.H. et al., ‘‘A 2.5 V CMOS delay-locked loop for 18 Mbit, 500 megabyte=s DRAM,’’ IEEE

Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1491–1496, Dec. 1994.

32. Maneatis, J.G. et al., ‘‘Low-jitter process-independent DLL and PLL based on self-biased tech-

niques,’’ IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1723–1732, Nov. 1996.

33. Matick, R., ‘‘Transmission lines for digital and communication networks,’’ 3rd ed., IEEE Press, 1997.

34. Montanaro, J. et al., ‘‘A 160-MHz 32-b 0.5-W CMOS RISC microprocessor,’’ IEEE Journal of Solid-

State Circuits, vol. 31, pp. 1703–1714, Nov. 1996.

35. Pelgrom, M.J., ‘‘Matching properties of MOS transistors,’’ IEEE Journal of Solid-State Circuits,

vol. 24, no. 10, p. 1433, Dec. 1989.

36. Pottbacker, A. et al., ‘‘A Si-bipolar phase and frequency detector IC for clock extraction up to

8Gb=s,’’ IEEE Journal of Solid-State Circuits, vol. 27, pp. 1747–1751, Dec. 1992.

37. Proakis, J. and Salehi, M., Communication Systems Engineering, Prentice-Hall, 1994.

38. Razavi, B. Editor, Monolithic Phase Locked Loops and Clock Recovery Circuits, IEEE Press, 1996.

39. Sanchez, H., et al., ‘‘Aversatile 3.3 V=2.5 V=1.8 VCMOS I=Odriver built in a 0.2-mm 3.5 nm tox 1.8 V

technology,’’ in 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers,

p. 276.

40. Savoj, J., B. Razavi, ‘‘A 10 Gb=s CMOS clock data recovery circuit,’’ Symposium on VLSI Circuits

(IEEE=JSAP). Digest of Technical Papers, Honolulu, HI, pp. 136–139, June 2000.

41. Senthinathan, R. et al., ‘‘Application specific CMOS output driver circuit design techniques

to reduce simultaneous switching noise,’’ IEEE Journal of Solid-State Circuits, vol. 28, no. 12,

pp. 1383–1388, Dec. 1993.

42. Sidiropoulos, S. et al., ‘‘A CMOS 500-Mbps=pin synchronous point to point link interface,’’ in

Proceedings of 1994 IEEE Symposium on VLSI Circuits. Digest of Technical Papers, pp. 43–44.

43. Sidiropoulos, S. et al., ‘‘A 700-Mb=s=pin CMOS signaling interface using current integrating

receivers,’’ IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 681–690, May 1997.

44. Sidiropoulos, S. et al., ‘‘A semi-digital DLL with unlimited phase shift capability and 0.08–400 MHz

operating range,’’ in 1997 IEEE International Solids-State Circuits Conference. Digest of Technical

Papers, pp. 332–333.

45. Song, B.S. et al., ‘‘NRZ timing recovery technique for band limited channels,’’ in 1996 IEEE

International Solid-State Circuits Conference. Digest of Technical Papers, pp. 194–195.

46. Takahashi, T. et al., ‘‘A CMOS gate array with 600 Mb=s simultaneous bidirectional I=O circuits,’’

IEEE Journal of Solid-State Circuits, vol. 30, no. 12, Dec. 1995.

47. Tamura, H. et al., ‘‘Partial response detection technique for driver power reductio in high speed

memory-to-processor communications,’’ in 1997 IEEE International Solid-State Circuits Conference.

Digest of Technical Papers, pp. 241–248.

48. Van de Plassche, R., Integrated Analog-to-Digital and Digital-to-Analog Converters, Kluwer Academic

Publishers, Dordrecht, the Netherlands, 1994.

49. Wei, G. et al., ‘‘A variable frequency parallel I=O interface with adaptive supply regulation,’’ IEEE

Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1600–1610, Nov. 2000.

50. Widmer, A.X. et al., ‘‘Single-chip 4 * 500-MBd CMOS transceiver,’’ IEEE Journal of Solid-State

Circuits, vol. 31, no. 12, pp. 2004–2014, Dec. 1996.

51. Wu, J.-T. et al., ‘‘A 100-MHz pipelined CMOS comparator,’’ IEEE Journal of Solid-State Circuits,

vol. 23, no. 6, pp. 1379–1385.

52. Yang, C.K.K. et al., ‘‘A 0.5-mm CMOS 4-Gbps serial link transceiver with data recovery using over-

sampling,’’ IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 713–722, May 1998.

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 19 4.10.2007 2:54pm Compositor Name: VBalamugundan

Circuits for High-Performance I=O 15-19

Vojin Oklobdzija/Digital Systems and Applications 6195_C015 Final Proof page 20 4.10.2007 2:54pm Compositor Name: VBalamugundan

16
Algorithms and Data
Structures in External

Memory

Jeffrey Scott Vitter
Purdue University

16.1 Introduction... 16-1
Overview of the Chapter

16.2 Parallel Disk Models ... 16-2

16.3 Related Memory Models, Hierarchical Memory,
and Caches ... 16-4

16.4 Fundamental I=O Operations and Bounds 16-5

16.5 Disk Striping for Multiple Disks................................ 16-5

16.6 External Sorting and Related Problems 16-6
Sorting by Distribution . Sorting by Merging . A General

Simulation . Handling Duplicates: Bundle Sorting .

Permuting and Transposition . Fast Fourier Transform

and Permutation Networks . Lower Bounds on I=O

16.7 Matrix and Grid Computations............................... 16-11

16.8 Batched Problems in Computational Geometry 16-11

16.9 Batched Problems on Graphs................................... 16-13

16.10 External Hashing for Online Dictionary Search..... 16-15

16.11 Multiway Tree Data Structures................................. 16-16
B-Trees and Variants

16.12 Spatial Data Structures and Range Search 16-18
Linear-Space Spatial Structures . R-Trees . Specialized

Structures for 2-D Orthogonal Range Search . Other Types

of Range Search . Dynamic and Kinetic Data Structures

16.13 String and Text Algorithms 16-22

16.14 TPIE External Memory Programming
Environment .. 16-23

16.15 Dynamic Memory Allocation................................... 16-23

16.16 Conclusions.. 16-24

16.1 Introduction

In large applications, data sets are often too massive to fit completely inside the computer’s internal

memory. The resulting input=output (I=O) communication between fast internal memory and slower

external memory (such as disks) can be a major performance bottleneck. For example, loading a register

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 1 4.10.2007 3:32pm Compositor Name: VBalamugundan

16-1

takes on the order of a nanosecond (10�9 s), and accessing internal memory takes tens of nanoseconds,

but the latency of accessing data from a disk is several milliseconds (10�3 s), which is about one million

times slower.

Many computer programs exhibit some degree of locality in their pattern of memory references:

Certain data are referenced repeatedly for a while, and then the program shifts attention to other sets of

data. Substantial gains in performance may be possible by incorporating locality directly into the

algorithm design and by explicit management of the contents of each level of the memory hierarchy,

thereby bypassing the virtual memory system.

16.1.1 Overview of the Chapter

This chapter discusses the I=O communication between the random access internal memory and the

magnetic disk external memory, where the relative difference in access speeds is most apparent. It

surveys several paradigms for how to exploit locality and thereby reduce I=O costs when solving

problems in external memory. The problems that are considered fall into two general categories:

1. Batched problems: No preprocessing is done and the entire file of data items must be processed,

often by streaming the data through the internal memory in one or more passes.

2. Online problems: Computation is done in response to a continuous series of query operations

and updates.

The approach is based upon the parallel disk model (PDM), which provides an elegant model for

analyzing the relative performance of external memory (EM) algorithms and data structures. The three

main performance measures of PDM are the number of I=O operations, the disk space usage, and the

CPU time. For reasons of brevity, we focus on the first two measures. Most of the algorithms we consider

are also efficient in terms of CPU time. In Section 16.4, we list four fundamental I=O bounds that

pertain to most of the problems considered in this chapter. In Section 16.5, we discuss an automatic load

balancing technique called disk striping for using multiple disks in parallel.

Section 16.6 examines canonical batched EM problem of external sorting and the related problems of

permuting and fast Fourier transform (FFT). In Section 16.7, we discuss grid and linear algebra batched

computations.

For most problems, parallel disks can be utilized effectively by means of disk striping or the parallel

disk techniques of Section 16.6, and hence we restrict ourselves starting in Section 16.8 to the

conceptually simpler single-disk case. In Section 16.8, we mention several effective paradigms for

batched EM problems in computational geometry. In Section 16.9, we look at EM algorithms for

combinatorial problems on graphs, such as list ranking, connected components, topological sorting,

and finding shortest paths.

In Sections 16.10 through 16.12 we consider data structures based on hash tables and search trees in

the online setting. We discuss some additional EM approaches useful for dynamic data structures, and

we also consider kinetic data structures, in which the data items are moving. Section 16.13 deals with EM

data structures for manipulating and searching text strings. In Section 16.14, we list several program-

ming environments and tools that facilitate high-level development of efficient EM algorithms.

In Section 16.15, we discuss EM algorithms that adapt optimally to dynamically changing internal

memory allocations.

16.2 Parallel Disk Models

EM algorithms explicitly control data placement and movement, and thus it is important for algorithm

designers to have a simple but reasonably accurate model of the memory system’s characteristics.

Magnetic disks consist of one or more rotating platters and one read=write head per platter surface.

The data are stored on the platters in concentric circles called tracks. To read or write a data item at a

certain address on disk, the read=write head must mechanically seek to the correct track and then wait

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 2 4.10.2007 3:32pm Compositor Name: VBalamugundan

16-2 Digital Systems and Applications

for the desired address to pass by. The seek time to move from one random track to another is often on

the order of 3–10 milliseconds, and the average rotational latency, which is the time for half a revolution,

has the same order of magnitude. In order to amortize this delay, it pays to transfer a large contiguous

group of data items, called a block. Similar considerations apply to all levels of the memory hierarchy.

Even if an application can structure its pattern of memory accesses to exploit locality and take full

advantage of disk block transfer, there is still a substantial access gap between internal memory

performance and external memory performance. In fact, the access gap is growing because the latency

and bandwidth of memory chips are improving more quickly than those of disks. Use of parallel

processors further widens the gap. Storage systems such as RAID deploy multiple disks in order to get

additional bandwidth [52,104].

The main properties of magnetic disks and multiple disk systems can be captured by the commonly

used PDM introduced by Vitter and Shriver [200]:

N ¼ problem size (in units of data items)

M¼ internal memory size (in units of data items)

B ¼ block transfer size (in units of data items)

D ¼ number of independent disk drives

P ¼number of CPUs

whereM<N and 1 � DB �M=2. The data items are assumed to be of fixed length. In a single I=O, each

of the D disks can simultaneously transfer a block of B contiguous data items. When the problem

involves queries, two more performance parameters are needed:

Q¼ number of input queries (for a batched problem)

Z¼ query output size (in units of data items)

It is convenient to refer to some of the above PDM parameters in units of disk blocks rather than in units

of data items:

n ¼ N

B
,m ¼ M

B
, q ¼ Q

B
, z ¼ Z

B
(16:1)

It is assumed that the input data are initially ‘‘striped’’ across the D disks, in units of blocks, as

illustrated in Figure 16.1, and we require the output data to be similarly striped. Striped format allows a

file of N data items to be read or written in O(N=DB)¼O(n=D) I=Os, which is optimal.

The following are the three primary measures of performance in PDM:

1. The number of I=O operations performed

2. The amount of disk space used

3. The internal (sequential or parallel) computation time

D0

0 1

10 11

20 21

30 31

Stripe 0

Stripe 1

Stripe 2

Stripe 3

2 3

12 13

22 23

32 33

4 5

14 15

24 25

34 35

6 7

16 17

26 27

36 37

8 9

18 19

28 29

38 39

D1 D2 D3 D4

FIGURE 16.1 Initial data layout on the disks, for D ¼ 5 disks and block size B ¼ 2. The input data items are

initially striped block-by-block across the disks. For example, data items 16 and 17 are stored in the second block

(i.e., in stripe 1) of disk D3.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 3 4.10.2007 3:32pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-3

For reasons of brevity, this chapter focuses on only the first two measures. The reader can refer to Ref.

[197] for discussion and references on more complex and precise disk models.

16.3 Related Memory Models, Hierarchical Memory,
and Caches

The study of problem complexity and algorithm analysis when using EMdevices beganmore than 40 years

ago with Demuth’s Ph.D. thesis on sorting [70,122]. In the early 1970s, Knuth [122] did an extensive study

of sorting using magnetic tapes and, to a lesser extent, magnetic disks. At about the same time, Floyd

[86,122] considered a diskmodel akin to PDM forD¼ 1, P¼ 1, B¼M=2¼Q(Nc), for constant c> 0, and

developed optimal upper and lower I=O bounds for sorting and matrix transposition. Hong and Kung

[107] developed a pebbling model of I=O for straight-line computations, and Savage and Vitter [175]

extended the model to deal with block transfer. Aggarwal and Vitter [15] generalized Floyd’s I=Omodel to

allow D simultaneous block transfers, but the model was unrealistic in that the D simultaneous transfers

were allowed to take place on a single disk. They developed matching upper and lower I=O bounds for all

parameter values for a host of problems. Because the PDMmodel can be thought of as a more restrictive

(and more realistic) version of Aggarwal and Vitter’s model, their lower bounds apply to PDM as well.

Section 16.6.3 discusses a recent simulation technique due to Sanders et al. [174]; the Aggarwal–Vitter

model can be simulated probabilistically by PDMwith only a constant factor more I=Os, thus making the

twomodels theoretically equivalent in the randomized sense. Deterministic simulations on the other hand

require a factor of log(N=D)=log[log(N=D)] more I=Os [28].

Surveys of I=O models, algorithms, and challenges appear in Refs. [179,192,197,216,227,293]. Several

versions of PDM have been developed for parallel computation [69,133,183]. Models of active disks

augmented with processing capabilities to reduce data traffic to the host, especially during streaming

applications, are given in Refs. [3,165]. Models of microelectromechanical systems (MEMS) for mass

storage appear in Ref. [99].

Some authors have studied problems that can be solved efficiently by making only one pass (or a small

number of passes) over the data [80,105]. In such data streaming applications, one approach to reduce

the internal memory requirements is to require only an approximate answer to the problem; the more

the memory available the better the approximation. A related approach to reducing I=O costs for a given

problem is to use random sampling or data compression in order to construct a smaller version of the

problem whose solution approximates the original. These approaches are highly problem dependent and

somewhat orthogonal to our focus in this chapter.

The same type of bottleneck that occurs between internal memory (DRAM) and external disk storage

can also occur at other levels of thememory hierarchy, such as between registers and level 1 cache, between

level 1 and level 2 cache, between level 2 cache and DRAM, and between disk storage and tertiary devices.

The PDMmodel can be generalized tomodel the hierarchy ofmemories ranging from registers at the small

end to tertiary storage at the large end. Optimal algorithms for PDMoften generalize in a recursive fashion

to yield optimal algorithms in the hierarchical memory models [12,13,199,201]. Conversely, the algo-

rithms for hierarchical models can be run in the PDM setting.

Frigo et al. [88] introduce the important notion of cache-oblivious algorithms, which require no

knowledge of the storage parameters, like M and B. They develop optional cache-oblivious algorithms

for merge sort and distribution sort. Bender et al. [42] and Bender et al. [300] develop cache-oblivious

versions of B-trees. We refer the reader to Ref. [237] for a survey of cache-oblivious algorithms and data

structures.

The match between theory and practice is harder to establish for hierarchical models and caches

than for disks. Generally, the most significant speedups come from optimizing the I=O communication

between internal memory and the disks. For reasons of focus, such hierarchical models and caching

issues are not considered in this chapter. The reader is referred to the discussion and references in

Ref. [197].

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 4 4.10.2007 3:32pm Compositor Name: VBalamugundan

16-4 Digital Systems and Applications

16.4 Fundamental I=O Operations and Bounds

The I=O performance of many algorithms and data structures can be expressed in terms of the bounds

for the following four fundamental operations:

1. Scanning (also known as streaming or touching) a file of N data items, which involves the

sequential reading or writing of the items in the file

2. Sorting a file of N data items, which puts the items into sorted order

3. Searching online through N sorted data items

4. Outputting the Z answers to a query in a blocked ‘‘output-sensitive’’ fashion

The I=Obounds for these four operations are given in Table 16.1. The special case of a single disk (D¼ 1) is

emphasized, because the formulas are simpler andmany of the discussions in this chapter are restricted to

the single-disk case. The searching lower bounds assume the comparison model of computation.

16.5 Disk Striping for Multiple Disks

It is conceptually much simpler to program for the single-disk case (D¼ 1) than for the multiple-disk

case (D � 1). Disk striping [120,167] is a practical paradigm that can ease the programming task with

multiple disks: I=Os are permitted only on entire stripes, one stripe at a time. For example, in the data

layout in Figure 16.1, data items 20–29 can be accessed in a single I=O step because their blocks are

grouped into the same stripe. The net effect of striping is that the D disks behave as a single logical disk,

but with a larger logical block size DB.

Therefore, the paradigm of disk striping can be applied automatically to convert an algorithm

designed to use a single disk with block size DB into an algorithm for use on D disks each with block

size B: In the single-disk algorithm, each I=O step transmits one block of size DB; in the D-disk

algorithm, each I=O step consists of D simultaneous block transfers of size B each. The number of

I=O steps in both algorithms is the same; in each I=O step, the DB items transferred by the two

algorithms are identical. Of course, in terms of wall clock time, the I=O step in the multiple-disk

algorithm will be Q(D) times faster than in the single-disk algorithm due to parallelism.

Disk striping can be used to get optimal multiple-disk algorithms for three of the four fundamental

operations of Section 16.4—streaming, online search, and output reporting—but it is nonoptimal for

sorting. If D is replaced by 1 and then B by DB in the sorting bound Sort(N) given in Section 16.4, an

expression is obtained that is larger than Sort(N) by a multiplicative factor of

log (n=D)

log n

logm

log (m=D)
� logm

log (m=D)
(16:2)

When D is on the order of m, the log(m=D) term in the denominator is small, and the resulting value

of Equation 16.2 is in the order of log m, which can be significant in practice.

It follows that the only way to theoretically attain the optimal sorting bound Sort(N) is to forsake disk

striping and to allow the disks to be controlled independently, so that each disk can access a different

TABLE 16.1 I=O Bounds for the Four Fundamental Operations

Operation I=O Bound, D ¼ 1 I=O Bound, General D � 1

Scan (N) Q N
B

� � ¼ Q(n) Q N
DB

� � ¼ Q n
D

� �
Sort (N) Q N

B
logM=B

N
B

� �
¼ Q(n logm n) Q N

DB
logM=B

N
B

� �
¼ Q n

D
logm n

� �
Search (N) Q(logB N) Q(logDB N)

Output (Z) Q max 1, Z
B

� �� � ¼ Q(max {1,z}) Q max 1, Z
DB

� �� � ¼ Q max 1, z
D

� �� �
Note: The PDM parameters are defined in Section 16.2.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 5 4.10.2007 3:32pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-5

stripe in the same I=O step. In the next section, algorithms for sorting with multiple independent disks

are discussed. The techniques that arise can be applied to many of the batched problems addressed later

in the chapter. Two such sorting algorithms—distribution sort with randomized cycling and simple

randomized merge sort—have relatively low overhead and will outperform disk-striped approaches.

16.6 External Sorting and Related Problems

The problem of external sorting (or sorting in external memory) is a central problem in the field of EM

algorithms, partly because sorting and sorting-like operations account for a significant percentage of

computer use [122], and also because sorting is an important paradigm in the design of efficient EM

algorithms, as shown in Section 16.9.With some technical qualifications,many problems that can be solved

easily in linear time in internal memory, such as permuting, list ranking, expression tree evaluation, and

finding connected components in a sparse graph, require the same number of I=Os in PDMas does sorting.

THEOREM 16.1 [15,155] The average-case and worst-case number of I=Os required for sorting N¼ nB data

items using D disks is

Sort(N) ¼ Q
n

D
logm n

� �
(16:3)

From Section 16.5, efficient sorting algorithms can be constructed for multiple disks by applying the

disk-striping paradigm to an efficient single-disk algorithm. But in the case of sorting, the resulting

multiple-disk algorithm does not meet the optimal Sort(N) bound of Theorem 16.1. In Sections 16.6.1

and 16.6.2, we discuss some recently developed external sorting algorithms that use disks independently.

The algorithms are based on the important distribution and merge paradigms, which are two generic

approaches to sorting.

16.6.1 Sorting by Distribution

Distribution sort [122] is a recursive process in which we use a set of S� 1 partitioning elements to

partition the items into S disjoint buckets. All the items in one bucket precede all the items in the next

bucket. We complete the sort by recursively sorting the individual buckets and concatenating them

together to form a single fully sorted list.

One requirement is that we choose the S� 1 partitioning elements so that the buckets are of roughly

equal size. When that is the case, the bucket sizes decrease from one level of recursion to the next by a

relative factor of Q(S), and thus there are O(logS n) levels of recursion. During each level of recursion,

we scan the data. As the items stream through internal memory, they are partitioned into S buckets in an

online manner. When a buffer of size B fills for one of the buckets, its block is written to the disks in the

next I=O, and another buffer is used to store the next set of incoming items for the bucket. Therefore, the

maximum number of buckets (and partitioning elements) is S¼Q(M=B)¼Q(m), and the resulting

number of levels of recursion is Q(logm n).

It seems difficult to find S¼Q(m) partitioning elements using Q(n=D) I=Os and guarantee that the

bucket sizes are within a constant factor of one another. Efficient deterministic methods exist for

choosing S ¼ ffiffiffiffi
m

p
partitioning elements [15,154,200], which has the effect of doubling the number of

levels of recursion. Probabilistic methods based upon random sampling can be found in Ref. [82].

A deterministic algorithm for the related problem of (exact) selection (i.e., given k, find the kth item in

the file in sorted order) appears in Ref. [182].

To meet the sorting bound (2), the buckets at each level of recursion must be formed using O(n=D)

I=Os, which is easy to do for the single-disk case. In the more general multiple-disk case, each read step

and each write step during the bucket formation must involve on the average Q(D) blocks. The file of

items being partitioned was itself one of the buckets formed in the previous level of recursion. To read

that file efficiently, its blocks must be spread uniformly among the disks, so that no single disk is a

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 6 4.10.2007 3:33pm Compositor Name: VBalamugundan

16-6 Digital Systems and Applications

bottleneck. The challenge in distribution sort is to write the blocks of the buckets to the disks in an

online manner and achieve a global load balance by the end of the partitioning, so that the bucket can be

read efficiently during the next level of the recursion.

Vitter and Shriver [200] develop two complementary randomized online techniques for the parti-

tioning so that with high probability, each bucket will be well balanced across the D disks. Putting the

methods together, they got the first provably optimal randomized method for sorting with parallel disks.

DeWitt et al. [71] present a randomized distribution sort algorithm in a similar model to handle the

case when sorting can be done in two passes. They use a sampling technique to find the partitioning

elements and route the items in each bucket to a particular processor. The buckets are sorted individu-

ally in the second pass.

An even better way to do distribution sort, and deterministically at that, is the BalanceSort method

developed by Nodine and Vitter [154]. During the partitioning process, the algorithm keeps track of

how evenly each bucket has been distributed so far among the disks. It maintains an invariant that

guarantees good distribution across the disks for each bucket.

The distribution sort methods that we mentioned above for parallel disks perform write operations in

complete stripes, which make it easy to write parity information for use in error correction and recovery.

But since the blocks written in each stripe typically belong to multiple buckets, the buckets themselves

will not be striped on the disks, and we must use the disks independently during read operations. In the

write phase, each bucket must therefore keep track of the last block written to each disk so that the

blocks for the bucket can be linked together.

An orthogonal approach is to stripe the contents of each bucket across the disks so that read

operations can be done in a striped manner. As a result, the write operations must use disks independ-

ently, since during each write, multiple buckets will be writing to multiple stripes. Error correction and

recovery can still be handled efficiently by devoting to each bucket one block-sized buffer in internal

memory. The buffer is continuously updated to contain the exclusive-or (parity) of the blocks written to

the current stripe, and after D� 1 blocks have been written, the parity information in the buffer can be

written to the final (Dth) block in the stripe.

Under this new scenario, the basic loop of the distribution sort algorithm is, as before, to read

one memory load at a time and partition the items into S buckets; however, unlike before, the blocks for

each individual bucket will reside on the disks in contiguous stripes. Each block therefore has a

predefined place where it must be written. If we choose the normal round-robin ordering for the stripes

(namely, . . . , 1, 2, 3, . . . , D, 1, 2, 3, . . . , D, . . .), the blocks of different buckets may ‘‘collide,’’ meaning

that they need to be written to the same disk, and subsequent blocks in those same buckets will also tend

to collide. Vitter and Hutchinson [198] solve this problem by the technique of randomized cycling. For

each of the S buckets, they determine the ordering of the disks in the stripe for that bucket via a random

permutation of {1, 2, . . . , D}. The S random permutations are chosen independently. If two blocks (from

different buckets) happen to collide during a write to the same disk, one block is written to the disk and

the other is kept on a write queue. With high probability, subsequent blocks in those two buckets will be

written to different disks and thus will not collide. As long as there is a small pool of available buffer

space to temporarily cache the blocks in the write queues, Vitter and Hutchinson [198] show that with

high probability, the writing proceeds optimally.

The randomized cycling method or the related merge sort methods discussed at the end of Section

16.6.2 will be the methods of choice for sorting with parallel disks. Distribution sort algorithms may

have an advantage over the merge approaches in that they typically make better use of lower levels of

cache in the memory hierarchy of real systems, based on analysis of distribution sort and merge sort

algorithms on models of hierarchical memory, such as the RUMH model of Vitter and Nodine [199].

16.6.2 Sorting by Merging

The merge paradigm is somewhat orthogonal to the distribution paradigm of the previous section.

A typical merge sort algorithm works as follows [122]: In the ‘‘run formation’’ phase, the n blocks of data

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 7 4.10.2007 3:33pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-7

are scanned, one memory load at a time; each memory load is sorted into a single ‘‘run,’’ which is then

output onto a series of stripes on the disks. At the end of the run formation phase, there are N=M¼n=m

(sorted) runs, each striped across the disks. (In actual implementations, we can use the ‘‘replacement-

selection’’ technique to get runs of 2M data items, on the average, when M � B [122].) After the initial

runs are formed, the merging phase begins. In each pass of the merging phase, we merge together groups

of R runs. For each merge, we scan the R runs and merge the items in an online manner as they stream

through internal memory. Double buffering is used to overlap I=O and computation. At most, R¼Q(m)

runs can be merged at a time, and the resulting number of passes is O(logm n).

To achieve the optimal sorting bound (Equation 16.3), each merging pass must be performed in

O(n=D) I=Os, which is easy to do for the single-disk case. In the more general multiple-disk case, each

parallel read operation during the merging must on an average bring in the next Q(D) blocks needed for

the merging. The challenge is to ensure that those blocks reside on different disks so that they can be read

in a single I=O (or a small constant number of I=Os). The difficulty lies in the fact that the runs being

merged were themselves formed during the previous merge pass. Their blocks were written to the disks

in the previous pass without knowledge of how they would interact with other runs in later merges.

For the binary merging case, R¼ 2 can be devised a perfect solution, in which the next D blocks

needed for the merge are guaranteed to be on distinct disks, based on the Gilbreath principle [91,122].

The first run is striped into ascending order by disk number, and the other run is striped into descending

order. Regardless of how the items in the two runs interleave during the merge, it is always the case that

we can access the next D blocks needed for the output via a single I=O operation, and thus the amount

of internal memory buffer space needed for binary merging is minimized. Unfortunately, there is no

analog to the Gilbreath principle for R> 2, and as we have seen above, we need the value of R to be large

in order to get an optimal sorting algorithm.

TheGreed Sortmethod ofNodine andVitter [155] was the first optimal deterministic EMalgorithm for

sorting with multiple disks. Each merge is done approximately so that items go relatively closely to their

final destinations. A final application of Columnsort [131], using O(n) extra I=Os, completes the merge.

Aggarwal and Plaxton [14] developed an optimal deterministic merge sort based on the Sharesort

hypercube parallel sorting algorithm [66]. To guarantee even distribution during the merging, it

employs two high-level merging schemes in which the scheduling is almost oblivious. Similar to

Greed Sort, the Sharesort algorithm is theoretically optimal (i.e., within a constant factor of optimal),

but the constant factor is larger than the distribution sort methods.

One of the most practical methods for sorting is based on the simple randomized merge sort (SRM)

algorithm of Barve et al. [33,35], referred to as randomized striping by Knuth [122]. Each run is striped

across the disks, but with a random starting point (the only place in the algorithm where randomness is

utilized). During the merging process, the next block needed from each disk is read into memory, and if

there is not enough room, the least needed blocks are ‘‘flushed’’ (without any I=Os required) to free up

space. Barve et al. [33] derive an asymptotic upper bound on the expected I=O performance, with no

assumptions on the input distribution. A more precise analysis, which is related to the so-called cyclic

occupancy problem, is an interesting open problem. The expected performance of SRM is not optimal

for some parameter values, but it significantly outperforms the use of disk striping for reasonable values

of the parameters, as shown in Table 16.2. Experimental confirmation of the speedup was obtained on a

500 MHz CPU with six fast disk drives, as reported by Barve and Vitter [35].

Further improvements can be obtained in merge sort by a more careful prefetching schedule for the

runs. Barve et al. [34], Kallahalla and Varman [112,113], Shah et al. [297], and Hon et al. [285] have

developed competitive and optimal methods for prefetching blocks in parallel I=O systems. Hutchinson

et al. [110] have demonstrated a powerful duality between parallel writing and parallel prefetching, which

gives an easy way to compute optimal prefetching and caching schedules for multiple disks. More signi-

ficantly, they show that the same duality exists between distribution andmerging, which they exploit to get

a provably optimal and very practical parallel disk merge sort. Rather than using random starting points

and round-robin stripes as in SRM, Hutchinson et al. [110] order the stripes for each run independently,

based upon the randomized cycling strategy discussed in Section 16.6.1 for distribution sort.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 8 4.10.2007 3:33pm Compositor Name: VBalamugundan

16-8 Digital Systems and Applications

16.6.3 A General Simulation

Sanders et al. [174] and Sanders [173] give an elegant randomized technique to simulate the Aggarwal–

Vitter model of Section 16.3, in which D simultaneous block transfers are allowed regardless of where the

blocks are located on the disks. On the average, the simulation realizes each I=O in the Aggarwal–Vitter

model by only a constant number of I=Os in PDM. One property of the technique is that the read and

write steps use the disks independently. Armen [28] had earlier shown that deterministic simulations

resulted in an increase in the number of I=Os by a multiplicative factor of log(N=D)=loglog(N=D).

16.6.4 Handling Duplicates: Bundle Sorting

Arge et al. [22] describe a single-disk merge sort algorithm for the problem of duplicate removal, in

which a total of K distinct items are among the N items. When duplicates get grouped together during a

merge, they are replaced by a single item and a count of the occurrences. The algorithm runs in O(nmax

{1, logm(K=B)}) I=Os, which is optimal in the comparison model. The algorithm can be used to sort the

file, assuming that a group of equal items can be represented by a single item and a count.

A harder instance of sorting called bundle sorting arises when K distinct key values are among the

N items, but all the items have different secondary information. Abello et al. [2] and Matias et al. [143]

develop optimal distribution sort algorithms for bundle sorting using

BundleSort(N ,K) ¼ O(n maxf1, logm minfK , ngg)

I=Os, and Matias et al. [143] prove the matching lower bound. Matias et al. [143] also show how to do

bundle sorting (and sorting in general) in place (i.e., without extra disk space). In distribution sort, for

example, the blocks for the subfiles can be allocated from the blocks freed up from the file being

partitioned; the disadvantage is that the blocks in the individual subfiles are no longer consecutive on the

disk. The algorithms can be adapted to run on D disks with a speedup of O(D), using the techniques

described in Sections 16.6.1 and 16.6.2.

16.6.5 Permuting and Transposition

Permuting is the special case of sorting in which the key values of the N data items form a permutation

of {1, 2, . . . , N}.

THEOREM 16.2 [15] The average-case and worst-case number of I=Os required for permuting N data items

using D disks is

Q min
N

D
, Sort(N)

� 	
 �
(16:4)

The I=O bound (Equation 16.4) for permuting can be realized by one of the sorting algorithms from

Section 16.6 except in the extreme case of B log m¼ o(log n), where it is faster to move the data items

TABLE 16.2 Ratio of the Number of I=Os Used by Simple

Randomized Merge Sort (SRM) to the Number of I=Os

Used by Merge Sort with Disk Striping, during a Merge

of kD Runs, Where kD � M=2B

D¼ 5 D¼ 10 D¼ 50

k¼ 5 0.56 0.47 0.37

k¼ 10 0.61 0.52 0.40

k¼ 50 0.71 0.63 0.51

Note: The figures were obtained by simulation.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 9 4.10.2007 3:33pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-9

one by one in a nonblocked way. The one-by-one method is trivial if D¼ 1, but with multiple disks there

may be bottlenecks on individual disks; one solution for doing the permuting in O(N=D)I=Os is to

apply the randomized balancing strategies given in Ref. [200].

Matrix transposition is the special case of permuting in which the permutation can be represented as a

transposition of a matrix from row-major order into column-major order.

THEOREM 16.3 [15] With D disks, the number of I=Os required to transpose a p3 q matrix from row-major

order to column-major order is

Q
n

D
logm min {M , p, q, n}

� �
(16:5)

where

N¼ pq

n ¼N=B

When B is relatively large (for instance, 1=2 M) and N is O(M2), matrix transposition can be as hard as

general sorting; but for smaller B, the special structure of the transposition permutation makes

transposition easier. In particular, the matrix can be broken up into square submatrices of B2 elements

such that each submatrix contains B blocks of the matrix in row-major order and also B blocks of the

matrix in column-major order. Thus, if B2<M, the transpositions can be done in a simple one-pass

operation by transposing the submatrices one-at-a-time in internal memory.

Matrix transposition is a special case of a more general class of permutations called bit-permute=

complement (BPC) permutations, which in turn is a subset of the class of bit-matrix-multiply=complement

(BMMC) permutations. BMMCpermutations are defined by a logN3 logN nonsingular 0–1matrixA and

a (log N)-length 0–1 vector c. An item with binary address x is mapped by the permutation to the binary

address given by Ax H c, where H denotes bitwise XOR. BPC permutations are the special case of BMMC

permutations inwhichA is a permutation matrix, that is, each row and each column of A contain a single 1.

BPC permutations include matrix transposition, bit-reversal permutations (which arise in the FFT), vector-

reversal permutations, hypercube permutations, and matrix reblocking. Cormen et al. [61] characterize the

optimal number of I=Os needed to perform any given BMMC permutation solely as a function of the

associated matrix A, and they give an optimal algorithm for implementing it.

THEOREM 16.4 [61] With D disks, the number of I=Os required to perform the BMMC permutation defined

by matrix A and vector c is

Q
n

D
1þ rank(g)

logm

 �
 �
(16:6)

where g is the lower-left log n3 log B submatrix of A.

An interesting theoretical question is to determine the I=O cost for each individual permutation, as a

function of some simple characterization of the permutation, like number of inversions.

16.6.6 Fast Fourier Transform and Permutation Networks

Computing the FFT in external memory consists of a series of I=Os that permit each computation

implied by the FFT directed graph (or butterfly) to be done while its arguments are in internal memory.

A permutation network computation consists of an oblivious (fixed) pattern of I=Os such that any of the

N! possible permutations can be realized; data items can only be reordered when they are in internal

memory. A permutation network can be realized by a series of three FFTs [211].

THEOREM 16.5 With D disks, the number of I=Os required for computing the N-input FFT digraph or an

N-input permutation network is Sort(N).

Cormen and Nicol [60] give some practical implementations for one-dimensional (1-D) FFTs based

on the optimal PDM algorithm given in Ref. [200]. The algorithms for FFT are faster and simpler than

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 10 4.10.2007 3:33pm Compositor Name: VBalamugundan

16-10 Digital Systems and Applications

for sorting because the computation is nonadaptive in nature, and thus the communication pattern is

fixed in advance.

16.6.7 Lower Bounds on I=O

Themost trivial batched problem is that of scanning (also known as streaming or touching) a file ofN data

items, which can be done in a linear number O(N=DB)¼O(n=D) of I=Os. Permuting is one of several

simple problems that can be done in linear CPU time in the (internal memory) RAMmodel, but require a

nonlinear number of I=Os in PDM because of the locality constraints imposed by the block parameter B.

The proof of the permutation lower bound (Equation 16.4) of Theorem 16.2 is due to Aggarwal and

Vitter [15]. A stronger lower bound is obtained from a more refined argument that counts input

operations separately from output operations [110]. For the typical case in which B log m¼v(log N),

the I=O lower bound, up to lower order terms, is 2n logmn. For the pathological, in which B log m¼
o(log N), the I=O lower bound, up to lower order terms, is N=D. Permuting is a special case of sorting,

and hence, the permuting lower bound applies also to sorting. In the unlikely case that B logm¼ o(log n),

the permuting bound is onlyV(N=D), and the comparisonmodelmust be used to get the full lower bound

(Equation 16.3) of Theorem 16.1 [15]. The reader is referred to Ref. [197] for further discussion and

references on lower bounds for sorting and related problems.

16.7 Matrix and Grid Computations

Dense matrices are generally represented in memory in row-major or column-major order. Matrix

transposition, which is the special case of sorting that involves conversion of a matrix from one

representation to the other, was discussed in Section 16.6.5. For certain operations such as matrix

addition, both representations work well; however, for standard matrix multiplication (using only

semiring operations) and LU decomposition, a better representation is to block the matrix into squareffiffiffi
B

p � ffiffiffi
B

p
submatrices, which gives the upper bound of the following theorem:

THEOREM 16.6 [107,175,200,210] The number of I=Os required for standard matrix multiplication of two

K 3 K matrices or to compute the LU factorization of a K 3 K matrix is Q(K 3=minfK ,
ffiffiffiffiffi
M

p gDB).
Hong and Kung [107] and Nodine et al. [153] give optimal EM algorithms for iterative grid

computations, and Leiserson et al. [132] reduce the number of I=Os of naive multigrid implementations

by a Q(M1=5) factor. Gupta et al. [101] show how to derive efficient EM algorithms automatically for

computations expressed in tensor form.

If a K3K matrix A is sparse, that is, if the number Nz of nonzero elements in A is much smaller than

K2, then it may be more efficient to store only the nonzero elements. Each nonzero element Ai,j is

represented by the triple (i, j, Ai,j). Unlike the dense case, in which transposition can be easier than

sorting (e.g., see Theorem 16.3 when B2 � M), transposition of sparse matrices is as hard as sorting.

THEOREM 16.7 For a matrix stored in sparse format and containing Nz nonzero elements, the number of I=Os

required to convert the matrix from row-major order to column-major order, and vice-versa, isQ(Sort(Nz)).

The lower bound follows by reduction from sorting. If the ith item in the input of the sorting instance

has key value x 6¼ 0, there is a nonzero element in matrix position (i, x).

For further discussion of numerical EM algorithms, the reader is referred to the surveys by Toledo

[188] and Kowarschik and Weiß [309]. Some issues regarding programming environments are covered

in Ref. [58] and in Section 16.14.

16.8 Batched Problems in Computational Geometry

Problems involving massive amounts of geometric data are ubiquitous in spatial databases [129,170,

171], geographic information systems (GIS) [129,170,192], constraint logic programming [117,118],

object-oriented databases [213], statistics, virtual reality systems, and computer graphics [89]. NASA’s

Earth Observing System project, the core part of the Earth Science Enterprise (formerly Mission to

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 11 4.10.2007 3:33pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-11

Planet Earth), produces petabytes (1015 bytes) of raster data per year [75]. The Microsoft TerraServer

[186] and Google Earth [304] online databases of satellite images are multiple terabytes in size. Wal-

Mart’s sales data warehouse contains over a half petabyte of data. A major challenge is to develop

mechanisms for processing the data, or else much of the data will be useless.*

For systems of this size to be efficient, fast EM algorithms and data structures are needed for basic

problems in computational geometry. Luckily, many problems on geometric objects can be reduced to a

small core of problems, such as computing intersections, convex hulls, or nearest neighbors. Useful

paradigms have been developed for solving these problems in external memory.

THEOREM 16.8 The following batched problems involving N¼ nB input items, Q¼ qB queries, and Z¼ zB

output items can be solved using

O((nþ q) logm nþ z) (16:7)

I=Os with a single disk:

1. Computing the pairwise intersections of N segments in the plane and their trapezoidal decom-

position

2. Finding all intersections between N nonintersecting red line segments and N nonintersecting blue

line segments in the plane

3. Answering Q orthogonal 2-D range queries on N points in the plane (i.e., finding all the points

within the Q query rectangles)

4. Constructing the 2-D and 3-D convex hull of N points

5. Voronoi diagram and triangulation of N points in the plane

6. Performing Q point-location queries in a planar subdivision of size N

7. Finding all nearest neighbors for a set of N points in the plane

8. Finding the pairwise intersections of N orthogonal rectangles in the plane

9. Computing the measure of the union of N orthogonal rectangles in the plane

10. Computing the visibility of N segments in the plane from a point

11. Performing Q ray-shooting queries in 2-D constructive solid geometry (CSG) models of size N:

The parameters Q and Z are set to 0 if they are not relevant for the particular problem

Goodrich et al. [96], Zhu [215], Arge et al. [23,26], and Crauser et al. [63,64] develop EM algorithms

for those problems using the following EM paradigms for batched problems:

Distribution sweeping: A generalization of the distribution paradigm of Section 16.6 for ‘‘externalizing’’

plane sweep algorithms.

Persistent B-trees: An offline method for constructing an optimal-space persistent version of the B-tree

data structure (see Sections 16.11 and 16.11.1), yielding a factor of B improvement over the generic

persistence techniques of Driscoll et al. [73].

Batched filtering: A general method for performing simultaneous EM searches in data structures that can

be modeled as planar layered directed acyclic graphs; it is useful for 3-D convex hulls and batched point

location. Multisearch on parallel computers is considered in Ref. [72].

External fractional cascading: An EM analog to fractional cascading on a segment tree, in which the

degree of the segment tree is O(ma) for some constant 0 < a � 1. Batched queries can be performed

efficiently using batched filtering; online queries can be supported efficiently by adapting the parallel

algorithms of work of Tamassia and Vitter [185] to the I=O setting.

*For brevity, in the remainder of this chapter, only with the single-disk case D¼ 1 is presented. The single-disk

I=O bounds for the batched problems can often be cut by a factor of order D for the case D � 1 by using the load

balancing techniques of Section 16.6. In practice, disk striping (cf., Section 16.5) may be sufficient. For online

problems, disk striping will convert optimal bounds for the case D¼ 1 into optimal bounds for D � 1.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 12 4.10.2007 3:33pm Compositor Name: VBalamugundan

16-12 Digital Systems and Applications

External marriage-before-conquest: An EM analog to the technique of Kirkpatrick and Seidel [121] for

performing output-sensitive convex hull constructions.

Batched incremental construction: A localized version of the randomized incremental construction

paradigm of Clarkson and Shor [55], in which the updates to a simple dynamic data structure are

done in a random order, with the goal of fast overall performance on the average. The data structure

itself may have bad worst-case performance., but the randomization of the update order makes worst-

case. behavior unlikely.. The key for the EM version so as to gain. the factor of B I=O speedup is to batch

together the. incremental modifications.

Other batched geometric problems studied in the PDM model include range counting queries [287],

constrained Delauney triangulation [222], and a host of problems on terrains and grid-based GIS

models [7,217,223,230,231,306]. Breimann and Vahrenhold [254] survey several EM problems in

computational geometry.

16.9 Batched Problems on Graphs

We adopt the convention that the edges of the input graph, each of the form (u, v) for some vertices u

and v, are given in arbitrary order in list form. We denote the number of vertices by V and the number of

edges by E. We also adopt the lower case notation v¼V=B and e¼ E=B to denote the number of blocks

of vertices and edges. We can convert the input graph to adjacency list format via a sort operation in Sort

(E) I=Os. Table 16.3 gives the best known I=O bounds (with appropriate corrections made for errors in

the literature) for several graph problems. For simplicity of notation, we assume that E �V. The best

known I=O lower bound for these problems is V((E=V)Sort(V))¼V(e logmv).

The first work on EM graph algorithms was by Ullman and Yannakakis [190] for the problem of

transitive closure. Chiang et al. [53] consider a variety of graph problems, several of which have upper

TABLE 16.3 Best Known I=O Bounds for Batched Graph Problems for the Single-Disk Case D ¼ 1

Graph Problem I=O Bound, D ¼ 1

List ranking, Euler tour of a tree,

centroid decomposition, expression

tree evaluation

Q(Sort(V)) [53]

Connected components, Biconnected

components, minimum spanning

forest (MSF), bottleneck MSF, ear

decomposition

O min Sort(V 2),fð max 1, log V
M

� �
E
V
Sort(V), max 1, log log V

e

� �
Sort(E),

(log logB) E
V
Sort(V)gÞ [2,19,53,76,126,149] (deterministic)

Q E
V
Sort(V)

� �
[53,76] (randomized)

Maximal matching O(Sort*(E)) [313] (deterministic)

O E
V
Sort(V)

� �
[53] (randomized)

Undirected breadth-first search
ffiffiffiffiffiffi
Ve

p þ Sort(E)þ SF(V ,E) [290]

Undirected single-source shortest paths
O min V þ e logV ,

ffi
Ve log 1þ W

w

� �q
þMSF(V ,E),

ffiffiffiffiffiffi
Ve

p
logV þMSF(V ,E)

n o� �
[126,291,292]

Directed and undirected depth-first

search, topological sorting, directed

breadth-first search, directed single-

source shortest paths

O min ve
m
þ V þ SortðEÞ,(V þ e) logV

� �� �
[48,53,126]

Transitive closure O Vv
ffiffiffi
e
m

p� �
[53]

Undirected all-pairs shortest paths O(V
ffiffiffiffiffiffi
Ve

p þ Ve log e) [267]

Diameter and undirected unweighted

all-pairs shortest paths

O(V Sort(E)) [236,267]

Note: The number of vertices is denoted by V¼ v B and the number of edges by E¼ e B. For simplicity in notation, we

assume that E � V. The term Sort (N) is the I=O bound for sorting defined in Section 16.4. The terms SF(V,E) andMSF(V,E)

represent the I=O bounds for finding a spanning forest and minimum spanning forest, respectively. We use w and W to

denote the minimum and maximum weight in a weighted graph.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 13 4.10.2007 3:33pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-13

and lower I=O bounds related to sorting and permuting. Abello et al. [2] formalize a functional

approach to EM graph problems, in which computation proceeds in a series of scan operations over

the data; the scanning avoids side effects and thus permits checkpointing to increase reliability. Kumar

and Schwabe [126], followed by Buchsbaum et al. [48], develop graph algorithms based upon amortized

data structures for binary heaps and tournament trees. Munagala and Ranade [149] give improved graph

algorithms for connectivity and undirected breadth-first search (BFS). Their approach is extended by

Arge et al. [19] to compute the minimum spanning forest (MSF) and by Mehlhorn and Meyer [290] for

undirected BFS. Arge [17] gives efficient algorithms for constructing ordered binary decision diagrams.

Techniques for storing graphs on disks for efficient traversal and shortest path queries are discussed in

Refs. [7,95,109,152]. Computing wavelet decompositions and histograms [203,204,206] is an EM graph

problem related to transposition that arises in online analytical processing (OLAP). Wang et al. [205]

give an I=O-efficient algorithm for constructing classification trees for data mining. Further surveys of

EM graph algorithms appear in Refs. [308,310].

A sparsification technique [76] can often be applied to convert I=O bounds of the form O(Sort(E)) to

the improved form O((E=V) Sort(V)). For example, the actual I=O bound for MSF derived by Arge

et al. [19] is O(max {1, loglog(V=e)} Sort(E)). For the MSF problem, we can partition the edges of the

graph into E=V sparse subgraphs, each with V edges on the V vertices, and then apply the algorithm

given in Ref. [19] to each subproblem to create E=V spanning forests in a total of O(max {1, loglog

(V=v)} (E=V) Sort(V))¼O((loglog B) (E=V) Sort(V)) I=Os. We can then merge the E=V spanning

forests, two at a time, in a balanced binary merging procedure by repeatedly applying the algorithm

given in Ref. [19]. After the first level of binary merging, the spanning forests collectively have at most

E=2 edges; after two levels, they have at most E=4 edges, and so on in a geometrically decreasing manner.

The total I=O cost for the final spanning forest is thus O((loglog B) (E=V) Sort(V)). The reason why

sparsification works is that the spanning forest output by each binary merge is only O(V) in size, yet it

preserves the necessary information needed for the next merge step. That is, the MSF of the merge of two

graphs G and G 0 is the MSF of the merge of the MSFs of G and G 0.
The same sparsification approach can be applied to connectivity, biconnectivity, and maximal

matching. For example, to apply sparsification to finding biconnected components, we modify the

merging process by first replacing each biconnected component by a cycle that contains the vertices in

the biconnected component. The resulting graph has O(V) size and contains the necessary information

for computing the biconnected components of the merged graph.

In the case of semi-external graph problems [2], in which the vertices fit in internal memory but not

the edges (i.e., V � M< E), several of the problems in Table 16.3 can be solved optimally in external

memory. For example, finding connected components, biconnected components, and MSFs can be done

in O(e) I=Os when V � M.

The I=O complexities of several problems in the general case remain open, including connected

components, biconnected components, and MSFs in the deterministic case, as well as breadth-first

search, topological sorting, shortest paths, depth-first search, and transitive closure. It may be that the

I=O complexity for several of these latter problems is Q((E=V) Sort(V))þV). For special cases, such as

trees, planar graphs, outerplanar graphs, and graphs of bounded tree width, several of these problems

can be solved substantially faster in O(Sort(E)) I=Os [53,139,140,245,289,312]. Other algorithms for

planar and near-planar graphs appear in Refs. [146,238,241,242,246].

Chiang et al. [53] exploit the key idea that efficient EM algorithms can often be developed by a

sequential simulation of a parallel algorithm for the same problem. The intuition is that each step of a

parallel algorithm specifies several operations and the data they act upon. If the data arguments for each

operation are brought together, which can be done by two applications of sorting, the operations can be

performed by a single linear scan through the data. After each simulation step, sorting is again

performed in order to reblock the data into the linear order required for the next simulation step. In

list ranking, which is used as a subroutine in the solution of several other graph problems, the number of

working processors in the parallel algorithm decreases geometrically with time, so the number of I=Os

for the entire simulation is proportional to the number of I=Os used in the first phase of the simulation,

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 14 4.10.2007 3:33pm Compositor Name: VBalamugundan

16-14 Digital Systems and Applications

which is Sort(N)¼Q(n logmn). The optimality of the EM algorithm given in Ref. [53] for list ranking

assumes that
ffiffiffiffi
m

p
log m ¼ V(log n), which is usually true in practice. That assumption can be removed

by use of the buffer tree data structure [16] (see Sections 16.11 and 16.11.1). A practical, randomized

implementation of list ranking appears in Ref. [181]. Dehne et al. [68,69] and Sibeyn and Kaufmann

[183] use a related approach and get efficient I=O bounds by simulating coarse-grained parallel

algorithms in the BSP parallel model.

16.10 External Hashing for Online Dictionary Search

This section focuses on online data structures for supporting the dictionary operations of insert, delete,

and lookup. Given a value x, the lookup operation returns the items, if any, in the structure with key

value x. The two main types of EM dictionaries are hashing, which we discuss in this section, and tree-

based approaches, which is deferred until Section 16.11. The advantage of hashing is that the expected

number of probes per operation is a constant, regardless of the number N of items. The common

element of all EM hashing algorithms is a predefined hash function:

hash: {all possible keys} ! {0, 1, 2, . . . ,K � 1}

that assigns the N items to K address locations in a uniform manner. Hashing algorithms differ from one

another in how they resolve the collision that results when there is no room to store an item at its

assigned location.

The goals in EM hashing are to achieve an average of O(Output(Z))¼O(zþ 1) I=Os per lookup,

where Z¼ zB is the number of items output, O(1) I=Os per insert and delete, and linear disk space. Most

traditional hashing methods use a statically allocated table and are thus designed to handle only a fixed

range of N. The challenge is to develop dynamic EM structures that can adapt smoothly to widely

varying values of N.

EM hashing methods fall into one of two categories: directory methods and directoryless methods.

Fagin et al. [78] proposed a directory scheme called extendible hashing, illustrated in Figure 16.2. The

directory, for a given d � 0, consists of a table (array) of 2d pointers. Each item is assigned to the table

location corresponding to the d least significant bits of its hash address. The value of d, called the global

depth, is set to the smallest value for which each table location has at most B items assigned to it. Each

table location contains a pointer to a block where its items are stored. Thus, a lookup takes two I=Os:

one to access the directory and one to access the block storing the item. If the directory fits in internal

memory, only one I=O is needed. Several table locations may have many fewer than B assigned items,

and for purposes of minimizing storage utilization, they can share the same disk block for storing their

items by using a local depth smaller than the global depth. When new items are inserted and deleted, the

blocks can overflow or underflow, and the local depth and global depth are changed accordingly.

The expected number of disk blocks required to store the data items is asymptotically n=ln 2� n=0.69;

that is, the blocks tend to be about 69% full [145]. At least V(n=B) blocks are needed to store the

directory. Flajolet [85] showed on the average that the directory usesQ(N1=Bn=B)¼Q(N1þ1=BB2) blocks,

which can be superlinear in N asymptotically; however, for practical values of N and B, the N1=B term is a

small constant, typically less than 2, and directory size is within a constant factor of optimal.

The resulting directory is equivalent to the leaves of a perfectly balanced tree [122], in which the

search path for each item is determined by its hash address, except that hashing allows the leaves of the

trie to be accessed directly in a single I=O. Any item can thus be retrieved in a total of two I=Os. If the

directory fits in internal memory, only one I=O is needed.

A disadvantage of directory schemes is that two I=Os rather than one I=O are required when the

directory is stored in external memory. Litwin [134] and Larson [128] developed a directoryless method

called linear hashing that expands the number of data blocks in a controlled regular fashion. In contrast

to directory schemes, the blocks in directoryless methods are chosen for splitting in a predefined order.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 15 4.10.2007 3:34pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-15

Thus, the block that splits is usually not the block that has overflowed, so some of the blocks may require

auxiliary overflow lists to store items assigned to them. On the other hand, directoryless methods have

the advantage that there is no need for access to a directory structure, and thus searches often require

only one I=O.

16.11 Multiway Tree Data Structures

An advantage of search trees over hashing methods is that the data items in a tree are sorted, and thus

the tree can be used readily for 1-D range search. The items in a range [x, y] can be found by searching

for x in the tree and then performing an inorder traversal in the tree from x to y. In this section, we

explore some important search-tree data structures in external memory.

16.11.1 B-Trees and Variants

Tree-based data structures arise naturally in the online setting, in which the data can be updated and

queries must be processed immediately. Binary trees have a host of applications in the (internal

memory) RAM model. To exploit block transfer, trees in external memory generally use a block for

each node, which can store Q(B) pointers and data values.

The well-known balanced multiway B-tree due to Bayer and McCreight [38,57,122] is the most widely

used nontrivial EM data structure. The degree of each node in the B-tree (with the exception of the

root) is required to be Q(B), which guarantees that the height of a B-tree storing N items is roughly

logB N. B-trees support dynamic dictionary operations and 1-D range search optimally in linear space,

Global depth d = 3

000

001
 18

010

011

100

101

110

111

2

1

3

3

Local depth

(a)

 4 44 32

 23 9

 10

Global depth d = 3

1

3

3

3

3

 18

000

001

010

011

100

101

110

111

(b)

 23 9

 32

 4 44 76

 10

Global depth d = 4

1000

4

0000

0001

0010

0011

0100

0101

0110

0111

1001

1010

1011

1100

1101

1110

1111

(c)

3

3

1

3

 44 76

 32

 18

 23 9

 10

 4 20
4

FIGURE 16.2 Extendible hashing with block size B ¼ 3. The keys are indicated in italics. For convenience of

exposition, the hash address of a key consists of its binary representation. For example, the hash address of key 4 is

‘‘. . . 000100’’ and the hash address of key 44 is ‘‘. . . 0101100.’’ (a) The hash table after insertion of the keys 4, 23, 18,

10, 44, 32, 9. (b) Insertion of the key 76 into table location 100 causes the block with local depth 2 split into two

blocks with local depth 3. (c) Insertion of the key 20 into table location 100 causes a block with local depth 3 to split

into two blocks with local depth 4. The directory doubles in size and the global depth d is incremented from 3 to 4.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 16 4.10.2007 3:34pm Compositor Name: VBalamugundan

16-16 Digital Systems and Applications

O(logB N) I=Os per insert or delete, and O(logB Nþ z) I=Os per query, where Z¼ zB is the number of

items output. When a node overflows during an insertion, it splits into two half-full nodes, and if the

splitting causes the parent node to overflow, the parent node splits, and so on. Splittings can thus

propagate up to the root, which is how the tree grows in height. Deletions are handled in a symmetric

way by merging nodes. Franceschini et al. [279] show how to achieve the same I=O bounds without

space for pointers.

In the Bþ-tree variant, pictured in Figure 16.3, all the items are stored in the leaves, and the leaves are

linked together in symmetric order to facilitate range queries and sequential access. The internal nodes

store only key values and pointers and thus can have a higher branching factor. In the most popular

variant of Bþ-trees, called B*-trees, splitting can usually be postponed when a node overflows, by

sharing the node’s data with one of its adjacent siblings. The node needs to be split only if the sibling is

also full; when that happens, the node splits into two, and its data and those of its full sibling are evenly

redistributed, making each of the three nodes about two-thirds full. This local optimization reduces how

often new nodes must be created and thus increases the storage utilization. Because fewer nodes are in

the tree, search I=O costs are lower. When no sharing is done (as in Bþ-trees), Yao [212] shows that

nodes are roughly ln 2� 69% full on the average, assuming random insertions. With sharing (as in

B*-trees), the average storage utilization increases to about 2 ln(3=2)� 81% [31,127]. Storage utilization

can be increased further by sharing among several siblings, at the cost of more complicated insertions

and deletions. Some helpful space-saving techniques borrowed from hashing are partial expansions [32]

and use of overflow nodes [184].

A cross between B-trees and hashing, where each subtree rooted at a certain level of the B-tree is

instead organized as an external hash table, was developed by Litwin and Lomet [135] and further

studied in Ref. [29,136]. O’Neil [156] proposed a B-tree variant called the SB-tree that clusters together

on the disk symmetrically ordered nodes from the same level so as to optimize range queries and

sequential access. Rao and Ross [163,164] use similar ideas to exploit locality and optimize search-tree

performance in internal memory. Reducing the number of pointers allows a higher branching factor and

thus faster search.

Partially persistent versions of B-trees have been developed by Becker et al. [40], Varman and Verma

[193], and Arge et al. [234]. By persistent data structure, we mean that searches can be done with respect

to any timestamp y [73,74]. In a partially persistent data structure, only the most recent version of the

data structure can be updated. In a fully persistent data structure, any update done with timestamp y

affects all future queries for any time after y. An interesting open problem is whether B-trees can be made

fully persistent. Salzberg and Tsotras [169] survey work done on persistent access methods and other

techniques for time-evolving data. Lehman and Yao [130], Mohan [147], Lomet and Salzberg [138], and

Bender et al. [253] explore mechanisms to add concurrency and recovery to B-trees.

Arge and Vitter [27] introduce a powerful variant of B-trees called weight-balanced B-trees, with the

property that the weight of any subtree at level h (i.e., the number of nodes in the subtree rooted at a

node of height h) is Q(ah), for some fixed parameter a of order B. By contrast, the sizes of subtrees at

level h in a regular B-tree can differ by a multiplicative factor that is exponential in h.

Leaves

Level 1

Level 2

FIGURE 16.3 Bþ-tree multiway search tree. Each internal and leaf node corresponds to a disk block. All the items

are stored in the leaves; the darker portion of each leaf block indicates its relative fullness. The internal nodes store

only key values and pointers,Q(B) of them per node. Although not indicated here, the leaf blocks are linked together

sequentially.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 17 4.10.2007 3:34pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-17

It is sometimes useful to augment B-trees with parent pointers. Order queries, such as Does leaf x

precede leaf y in the total order represented by the tree, can be answered using O(logB N) I=Os by

following parent pointers starting at x and y. The update operations insert, delete, cut, and concatenate

can be done in O((1þ (b=B) logm n) logb N) I=Os amortized, for any 2 � b � B=2, which is never worse

than O((logB N)2) by appropriate choice of b.

Agarwal et al. [4] apply level-balanced B-trees in a data structure for point location in monotone

subdivisions, which supports queries and (amortized) updates in O((logB N)
2) I=Os. They also use it to

dynamically maintain planar s,t-graphs using O((1þ (b=B) logm n) logb N) I=Os (amortized) per

update, so that reachability queries can be answered in O (logB N) I=Os (worst-case). (Planar s,t-graphs

are planar directed acyclic graphs with a single source and a single sink.) An interesting open question is

whether level-balanced B-trees can be implemented in O(logB N) I=Os per update. Such an improve-

ment would immediately give an optimal dynamic structure for reachability queries in planar s,t-graphs.

Arge [16] developed the elegant buffer tree data structure to support batched dynamic operations,

such as in sweep line applications, where the queries do not have to be answered right away or in any

particular order. The buffer tree is a balanced multiway tree, but with degree Q(m) rather than degree

Q(B), except possibly for the root. Its key distinguishing feature is that each node has a buffer that can

storeQ(M) items (i.e.,Q(m) blocks of items). Items in a node are pushed down to the children when the

buffer fills. Emptying a full buffer requires Q(m) I=Os, which amortizes the cost of distributing the M

items to the Q(m) children. Each item, thus, incurs an amortized cost of O(m=M)¼O(1=B) I=Os per

level, and the resulting cost for queries and updates is O((1=B) logm n) I=Os amortized.

Buffer trees provide a natural amortized implementation of priority queues for time-forward pro-

cessing applications like discrete event simulation, sweeping, and list ranking [53]. Govindrajan et al.

[98] use time-forward processing to construct a well-separated pair decomposition of N points in d

dimensions in O(Sort(N)) I=Os, and they apply it to the problems of finding the K nearest neighbors for

each point and the K closest pairs. Brodal and Katajainen [47] provide a worst-case optimal priority

queue, in the sense that every sequence of B insert and delete_min operations requires only O(logm n)

I=Os. Practical implementations of priority queues based on these ideas are examined in Refs. [46,172].

Brodal and Fagerberg [258] examine I=O trade-offs between update and search for comparison-based

EM dictionaries. Matching upper bounds for several cases can be achieved with a truncated version of

the buffer tree. Further experiments on buffer trees appear in Ref. [108].

16.12 Spatial Data Structures and Range Search

A fundamental database primitive in spatial databases and GIS is range search, which includes dictionary

lookup as a special case. An orthogonal range query, for a given d-dimensional rectangle, returns all

the points in the interior of the rectangle. Various forms of 2-D orthogonal range search are pictured

in Figure 16.4. Other types of spatial queries include point-location queries, ray-shooting queries,

x

x

y2

y1y1
y1

x2 x1 x2 x1 x2

(b)(a) (c) (d)

FIGURE 16.4 Different types of 2-D orthogonal range queries: (a) diagonal corner two-sided 2-D query equivalent

to a stabbing query (cf., Section 16.12.3), (b) two-sided 2-D query, (c) three-sided 2-D query, and (d) general four-

sided 2-D query.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 18 4.10.2007 3:34pm Compositor Name: VBalamugundan

16-18 Digital Systems and Applications

nearest-neighbor queries, and intersection queries, but for brevity we restrict our attention primarily to

range searching.

Two types of spatial data structures are used: data-driven and space-driven. R-trees and kd-trees are

data-driven since they are based on a partitioning of the data items themselves, whereas space-driven

methods like quad trees and grid files are organized by a partitioning of the embedding space, akin

to order-preserving hash functions. In this section, primarily data-driven data structures are discussed.

The goal is generally to perform queries in O(logB Nþ z) I=Os, use linear storage space (namely, O(n)

disk blocks), and support dynamic updates in O(logB N) I=Os.

16.12.1 Linear-Space Spatial Structures

Grossi and Italiano [100] construct an elegant multidimensional version of the B-tree called the cross

tree. Using linear space, it combines the data-driven partitioning of weight-balanced B-trees at the upper

levels of the tree with the space-driven partitioning of methods like quad trees at the lower levels of the

tree. Cross trees can be used to construct dynamic EM algorithms for MSF and 2-D priority queues (in

which the delete_min operation is replaced by delete_minx and delete_miny). For d> 1, d-dimensional

orthogonal range queries can be done in O(n1�1=dþ z) I=Os, and inserts and deletes take O(logB N)

I=Os. The O-tree of Kanth and Singh [119] provides similar bounds. Cross trees also support the

dynamic operations of cut and concatenate in O(n1�1=d) I=Os. In some restricted models for linear-

space data structures, the 2-D range search query performance of cross trees and O-trees can be

considered to be optimal, although it is much larger than the logarithmic bound of Criterion 1.

One way to get multidimensional EMdata structures is to augment known internal memory structures,

such as quad trees and kd-trees, with block-access capabilities. Examples include kd-B-trees [166], buddy

trees [178], hB-trees [77,137], and Bkd-trees [294]. Grid files [106,125,150] are a flattened data structure

for storing the cells of a 2-D grid in disk blocks. Another technique is to linearize the multidimensional

space by imposing a total ordering on it (a so-called space-filling curve), and then the total order is used to

organize the points into a B-tree [92,115,158]. Linearization can also be used to represent nonpoint data,

inwhich the data items are partitioned into one ormoremultidimensional rectangular regions [1,157]. All

the methods described in this paragraph use linear space, and they work well in certain situations;

however, their worst-case range query performance is no better than that of cross trees, and for some

methods, like grid files, queries can requireQ(n) I=Os, even if there are no points satisfying the query. We

refer the reader to Refs. [10,90,151] for a broad survey of these and other interestingmethods. Space-filling

curves arise again in connection with R-trees, which we describe next.

16.12.2 R-Trees

The R-tree of Guttman [103] and its many variants are a practical multidimensional generalization of

the B-tree for storing a variety of geometric objects, such as points, segments, polygons, and polyhedra,

using linear disk space. Internal nodes have degree Q(B) (except possibly the root), and leaves store

Q(B) items. Each node in the tree has associated with it a bounding box (or bounding polygon) of all the

items in its subtree. A big difference between R-trees and B-trees is that in R-trees the bounding boxes of

sibling nodes are allowed to overlap. If an R-tree is being used for point location, for example, a point

may lie within the bounding box of several children of the current node in the search. In that case, the

search must proceed to all such children.

In the dynamic setting, several popular heuristics are used to determine to insert new items into an

R-tree and how to rebalance it; see Refs. [10,90,98] for a survey. The R*-tree variant of Beckmann et al.

[41] seems to give best overall query performance. New R-tree partitioning methods by de Berg et al.

[67], Agarwal et al. [9], and Arge et al [233] provide some provable bounds on overlap and query

performance.

In the static setting, in which there are no updates, constructing the R*-tree by repeated insertions,

one by one, is extremely slow. A faster alternative to the dynamic R-tree construction algorithms

mentioned above is to bulk-load the R-tree in a bottom–up fashion [1,114,157]. The quality of the

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 19 4.10.2007 3:34pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-19

bottom–up R-tree in terms of query performance is generally not as good as that of an R*-tree, especially

for higher-dimensional data [44,116].

In order to get the best of both worlds—the query performance of R*-trees and the bulk construction

efficiency of Hilbert R-trees—Arge et al. [21] and van den Bercken et al. [191] independently devised fast

bulk loading methods based on the buffer trees that do top–down construction in O(n logm n) I=Os,

which matches the performance of the bottom–up methods within a constant factor. The former

method is especially efficient and supports dynamic batched updates and queries.

16.12.3 Specialized Structures for 2-D Orthogonal Range Search

Diagonal corner two-sided queries (see Figure 16.4a) are equivalent to stabbing queries, which have the

following form: Given a set of 1-D intervals, report all the intervals ‘‘stabbed’’ by the query value x

(i.e., report all intervals that contain x). A diagonal corner query x on a set of 2-D points {(a1, b2),

(a2, b2), . . . } is equivalent to a stabbing query x on the set of closed intervals {[a1, b2], [a2, b2], . . . }. Arge

and Vitter [27,197] introduced a new paradigm we call bootstrapping to support such queries in optimal

I=O bounds and space: The data structure uses O(n) disk blocks, queries use O(logB Nþ z) I=Os, and

updates take O(logB N) I=Os. In another example of bootstrapping, Arge et al. [24] achieve the same

bounds for three-sided orthogonal 2-D range searching (see Figure 16.4c). The data structures can be

applied to yield indexes for a variety of probabilistic queries [265,298]. Range-max and stabbing-max

queries are studied in Refs. [220,221].

The dynamic data structure for three-sided range searching can be generalized using the filtering

technique of Chazelle [50] to handle general four-sided queries with optimal I=O query bound O(logB
Nþ z) and optimal disk space usage O(n(log n)=log (logB Nþ 1)) [24]. The update bound becomes

O((logB N) (log n)=log(logB Nþ 1)), which may not be optimal.

16.12.4 Other Types of Range Search

Govindarajan et al. [281] develop data structures for 2-D range-count and range-sum queries. For other

types of range searching, such as in higher dimensions and for nonorthogonal queries, different filtering

techniques are needed. So far, relatively little work has been done, and many open problems remain.

Vengroff and Vitter [194] develop the first theoretically near-optimal EM data structure for static 3-D

orthogonal range searching. They create a hierarchical partitioning in which all the points that dominate

a query point are densely contained in a set of blocks. Compression techniques are needed to minimize

disk storage. By using (B log n)-approximate boundaries rather than B-approximate boundaries [202],

(3þ k)-sided 3-D range queries, where k of the dimensions (0� k� 3) have finite ranges, can be done in

O(logB Nþ z) I=Os, which is optimal, and the space usage is O(n (log n)kþ1=(log(logB Nþ 1))k). The

result also provides optimal O(log NþZ)-time query performance for three-sided 3-D queries in the

(internal memory) RAM model, but using O(N log N) space.

By the reduction in the date structure given in Ref. [51], a data structure for three-sided 3-D queries

also applies to 2-D homothetic range search, in which the queries correspond to scaled and translated

(but not rotated) transformations of an arbitrary fixed polygon. An interesting special case is ‘‘fat’’

orthogonal 2-D range search, where the query rectangles are required to have bounded aspect ratio. For

example, every rectangle with bounded aspect ratio can be covered by a constant number of overlapping

squares. An interesting open problem is to develop linear-sized optimal data structures for fat orthog-

onal 2-D range search. By the reduction, one possible approach would be to develop optimal linear-sized

data structures for three-sided 3-D range search.

Agarwal et al. [6] consider half-space range searching, in which a query is specified by a hyperplane and

a bit indicating one of its two sides, and the output of the query consists of all the points on that side of the

hyperplane. They give various data structures for half-space range searching in two, three, and higher

dimensions, including one that works for simplex (polygon) queries in two dimensions, but with a higher

query I=O cost. They have subsequently improved the storage bounds for half-space range queries in two

dimensions to obtain an optimal static data structure satisfying criteria 1 and 2 of Section 16.12.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 20 4.10.2007 3:34pm Compositor Name: VBalamugundan

16-20 Digital Systems and Applications

The number of I=Os needed to build the data structures for 3-D orthogonal range search and half-

space range search is rather large (more than V (N)). Still, the structures shed useful light on the

complexity of range searching and may open the way to improved solutions. An open problem is to

design efficient construction and update algorithms and to improve upon the constant factors.

Callahan et al. [49] develop dynamic EM data structures for several online problems in d

dimensions. For any fixed e> 0, they can find an approximately nearest neighbor of a query point

(within a 1þ e factor of optimal) in O(logB N) I=Os; insertions and deletions can also be done in O(logB
N) I=Os. They use a related approach to maintain the closest pair of points; each update costs O(logB N)

I=Os. Govindrajan et al. [97] achieve the same bounds for closest pair by maintaining a well-separated

pair decomposition. For finding nearest neighbors and approximate nearest neighbors, two other

approaches are partition trees [5,6] and locality-sensitive hashing [94]. Planar point location is studied

in Refs. [234,299], and the dual problem of planar point enclosure is studied in Ref. [241]. Numerous

data structures and lower bounds have been developed for range queries and related problems on spatial

data. We refer to Refs. [10,90,151,197,227] for a broad survey.

16.12.5 Dynamic and Kinetic Data Structures

The preceding sections have outlined cases of data structures in which the data items change dynam-

ically. The bootstrapping paradigm discussed in the two previous subsections is a very useful approach

for converting static data structures that are efficient in internal memory into dynamic ones that are

efficient for external memory.

In another approach to dynamic data, Arge and Vahrenhold [25] obtain I=O bounds for dynamic

point location in general planar subdivisions similar to those given in Ref. [4], but without use of level-

balanced trees. Their method uses a weight-balanced base structure at the outer level and a multislab

structure for storing segments similar to that of Arge and Vitter [27]. They use an externalization of

Bentley’s logarithmic method [43,159] to construct a data structure to answer vertical ray-shooting

queries in the multislab structures. Agarwal et al. [8] apply the logarithmic method (in both the binary

form and B-way variant) to get EM versions of kd-trees, BBD trees, and BAR trees.

In some applications, the data items are moving and their spatial coordinates change in a regular

manner. Early work on temporal data generally concentrated on time-series data or multiversion data

[169]. A question of growing interest in this mobile age is how to store and index continuously moving

items, such as mobile telephones, cars, and airplanes (see Refs. [111,168,209]). Two main approaches are

used for storing moving items. The first approach is to use the same sort of data structure as for

nonmoving data, but to update it whenever items move sufficiently so far as to trigger important

combinatorial events that are relevant to the application at hand [37]. A different approach is to store

each item’s location and speed trajectory, so that no updating is needed as long as the item’s trajectory

plan does not change. Such an approach requires fewer updates, but the representation for each item

generally has higher dimension, and the search strategies are therefore less efficient.

Kollios et al. [124] developed a linear-space indexing scheme for moving points along a (1-D) line,

based upon the notion of partition trees. Their structure supports a variety of range search and

approximate nearest neighbor queries. For example, given a range and time, the points in that range

at the indicated time can be retrieved in O(n1=2þ e þ k) I=Os, for arbitrarily small e> 0. Updates require

O((log n)2) I=Os. Agarwal et al. [5] extend the approach to handle range searches in two dimensions,

and they improve the update bound to O((logB n)2) I=Os. They also propose an event-driven data

structure with the same query times as the range search data structure of Arge et al. [24] discussed

earlier, but with the potential need to do many updates. A hybrid data structure combining the two

approaches permits a trade-off between query performance and update frequency.

R-trees offer a practical generic mechanism for storing multidimensional points and are thus a

natural alternative for storing mobile items. One approach is to represent time as a separate dimension

and to cluster trajectories using the R-tree heuristics. However, the orthogonal nature of the R-tree

does not lend itself well to diagonal trajectories. For the case of points moving along linear trajectories,

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 21 4.10.2007 3:34pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-21

Šaltenis et al. [168] build the R-tree upon only the spatial dimensions, but parameterize the bounding box

coordinates to account for the movement of the items stored within. They maintain an outer approxi-

mation of the true bounding box, which they periodically update to refine the approximation. Agarwal

et al. [11] show how to maintain a provably good approximation of the minimum bounding box with

need for only a constant number of refinement events. Agarwal et al. [219] develop persistent data

structures where query time degrades the further the time frame of the query is from current time.

16.13 String and Text Algorithms

The simplest and most commonly used method to index text in large documents or collections of

documents is the inverted file, which is analogous to the index at the back of a book. The words of

interest in the text are sorted alphabetically, and each item in the sorted list has a list of pointers to the

occurrences of that word in the text. In an EM setting, it makes sense to use a hybrid approach, in which

the text is divided into large chunks (consisting of one or more blocks) and an inverted file is used to

specify the chunks containing each word; the search within a chunk can be carried out by using a fast

sequential method, such as the Knuth–Morris–Pratt [123] or Boyer–Moore [45] method. This particular

hybrid method was introduced as the basis of the widely used GLIMPSE search tool [142]. Another way

to index text is to use hashing to get small signatures for portions of text. The reader is referred to Refs.

[30,87] for more background on the above methods.

In a conventional B-tree, Q(B) unit-sized keys are stored in each internal node to guide the searching,

and thus the entire node fits into one or two blocks; however, if the keys are variable-sized text strings,

the keys can be arbitrarily long, and there may not be enough space to store Q(B) strings per node.

Pointers to Q(B) strings could be stored instead in each node, but access to the strings during search

would require more than a constant number of I=Os per node. To save space in each node, Bayer and

Unterauer [39] investigated the use of prefix representations of keys. Ferragina and Grossi [82,83]

recently developed an elegant generalization of the B-tree called the string B-tree or simply SB-tree (not

to be confused with the SB-tree [156] mentioned in Section 16.11). The query time to search in an

SB-tree for a string of k characters is O(logB N þk=B), which is optimal. Insertions and deletions can

be done in the same I=O bound. The space used is linear (optimal). Bender et al. [300] show that the

cache-oblivious B-tree data structures can be competitive with those developed with explicit knowledge

of the parameters in the PDM model.

Ferragina and Grossi [82,83] apply SB-trees to the problems of string matching, prefix search, and

substring search. Ferragina and Luccio [84] apply SB-trees to get new results for dynamic dictionary

matching; their structure even provides a simpler approach for the (internal memory) RAM model.

Eltabakh et al. [272] use string B-trees and three-sided structures to index strings compressed by run-

length encoding. Hon et al. [284] use SB-trees to externalize approximate string indexes.

Ciriani et al. [269] construct a randomized EM data structure that exhibits static optimality, in a

similar way as splay trees do in the internal memory model. In particular, they show that Q search

queries on a set of N strings s1, s2, . . . , sN of total length L can be done in O(L=B þP1�i�N

ni logB (Q=ni)), where ni is the number of times si is queried. Insertion or deletion of a string can be

done in the same bounds as given for SB-trees.

Tries and Patricia tries are commonly used as internal memory data structures for storing sets of

strings. One particularly interesting application of Patricia tries is to store the set of suffixes of a text

string. The resulting data structure, called a suffix tree [144,208], can be built in linear time and supports

search for an arbitrary substring of the text in time linear in the size of the substring. A more compact

(but static) representation of a suffix tree, called a suffix array [141], consisting of the leaves of the suffix

tree in symmetric traversal order, can also be used for fast searching. (See Ref. [101] for general

background.) Farach et al. [79] show how to construct SB-trees, suffix trees, and suffix arrays on strings

of total length N using O(n logm n) I=Os, which is optimal. Clark and Munro [54] give a practical

implementation of dynamic suffix trees that use about five bytes per indexed suffix. Crauser and

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 22 4.10.2007 3:34pm Compositor Name: VBalamugundan

16-22 Digital Systems and Applications

Ferragina [62] present an extensive set of experiments on various text collections in which they compare

the practical performance of some novel and known suffix array construction algorithms. Ferragina et al.

[275] give algorithms for 2-D indexing. Ghanem et al. [280] use buffer techniques to index suffix trees

and unbalanced search trees. Kärkkäinen and Rao [307] survey several aspects of EM text indexing.

Arge et al. [20] consider several models for the problem of sorting K strings of total length N in

external memory. They develop efficient sorting algorithms in these models, making use of the SB-tree,

buffer tree techniques, and a simplified version of the SB-tree for merging called the lazy trie.

THEOREM 16.9 [20] The number of I=Os needed to sort K strings of total length N, where there are K1 short

strings of total length N1 and K2 long strings of total length N2 (i.e., N¼N1 þ N2 and K¼K1 þ K2) is

O min
N1

B
logm

N1

B
þ 1

 �
,K1 logM (K1 þ 1)

� 	
þ K2 logM (K2 þ 1)þ N

B

 �
(16:8)

Further work appears in Ref. [303]. Lower bounds for various models of how strings can be

manipulated are given in Ref. [20]. There are gaps in some cases between the upper and lower bounds

for sorting.

16.14 TPIE External Memory Programming Environment

Three basic approaches are used for supporting development of I=O-efficient code, which we call access-

oriented, array-oriented, and framework-oriented approaches. TPIE falls primarily into the framework-

oriented categorywith some elements of the access-oriented category. Access-oriented systems preserve the

programmer abstraction of explicitly requesting data transfer. Theyoften extend the read–write interface to

include data type specifications and collective specification of multiple transfers, sometimes involving the

memories ofmultiple processing nodes.. Examples of access-oriented systems include theUNIX file system

at the lowest level, higher-level parallel file systems such asWhiptail [180], Vesta [59], PIOUS [148], and the

high-performance storage system [207], and I=O libraries MPI-IO [58] and LEDA-SM [65].

Array-oriented systems access data stored in external memory primarily by means of compiler-

recognized data types (typically arrays) and operations on those data types. The external computation

is directly specified via iterative loops or explicitly data-parallel operations, and the system manages

the explicit I=O transfers. Array-oriented systems are effective for scientific computations that make

regular strides through arrays of data and can deliver high-performance parallel I=O in applications such

as computational fluid dynamics, molecular dynamics, and weapon system design and simulation.

Array-oriented systems are generally ill-suited to irregular or combinatorial computations. Examples

of array-oriented systems include PASSION [187], Panda [177] (which also has aspects of access

orientation), PI=OT [162], and ViC* [56].

TPIE [21,189,195,240] provides a framework-oriented interface for batched computation as well as an

access-oriented interface for online computation. Instead of viewing batched computation as an enter-

prise in which code reads data, operates on it, and writes results, a framework-oriented system views

computation as a continuous process during which a program is fed streams of data from an outside

source and leaves trails of results behind. TPIE programmers do not need to worry about making explicit

calls to I=O routines. Instead, they merely specify the functional details of the desired computation, and

TPIE automatically choreographs a sequence of data movements to feed the computation. The reader is

referred to Ref. [197] for further discussion of TPIE and some examples of timing experiments in TPIE.

16.15 Dynamic Memory Allocation

The amount of internal memory allocated to a program may fluctuate during the course of execution

because of demands placed on the system by other users and processes. EM algorithms must be able to

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 23 4.10.2007 3:34pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-23

adapt dynamically to whatever resources are available so as to preserve good performance [160]. The

algorithms in the previous sections assume a fixed memory allocation; they must resort to virtual

memory if the memory allocation is reduced, often causing a severe degradation in performance.

Barve and Vitter [36] discuss the design and analysis of EM algorithms that adapt gracefully to

changing memory allocations. In their model, without loss of generality, an algorithm (or program) P is

allocated internal memory in phases: During the ith phase, P is allocated mi blocks of internal memory,

and this memory remains allocated to P until P completes 2mi I=O operations, at which point the next

phase begins. The process continues until P finishes execution. We say that P is dynamically optimal, no

other algorithm can perform more than a constant number of sorts in the worst-case for the same

sequence of memory allocations.

Barve and Vitter [36] define a precise model and give dynamically optimal strategies for sorting,

matrix multiplication, and buffer tree operations. Previous work was done on memory-adaptive

algorithms for merge sort [160,214] and hash join [161], but the algorithms handle only special cases

and can be made to perform nonoptimally for certain patterns of memory allocation.

16.16 Conclusions

In this chapter, several useful paradigms for the design and implementation of efficient external memory

(EM) algorithms and data structures were described. The problem domains we have considered include

sorting, permuting, FFT, scientific computing, computational geometry, graphs, databases, geographic

information systems, and text and string processing. Interesting challenges remain in virtually all these

problem domains. One difficult problem is to prove lower bounds for permuting and sorting without an

item indivisibility assumption. Another promising area is the design and analysis of EM algorithms for

efficient use of multiple disks. Optimal bounds have not yet been determined for several basic EM graph

problems like topological sorting, shortest paths, breadth-first and depth-first searches, and connected

components. There is an intriguing connection between problems that have good I=O speedups and

problems that have fast and work-efficient parallel algorithms. Several problems remain open in the

dynamic and kinetic settings, such as range searching, ray shooting, point location, and finding nearest

neighbors.

A continuing goal is to develop optimal EM algorithms and to translate theoretical gains into

observable improvements in practice. For some of the problems that can be solved optimally up to a

constant factor, the constant overhead is too large for the algorithm to be of practical use, and simpler

approaches are needed. In practice, algorithms cannot assume a static internal memory allocation; they

must adapt in a robust way when the memory allocation changes.

Many interesting challenges and opportunities in algorithm design and analysis arise from new

architectures being developed, such as networks of workstations and hierarchical storage devices. Active

(or intelligent) disks, in which disk drives have some processing capability and can filter information

sent to the host, have recently been proposed to further reduce the I=O bottleneck, especially in large

database applications [3,165]. MEMS-based nonvolatile storage has the potential to serve as an inter-

mediate level in the memory hierarchy between DRAM and disks. It could ultimately provide better

latency and bandwidth than disks, at less cost per bit than DRAM [176,196].

Acknowledgments

The author thanks his colleagues, especially Pankaj Agarwal, Lars Arge, Jeff Chase, Wing-Kai Hon, David

Hutchinson, Rahul Shah, and Norbert Zeh, for helpful comments and suggestions. This work was

supported in part by Army Research Office MURI Grant DAAH04-96-1-0013 and by National Science

Foundation Research Grants CCR-9522047, EIA-9870734, CCR-9877133, CCR-0082986, IIS-0415097,

and CCF-0621457.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 24 4.10.2007 3:34pm Compositor Name: VBalamugundan

16-24 Digital Systems and Applications

References

1. D.J. Abel. A Bþ-tree structure for large quadtrees. Computer Vision, Graphics, and Image Processing,

27(1), 19–31, July 1984.

2. J. Abello, A. Buchsbaum, and J. Westbrook. A functional approach to external graph algorithms.

Algorithmica, 32(3), 437–458, 2002.

3. A. Acharya, M. Uysal, and J. Saltz. Active disks: Programming model, algorithms and evaluation.

ACM SIGPLAN Notices, 33(11), 81–91, Nov. 1998.

4. P.K. Agarwal, L. Arge, G.S. Brodal, and J.S. Vitter. I=O-efficient dynamic point location in

monotone planar subdivisions. In Proceedings of the ACM-SIAM Symposium on Discrete Algo-

rithms, volume 10, 11–20, Baltimore, MD, 1999.

5. P.K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Journal of Computer and System

Sciences, 66(1), 207–243, 2003.

6. P.K. Agarwal, L. Arge, J. Erickson, P.G. Franciosa, and J.S. Vitter. Efficient searching with linear

constraints. Computational Geometry, 24(3), 179–195, 2003.

7. P.K. Agarwal, L. Arge, T.M. Murali, K. Varadarajan, and J.S. Vitter. I=O-efficient algorithms for

contour line extraction and planar graph blocking. In Proceedings of the ACM-SIAM Symposium on

Discrete Algorithms, volume 9, 117–126, 1998.

8. P.K. Agarwal, L. Arge, O. Procopiuc, and J.S. Vitter. A framework for index bulk loading and

dynamization. In Proceedings of the International Colloquium on Automata, Languages, and Pro-

gramming, volume 2076 of Lecture Notes in Computer Science, 115–127, Springer-Verlag, Berlin,

Germany, July 2001.

9. P.K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H.J. Haverkort. Box-trees and R-trees

with near-optimal query times. Discrete and Computational Geometry, 28(3), 291–312, 2002.

10. P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J.E.

Goodman, and R. Pollack (Eds.), Advances in Discrete and Computational Geometry, volume 23 of

Contemporary Mathematics, 1–56. American Mathematical Society Press, Providence, RI, 1999.

11. P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Approximating extent measures of points.

Journal of the ACM, 51(4), 606–635, 2004.

12. A. Aggarwal, B. Alpern, A.K. Chandra, and M. Snir. A model for hierarchical memory. In

Proceedings of the ACM Symposium on Theory of Computing, volume 19, 305–314, New York, 1987.

13. A. Aggarwal, A. Chandra, andM. Snir. Hierarchical memory with block transfer. In Proceedings of the

IEEE Symposium on Foundations of Computer Science, volume 28, 204–216, Los Angeles, CA, 1987.

14. A. Aggarwal and C.G. Plaxton. Optimal parallel sorting in multilevel storage. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms, volume 5, 659–668, 1994.

15. A. Aggarwal and J.S. Vitter. The input=output complexity of sorting and related problems.

Communications of the ACM, 31(9), 1116–1127, 1988.

16. L. Arge. The buffer tree: A technique for designing batched external data structures. Algorithima,

37(1), 1–24, 2003.

17. L. Arge. The I=O-complexity of ordered binary-decision diagram manipulation. In Proceedings of

the International Symposium on Algorithms and Computation, volume 1004 of Lecture Notes in

Computer Science, 82–91. Springer-Verlag, Berlin, 1995.

18. L. Arge. External-memory algorithms with applications in geographic information systems. In

M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer (Eds.), Algorithmic Foundations of GIS,

volume 1340 of Lecture Notes in Computer Science, 213–254. Springer-Verlag, Berlin, 1997.

19. L. Arge, G.S. Brodal, and L. Toma. On external-memory MST, SSSP and multiway planar graph

separation. Journal of Algorithms, 53(2), 186–206, 2004.

20. L. Arge, P. Ferragina, R. Grossi, and J. Vitter. On sorting strings in external memory. In Proceedings

of the ACM Symposium on Theory of Computing, volume 29, 540–548, 1997.

21. L. Arge, K.H. Hinrichs, J. Vahrenhold, and J.S. Vitter. Efficient bulk operations on dynamic R-trees.

Algorithmica, 33(1), 104–128, 2002.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 25 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-25

22. L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the I=O-complexity of comparison-

based algorithms. In Proceedings of the Workshop on Algorithms and Data Structures, volume 709 of

Lecture Notes in Computer Science, 83–94. Springer-Verlag, Berlin, 1993.

23. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J.S. Vitter. Theory and practice of I=O-efficient

algorithms for multidimensional batched searching problems. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms, volume 9, 685–694, 1998.

24. L. Arge, V. Samoladas, and J.S. Vitter. Two-dimensional indexability and optimal range search

indexing. In Proceedings of the ACM Conference Principles of Database Systems, volume 18, 346–357,

Philadelphia, PA, May–June 1999.

25. L. Arge and J. Vahrenhold. I=O-efficient dynamic planar point location. Computational Geometry,

29(2), 147–162, 2004.

26. L. Arge, D.E. Vengroff, and J.S. Vitter. External-memory algorithms for processing line segments in

geographic information systems. Algorithmica, 47(1), 1–25, Jan. 2007.

27. L. Arge and J.S. Vitter. Optimal external memory. SIAM Journal on Computing, 32(6), 1488–1508,

2002.

28. C. Armen. Bounds on the separation of two parallel disk models. In Proceedings of the Workshop on

Input=Output in Parallel and Distributed Systems, volume 4, 122–127, Philadelphia, PA, May 1996.

29. R. Baeza-Yates. Bounded disorder: The effect of the index. Theoretical Computer Science, 168,

21–38, 1996.

30. R. Baeza-Yates and B. Ribeiro-Neto (Eds.). Modern Information Retrieval. Addison Wesley Long-

man, Reading MA, 1999, Chapter 8.

31. R.A. Baeza-Yates. Expected behaviour of Bþ-trees under random insertions. Acta Informatica,

26(5), 439–472, 1989.

32. R.A. Baeza-Yates and P.-A. Larson. Performance of Bþ-trees with partial expansions. IEEE Trans-

actions on Knowledge and Data Engineering, 1(2), 248–257, June 1989.

33. R.D. Barve, E.F. Grove, and J.S. Vitter. Simple randomized mergesort on parallel disks. Parallel

Computing, 23(4), 601–631, 1997.

34. R.D. Barve, M. Kallahalla, P.J. Varman, and J.S. Vitter. Competitive analysis of buffer management

algorithms. Journal of Algorithms, 36(2), 152–181, 2000.

35. R.D. Barve and J.S. Vitter. A simple and efficient parallel disk mergesort. Theory of Computing

Systems, 35(2), 189–215, 2002.

36. R.D. Barve and J.S. Vitter. A theoretical framework for memory-adaptive algorithms. In Proceedings of

the IEEE Symposium on Foundations of Computer Science, volume 40, 273–284, New York, Oct. 1999.

37. J. Basch, L.J. Guibas, and J. Hershberger. Data structures for mobile data. Journal of Algorithms, 31,

1–28, 1999.

38. R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Informatica, 1, 173–189,

1972.

39. R. Bayer and K. Unterauer. Prefix B-trees. ACM Transactions on Database Systems, 2(1), 11–26,

March 1977.

40. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal multi-

version B-tree. VLDB Journal, 5(4), 264–275, Dec. 1996.

41. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust

access method for points and rectangles. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, 322–331, 1990.

42. M.A. Bender, E.D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. SIAM Journal on

Computing, 35(2), 341–358, 2005.

43. J.L. Bentley and J.B. Saxe. Decomposable searching problems I: Static-to-dynamic transformations.

Journal of Algorithms, 1(4), 301–358, Dec. 1980.

44. S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the query performance of high-dimensional

index structures by bulk load operations. In Proceedings of the International Conference on Extend-

ing Database Technology, volume 5, 216–230, 1998.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 26 4.10.2007 3:35pm Compositor Name: VBalamugundan

16-26 Digital Systems and Applications

45. R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications of the ACM, 20(10),

762–772, Oct. 1977.

46. K. Brengel, A. Crauser, P. Ferragina, and U. Meyer. An experimental study of priority queues in

external memory. Journal of Experimental Algorithmics, 5(17), 2000.

47. G.S. Brodal and J. Katajainen. Worst-case efficient external-memory priority queues. In Proceedings

of the Scandinavian Workshop on Algorithmic Theory, volume 1432 of Lecture Notes in Computer

Science, 107–118, Stockholm, Sweden, July 1998. Springer-Verlag.

48. A.L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J.R. Westbrook. On external mem-

ory graph traversal. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, volume 11,

859–860, 2000.

49. P. Callahan, M.T. Goodrich, and K. Ramaiyer. Topology B-trees and their applications. In Proceed-

ings of the Workshop on Algorithms and Data Structures, volume 955 of Lecture Notes in Computer

Science, 381–392. Springer-Verlag, 1995.

50. B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal on Computing, 15,

703–724, 1986.

51. B. Chazelle and H. Edelsbrunner. Linear space data structures for two types of range search.

Discrete and Computational Geometry, 2, 113–126, 1987.

52. P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson. RAID: High-performance,

reliable secondary storage. ACM Computing Surveys, 26(2), 145–185, June 1994.

53. Y.-J. Chiang, M.T. Goodrich, E.F. Grove, R. Tamassia, D.E. Vengroff, and J.S. Vitter. External-

memory graph algorithms. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,

volume 6, 139–149, Jan. 1995.

54. D.R. Clark and J.I. Munro. Efficient suffix trees on secondary storage. In Proceedings of the ACM-

SIAM Symposium on Discrete Algorithms, volume 7, 383–391, Atlanta, GA, June 1996.

55. K.L. Clarkson and P.W. Shor. Applications of random sampling in computational geometry, II.

Discrete and Computational Geometry, 4, 387–421, 1989.

56. A. Colvin and T.H. Cormen. ViC*: A compiler for virtual-memory C*. In Proceedings of the

International Workshop on High-Level Programming Models and Supportive Environments, volume

3, 23–33, 1998.

57. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2), 121–137, 1979.

58. P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snir, B. Traversat, and

P. Wong. Overview of the MPI-IO parallel I=O interface. In R. Jain, J. Werth, and J.C. Browne

(Eds.), Input=Output in Parallel and Distributed Computer Systems, volume 362 of The Kluwer

International Series in Engineering and Computer Science, Chapter 5, pp. 127–146. Kluwer Academic

Publishers, 1996.

59. P.F. Corbett and D.G. Feitelson. The Vesta parallel file system. ACM Transactions on Computer

Systems, 14(3), 225–264, Aug. 1996.

60. T.H. Cormen and D.M. Nicol. Performing out-of-core FFTs on parallel disk systems. Parallel

Computing, 24(1), 5–20, Jan. 1998.

61. T.H. Cormen, T. Sundquist, and L.F. Wisniewski. Asymptotically tight bounds for perform-

ing BMMC permutations on parallel disk systems. SIAM Journal on Computing, 28(1), 105–136,

1999.

62. A. Crauser and P. Ferragina. A theoretical and experimental study on the construction of suffix

arrays in external memory. Algorithmica, 32(1), 1–35, 2002.

63. A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E.A. Ramos. Randomized external-memory

algorithms for line segment intersection and other geometric problems. International Journal of

Computational Geometry and Applications, 11(3), 305–337, 2001.

64. A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E.A. Ramos. I=O-optimal computation

of segment intersections. In J. Abello and J.S. Vitter (Eds.), External Memory Algorithms

and Visualization, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,

pp. 131–138. American Mathematical Society Press, Providence, RI, 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 27 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-27

65. A. Crauser and K. Mehlhorn. LEDA-SM: Extending LEDA to secondary memory. In J.S. Vitter and

C. Zaroliagis (Eds.), Proceedings of Workshop on Algorithm Engineering Vol. 1668 of Lecture Notes in

Computer Science, 228–242, London, July 1999. Springer-Verlag.

66. R. Cypher and G. Plaxton. Deterministic sorting in nearly logarithmic time on the hypercube and

related computers. Journal of Computer and System Sciences, 47(3), 501–548, 1993.

67. M. de Berg, J. Gudmundsson, M. Hammar, and M. Overmars. On R-trees with low query

complexity. Computational Geometry, 24(3), 179–195, 2003.

68. F.K.H.A. Dehne, W. Dittrich, and D. Hutchinson. Efficient external memory algorithms by

simulating coarse-grained parallel algorithms. Algorithmica, 36(2), 97–122, 2003.

69. F. Dehne, D. Hutchinson, and A. Maheshwari. Reducing I=O complexity by simulating coarse

grained parallel algorithms. In Proceedings of the International Parallel Processing Symposium,

volume 13, 14–20, April 1999.

70. H.B. Demuth. Electronic Data Sorting. Ph.D. Thesis, Stanford University, 1956. A shortened version

appears in IEEE Transactions on Computing, C-34(4), 296–310, April 1985, special issue on sorting,

E.E. Lindstrom, C.K. Wong, and J.S. Vitter (Eds.).

71. D.J. DeWitt, J.F. Naughton, and D.A. Schneider. Parallel sorting on a shared-nothing architecture

using probabilistic splitting. In Proceedings of the International Conference on Parallel and Distrib-

uted Information Systems, volume 1, 280–291, Dec. 1991.

72. W. Dittrich, D. Hutchinson, and A. Maheshwari. Blocking in parallel multisearch problems. Theory

of Computing Systems, 34(2), 145–189, 2001.

73. J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures persistent. Journal of

Computer and System Sciences, 38, 86–124, 1989.

74. M.C. Easton. Key-sequence data sets on indelible storage. IBM Journal of Research and Develop-

ment, 30, 230–241, 1986.

75. NASA’s Earth Observing System (EOS) Web page, NASA Goddard Space Flight Center, http:==

eospso.gsfc.nasa.gov=.

76. D. Eppstein, Z. Galil, G.F. Italiano, and A. Nissenzweig. Sparsification—a technique for speeding

up dynamic graph algorithms. Journal of the ACM, 44(5), 669–696, 1997.

77. G. Evangelidis, D.B. Lomet, and B. Salzberg. The hBP-tree: A multi-attribute index supporting

concurrency, recovery and node consolidation. VLDB Journal, 6, 1–25, 1997.

78. R. Fagin, J. Nievergelt, N. Pippinger, and H.R. Strong. Extendible hashing—a fast access method

for dynamic files. ACM Transactions on Database Systems, 4(3), 315–344, 1979.

79. M. Farach, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix tree construc-

tion. Journal of the ACM, 47(6), 987–1011, 2000.

80. J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate l1-difference algo-

rithm for massive data streams. SIAM Journal on Computing, 32(1), 131–151, 2002.

81. W. Feller. An Introduction to Probability Theory and Its Applications, volume 1, 3rd ed. John Wiley &

Sons, New York, 1968.

82. P. Ferragina and R. Grossi. Fast string searching in secondary storage: Theoretical developments

and experimental results. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,

volume 7, 373–382, Atlanta, GA, June 1996.

83. P. Ferragina and R. Grossi. The string B-tree: a new data structure for string search in external

memory and its applications. Journal of the ACM, 46(2), 236–280, March 1999.

84. P. Ferragina and F. Luccio. Dynamic dictionary matching in external memory. Information and

Computation, 146(2), 85–99, Nov. 1998.

85. P. Flajolet. On the performance evaluation of extendible hashing and trie searching. Acta Informa-

tica, 20(4), 345–369, 1983.

86. R.W. Floyd. Permuting information in idealized two-level storage. In R. Miller and J. Thatcher

(Eds.), Complexity of Computer Computations, pp. 105–109. Plenum, New York, 1972.

87. W. Frakes and R. Baeza-Yates (Eds.). Information Retrieval: Data Structures and Algorithms.

Prentice-Hall, Englewood Cliffs, NJ, 1992.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 28 4.10.2007 3:35pm Compositor Name: VBalamugundan

16-28 Digital Systems and Applications

88. M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.

In Proceedings of the IEEE Symposium on Foundations of Computer Science, volume 40, 285–298,

1999.

89. T.A. Funkhouser, C.H. Sequin, and S.J. Teller. Management of large amounts of data in interactive

building walkthroughs. Symposium on Interactive 3D Graphics, 11–20, 1992.

90. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys, 30(2),

170–231, June 1998.

91. M. Gardner. Magic Show, Chapter 7. Knopf, New York, 1977.

92. I. Gargantini. An effective way to represent quadtrees. Communications of the ACM, 25(12),

905–910, Dec. 1982.

93. G.A. Gibson, J.S. Vitter, and J. Wilkes. Report of the working group on storage I=O issues in large-

scale computing. ACM Computing Surveys, 28(4), 779–793, Dec. 1996.

94. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In

Proceedings of the International Conference on Very Large Databases, volume 25, 78–89, Edinburgh,

Scotland, 1999, Morgan Kaufmann Publishers.

95. R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina. Proximity search in

databases. In Proceedings of the International Conference on Very Large Databases, volume 24,

26–37, Aug. 1998.

96. M.T. Goodrich, J.-J. Tsay, D.E. Vengroff, and J.S. Vitter. External-memory computational geometry.

In Proceedings of the IEEE Symposium on Foundations of Computer Science, volume 34, 714–723,

Palo Alto, CA, Nov. 1993.

97. S. Govindarajan, T. Lukovszki, A. Maheshari, and N. Zeh. I=O-efficient well-separated pair

decomposition and its applications. Algorithmica, 220–231, 2006.

98. D. Greene. An implementation and performance analysis of spatial data access methods. In

Proceedings of IEEE International Conference on Data Engineering, volume 5, 606–615, 1989.

99. J.L. Griffin, S.W. Schlosser, G.R. Ganger, and D.F. Nagle. Modeling and performance of MEMS-

based storage devices. In Proceedings of ACM SIGMETRICS Joint International Conference on

Measurement and Modeling of Computer Systems, 56–65, Santa Clara, CA, 2000.

100. R. Grossi and G.F. Italiano. Efficient splitting and merging algorithms for order decomposable

problems. Information and Computation, 154(1), 1–33, 1999.

101. S.K.S. Gupta, Z. Li, and J.H. Reif. Generating efficient programs for two-level memories from

tensor-products. In Proceedings of the IASTED=ISMM International Conference on Parallel and

Distributed Computing and Systems, volume 7, 510–513, Washington, DC, Oct. 1995.

102. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge,

1997.

103. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, 47–57, 1984.

104. L. Hellerstein, G. Gibson, R.M. Karp, R.H. Katz, and D.A. Patterson. Coding techniques for

handling failures in large disk arrays. Algorithmica, 12(2–3), 182–208, 1994.

105. M.R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. In J. Abello and J.S.

Vitter (Eds.), External Memory Algorithms and Visualization, DIMACS Series in Discrete Math-

ematics and Theoretical Computer Science, pp. 107–118. American Mathematical Society Press,

Providence, RI, 1999.

106. K.H. Hinrichs. The grid file system: Implementation and case studies of applications. Ph.D.

Dissertation, Department of Information Science, ETH, Zürich, 1985.

107. J.W. Hong and H.T. Kung. I=O complexity: The red-blue pebble game. In Proceedings of the ACM

Symposium on Theory of Computing, volume 13, 326–333, May 1981.

108. D. Hutchinson, A. Maheshwari, J.-R. Sack, and R. Velicescu. Early experiences in implementing the

buffer tree. In Proceedings of the Workshop on Algorithm Engineering, 92–103, 1997.

109. D. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure for shortest path

queries. Discrete Applied Mathematics, 126(1), 55–82, 2003.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 29 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-29

110. D.A. Hutchinson, P. Sanders, and J.S. Vitter. Duality between prefetching and queued writing with

parallel disks. SIAM Journal on Computing, 34(6), 1443–1463, 2005.

111. D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel approaches in query processing for moving object

trajectories. In Proceedings of the International Conference on Very Large Databases, 395–406, Cairo,

2000.

112. M. Kallahalla and P.J. Varman. Optimal read-once parallel disk scheduling. Algorithmica, 43(4),

309–343, 2005.

113. M. Kallahalla and P.J. Varman. PC-OPT: Optimal prefetching and caching for parallel I=O systems.

IEEE Transactions on Computers, 51(11), 1333–1344, 2002.

114. I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings of the International ACM Conference

on Information and Knowledge Management, volume 2, 490–499, 1993.

115. I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. In Proceedings of the

International Conference on Very Large Databases, volume 20, 500–509, 1994.

116. I. Kamel, M. Khalil, and V. Kouramajian. Bulk insertion in dynamic R-trees. In Proceedings of the

International Symposium on Spatial Data Handling, volume 4, 3B, 31–42, 1996.

117. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Journal of Computer and

System Sciences, 51(1), 26–52, 1995.

118. P.C. Kanellakis, S. Ramaswamy, D.E. Vengroff, and J.S. Vitter. Indexing for data models with

constraints and classes. Journal of Computer and System Sciences, 52(3), 589–612, 1996.

119. K.V.R. Kanth and A.K. Singh. Optimal dynamic range searching in non-replicating index struc-

tures. In Proceedings of the International Conference on Database Theory, volume 1540 of Lecture

Notes in Computer Science, 257–276. Springer-Verlag, Jan. 1999.

120. M.Y. Kim. Synchronized disk interleaving. IEEE Transactions on Computers, 35(11), 978–988,

Nov. 1986.

121. D.G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM Journal on

Computing, 15, 287–299, 1986.

122. D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming, 2nd ed.

Addison-Wesley, Reading, MA, 1998.

123. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM Journal on

Computing, 6, 323–350, 1977.

124. G. Kollios, D. Gunopulos, and V.J. Tsotras. On indexing mobile objects. In Proceedings of the ACM

Symposium on Principles of Database Systems, volume 18, 261–272, 1999.

125. R. Krishnamurthy and K.-Y. Wang. Multilevel grid files. Technical Report, IBM T.J. Watson Center,

Yorktown Heights, New York, Nov. 1985.

126. V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph problems in

external memory. In Proceedings of the IEEE Symposium on Parallel and Distributed Processing,

volume 8, 169–176, Oct. 1996.

127. K. Küspert. Storage utilization in B*-trees with a generalized overflow technique. Acta Informatica,

19, 35–55, 1983.

128. P.-A. Larson. Performance analysis of linear hashing with partial expansions. ACM Transactions on

Database Systems, 7(4), 566–587, Dec. 1982.

129. R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. Academic Press,

London, 1992.

130. P.L. Lehman and S.B. Yao. Efficient locking for concurrent operations on B-Trees. ACM Transac-

tions on Database Systems, 6(4), 650–570, Dec. 1981.

131. F.T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions on

Computers, C-34(4), 344–354, April 1985. Special issue on sorting, E.E. Lindstrom, C.K. Wong,

and J.S. Vitter (Eds.).

132. C.E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for linear relaxation using

blocking covers. Journal of Computer and System Sciences, 54(2), 332–344, 1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 30 4.10.2007 3:35pm Compositor Name: VBalamugundan

16-30 Digital Systems and Applications

133. Z. Li, P.H. Mills, and J.H. Reif. Models and resource metrics for parallel and distributed compu-

tation. Parallel Algorithms and Applications, 8, 35–59, 1996.

134. W. Litwin. Linear hashing: A new tool for files and tables addressing. In Proceedings of the

International Conference on Very Large Databases, volume 6, 212–223, Montreal, Quebec, Canada,

Oct. 1980.

135. W. Litwin and D. Lomet. A new method for fast data searches with keys. IEEE Software, 4(2),

16–24, March 1987.

136. D. Lomet. A simple bounded disorder file organization with good performance. ACM Transactions

on Database Systems, 13(4), 525–551, 1988.

137. D.B. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method with good guaranteed

performance. ACM Transactions on Database Systems, 15(4), 625–658, 1990.

138. D.B. Lomet and B. Salzberg. Concurrency and recovery for index trees. VLDB Journal, 6(3),

224–240, 1997.

139. A. Maheshwari and N. Zeh. I=O-optimal algorithms for outerplanar graphs. Journal of Graph

Algorithms and Applications, 8, 47–87, 2004.

140. A. Maheshwari and N. Zeh. I=O-efficient algorithms for graphs of bounded treewidth. In Proceed-

ings of the ACM-SIAM Symposium on Discrete Algorithms, 89–90, 2001.

141. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM Journal on

Computing, 22(5), 935–948, Oct. 1993.

142. U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. In USENIX

Association (Ed.), Proceedings of the Winter USENIX Conference, 23–32, San Francisco, CA, Jan.

1994. USENIX.

143. Y. Matias, E. Segal, and J.S. Vitter. Efficient bundle sorting. In Proceedings of the ACM-SIAM Sym-

posium on Discrete Algorithms, volume 11, 839–848, San Francisco, CA, Jan. 2000.

144. E.M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM, 23(2),

262–272, 1976.

145. H. Mendelson. Analysis of extendible hashing. IEEE Transactions on Software Engineering, SE–8,

611–619, Nov. 1982.

146. U. Meyer. External memory BFS on undirected graphs with bounded degree. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms, volume 12, 87–88, Washington, DC, Jan. 2001.

147. C. Mohan. ARIES=KVL: A key-value locking method for concurrency control of multiaction

transactions on B-tree indices. In Proceedings of the International Conference on Very Large

Databases, 392–405, Brisbane, Australia, Aug. 1990.

148. S.A. Moyer and V. Sunderam. Characterizing concurrency control performance for the PIOUS

parallel file system. Journal of Parallel and Distributed Computing, 38(1), 81–91, Oct. 1996.

149. K. Munagala and A. Ranade. I=O-complexity of graph algorithms. In Proceedings of the ACM-

SIAM Symposium on Discrete Algorithms, volume 10, 687–694, Baltimore, MD, Jan. 1999.

150. J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: An adaptable, symmetric multi-key

file structure. ACM Transactions on Database Systems, 9, 38–71, 1984.

151. J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design choices. In M. van

Kreveld, J. Nievergelt, T. Roos, and P. Widmayer (Eds.), Algorithmic Foundations of GIS, volume

1340 of Lecture Notes in Computer Science, 153–197. Springer-Verlag, 1997.

152. M.H. Nodine, M.T. Goodrich, and J.S. Vitter. Blocking for external graph searching. Algorithmica,

16(2), 181–214, Aug. 1996.

153. M.H. Nodine, D.P. Lopresti, and J.S. Vitter. I=O overhead and parallel VLSI architectures for lattice

computations. IEEE Transactions on Communications, 40(7), 843–852, July 1991.

154. M.H. Nodine and J.S. Vitter. Deterministic distribution sort in shared and distributed memory

multiprocessors. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,

volume 5, 120–129, Velen, Germany, June–July 1993.

155. M.H. Nodine and J.S. Vitter. Greed sort: An optimal sorting algorithm for multiple disks. Journal of

the ACM, 42(4), 919–933, July 1995.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 31 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-31

156. P.E. O’Neil. The SB-tree. An index-sequential structure for high-performance sequential access.

Acta Informatica, 29(3), 241–265, June 1992.

157. J.A. Orenstein. Redundancy in spatial databases. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, 294–305, Portland, OR, June 1989.

158. J.A. Orenstein and T.H. Merrett. A class of data structures for associative searching. In Proceedings

of the ACM Conference Principles of Database Systems, volume 3, 181–190, 1984.

159. M.H. Overmars. The Design of Dynamic Data Structures. Vol. 156 of Lecture Notes in Computer

Science. Springer-Verlag, 1983.

160. H. Pang, M. Carey, and M. Livny. Memory-adaptive external sorts. In Proceedings of the Inter-

national Conference on Very Large Databases, volume 19, 618–629, Dublin, 1993.

161. H. Pang, M.J. Carey, and M. Livny. Partially preemptive hash joins. In P. Buneman and S. Jajodia

(Eds.), Proceedings of the ACM SIGMOD International Conference on Management of Data, 59–68,

Washington, DC, May 1993.

162. I. Parsons, R. Unrau, J. Schaeffer, and D. Szafron. PI=OT: Parallel I=O templates. Parallel Comput-

ing, 23(4), 543–570, June 1997.

163. J. Rao and K. Ross. Cache conscious indexing for decision-support in main memory. In

M. Atkinson et al. (Eds.), Proceedings of the International Conference on Very Large Databases,

volume 25, 78–89, Los Altos, CA 1999, Morgan Kaufmann Publishers.

164. J. Rao and K.A. Ross. Making Bþ-trees cache conscious in main memory. In W. Chen, J. Naughton,

and P.A. Bernstein (Eds.), Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, 475–486, Dallas, TX, 2000.

165. E. Riedel, G.A. Gibson, and C. Faloutsos. Active storage for large-scale data mining and multimedia.

In Proceedings of the International Conference on Very Large Databases, volume 22, 62–73, Aug. 1998.

166. J.T. Robinson. The k-d-b-tree: A search structure for large multidimensional dynamic indexes. In

Proceedings of the ACM Conference Principles of Database Systems, volume 1, 10–18, 1981.

167. K. Salem and H. Garcia-Molina. Disk striping. In Proceedings of IEEE International Conference on

Data Engineering, volume 2, 336–242, Los Angeles, CA, 1986.

168. S. Šaltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez. Indexing the positions of continuously

moving objects. In W. Chen, J. Naughton, and P.A. Bernstein (Eds.), Proceedings of the ACM

SIGMOD International Conference on Management of Data, 331–342, Dallas, TX, 2000.

169. B. Salzberg and V.J. Tsotras. Comparison of access methods for time-evolving data. ACM Com-

puting Surveys, 31, 158–221, June 1999.

170. H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.

Addison-Wesley, Reading, MA, 1989.

171. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1989.

172. P. Sanders. Fast priority queues for cached memory. Journal of Experimental Algorithms, 5(7),

1–25, 2000.

173. P. Sanders. Reconciling simplicity and realism in parallel disk models. Parallel Computing, 28(5),

705–723, 2002.

174. P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. Algorithmica, 35(1),

21–55, 2003.

175. J.E. Savage and J.S. Vitter. Parallelism in space-time tradeoffs. In F.P. Preparata (Ed.), Advances in

Computing Research, volume 4, pp. 117–146. JAI Press, Greenwich, CT, 1987.

176. S.W. Schlosser, J.L. Griffin, D.F. Nagle, and G.R. Ganger. Designing computer systems with

MEMS-based storage. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems, volume 9, 1–12, Nov. 2000.

177. K.E. Seamons and M. Winslett. Multidimensional array I=O in Panda 1.0. Journal of Supercompu-

ting, 10(2), 191–211, 1996.

178. B. Seeger and H.-P. Kriegel. The buddy-tree: An efficient and robust access method for spatial

data base systems. In Proceedings of the International Conference on Very Large Databases, 590–601,

1990.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 32 4.10.2007 3:35pm Compositor Name: VBalamugundan

16-32 Digital Systems and Applications

179. E.A.M. Shriver and M.H. Nodine. An introduction to parallel I=O models and algorithms. In

R. Jain, J. Werth, and J.C. Browne (Eds.), Input=Output in Parallel and Distributed Computer

Systems, Chapter 2, pp. 31–68. Kluwer Academic Publishers, Norwell, MA, 1996.

180. E.A.M. Shriver and L.F. Wisniewski. An API for choreographing data accesses. Technical Report

PCS-TR95—267, Department of Computer Science, Dartmouth College, Nov. 1995.

181. J.F. Sibeyn. From parallel to external list ranking. Technical Report MPI–I–97–1–021, Max-Planck-

Institute, Sept. 1997.

182. J.F. Sibeyn. External selection. Journal of Algorithms, 58(2), 104–117, 2006.

183. J.F. Sibeyn and M. Kaufmann. BSP-like external-memory computation. In Proceedings of the Italian

Conference on Algorithms and Complexity, volume 3, 229–240, 1997.

184. B. Srinivasan. An adaptive overflow technique to defer splitting in b-trees. The Computer Journal,

34(5), 397–405, 1991.

185. R. Tamassia and J.S. Vitter. Optimal cooperative search in fractional cascaded data structures.

Algorithmica, 15(2), 154–171, Feb. 1996.

186. Microsoft’s TerraServer online database of satellite images, available on the World Wide Web at

http:==terraserver.microsoft.com=.

187. R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi. Passion: Optimized I=O for

parallel applications. IEEE Computer, 29(6), 70–78, June 1996.

188. S. Toledo. A survey of out-of-core algorithms in numerical linear algebra. In J. Abello and J.S. Vitter

(Eds.), External Memory Algorithms and Visualization, DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, 161–179. American Mathematical Society Press, Providence,

RI, 1999.

189. TPIE User Manual and Reference, 1999. The manual and software distribution are available on the

Web at http:==www.cs.duke.edu=TPIE=.

190. J.D. Ullman and M. Yannakakis. The input=output complexity of transitive closure. Annals of

Mathematics and Artificial Intelligence, 3, 331–360, 1991.

191. J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading multidimen-

sional index structures. In Proceedings of the International Conference on Very Large Databases,

volume 23, 406–415, 1997.

192. M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer (Eds.). Algorithmic Foundations of GIS,

volume 1340 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

193. P.J. Varman and R.M. Verma. An efficient multiversion access structure. IEEE Transactions on

Knowledge and Data Engineering, 9(3), 391–409, May–June 1997.

194. D.E. Vengroff and J.S. Vitter. Efficient 3-d range searching in external memory. In Proceedings of the

ACM Symposium on Theory of Computing, volume 28, 192–201, Philadelphia, PA, May 1996.

195. D.E. Vengroff and J.S. Vitter. I=O-efficient scientific computation using TPIE. In Proceedings of

NASA Goddard Conference on Mass Storage Systems, volume 5, II, 553–570, Sept. 1996.

196. P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M.I. Lutwyche, E. Rothuizen, R. Stutz,

R. Widmer, and G.K. Binnig. The ‘‘Millipede’’—more than one thousand tips for future AFM data

storage. IBM Journal of Research and Development, 44(3), 323–340, 2000.

197. J.S. Vitter. External memory algorithms and data structures: Dealing with MASSIVE data. ACM

Computing Surveys, 33(2), 209–271, June 2001. Updated version available via the author’s web page

http:==www.vitter.org=jsv=.

198. J.S. Vitter and D.A. Hutchinson. Distribution sort with randomized cycling. Journal of the ACM,

53(7), 2006.

199. J.S. Vitter and M.H. Nodine. Large-scale sorting in uniform memory hierarchies. Journal of Parallel

and Distributed Computing, 17, 107–114, 1993.

200. J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory I: Two-level memories. Algorith-

mica, 12(2 & 3), 110–147, 1994.

201. J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory II: Hierarchical multilevel memor-

ies. Algorithmica, 12(2 & 3), 148–169, 1994.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 33 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-33

202. J.S. Vitter and D.E. Vengroff. Notes, 1999.

203. J.S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse data

using wavelets. In Proceedings of the ACM SIGMOD International Conference on Management of

Data, 193–204, Philadelphia, PA, June 1999.

204. J.S. Vitter, M. Wang, and B. Iyer. Data cube approximation and histograms via wavelets. In

Proceedings of the International ACM Conference on Information and Knowledge Management,

volume 7, 96–104, Washington, Nov. 1998.

205. M. Wang, B. Iyer, and J.S. Vitter. Scalable mining for classification rules in relational databases. In

Herman Rubin Festschrift, Lecture Notes Monograph Series, 45, Institute of Mathematical Statistics,

Hayward, CA, Fall 2004.

206. M. Wang, J.S. Vitter, L. Lim, and S. Padmanabhan. Wavelet-based cost estimation for spatial

queries, Proceedings of the 7th International Symposium on Spatial and Temporal Databases,

175–196, July 2001.

207. R.W. Watson and R.A. Coyne. The parallel I=O architecture of the high-performance storage

system (HPSS). In Proceedings of the IEEE Symposium on Mass Storage Systems, volume 14,

27–44, Sept. 1995.

208. P. Weiner. Linear pattern matching algorithm. In Proceedings of the IEEE Symposium on Switching

and Automata Theory, volume 14, 1–11, Washington, DC, 1973.

209. O. Wolfson, P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. DOMINO: Databases for MovINg

Objects tracking. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh (Eds.), Proceedings of the ACM

SIGMOD International Conference on Management of Data, 547–549, May 1999.

210. D. Womble, D. Greenberg, S. Wheat, and R. Riesen. Beyond core: Making parallel computer I=O

practical. In Proceedings of the DAGS Symposium on Parallel Computation, volume 2, 56–63,

Hanover, NH, June 1993. Dartmouth Institute for Advanced Graduate Studies.

211. C. Wu and T. Feng. The universality of the shuffle-exchange network. IEEE Transactions on

Computers, C-30, 324–332, May 1981.

212. A.C. Yao. On random 2–3 trees. Acta Informatica, 9, 159–170, 1978.

213. S.B. Zdonik and D. Maier (Eds.). Readings in Object-Oriented Database Systems. Morgan Kauffman,

San Mateo, CA, 1990.

214. W. Zhang and P.-A. Larson. Dynamic memory adjustment for external mergesort. In Proceedings of

the International Conference on Very Large Databases, volume 23, 376–385, Athens, Greece, 1997.

215. B. Zhu. Further computational geometry in secondary memory. In Proceedings of the International

Symposium on Algorithms and Computation, volume 834 of Lecture Notes in Computer Science,

514–522. Springer-Verlag, 1994.

216. J. Abello, P.M. Pardalos, and M.G. Resende (Eds.).Handbook of Massive Data Sets, Kluwer, Norwell,

MA, 2002.

217. P.K. Agarwal, L. Arge, and A. Danner. From LIDAR to GRID DEM: A scalable approach. In

Proceedings of the International Symposium on Spatial Data Handling. 2006.

218. P.K. Agarwal, L. Arge, O. Procopiuc, and J.S. Vitter. A framework for index bulk loading and

dynamization. In Proceedings of the International Colloquium on Automata, Languages and Pro-

gramming, Vol. 2076 of Lecture Notes in Computer Science, 115–127. Springer-Verlag, 2001.

219. P.K. Agarwal, L. Arge, and J. Vahrenhold. Time responsive external data structures for moving

points. In Proceedings of the Workshop on Algorithms and Data Structures, 50–61, 2001.

220. P.K. Agarwal, L. Arge, J. Yang, and K. Yi. I=O-efficient structures for orthogonal range-max and

stabbing-max queries. In Proceedings of the European Symposium on Algorithms, 7–18, 2003.

221. P.K. Agarwal, L. Arge, and K. Yi. An optimal dynamic interval stabbing-max data structure? In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 803–812, 2005.

222. P.K. Agarwal, L. Arge, and K. Yi. I=O-efficient construction of constrained delaunay triangulations.

In Proceedings of the European Symposium on Algorithms, 355–366, 2005.

223. P.K. Agarwal, L. Arge, and K. Yi. I=O-efficient batched union-find and its applications to terrain

anaylsis. In Proceedings of the Symposium on Computational Geometry, 2006.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 34 4.10.2007 3:35pm Compositor Name: VBalamugundan

16-34 Digital Systems and Applications

224. D. Ajwani, R. Dementiev, andU.Meyer. A computational study of external-memory BFS algorithms.

In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 601–610, 2006.

225. S. Albers and M. Buttner. Integrated prefetching and caching with read and write requests. In

Proceedings of the Workshop on Algorithms and Data Structures, 162–173, 2003.

226. S. Albers and M. Buttner. Integrated prefetching and caching in single and parallel disk systems.

Information and Computation 198(1), 24–39, 2005.

227. L. Arge. External memory data structures. Chapter 9 in J. Abello, P.M. Pardalos, and M.G. Resende

(Eds.), Handbook of Massive Data Sets, pp. 313–358, Kluwer, Norwell, MA, 2002.

228. L. Arge, M.A. Bender, E.D. Demaine, B. Holland-Minkley, and J.I. Munro. Cache-oblivious priority

queue and graph algorithm applications. In Proceedings of the ACM Symposium on Theory of

Computing, 268–276, 2002.

229. L. Arge, G.S. Brodal, R. Fagerberg, and M. Lausten. Cache-oblivious planar orthogonal range

searching and counting. In Proceedings of the Symposium on Computational Geometry, 160–169,

2005.

230. L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J.S. Vitter, and R. Wickremesinghe. Flow

computation on massive grid terrains. GeoInformatica 7(4), 283–313, 2003.

231. L. Arge, A. Danner, H.J. Haverkort, and N. Zeh. I=O-efficient hierarchical watershed decompos-

ition of grid terrains models. In Proceedings of the International Symposium on Spatial Data

Handling, 2006.

232. L. Arge, M. de Berg, and H.J. Haverkort. Cache-oblivious R-trees. In Proceedings of the Symposium

on Computational Geometry, 170–179, 2005.

233. L. Arge, M. de Berg, H.J. Haverkort, and K. Yi. The priority R-tree: A practically efficient and

worst-case optimal R-tree. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, 347–358, 2004.

234. L. Arge, A. Danner, and S. He. I=O-efficient point location using persistent B-trees. In Proceedings

of the Workshop on Algorithm Engineering and Experimentation, 2003.

235. L. Arge, D. Eppstein, and M.T. Goodrich. Skip-Webs: Efficient distributed data structures for

multi-dimensional data sets. In Proceedings of the ACM Symposium on Principles of Distributed

Computing, 69–76, 2005.

236. L. Arge, U. Meyer, and L. Toma. External memory algorithms for diameter and all-pairs shortest-

paths on sparse graphs. In Proceedings of the International Colloquium on Automata, Languages, and

Programming, 146–157, 2004.

237. L. Arge, G. Brodal, and R. Fagerberg. Cache-oblivious data structures. In D. Mehta and S. Sahni

(Eds.), Handbook on Data Structures and Algorithms, CRC Press, Boca Raton, FL, 2005.

238. L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first search. Journal of

Graph Algorithms and Applications, 7(2), 105–129, 2003.

239. L. Arge and J. Pagter. I=O-space tradeoffs. In Proceedings of the Scandinavian Workshop on

Algorithmic Theory, 448–461, 2000.

240. L. Arge, O. Procopiuc, and J.S. Vitter. Implementing I=O-efficient data structures using TPIE. In

Proceedings of the European Symposium on Algorithms, 88–100, 2002.

241. L Arge, V. Samoladas, and K. Yi. Optimal external memory planar point enclosure. In Proceedings

of the European Symposium on Algorithms, 40–52, 2004.

242. L Arge and L. Toma. Simplified external memory algorithms for planar DAGs. In Proceedings of the

Scandinavian Workshop on Algorithmic Theory, 493–503, 2004.

243. L. Arge and L. Toma. External data structures for shortest path queries on planar digraphs.

In Proceedings of the International Symposium on Algorithms and Computation, LNCS 3827,

328–338, 2005.

244. L. Arge, L. Toma, and J.S. Vitter, I=O-efficient algorithms for problems on grid-based terrains.

Journal of Experimental Algorithmics, 6(1), 2001.

245. L. Arge, L. Toma, and N. Zeh. I=O-efficient topological sorting of planar DAGs. In Proceedings of

the ACM Symposium on Parallel Algorithms and Architectures, 85–93, 2003.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 35 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-35

246. L. Arge and N. Zeh. I=O-efficient strong connectivity and depth-first search for directed

planar graphs. In Proceedings of the IEEE Symposium on Foundations of Computer Science,

261–270, 2003.

247. M.J. Atallah and S. Prabhakar. Almost optimal parallel block access for range queries. Information

Sciences, 157, 21–31, 2003.

248. M.A. Bender, G.S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu, J. Iacono, and A. Lopez-Ortiz. The

cost of cache-oblivious searching. In Proceedings of the IEEE Symposium on Foundations of

Computer Science, 271–282, 2003.

249. M.A. Bender, R. Cole, E.D. Demaine, and M. Farach-Colton. Scanning and traversing: Maintaining

data for traversals in a memory hierarchy. In Proceedings of the European Symposium on Algorithms,

139–151, 2002.

250. M.A. Bender, R. Cole, and R. Raman. Exponential structures for efficient cache-oblivious algo-

rithms. In Proceedings of the International Colloquium on Automata, Languages, and Programming,

195–207, 2002.

251. M.A. Bender, E.D. Demaine, and M. Farach-Colton. Efficient tree layout in a multilevel memory

hierarchy. In Proceedings of the European Symposium on Algorithms, 165–173, 2002.

252. M.A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious dynamic

dictionary. Journal of Algorithms, 53(2), 115–136, 2004.

253. M.A. Bender, J.T. Fineman, S. Gilbert, and B.C. Kuszmaul. Concurrent cache-oblivious B-trees. In

Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, 228–237, 2005.

254. C. Breimann and J. Vahrenhold. External memory computational geometry revisited. Chapter 6 in

U. Meyer, P. Sanders, and J. Sibeyn (Eds.), Algorithms for Memory Hierarchies, Lecture Notes in

Computer Science, pp. 110–148. Springer Verlag, Berlin, Germany, 2002.

255. G.S. Brodal. Cache-oblivious algorithms and data structures. In Proceedings of the Scandinavian

Workshop on Algorithmic Theory, 3–13, 2004.

256. G.S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In Proceedings of the

International Colloquium on Automata, Languages, and Programming, 39–48, 2002.

257. G.S. Brodal and R. Fagerberg. Funnel heap—a cache oblivious priority queue. In Proceedings of the

International Symposium on Algorithms and Computation, 219–228, 2002.

258. G.S. Brodal and R. Fagerberg. Lower bounds for external memory dictionaries. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms, 546–554, 2003.

259. G.S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proceedings of the ACM

Symposium on Theory of Computing, 307–315, 2003.

260. G.S. Brodal and R. Fagerberg. Cache-oblivious string dictionaries. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms, 581–590, 2006.

261. G.S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary trees of small

height. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 39–48, 2002.

262. G.S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data structures and algorithms

for undirected breadth-first search and shortest paths. In Proceedings of the Scandinavian Workshop

on Algorithmic Theory, 480–492, 2004.

263. G.S. Brodal, R. Fagerberg, and G. Moruz. Cache-aware and cache-oblivious adaptive sorting. In

Proceedings of the International Colloquium on Automata, Languages, and Programming, 576–588,

2005.

264. G. Chaudhry and T.H. Cormen. Oblivious vs distribution-based sorting: An experimental evalu-

ation. In Proceedings of the European Symposium on Algorithms, 317–328, 2005.

265. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter. Efficient indexing methods for probabilistic

threshold queries over uncertain data. In Proceedings of the 30th International Conference on Very

Large Databases, 876–887, Aug. 2004.

266. R.A. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in graphs using buffer

heap. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, 245–254,

2004.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 36 4.10.2007 3:35pm Compositor Name: VBalamugundan

16-36 Digital Systems and Applications

267. R.A. Chowdhury and V. Ramachandran. External-memory exact and approximate all-pairs

shortest-paths in undirected graphs. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, 735–744, 2005.

268. R.A. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In Proceedings of

the ACM-SIAM Symposium on Discrete Algorithms, 591–600, 2006.

269. V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan. Static optimality theorem for external

memory string access. In Proceedings of the IEEE Symposium on Foundations of Computer Science,

219–227, 2002.

270. F.K.H.A. Dehne, W. Dittrich, D.A. Hutchinson, and A. Maheshwari. Bulk synchronous parallel

algorithms for the external memory model. Theory of Computing Systems 35(6), 567–597, 2002.

271. R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In Proceedings of the ACM

Symposium on Parallel Algorithms and Architectures, 138–148, 2003.

272. M. Eltabakh, W.K. Hon, R. Shah, W. Aref, and J.S. Vitter. SVC-tree: Efficient indexing for

RLE-compressed strings. Submitted.

273. J. Erickson. Lower bounds for external algebraic decision trees. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms, 755–761, 2005.

274. A. Farzan, P. Ferragina, G. Franceschini, and J.I. Munro. Cache-oblivious comparison-

based algorithms on multisets. In Proceedings of the European Symposium on Algorithms,

305–316, 2005.

275. P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Strivastava. Two-dimensional substring index-

ing. Journal of Computer and System Sciences, 66(4), 763–774, 2003.

276. G. Franceschini. Proximity mergesort: Optimal in-place sorting in the cache-oblivious model. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 291–299, 2004.

277. G. Franceschini and R. Grossi. Optimal cache-oblivious implicit dictionaries. In Proceedings of the

International Colloquium on Automata, Languages, and Programming, 316–331, 2003.

278. G. Franceschini and R. Grossi. Optimal worst-case operations for implicit cache-oblivious search

trees. In Proceedings of the Workshop on Algorithm Engineering, 114–126, 2003.

279. G. Franceschini, R. Grossi, J.I. Munro, and L. Pagli. Implicit B-trees: A new data structure for the

dictionary problem. Journal of Computer and System Sciences, 68(4), 788–807, 2004.

280. T.M. Ghanem, R. Shah, M.F. Mokbel, W.G. Aref, and J.S. Vitter. Bulk operations for space-

partitioning trees. In Proceedings of the 20th Annual IEEE International Conference on Data

Engineering, 29–41, March–April 2004. (this Indexes suffix tree as well as more general unbalanced

search trees)

281. S. Govindarajan, P.K. Agarwal, and L. Arge. CRB-tree: An efficient indexing scheme for range-

aggregate queries. In Proceedings of the International Conference on Fuzzy Systems, 143–157, 2003.

282. M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query processing on streaming

and external memory data. In Proceedings of the International Colloquium on Automata, Languages,

and Programming, 1076–1088, 2005.

283. H.J. Haverkort and L. Toma. I=O-efficient algorithms on near-planar graphs. In Proceedings of the

LATIN, 580–591, 2006.

284. W.K. Hon, T.W. Lam, R. Shah, S.L. Tam, and J.S. Vitter. Cache-oblivious index for approximate

string matching. In Proceedings of the Conference on Combinatorial Pattern Matching, July 2007.

285. W.K. Hon, R. Shah, P.J. Varman, and J.S. Vitter. Tight competitive ratios for parallel disk

prefetching and caching. Submitted.

286. H. Jampala and N. Zeh. Cache-oblivious planar shortest paths. In Proceedings of the International

Colloquium on Automata, Languages, and Programming, 563–575, 2005.

287. T. Lukovszki, A. Maheshwari, and N. Zeh. I=O-efficient batched range counting and its applica-

tions to proximity problems. In Proceedings of the Foundations of Software Technology and Theor-

etical Computer Science, 244–255, 2001.

288. A. Maheshwari, M.H.M. Smid, and N. Zeh. I=O-efficient shortest path queries in geometric

spanner. In Proceedings of the Workshop on Algorithms and Data Structures, 287–299, 2001.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 37 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-37

289. A. Maheshwari and N. Zeh. I=O-optimal algorithms for planar graphs using separators. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 372–381, 2002.

290. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I=O. In Proceed-

ings of the European Symposium on Algorithms, 723–735, 2002.

291. U. Meyer and N. Zeh. I=O-efficient undirected shortest paths. In Proceedings of the European

Symposium on Algorithms, 435–445, 2003.

292. U. Meyer and N. Zeh. I=O-efficient undirected shortest paths with unbounded weights. In

Proceedings of the European Symposium on Algorithms, 2006.

293. U. Meyer, P. Sanders, and J. Sibeyn (Eds.). Algorithms for Memory Hierarchies, Springer-Verlag,

Berlin, Germany, 2003.

294. O. Procopiuc, P.K. Agarwal, L. Arge, and J.S. Vitter. BKD-tree: A dynamic scalable KD-tree. In

Proceedings of the International Symposium of Spatial and Temporal Databases, volume 2750 of

Lecture Notes in Computer Science, 46–65, 2003.

295. N. Rahman and R. Raman. Analysing the cache behaviour of non-uniform distribution sorting

algorithms. In Proceedings of the European Symposium on Algorithms, 380–391, 2000.

296. P. Sanders. Asynchronous scheduling of redundant disk arrays. IEEE Transactions on Computers, 52

(9), 1170–1184, 2003.

297. R. Shah, P.J. Varman, and J.S. Vitter. Online algorithms for prefetching and caching in parallel

disks. In Proceedings of the 16th Annual ACM Symposium on Parallel Algorithms and Architectures,

Barcolona, Spain, 255–264, 2004.

298. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter. Efficient join processing over uncertain-

valued attributes. In Proceedings of the 2006 ACM Conference on Information and Knowledge

Management, 876–887, Nov. 2006.

299. J. Vahrenhold and K. Hinrichs. Planar point location for large data sets: To seek or not to seek.

ACM Journal of Experimental Algorithmics, 7, Aug. 2002.

300. M. Bender, M. Farach-Colton, and S. Muthukrishnan. Cache-oblivious string B-trees. In Proceed-

ings of the ACM Symposium on Principles of Distributed Systems, 233–242, 2006.

301. M. Berger, E.R. Hansen, R. Pagh, P. Patrascu, M. Ruzic, and P. Tiedmann. Deterministic load

balancing and dictionaries in the parallel disk model. In Proceedings of the ACM Symposium on

Parallel Algorithms and Architectures, 299–307, 2006.

302. M. Dietzfelberger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable.

In Proceedings of the International Conference on Automata, Languages, and Programming, 235–246,

1992.

303. R. Fagerberg, A. Pagh, and R. Pagh. External string searching: Faster and cache oblivious. In

Proceedings of the Symposium on Theoretical Aspects of Computer Science, 68–79, 2006.

304. Google Earth, earth.google.com.

305. J. Gudmundsson and J. Vahrenhold. I=O-efficiently pruning dense spanners. In Revised Selected

Papers of the Japanese Conference on Discrete and Computational Geometry, volume 3742 of Lecture

Notes in Computer Science, 106–116. Springer Verlag, 2005.

306. T. Hazel, L. Toma, R. Wickremesinghe, and J. Vahrenhold. TerraCost: A versatile and scalable

approach to computing least-cost-path surfaces for massive grid-based terrains. In Proceedings of

the Symposium on Applied Computing, 52–57, 2006.

307. J. Kärkkäinen and S.S. Rao, Full-text indexes in external memory. Chapter 7 in U. Meyer,

P. Sanders, and J. Sibeyn (Eds.), Algorithms for Memory Hierarchies, pp. 149–170, Springer-Verlag,

Berlin, Germany, 2003.

308. I. Katriel and U. Meyer. Elementary graph algorithms in external memory. Chapter 4 in U. Meyer,

P. Sanders, and J. Sibeyn (Eds.), Algorithms for Memory Hierarchies, pp. 62–84, Springer-Verlag,

Berlin, Germany, 2003.

309. M. Kowarschik and C. Weiß, An overview of cache optimization techniques and cache-aware

numerical algorithms. Chapter 10 in U. Meyer, P. Sanders, and J. Sibeyn (Eds.), Algorithms for

Memory Hierarchies, pp. 213–232, Springer-Verlag, Berlin, Germany, 2003.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 38 4.10.2007 3:35pm Compositor Name: VBalamugundan

16-38 Digital Systems and Applications

310. A. Maheshwari and N. Zeh. A survey of techniques for designing I=O-efficient algorithms. Chapter

3 in U. Meyer, P. Sanders, and J. Sibeyn (Eds.), Algorithms for Memory Hierarchies, pp. 36–61,

Springer-Verlag, Berlin, Germany, 2003.

311. R. Pagh and F.F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2), 122–144, 2004.

312. L. Toma and N. Zeh. I=O efficient algorithms for sparse graphs. Chapter 5 in U. Meyer, P. Sanders,

and J. Sibeyn (Eds.), Algorithms for Memory Hierarchies, pp. 85–109, Springer-Verlag, Berlin,

Germany, 2003.

313. N. Zeh. I=O efficient algorithms for shortest path related problems, Ph.D. Dissertation, School of

Computer Science, Carleton University, 2002.

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 39 4.10.2007 3:35pm Compositor Name: VBalamugundan

Algorithms and Data Structures in External Memory 16-39

Vojin Oklobdzija/Digital Systems and Applications 6195_C016 Final Proof page 40 4.10.2007 3:35pm Compositor Name: VBalamugundan

17
Parallel I=O Systems

Peter J. Varman
Rice University

17.1 Introduction... 17-1

17.2 Parallel I=O Organization... 17-2

17.3 Performance Model for Parallel I=O 17-3

17.4 Mechanisms for Improving I=O Performance.......... 17-5

17.5 Limitations of Simple Prefetching
and Caching Strategies.. 17-6

17.6 Optimal Parallel-Disk Prefetching 17-7
Algorithm Priority-Controlled Greedy I=O . L-OPT:

Priority Assignment

17.7 Optimal Parallel-Disk Caching 17-9

17.8 Randomized Data Placement 17-10

17.9 Out-of-Core Computations 17-10

17.10 Conclusion ... 17-11

17.1 Introduction

The I=O system is a critical bottleneck for many modern data-intensive applications. The demand for

greater storage capacity and high-speed access to stored data is growing rapidly. Disks, the most

common secondary-storage medium in use today, have shown remarkable improvements in capacity

and performance over the past decade. Innovations in disk technology have resulted in higher recording

densities, smaller form factors, increased spindle speeds, and the increased availability of multi-zoned

disks with variable transfer rates. Nonetheless, the storage requirements of modern applications is

growing at an even faster rate, exceeding the impressive capacity of modern disk drives, and necessitating

the use of multiple storage devices. Simultaneously the I=O rates required by these applications has

outstripped the data rates that can be provided by single disks, despite the very significant improvements

that have been made.

Consider as one example the growing use of digital multimedia in diverse applications ranging from

entertainment and education to medicine and commerce. Multimedia or multimedia-enhanced appli-

cations routinely manipulate digitized images and video and audio data, requiring tremendous amounts

of storage capacity, and placing stringent real-time constraints on the delivery rate to ensure smooth

playback. A single hour-long MPEG-compressed video stream recorded at a rate of 4 Mbits=s, would

require almost 2 GB of storage. A storage system with hundred or thousands of such clips would require

several storage devices, perhaps a combination of disks to keep the more popular clips online, and slower

tertiary tape storage to archive less popular video streams. The data transfer rate of a single disk is able to

support the real-time retrieval of at most a few tens of concurrent streams, and the capacity decreases

with increased video resolution and playback speeds. Analogous issues arise in other applications like

real-time databases [47] where large numbers of sensory inputs need to be continually monitored and

logged in an event database; critical events in turn may trigger the execution of data analysis routines

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 1 4.10.2007 3:29pm Compositor Name: VBalamugundan

17-1

that need to be complete within stipulated time bounds, placing a tremendous strain on the I=O

subsystem. Spatial databases in geographic information systems [7], temporal and kinetic databases

that track the evolution or movement of objects in time [2,47], Web and application servers, graphics

and visualization, and data mining systems, are other examples of the growing list of data-centric

applications requiring the use of parallel I=O [1]. Even in compute-intensive domains like scientific

computing applications, the scale of problems being addressed necessitates the use of advanced data

management techniques, including the use of concurrent I=O to achieve acceptable performance [41].

17.2 Parallel I=O Organization

In this chapter, a parallel I=O system will refer to a disk-based I=O subsystem, made up of multiple disk

drives that can access their data in parallel. Within this broad framework, different parallel I=O

organizations are conceivable and supported by different vendors. RAID (an acronym that now stands

for redundant array of independent disks) systems provide increased storage capacity and bandwidth by

incorporating multiple disk drives within a single storage unit, and employ fault-tolerance mechanisms

to cope with the increased failure probability stemming from the use of multiple devices [15]. Different

RAID organizations (traditionally referred to as RAID levels) using different redundancy techniques to

achieve fault tolerance have been proposed. RAID 1 uses data mirroring, whereby the entire disk

contents are mirrored on an additional disk. RAID 4 and RAID 5 systems (RAID 5 is probably the

most popular organization used in practice), employ the concept of a parity block to achieve fault

tolerance. The multiple-disk system is viewed as a collection of stripes. A stripe consists of a block

from each disk. One block of each stripe is designated as a parity block; it stores the bitwise exclusive-or

of the corresponding bits of each of the other blocks in that stripe. In the event of a single-disk

failure, the blocks on the failed disk can be reconstructed from the blocks in the same stripe on the

working disks. The storage overhead for fault-tolerance is much less than the 100% redundancy of RAID

1 systems. The penalty, however, is the increased time for a write, since an update to a data block

requires a read-modify-write operation on the parity block as well. A RAID 4 system uses a single

designated disk to hold the parity blocks of all the stripes. In RAID 5 the use of a roving parity block,

that associates different parity disks for different stripes, alleviates the potential parity-disk bottleneck of

a RAID 4 design. Other RAID organizations have been since proposed. RAID 6 systems permit the

failure of up to two disks without incurring any loss of data; these systems either use two parity blocks

with differently computed parities, or employ a two-dimensional arrangement of disks with associated

row and column parities. RAID 0 does not provide any fault tolerance, but allows data to be striped

across multiple disks thereby allowing high-bandwidth transfers to and from the disks. Hybrid com-

bination like RAID 10 and RAID 53 attempt to combine the advantages of different RAID levels in

a hybrid architecture [51].

The interconnection between the disk system and the server is also undergoing changes to facilitate

the increasingly parallel and distributed nature of storage systems. Traditional disk architectures use bus-

based interconnects like the small computer system interconnect (SCSI) to connect a set of devices to the

host [53]. A SCSI interconnect permits only a small number (7 or 15 depending on the SCSI protocol

level) of devices to be connected to a single controller using the shared bus. The maximum transfer rate

is small, starting at 5 MB=s for the original SCSI-1 protocol up to 40 MB=s for UltraSCSI.

More scalable I=O architectures are based on the use of switched interconnections. The high

performance parallel interface (HIPPI) [29] defines a point-to-point interconnection, with high speed

peak data transfer rates of 100 MB=s (HIPPI-800) to 800 MB=s (HIPPI-6400). Multiple devices are

interconnected using a cross-point switch. Fiber channel refers to a set of standards [25] being developed

by the American National Standards Institute (ANSI) that allows for an active intelligent interconnec-

tion scheme, called a fabric, to connect devices. It attempts to combine both network-oriented

communication methods and dedicated hardware-based channel communication into a single I=O

interface for both channel and network users. Different fiber channel topologies are supported including

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 2 4.10.2007 3:29pm Compositor Name: VBalamugundan

17-2 Digital Systems and Applications

point-to-point, cross-point switched, or an arbitrated loop (or ring topology) network. Fiber channel

supports its own protocol, as well as higher level protocols such as the FDDI, SCSI, HIPPI, and IPI,

enhancing its versatility, but increasing the potential compatibility problems as well. The fibre channel

standard addresses the need for fast transfers, up to 1 Gbits=s, of large amounts of information. Other

emerging interconnect standards include the switched InfiniBand architecture, a synthesis of formerly

competing System I=O and NextGeneration I=O proposals, with projected peak bidirectional rates of up

to 6 GB=s [30].

Another trend in I=O organizations is the decentralization of storage devices [24,45]. Storage area

networks (SAN) and network-attached storage devices (NASD) are two such directions towards

reducing the tight coupling between servers and devices in traditional I=O architectures. In a SAN,

multiple servers and devices are connected together by a dedicated high-speed network different from,

and in addition to, the local area network (LAN) connecting the servers and clients. Data transfer

between a server and a device occurs over this dedicated back-end network. Networked storage

architectures have several potential benefits. They facilitate sharing of disk-resident data between

multiple servers by avoiding the three-step process (read I=O, network transfer, write I=O) required in

transferring data on traditional server-hosted I=O architectures. Furthermore, they permit autonomous

data transfer between devices simplifying backup and data replication for performance or reliability, and

encourage the spatial distribution of devices on the network, while maintaining the capability for

centralized management. A network-attached storage device [26] allows many of the server functions

to be offloaded directly to the device. Once a request is authenticated by the server and forwarded to the

device, data transfer to the network proceeds independently without further involvement of the server.

In principle a NASD can be directly connected to the LAN or may serve as an independent module in a

back-end SAN.

Highly parallel I=O organizations with high-bandwidth interconnections that have the capability of

supporting hundreds of concurrent I=O transfers are a characteristic of current and evolving I=O

architectures. The physical realization in terms of interconnection and communication protocols,

redundancy and fault-tolerance, and balance between distribution and centralization of resources are

a continuing topic of current research. Complex issues dealing with cost, performance, reliability,

interoperability, security, and ease of configuration and management will need to be resolved, with

perhaps different configurations suitable in different application domains.

Whatever the physical manifestation, managing hundreds of concurrent I=O devices in order to fully

exploit their inherent parallelism and high interconnection bandwidth is a challenging problem.

To study the issues at a high level, configuration-independent abstract models such as the parallel

disk model (PDM) [58] have been proposed. Two extremes of logical I=O organizations based on

the memory buffer can be identified: in a shared-buffer organization there is a centralized memory

buffer shared by all the disks, and all accesses are routed through the buffer. In a distributed-buffer

organization each disk has a private buffer used exclusively to buffer data from that disk. The shared

configuration has the potential to make better use of the buffer space by dynamically changing

the portion of the buffer devoted to any disk based on the load. In contrast, the performance of the

distributed configuration can be limited by a few heavily loaded disks. Hybrid configurations are

possible as in a logically shared but physically partitioned buffer. Such an architecture provides

the scalability and modularity inherent in having distributed resources while providing increased

resource utilization due to sharing.

17.3 Performance Model for Parallel I=O

Parallel I=O systems have the potential to improve I=O performance if one can exploit disk parallelism

by performing multiple concurrent I=Os; however, it is a challenging problem to successfully exploit the

available disk bandwidth to reduce application I=O latency. According to increasing evidence, traditional

disk management strategies can severely under-utilize available bandwidth and therefore do not scale

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 3 4.10.2007 3:29pm Compositor Name: VBalamugundan

Parallel I=O Systems 17-3

well, leading to excessive I=O service time. As a consequence, several new algorithms for managing

parallel I=O resources, with the explicit intention of exploiting I=O parallelism have been recently

advanced [5,11,32–36,50,57].

The performance of a parallel I=O system is fundamentally determined by the pattern of disk accesses.

The simplest form of data access, sequential reading of a file, represents the canonical application that

can benefit from parallel I=O. Disk striping provides the natural solution for such an access pattern. The

file is broken into blocks, and the blocks are placed in a round-robin fashion on the D disks, so that every

Dth block is placed on the same disk. A main memory buffer of D blocks is used. In each I=O an entire

stripe of D consecutive blocks, one block from each disk, is read into the memory buffer. The number of

I=O steps is reduced by a factor of D over sequentially accessing the file from a single disk. Despite its

simplicity, disk striping is not the best solution for most other data access problems. For instance,

generalizing the above problem to concurrently read N sequential files, a disk-striping solution would

read D blocks of a single file in each I=O. The total buffer space required in this situation is ND blocks.

A more resource-efficient solution is to perform concurrent, independent read I=Os on the different

disks. In one parallel I=O, blocks from D different files are fetched from the D disks; this requires only

1=Dth the buffer of a disk striping solution if the blocks are consumed at the same rates. In fact, if the

blocks are consumed at a rate comparable to the I=O time for a block, then by using independent I=Os

only Q(D) blocks of buffer suffice.

In contrast to the uniform access patterns implied by the previous examples, a skewed data access

pattern results in hot spots, in which a single disk is repeatedly accessed in a short time period. The

bandwidth of the multiple-disk system is severely underutilized in this situation, and the performance

degrades to that of a single disk. Consider, for instance, the retrieval of constant data length (CDL) video

data, in which the frames are packed into fixed-size data blocks; the blocks are then placed on the disks

using either striped, random, or other disk allocation policy. If a number of such streams are read

concurrently, the access pattern consists of an interleaving of the blocks that depends on the playback

times of the blocks. For constant-bit rate (CBR) video streams the playback time of a block is fixed, and

(assuming striped allocation) the accesses are spread uniformly across the disks as in the example on

multiple file access. In the case of variable bit rate (VBR) video data streams, the accesses are no longer

uniformly distributed across the disks, but depend on the relative playback times of each of the blocks.

Consequently, both the load on a disk and the load across the disks varies as a function of time. In this

case, simply reading the blocks in the time-ordered interleaving of blocks, may no longer maximize the

disk parallelism, and more sophisticated scheduling strategies are necessary to maximize the number of

streams that can be handled by the I=O system [22].

The abstract model of the I=O system that will be used to analyze the quality of different schedules is

based on the PDM [58]: the I=O system consists of D independent disks, which can be accessed in

parallel, and has a buffer of capacity M, through which all disk accesses occur. The computation

requests data in blocks—a block is the unit of disk access. The I=O trace of a computation is

characterized by a reference string, which is an ordered sequence of I=O requests made by the

computation. In serving a reference string the buffer manager determines which blocks to fetch and

when to fetch them so that the computation can access the blocks in the order specified by the reference

string. The computation waits for data from the I=O system only when the data are not available in the

buffer. Additionally, when an I=O is initiated on one disk, blocks can be concurrently fetched from

other disks. The number of parallel I=Os that are issued is a measure of performance in this model.

Because the buffer is shared by all disks it is possible to allocate buffer space unevenly to different disks

to meet the changing load on different disks. The PDM assumes unit time I=Os. In many applications

like those dealing with streaming data, data logging or in several scientific computations, where large

block sizes are natural, this is a viable and useful idealization. In these situations, the number of I=Os

has a direct relationship to the I=O time. In other cases where requests are for small amounts of data

and access times are dominated by the seek and rotational latency components, no analytical models

are widely applicable. In these cases, empirical evaluations need to be employed in estimating perform-

ance [19,23].

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 4 4.10.2007 3:30pm Compositor Name: VBalamugundan

17-4 Digital Systems and Applications

17.4 Mechanisms for Improving I=O Performance

Prefetching and caching are two fundamental techniques that are employed for increasing I=O per-

formance. Prefetching refers to the process of initiating a read from a disk before the computation

demands the data. In a parallel I=O system, while a read progresses on one disk, reads can be started

concurrently on other disks to prefetch data that are required later. These prefetched blocks are held in

the I=O buffer till needed. In this way a temporary concentration of accesses to a small subset of the disks

is tolerated by using the time to prefetch from the disks that are currently idle; when the locality shirts to

the latter set of disks, the required data are already present in the buffer.

In contrast to prefetching that masks disk latencies by overlapping the access with that of I=Os to

other disks, caching attempts to exploit temporal locality in the accesses. A selected subset of the recently

accessed blocks are held in the I=O buffer in the expectation that they will be referenced again soon,

thereby avoiding repeated disk accesses for the same block. Although both prefetching and caching are

well-known techniques employed ubiquitously in computer systems and networking, deploying these

mechanisms effectively in a parallel I=O system raises a unique set of challenges.

The I=O schedule determines the set of blocks that are fetched in each parallel I=O operation. The

schedule is constructed dynamically so as to minimize the total number of parallel I=Os. This requires

the scheduler to decide which blocks to prefetch, and, when the need for replacement arises, to decide

which blocks in the buffer to cache and which to evict. Prefetching and caching in parallel I=O systems is

fundamentally different from that in systems with a single disk, and requires the use of substantially

different algorithms [11,32–36]. In a single-disk system, prefetching is used to overlap I=O operations

with CPU computations. This is usually done using asynchronous I=O whereby a computation con-

tinues after making the I=O request without blocking. A stall model for analyzing the performance of

overlapped I=O and computation was proposed in [17] for a single disk system; prefetching and caching

algorithms to minimize stall time as a function of CPU and I=O speeds were presented in [5,17]. Disk

scheduling algorithms that reorder I=O requests to minimize the disk seek times [59] can also be

considered as a form of prefetching in single-disk systems.

In parallel I=O systems prefetching allows overlap between accesses on different disks thereby hiding

the I=O latency behind the access latency on some other disk. The scheduler has to judiciously decide on

questions like how much buffer to allocate for prefetching and how much for caching, which blocks to

prefetch, and which blocks to cache. For instance, to utilize the available bandwidth, it may appear

desirable to keep a large number of disks busy prefetching data during an I=O; however, excessive

prefetching can fill up the buffer with blocks, which may not be used until much later in the

computation. Such blocks have the adverse effects of choking the buffer and reducing the parallelism

in fetching more immediate blocks. In fact, even when the problem does not involve the use of caching,

the decisions of which blocks to prefetch and when to do so is not trivial.

Another issue needs to be addressed to employ prefetching and caching effectively. In order to prefetch

accurately (rather than speculatively) some knowledge of future accesses is required. This is embodied in

the notion of lookahead, which is a measure of the extent of knowledge about the future accesses that is

available inmaking prefetching and caching decisions. Obtaining this lookahead has been the area ofmuch

active research [13,40,43,50]. In some applications like external sorting the lookahead can be obtained

dynamically by using a sample of the data to accurately predict the sequence of block requests [10]. In

video retrieval the sequence is determined by the playback times of blocks in the set of concurrently

accessed streams; summary statistics of the streams are used to obtain the lookahead at run time [22].

Indexes in database systems can similarly be used to provide information about the actual sequence of data

blocks that must be accessed. In broadcast servers the set of requests are prioritized by the system to

maximize utilization of the broadcast channel [4]; the prioritized request sequence provides the lookahead

for required I=O accesses. Access patterns can be revealed to the system either using programmer provided

hints [50], or the systemmay attempt to uncover sequential or strided access patterns automatically at run

time [40]. Speculative execution is another technique based on executing program code speculatively to

determine the control path and the blocks accessed in the path [13].

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 5 4.10.2007 3:30pm Compositor Name: VBalamugundan

Parallel I=O Systems 17-5

17.5 Limitations of Simple Prefetching and Caching Strategies

In [11,32], the problem of scheduling read-once reference strings, in which each block is accessed exactly

once, was considered. Such reference strings are characteristic of streaming applications like multimedia

retrieval. Simple intuitive algorithms that work well in a single-disk scenario were analyzed and shown to

have poor performance in the multiple-disk case. For instance, consider a natural scheduling algorithm

that we refer to as aggressive prefetching. In each I=O, the next block required from each disk is fetched

provided there is enough free buffer space; if not then only the block demanded immediately by the

computation is read. Such an aggressive prefetching scheme, while intuitively attractive, can be shown to

have poor worst-case as well as average-case performance. There exist worst-case reference strings for

which aggressive prefetching can perform Q(D) times as many I=Os as the optimal scheduling strategy

[11]. In the average case, when the accesses are assumed to be randomly distributed across the disks with

independent uniform probability, it has been shown that reading a reference string of length N requires

Q(N=D) I=Os using a buffer of size v(D2) blocks [48].

The problem with aggressive prefetching is that it prefetches too deep on some disks, holding up

buffer space that could better be used in fetching more immediately required blocks. A simple heuristic

to correct for this is to place a bound on the depth of prefetching. One such attractive policy is to always

give priority to a block that is required earlier in the reference string over one that is accessed later,

whenever there is insufficient buffer space to hold both blocks. Intuitively this scheme tries to keep all

disks busy by fetching greedily, but prevents blocks that are prefetched very much earlier than their time

of usage from holding up buffer space that can be used by other more urgently needed blocks. This

greedy algorithm is referred to as earliest required first (ERF) prefetching.

Consider the following example of an I=O system with three disks and an I=O buffer of capacity 6.

Let the blocks labeled ai (respectively bi, ci) be placed on disk A (respectively B, C), and the reference

string be

a1 a2 a3 a4 b1 c1 a5 b2 c2 a6 b3 c3 a7 b4 c4 c5 c6 c7

Figure 17.1a shows the I=O schedule constructed by the ERF algorithm described above. In the first

step blocks a1, b1, and c1 are fetched concurrently in one I=O. When block a2 is requested, blocks a2, b2,

and c2 are fetched in parallel in step 2. Subsequently the buffer contains five blocks: a2, b1, b2, c1, and c2.

Next when a3 is requested, an I=O needs to be done to fetch it; however, there is buffer space for only one

(a)

(b)

Disk A

Disk B

Disk C

a1

b1

c1

Disk A

Disk B

Disk C

a1

b1

c1

a2

b2

c2

a3

c3

a4

c4

a5

b2

c5

a6

b3

c6

a7

b4

c7

a2

b2

c2

a3

b3

a4 a5

b4

c3

a6

c4

a7

c5 c6 c7

FIGURE 17.1 (a) Greedy ERF schedule. (b) Optimal schedule.

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 6 4.10.2007 3:30pm Compositor Name: VBalamugundan

17-6 Digital Systems and Applications

additional block besides a3, and the choice is between fetching b3, c3, or neither. Fetching greedily in the

order of the reference string means that we fetch b3. Continuing in this manner we obtain a schedule of

length 9. Figure 17.1b presents an alternative schedule for the same reference string. The first two steps in

the schedule are identical to the previous case. In step 3, c3 that occurs after b3 is prefetched; and in step

4, c4 is fetched by evicting b2 even though c4 is referenced only after b4; however, by doing so the overall

length of the schedule is reduced to 7, better than the previous schedule.

The ERF algorithm was analyzed in [11]. It was shown that there exist reference strings for which ERF

will perform Q(
p
D) times as many I=Os as the optimal schedule. For the average case, under the same

assumptions as for aggressive prefetching, it can be shown that ERF can read an N block reference string

in Q(N=D) I=Os using a buffer of size v(D log D) blocks [10]. Hence, although ERF improves upon

aggressive prefetching, it does not construct the optimal-length schedule.

In the previous discussion, all blocks were implicitly assumed to be distinct. Such reference strings are

called read-once and are characteristic of streaming applications like multimedia retrieval. General

reference strings where each block can be accessed repeatedly introduce additional issues related to

caching. In particular, decisions need to be made regarding which blocks to evict from the buffer. In a

single-disk system the optimal offline caching strategy is to use the MIN algorithm [12] that always

evicts the block whose next reference is furthest in the future; however, it is easy to show that using this

policy in a multiple-disk situation does not necessarily minimize the total number of parallel I=Os that

are required. In fact, there exist reference strings for which the use of the MIN policy necessitates Q(D)

times as many I=Os as an optimal caching strategy [34].

17.6 Optimal Parallel-Disk Prefetching

In this section, we present an online prefetching algorithm L-OPT for read-once reference strings. L-OPT

uses L-block lookahead; at any instant L-OPT knows the next L references, and uses this lookahead to

determine blocks to fetch in the next I=O. It uses a priority assignment scheme to determine the

currently most useful blocks to fetch and to retain in the buffer. As the lookahead window advances and

information about further requests are made available, the priorities of blocks are dynamically updated

to incorporate the latest information. When considered as an offline algorithm for which the entire

reference string is known in advance, it has been shown that L-OPT is the optimal prefetching algorithm

that minimizes the number of parallel I=Os [32].

L-OPT is a priority-controlled greedy prefetching algorithm. A priority-controlled greedy prefetching

scheme provides a general framework for describing different prefetching algorithms. Blocks in the looka-

head are assigned priorities depending on the scheduling policy in effect. The scheduler fetches one

block each from as many disks as possible in every I=O, while ensuring that the buffer never retains

a lower-priority block in preference to fetching one with a higher priority, if necessary by evicting the

lower-priority blocks. Algorithm priority-controlled greedy I=O describes the algorithm formally using

the definitions below.

Different prefetching policies can be implemented using this framework merely by changing the

priority function. For instance, to implement the ERF prefetching algorithm the priority of blocks

should decrease with their position in the reference string. This is easily achieved if the priority function

assigns the ith block in the reference string a priority equal to �i. Similarly, prefetching strategies akin to

aggressive prefetching can be emulated by assigning the ith referenced block from each disk a priority of

þ1 if it is the demand block and �i otherwise.
Definitions

1. Let S¼ b1, b2, . . . , bn denote the reference string. If bi is a block in the lookahead, let disk

(bi) denote the disk from which it needs to be fetched and let priority (bi) be the block’s

priority.

2. At the instant when bi is referenced, let Bi denote the set of blocks in the lookahead that are

present in the buffer.

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 7 4.10.2007 3:30pm Compositor Name: VBalamugundan

Parallel I=O Systems 17-7

3. When bi is referenced, let Hi be the maximal set of (up to) D blocks, such that if b 2 Hi then

priority of b is the largest among all blocks from disk(b) in the lookahead but not present in the

buffer.

4. Let Bi
þ be the maximal set of (up to)M blocks with the highest priorities in Hi [Bi; in the case of

ties the block occurring earlier in S is preferred.

17.6.1 Algorithm Priority-Controlled Greedy I=O

On a request for a block, bi, the algorithm takes the following actions.

If bi is present in the buffer then no I=O is necessary.

If bi is not present in the buffer then

update priorities of blocks using blocks revealed since the last I=O;

accommodate the blocks to be read in, evict the blocks in Bi�Bi
þ; and

initiate an I=O to fetch the blocks in Hi \ Bi
þ.

Service the request for block bi.

Implementing the priority-controlled greedy I=O algorithm can be done using a simple forecasting

data structure similar to that in [10], to maintain the list of blocks with highest priority on each disk. On

a hit in the buffer, the algorithm does not need to do any bookkeeping. When the requested block is not

present in the buffer the algorithm needs to find the set of blocks to fetch and the corresponding set of

blocks to evict from the buffer. If we have all the blocks in the buffer maintained and sorted in order of

their priorities, then we can choose the D blocks to fetch and evict in O(MþD) time. With standard

linked data structures, logarithmic update times are sufficient for these operations.

In contrast to the static priority assignments for ERF and aggressive prefetching, the priority function

of the optimal algorithm L-OPT depends on the relative distribution of the load on different disks.

Furthermore, as more lookahead is revealed, the previously assigned priorities of blocks may change as a

result of the new information. At any time, the blocks in the lookahead are partitioned into two

subsequences called the current and future window, respectively. At the start all blocks in the lookahead

are in the current window and the future window is empty. As new blocks are revealed they are added to

the future window. When the last block of the current window is referenced, the future window becomes

the current window and a new (empty) future window begins. The priorities of blocks in the current

window are fixed at the time the window became current, and do not change; however, the priorities of

blocks in the future window are updated to reflect new additions. All blocks in the future window have

priorities less than that of any block in the current window.

The priority assignment routine used by L-OPT to determine the priorities of blocks in a given piece

of the reference string is described below. At any instant the priority of a block is a reflection of how

urgently that block must be fetched. The lower the priority of a block, the later it can be fetched. The

central idea is to set the priority of a block as low as possible, subject to two constraints. Blocks from the

same disk are assigned priorities in order of their reference. Second, no block can have such a low

priority thatM or more blocks referenced after it have a higher or same priority. In the routine below the

variables lowestPriorityOnDisk[d] and lowestPriority track the smallest priority that can be assigned to a

block without violating the two constraints. The former is incremented whenever a block is placed on

disk d. The variable lowestPriority is incremented whenever M blocks with priority lowestPriority or

higher have been placed. A block is assigned the larger of these two priorities.

17.6.2 L-OPT: Priority Assignment

Assign priorities to blocks hb1,b2, . . . ,bni of the reference string.
Initialize

lowestPriority to 1

numberOfBlocksPlaced to 0

lowestPriorityOnDisk[1 . . .D] to 0

blocksWithPriority[1 . . . n] to 0

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 8 4.10.2007 3:30pm Compositor Name: VBalamugundan

17-8 Digital Systems and Applications

for i from n down to 1

if (lowestPriority> lowestPriorityOnDisk(disk(bi))) then assign

lowestPriorityOnDisk(disk(bi)) lowestPriority

assign priority(bi) lowestPriorityOnDisk(disk(bi))

increment lowestPriorityOnDisk(disk(bi))

increment blocksWithPriority(priority(bi))

increment numberOfBlocksPlaced

if (numberOfBlocksPlaced¼M) then

decrement numberOfBlocksPlaced by blocksWithPriority(lowestPriority)

increment lowestPriority

By using the priority assignment described here, it has been shown that L-OPT always creates a

schedule that is within a factor Q
p

(MD=L) times the length of the schedule created by the optimal

offline algorithm, and that this is the best possible ratio. In addition, L-OPT’s schedule is never more

than twice the length of that created by any online algorithm (including algorithms that consistently

make fortuitously correct guesses) that has the same amount of lookahead. Finally, note that if the entire

reference string is known in advance, then L-OPT is the optimal offline algorithm [32].

17.7 Optimal Parallel-Disk Caching

For general reference strings where blocks may be repeatedly accessed, the buffer manager must decide

which blocks to cache and which to evict. As noted earlier, the optimal single-disk caching policy

embodied in the MIN algorithm can be decidedly suboptimal in the parallel I=O case. Prefetching and

caching need to harmoniously cooperate in the multiple-disk situation. The caching problem has been

studied by several researchers in the recent past for different I=O organizations. For a distributed-buffer

configuration where each disk has its own private buffer, an algorithm P-MIN that generalizes MIN to

multiple disks was shown to be optimal [57]. P-MIN uses the furthest forward reference policy on each

disk independently to determine the eviction candidate for that disk. It initiates an I=O only on demand;

in the ensuing I=O operation it prefetches aggressively from every disk unless the reference to the block

to be prefetched is further than the references of all blocks currently in that buffer. For a shared-buffer

configuration in the stall-model of computation, a sophisticated near-optimal algorithm called Reverse-

Aggressive to minimize the stall time was proposed and analyzed in [36].

Recently, an optimal prefetching and caching algorithm, SUPERVISOR, for the parallel disk model

was presented in [34]. Like the L-OPT algorithm for prefetching, SUPERVISOR uses the general

framework of priority-controlled greedy I=O. The scheme for assigning priorities to references is,

however, considerably more complex than that used by L-OPT for read-once reference strings. Just as

a low priority with respect to prefetching indicates that an I=O for that block can be delayed, a low

priority with respect to caching indicates that the block can be evicted from the buffer.

Intuitively, SUPERVISOR assigns priorities in accordance with two principles: issue prefetches for

blocks close to their reference so that they do not wastefully occupy buffer space, and avoid caching a

block if there is any later free I=O slot available, which can be used to fetch it. Among possible candidates

for a block to cache, it is desirable to cache a block that will occupy the buffer for a smaller duration.

Hence, the question to be answered is: Given that at some time we would like two previously referenced

blocks in the buffer, which of these should have been cached and which should be fetched now? It is

preferable to cache the block whose previous reference is closer to the current time, as this reduces the

buffer pressure between the two previous accesses. SUPERVISOR uses this intuition to assign priorities

to blocks for prefetching and caching.

The formal details of the priority assignment algorithm used by SUPERVISOR are presented in [34].

The routine examines subsets of the lookahead consisting of M distinct references and then assigns

priorities to one block from each disk. The idea behind the assignment can be understood by consider-

ing the largest subsequence of the lookahead including the last reference and having at most M distinct

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 9 4.10.2007 3:30pm Compositor Name: VBalamugundan

Parallel I=O Systems 17-9

references. All blocks which are assigned the smallest priority should belong to this set. Otherwise there

will be some reference such that M or more blocks referenced after it have a higher, or same priority.

Which among these blocks should have the lowest priority? The lowest priority can be assigned to, at

most, one distinct reference from each disk. Additionally, among two blocks from the same disk, this

priority is assigned to the block with the previous reference outside this subsequence is earlier, because

we would rather not cache this block. It is shown in [34] that SUPERVISOR, which assigns priorities

based on the above principle is the optimal offline algorithm for parallel prefetching and caching in the

parallel disk model.

17.8 Randomized Data Placement

Randomizing the placement of blocks on the disks of a parallel I=O system is a method to reduce I=O

serialization caused by hot spots [10,11,33,35,37,52,55]. If blocks are distributed on the disks randomly

then the maximum number of accesses to a single disk in any sequence of requests can be bounded with

high probability. There are two potential benefits of randomized placement: the amount of memory

buffer required to smooth out the imbalance in disk accesses is greatly reduced, and good performance

can be achieved using simpler prefetching and caching algorithms.

In a randomized data placement scheme each block is placed on any of the D disks with a uniform

probability 1=D. The performance of two simple prefetching algorithms using randomized placement

has been analyzed in [10,33]. Using the results of [46], aggressive prefetching was shown to read a

reference string of N blocks in an expected number Q(N=D) I=Os using a smaller buffer, of size Q(D2)

blocks [32]. Note that dN=De is the minimum number of I=Os needed to read N blocks, so the scheme

performs within a constant factor of the minimum possible number of I=Os. The performance of ERF

that gives preference to blocks that occur earlier in the reference string was analyzed in [10] and shown

to require an expected Q(N=D) I=Os using a smaller buffer, of size Q(D log D) blocks. In an online

situation the two prefetching algorithms require different lookahead information. The aggressive pre-

fetching algorithm only needs to know the ordered sequence of accesses to be made from each disk

independently. The greedy priority-based algorithm needs to know the global ordering of accesses across

the disks. In some applications like external merging for instance, the global ordering can be inferred

from the local ordering by using a small amount of preprocessing [10].

Recently, it was shown how randomized placement coupled with data replication can be used to

improve I=O performance [37,50,55], particularly in [37] where two copies of each block are allocated

randomly to the disks. A scheduling algorithm decides which of the copies should be read in an I=O. It

was shown that N blocks can be read in [N=D]þ 1 I=Os with high probability, using only Q(D) blocks

of buffer storage [52].

For general reference strings a simple caching and prefetching algorithm that can be used in

conjunction with randomized data placement was presented in [35]. The algorithm uses the ERF policy

for prefetching and a variant of the least recently used buffer replacement policy to handle evictions. It

was shown that the expected number of I=Os performed by this algorithm is within a factorQ[log D=log

(log D)] of the number of I=Os performed by an optimal scheduling algorithm.

Randomized data placement can generally provide good expected performance using less buffer

memory and simpler disk management algorithms than those required to deal with worst-case data

placements.

17.9 Out-of-Core Computations

Out-of-core computation deals with the problems of solving computational problems that are too large

for the entire data set to fit in primary memory. Although the virtual memory mechanisms of modern

operating systems can handle the problem transparently by paging the required data in and out of main

memory on demand, the performance of such a solution is usually poor. Improved performance is

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 10 4.10.2007 3:30pm Compositor Name: VBalamugundan

17-10 Digital Systems and Applications

achieved by optimizing the algorithm to be sensitive to the constraints of the I=O subsystem. The

computation should be structured to provide spatial locality using data clustering, accesses should be

organized to expose temporal locality, and declustering should be used to exploit the parallelism

provided by the underlying I=O system. In many cases traditional in-core algorithms that deal with

minimizing the number of computations without explicit consideration of the data access costs perform

poorly when the data is disk-resident, necessitating the development of new algorithms or requiring

radical restructuring of the known algorithms to achieve good I=O performance.

External or out-of-core algorithms using parallel data transfers can be traced to the work by Aggarwal

and Vitter [3], generalizing earlier models, which dealt with sequential or nonblocked data transfers. The

model used in that work was more powerful than the PDM that models multiple-disk systems. A

number of out-of-core algorithms for external sorting, computational geometry, FFT data permutations,

linear algebra computations, scientific codes, and data structures for indexing complex multidimen-

sional data have since been developed [1–3,9,20,21,27,46,56,58]. The reader is referred to [1] and the

references therein for a comprehensive bibliography and discussion of these works.

Run-time environments to increase efficiency and simplify the programming effort in applications

requiring parallel I=O has been addressed by several research groups [6,8,14,16,18,28,31,38,39,42,44,54].

For a detailed discussion of the different proposals the reader is referred to [41,49].

17.10 Conclusion

Parallel I=O systems consisting of multiple concurrent devices are necessary to handle the storage and

bandwidth requirements of modern applications. Parallel I=O hardware and interconnection technology

will continue to evolve to meet the growing demands. New algorithms and system software are essential

to effectively manage the hundreds of richly interconnected concurrent devices. Caching and prefetching

are two fundamental techniques to improve data access performance by exploiting temporal locality and

latency hiding. In a parallel I=O system using these mechanisms effectively involve challenging issues,

which have been extensively studied over the past few years. These have resulted in the design of

optimal algorithms for prefetching and caching, techniques to obtain lookahead of the I=O accesses,

external algorithms for important problems, and file system and I=Oprimitives to support parallel I=O.As

systems grow larger and more complex, challenging problems to control and manage the parallelism

automatically and effectively will continue to be explored. Building on the fundamental understanding of

what works and the algorithms required to control them, tools to automatically perform configuration,

dynamic declustering, replication, prefetching, and caching will continue to be developed. Finally,

although this chapter deals primarily with disk I=O, it can be readily seen that many of the issues transcend

device specificity and apply in more general contexts dealing with managing and processing multiple

concurrent I=O streams, using limited storage and bandwidth resources, as in embedded system

environments.

Acknowledgment

Supported in part by NSF grant CCR-9704562.

References

1. J.M. Abello and J.S. Vitter (Eds.). External Memory Algorithms, Volume 50 of DIMACS Series in

Discrete Mathematics and Theoretical Computer Science. DIMACS, American Mathematical Soci-

ety, Providence, RI, 1999.

2. P.K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proceedings ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, May 2000.

3. A. Aggarwal and J.S. Vitter. The input=output complexity of sorting and related problems. Com-

munications of the ACM, 31(9): 1116–1127, Sep. 1988.

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 11 4.10.2007 3:30pm Compositor Name: VBalamugundan

Parallel I=O Systems 17-11

4. D. Aksoy and M. Franklin. RxW: A scheduling approach to large scale on-demand broadcast.

IEEE=ACM Transactions on Networking, 7: 846–861, Dec. 1999.

5. S. Albers, N. Garg, and S. Leonardi. Minimizing stall times in single and parallel disk systems. In

Proceedings of the ACM Symposium on Theory of Computing, pp. 454–462, 1998.

6. T.E. Anderson et al. Serverless network file systems. ACM Transactions on Computer Systems, 14(1):

41–79, Feb. 1996.

7. L. Arge. External-memory algorithms with applications in geographic information systems. In M.

van Kreveld, J. Nievergelt, T. Roos, and P. Windmayer (Eds.). Algorithmic Foundations of GIS,

volume 1340, Lecture Notes in Computer Science, Springer-Verlag, 1997.

8. R.H. Arpaci-Dusseau et al. Cluster I=O with river: making the fast case common. In Proceedings 6th

ACM Workshop on I=O in Parallel and Distributed Systems, pp. 68–77, Atlanta, GA, 1999.

9. L.M. Baptist and T.H. Cormen. Multidimensional, multiprocessor out-of-core FFTs with distributed

memory and parallel disks. In Proceedings 11th ACM Symposium on Parallel Algorithms and

Architectures, June 1999.

10. R.D. Barve, E.F. Grove, and J.S. Vitter. Simple randomized merge-sort on parallel disks. Parallel

Computing, 23(4): 601–631, June 1996.

11. R.D. Barve, M. Kallahalla, P.J. Varman, and J.S. Vitter. Competitive parallel disk prefetching and

buffer management. J. of Algorithms, 36(2): 152–181, Aug. 2000.

12. A. Belady. A study of replacement algorithms for a virtual storage computer. IBM Systems Journal, 5

(2): 78–101, 1996.

13. F. Chang and G.A. Gibson. Automatic I=O hint generation through speculative execution. In Pro-

ceedings of Third Symposium on Operating Systems Design and Implementation, pp. 1–14, Feb. 1999.

14. A. Choudhary et al. Data management for large-scale scientific computations in high performance

distributed systems. In Proceedings of the 8th IEEE Symposium on High Performance Distributed

Systems, Aug. 1999.

15. P.M. Chen et al. RAID: High performance and reliable secondary storage. ACM Computing Surveys,

26(2): 145–185, 1994.

16. Y.M. Chen et al. Automatic parallel I=O performance in Panda. In Proceedings of the 10th ACM

Symposium on Parallel Algorithms and Architectures, pp. 108–118, June 1998.

17. P. Cao, E. Felten, A. Karlin, and K. Li. A study of integrated prefetching and caching strategies. In

Proceedings ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

1995.

18. P.F. Corbett and D.G. Feitelson. The Vesta Parallel File System. ACM Transactions on Computer

Systems, 14(3): 225–264, Aug. 1996.

19. T.H. Cormen and M. Hirschl. Early experiences in evaluating the parallel disk model with the ViC*

implementation. Parallel Computing, 23(4–5): 571–600, June 1997.

20. T.H. Cormen and D.M. Nicol. Performing out-of-core FFTs on parallel disk systems. Parallel

Computing, 24(1): 5–20, Jan. 1998.

21. T.H. Cormen, T. Sundquist, and L.F. Wisniewski. Asymptotically tight bounds for performing

BMMC permutations on parallel disk systems. SIAM Journal of Computing, 28(1): 105–136, 1999.

22. O. Ertug, M. Kallahalla, and P.J. Varman. Real-time parallel disk scheduling for VBR video servers.

In Proceedings 5th International Conference on Computer Science and Informatics, Feb. 2000.

23. S. Evgenia and D.A. Reed. Workload characterization of input=output intensive parallel applica-

tions. In Proceedings of Modeling Techniques and Tools for Computer Performance Evaluation, Volume

1245, Lecture Notes in Computer Science, Springer-Verlag, pp. 169–280, June 1997.

24. M. Farley. Building Storage Networks, Osborne=McGraw-Hill, 2000.

25. Fibre Channel Industry Association. See www.fibrechannel.com.

26. G.A. Gibson et al. A cost-effective, high-bandwidth storage architecture. In Proceedings of the 8th

Conference on Architectural Support for Programming Languages and Operating Systems, 1988.

27. M.T. Goodrich, J.-J. Tsay, D.E. Vengroff, and J.S. Vitter. External-memory computational geometry.

In Proceedings of the IEEE Symposium on Foundations of Computer Science, pp. 714–723, Nov. 1993.

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 12 4.10.2007 3:30pm Compositor Name: VBalamugundan

17-12 Digital Systems and Applications

28. R.L. Haskin. Tiger Shark—A scalable file system for multimedia. IBM Systems Journal of Research

and Development, 42(2): 185–197, March 1998.

29. High Performance Networking Forum. See www.hnf.org.

30. InfniBand Trade Association. See www.infinibandta.org.

31. R. Jain, J. Werth, and J.C. Browne (Eds.). Input=Output in Parallel and Distributed Computer

Systems. Kluwer Academic Publishers, Norwell, MA, 1996.

32. M. Kallahalla and P.J. Varman. Optimal read-once parallel disk scheduling. In Proceedings 6th ACM

Workshop on I=O in Parallel and Distributed Systems, pp. 68–77, Atlanta, GA, 1999. (An expanded

version is available at www.ece.rice.edu=�pjv).
33. M. Kallahalla and P.J. Varman. Randomized prefetching and caching. In Randomization in Parallel

and Distributed Systems, S. Rajasekaran and S. Pardalos (Eds.), Kluwer Academic Press, Dordrecht,

the Netherlands, 1999.

34. M. Kallahalla and P.J. Varman. Optimal prefetching and caching for parallel I=O systems. Proceed-

ings 13th ACM Symposium on Parallel Algorithms and Architectures, July 2001.

35. M. Kallahalla and P.J. Varman. Analysis of simple randomized buffer management for parallel I=O,

Online version available at www=ece=rice.edu=�pjv. (to be published in Information Processing

Letters).

36. T. Kimbrel and A.R. Karlin. Near-optimal parallel prefetching and caching. SIAM J. of Computing, 5

(3): 79–119, March 1988.

37. J. Korst. Random duplicate assignment: an alternative to striping in video servers. In Proceedings

ACM Multimedia Conference, pp. 219–226, 1997.

38. D. Kotz. Disk-directed I=O for MIMD multiprocessors. ACM Transactions on Computer Systems,

15(1): 41–74, Feb. 1997.

39. W.B. Ligon III and R.B. Ross. Implementation and performance of a parallel file system for high

performance distributed applications. In Proceedings of the 5th IEEE International Symposium on

High Performance Distributed Computing, pp. 471–480, Aug. 1996.

40. T. Madyastha and D.A. Reed. Input=output access pattern classification using hidden Markov

models. In Proceedings of 5th Workshop on I=O in Parallel and Distributed Systems, Nov. 1997.

41. J.M. May. Parallel I=O for High-Performance Computing. Morgan Kaufmann Publishers, Academic

Press, San Diego, CA, 2001.

42. E.L. Miller and R.H. Katz. RAMA: An easy-to-use, high-performance parallel file system. Parallel

Computing, 23(4–5): 419–446, June 1997.

43. T.C. Mowry, A.K. Demke, and O. Krieger. Automatic compiler-inserted I=O prefetching for out-of-

core applications. In Proceedings 2nd Symposium on Operating Systems Design and Implementation,

pp. 3–17, Oct. 1996.

44. S.A. Moyer and V.S. Sunderam. Scalable concurrency control for parallel file systems (in [1]).

45. National Storage Industry Consortium. See www.nsic.org.

46. M.H. Nodine and J.S. Vitter. Greed sort: An optimal sorting algorithm for multiple disks. Journal of

the ACM, 42(4): 919–933, July 1995.

47. G. Ozsoyoglu and R. Snodgrass. Temporal and real-time databases: a survey. IEEE Transactions on

Knowledge and Data Engineering, 7(4): 513–532, 1995.

48. V.S. Pai, A. Schaffer, and P.J. Varman. Markov analysis of multiple-disk prefetching strategies for

external merging. Theoretical Computer Science, 128(1–2): 211–239, June 1994.

49. Parallel I=O Bibliography. See http:==www.cs.dartmouth.edu=pario=bib=.

50. R.H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching and

caching. In Proceedings 15th ACM Symposium on Operating System Principles, pp. 79–95, Dec. 1995.

51. RAID Advisory Board. See www.raid-advisory.com.

52. P. Sanders, S. Egner, and J.H.M. Korst. Fast concurrent access to parallel disks. In Proceedings of the

SIAM Symposium on Discrete Algorithms, pp. 849–858, Jan. 2000.

53. SCSI Trade Organization. See www.scsita.org.

54. R. Thakur et al. Passion: Optimized I=O for parallel applications. Computer, 29(6), June 1996.

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 13 4.10.2007 3:30pm Compositor Name: VBalamugundan

Parallel I=O Systems 17-13

55. R. Tewari, R. Mukherjee, D. Dias, and H. Vin. Design and performance tradeoffs in clustered video

servers. In Proceedings of the International Conference on Multimedia and Systems, pp. 144–150, 1996.

56. S. Toledo. A survey of out-of-core algorithms in numerical linear algebra (in [1]).

57. P.J. Varman and R.M. Verma. Tight bounds for prefetching and buffer management algorithms for

parallel I=O systems. IEEE Transactions on Parallel and Distributed Systems, 10: 1262–1275, Dec.

1999.

58. J.S. Vitter and E.A.M. Shriver. Optimal algorithms for parallel memory, I: Two-level memories.

Algorithmica, 12(2–3): 110–147, 1994.

59. L. Zheng and Per-Ake Larson. Speeding up external mergesort. IEEE Transactions on Knowledge and

Data Engineering, 8(2): 322–332, April 1996.

Vojin Oklobdzija/Digital Systems and Applications 6195_C017 Final Proof page 14 4.10.2007 3:30pm Compositor Name: VBalamugundan

17-14 Digital Systems and Applications

18
A Read Channel for
Magnetic Recording

Bane Vasić
University of Arizona

Miroslav Despotović
University of Novi Sad

Pervez M. Aziz
Agere Systems

Necip Sayiner
Agere Systems

Ara Patapoutian
Maxtor

Brian Marcus
IBM Almaden Research Center

Emina Šoljanin
Lucent Technologies

Vojin Šenk
University of Novi Sad

Mario Blaum
IBM Almaden Research Center

18.1 Recording Physics and Organization
of Data on a Disk .. 18-2
Magnetic Recording Basics . Physical Organization of Data

on Disk . Logical Organization of Data on a Disk .

Increasing Recording Density . Physical Limits on Recording

Density . The Future

18.2 Read Channel Architecture... 18-11
Analog Front End . Precompensation . Partial-Response

Signaling with Maximum Likelihood Sequence Estimation .

Adaptive Equalization . Viterbi Detection . Timing

Recovery . Read Channel Servo Detection .

Postprocessor . Modulation Coding . Error Control

Coding . The Effect of Thermal Asperites . Error

Performance Measures

18.3 Adaptive Equalization and Timing Recovery............ 18-20
Adaptive Equalization . Adaptive Timing Recovery

18.4 Head Position Sensing in Disk Drives....................... 18-46
Introduction . Servo Writers . The Digital Field .

The Burst Field

18.5 Modulation Codes for Storage Systems 18-55
Introduction . Constrained Systems and Codes .

Constraints for ISI Channels . Channels with Colored

Noise and Intertrack Interference . An Example .

Future Directions

18.6 Data Detection... 18-65
Introduction . Partial-Response Equalization . Decision

Feedback Equalization . Detection in a Trellis . Advanced

Algorithms and Algorithms under Investigation

18.7 An Introduction to Error-Correcting Codes 18-91
Introduction . Linear Codes . Syndrome Decoding,

Hamming Codes, and Capacity of the Channel . Codes

over Bytes and Finite Fields . Cyclic Codes . Reed

Solomon Codes . Decoding of RS Codes: The Key

Equation . Decoding RS Codes with Euclid’s Algorithm .

Applications: Burst and Random Error Correction

A steady increase in recording densities and data rates of magnetic hard drives during last 15 years are

mostly due to advances in recording materials, read=write heads, and mechanical designs. The role of

signal processing and coding has been to make the best use of the capacity and speed potentials offered

by these advances. As the recording technology matures, the read channel is becoming more and more

advanced, reaching the point where it uses equally or even more complicated signal processing, coding

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 1 11.10.2007 8:39pm Compositor Name: TSuresh

18-1

and modulation algorithms than any other telecommunication channel and where, due to the speed,

power consumption, and cost requirements, the challenges in implementing new architectures and

designs have been pushed to today’s integrated circuit manufacturing technology limits.

This chapter reviews advanced signal processing, modulation, coding techniques, and architectures

for magnetic recording read channel. In the most general terms, the read channel controls the reading

and writing the data to=from magnetic medium (unjustifiably the ‘‘write’’ part has disappeared from its

name). The operations performed in the data channel are: timing recovery, equalization, data detection,

modulation coding=decoding, and limited error control. Besides this, so called data channel, a read channel

also has a servo channel, which role is to sense head position information, and, together with the head

positioning servo system, to regulate a proper position of the head above the track. This chapter gives an

in-depth treatment of all of these subsystems.

We begin with the review of the magnetic recording principles. We describe basic recording physics

and explain how the interactions among neighboring magnetic domains cause intersymbol interference

(ISI). Then we introduce a partial response signaling as a method of controlling the ISI. Section 18.1 also

describes physical and logical organization of data on a disk and methods of increasing recording

density.

Section 18.2 gives a block diagram of a state-of-the-art read channel and explain its subsystems. We

explain organization of data on the disc tracks, servo sectors and data sectors, seeking and tracking

operations, and phase and frequency acquisition. The section on servo information detection explains

sensing radial information and read channel subsystem used to perform this operation.

The treatment of the data channel begins with an in-depth treatment of partial response signaling and

adaptive equalization-standard techniques used in today’s read channels. The novel equalization

approaches and generalized partial response polynomials are also discussed in this section. We continue

with a maximum likelihood sequence detection algorithm—Viterbi algorithm—and a noise predictive

Viterbi algorithm, which enhances the performance by exploiting the fact that noise is highly colored

and can be therefore predicted to some extent. The data detection also includes error event correction

through post-processing, a new technique used in latest generation of read channels, as well as novel soft

decoding and iterative decoding techniques.

The fourth part of the chapter discusses modulation and error control coding. Modulation coding in a

read channel serves a variety of important roles. Generally speaking modulation coding eliminates those

sequences from a recorded stream that would degrade the error performance, for example, long runs of

consecutive like symbols that impact the timing recovery, or=and sequences that result in a signal on a

small Euclidian distance. We complete the coding section with error control coding—both traditional

algebraic techniques such as Reed Solomon codes, as well as with new trends such as iterative decoding.

The error control coding is not part of present read channel chips, but will be integrated in the next

generation of so-called ‘‘super chips.’’

We conclude this chapter by the review of read channel technology including novel read channel

architectures such as postprocessor, super chip, etc., as well as the issues of digital design, chip testing,

and manufacturing.

18.1 Recording Physics and Organization of Data on a Disk

Bane Vasić and Miroslav Despotović

18.1.1 Magnetic Recording Basics

The basic elements of a magnetic recording system are read=write head, which is an electromagnet with a

carefully shaped ferrous core, and a rotating disk with a ferromagnetic surface. Since the core of the

electromagnet is ferrous, the magnetic flux preferentially travels through the core. The core is deliber-

ately broken at an air gap. In the air gap, the flux creates a fringing field that extends some distance from

the core.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 2 11.10.2007 8:39pm Compositor Name: TSuresh

18-2 Digital Systems and Applications

To record data on a surface of a disk, the modulated signal current, typically bipolar, is passed through

the electromagnet coils thus generating a fringing magnetic field. The fringing magnetic field creates a

remanent magnetization on the ferromagnetic surface, i.e., the ferromagnetic surface becomes perman-

ently magnetic. Themagnetic domains in the surface act like tiny magnets themselves and create their own

fringing magnetic field above the ferromagnetic surface. The data are recorded in concentric tracks as a

sequence of small magnetic domains with two senses of magnetization depending on a sign of writing

current. In this, so-called saturation recording, the amplitude of twowriting current signal levels are chosen

sufficiently large so as to magnetize to saturation the magnetic medium in one of two directions. In this

way, the nonlinear hysteresis effect does not affect domains recorded over previously recorded ones.

In a simple reading scenario the reading head flies over the disk-spinning surface (at head-to-medium

velocity, v) and passes through the fringing magnetic fields above the magnetic domains. Depending on

a head type, the output voltage induced in the electromagnet is proportional to the spatial derivative of

the magnetic field created by the permanent magnetization in the material in the case of inductive heads,

or is proportional to the fringing magnetic field in the case of magneto-resistive heads. Today’s hard

drives use magneto-resistive heads for reading, because of their higher sensitivity. Pulses sensed by a

head in response to transition on the medium are amplified and then detected to retrieve back the

recorded data. For both types of heads, it is arranged that the head readback signal responds primarily to

transitions of the magnetization pattern. The simplest, single parameter model for an isolated magnetic

transition response is the so-called Lorenzian pulse (Figs. 18.1 and 18.2).

g(t) ¼ 1

1þ 2t

PW50

� �2

Recording surface

Head

Soft underlayer

Head

Write current

(a) (b)

FIGURE 18.1 (a) Longitudinal recording. (b) Perpendicular recording.

(b)

Magnetic transition

Orientation of
magnetic domains

(a)

Bit cell

FIGURE 18.2 Magnetic domains representing bits.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 3 11.10.2007 8:39pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-3

where t50 is a parameter representing the pulse width at 50% of the maximum amplitude. Simplicity and

relatively good approximation of the channel response are the main reasons for attractiveness of this

model. The family of g(t) curves for different t50 values is depicted in Fig. 18.3. The width at half

amplitude defines the recording process resolution, i.e., PW50,* as a spatial, while t50, as a temporal

measure, is alternatively in use (PW50¼ vt50).

Ideal conditions for readback process would be to have head that is sensing the medium in an

infinitely narrow strip in front of the head; however, head resolution is limited, so that the head output

depends on ‘‘past’’ and ‘‘future’’ bit cell magnetization patterns. Such dependence causes superposition

of isolated transition responses partly canceling each other. This phenomenon is known as intersymbol

interference (ISI). The interference is largest for transitions at minimum spacing, i.e., a spacing of a

single bit cell T. The response to two physically adjacent transitions is designated dibit response or symbol

response, i.e., h(t)¼ g(t)� g(t�T). Typical readback waveform illustrating these types of responses is

depicted in Fig. 18.4.

Mathematically, the noiseless input-output relationship can be expressed as

y tð Þ ¼
X1
i¼�1

xih t � iTð Þ ¼
X1
i¼�1

xi � xi�1ð Þg t � iTð Þ

where y and x 2 {�1,þ1} are readback and recorded sequences, respectively. Notice that every transition

between adjacent bit cells yields a response ±2g(t), while no transition in recorded sequence produces

zero output.

0.9

0.8

0.7

0.6

0.5g(
t)

0.4

0.3

0.2

0.1

0
−2 −1.5 −1 −0.5 0 0.5

Normalized time
1 1.5 2

1
t50=0.5
t50=1
t50=2

FIGURE 18.3 Transition response g(t)—mathematical model.

*This is not so strict because, contrary to this, some authors use PW50 designating temporal resolution.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 4 11.10.2007 8:39pm Compositor Name: TSuresh

18-4 Digital Systems and Applications

Normalized measure of the information density* is defined as the ratio D¼ t50=T showing how many

channel bits are packed ‘‘under’’ the dispersed pulse of duration t50. Case in which we are increasing

density (D> 2) is accompanied by an increase of duration of h(t) expressed in units of T, as well as rapid

decrease of the amplitude of dibit response, which is equivalent to lowering of signal-to-noise ratio in

the channel. As a consequence, any given bit will interfere with successively more preceding and

subsequent bits producing more severe ISI. At low normalized information densities, peaks of the

transition responses are clearly separated, so it is possible to read recorded data in simple manner by

detecting these peaks, i.e., peak detectors. Contrary to this, high-density detectors have to implement

more sophisticated detection methods in order to resolve combination of these effects. One of the most

important techniques to combat ISI in magnetic recording channels is partial-response (PR) signaling

with maximum-likelihood (ML) sequence detection, i.e., PRML detection, Section 18.5. The applicabil-

ity of this scheme in magnetic recording channels was suggested over 30 years ago [4], but the advance in

technology enabled first disk detectors of this type at the beginning of nineties [2].

The basic idea of a PR system is that certain controlled amount of ISI, at the channel equalizer output,

is left for a detector to combat with. The nature of controlled ISI is defined by a PR. This method avoids

full channel equalization and intolerable noise enhancement induced by it in a situation when amplitude

distortions, as a result of increased density, are severe. In magnetic recording systems the PR detector

reconstructs recorded sequence from samples of a suitable equalized readback signal at time instants

t¼ iT, i � 0. The equalization result is designed in a manner that produces just a finite number of

nonzero h(t) samples h0¼ h(0), h1¼ h(T), h2¼ h(2T), . . . hk¼ h(KT). This is usually represented in a

compact partial-response polynomial notation h(D)¼ h0þ h1Dþ h2D
2þ . . .þ hkD

k, where the dummy

variable Di signifies a delay of i time units T. Then the ‘‘sampled’’ input–output relationship is of

the form

y(jT) ¼
Xj
i¼j�k

xih(jT � iT)

For channel bit densities around D� 2, the target PR channels is usually the class-4 partial response

(PR4), described by h(D)¼ 1�D2¼ (1�D)(1þD). At higher recording densities Thapar and Patel [6]

introduced a general class of PR models with PR polynomial in the form hn(D)¼ (1�D)(1þD)n, n� 1

v

g(t)

−g(t)

h(t)

T

t50

FIGURE 18.4 Sketch of a typical readback waveform in magnetic recording.

*When channel coding is introduced, this density is greater than the user information density because of added

redundancy in the recorded channel sequence.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 5 11.10.2007 8:40pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-5

that is a better match to the actual channel discrete-time symbol response. Notice that the PR4 model

corresponds to the n¼ 1 case. The channel models with n� 2 are usually referred to as ‘‘extended class-4’’

models, and denoted by En�1 PR4 (EPR4, E2PR4). Recently, the modified E2PR4 (ME2PR4) channel, h

(D)¼ (1�D2)(5þ 4Dþ 2D2), was suggested due to its robustness in high-density recordings. Notice that

as the degree of PR polynomials gets higher, the transition response, g(t), becomes wider and wider in

terms of channel bit intervals, T (EPR4 response extends over 3-bit periods, E2PR4 over 4), i.e., the

remaining ISI is more severe.

The transfer characteristics of the Lorentzian model of the PR4 saturation recording channel (at

densities D� 2), is close to transition response given by

g(t) ¼ sin p t
T

� �
p t

T

þ sin p t�T
T

� �
p t�T

T

generating the output waveform described by

y(t) ¼
X1
i¼�1

(xi � xi�1)g(t � iT) ¼
X1
i¼�1

(xi � xi�2)
sin p t�iT

T

� �
p t�iT

T

Note that g(t)¼ 1 at consecutive sample times t¼ 0 and t¼T, while at all other discrete time instants, its

value is 0. Such transition response results in known ISI at sample times, leading to output sample values

that, in the absence of noise, take values from the ternary alphabet {0, ±2}. In order to decode the

readback PR sequence it is useful to describe the channel using the trellis state diagram. This is a diagram

similar to any other graph describing a finite-state machine, where states indicate the content of the

channel memory and branches between states are labeled with output symbols as a response to the

certain input (the usual convention is that for the upper branch leaving a state we associate input �1

andþ1 for the lower). The EPR4 channel has memory length 3, its trellis has 23¼ 8 states, and any input

sequence is tracing the path through adjacent trellis segments.

An example of the trellis diagram is given in Fig. 18.5 for the EPR4 channel. However, notice that in

PR trellis there are also distinct states for which there exist mutually identical paths (output sequences)

that start from those states, so that we can never distinguish between them (e.g., the all-zero paths

emerging from the top and bottom states of the EPR4 trellis). Obviously, such a behavior can easily lead

to great problems in detection in situations when noise can confuse us in resolving the current trellis

Channel
output input

0/−1
+2/+1

+2

+2

+2

−2

−2

+4

−4

−2

−2

0

0

0

0

0

Recorded sequence
Readback sequence

−1
+2

+1
+4

+1
+2

+1
0

−1
−2

−1
−4

+ = +1, − = −1
h(D)=1+D−D2−D3

−−−

−−+

−+−

−++

+−−

+−+

++−

+++

FIGURE 18.5 Trellis representation of EPR4 channel outputs.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 6 11.10.2007 8:40pm Compositor Name: TSuresh

18-6 Digital Systems and Applications

state (e.g., the bottom one for the upper in the running example). Such a trellis is so-called quasi-

catastrophic trellis and further details on this subject could be found in [3].

A common approach to studying the PR channel characteristics is to analyze its frequency spectra.

Basically, when the recording density is low (D� 0.5) and readback pulses are narrow compared to the

distance between transitions, such a signal contains a high-frequency component (highest frequency

components correspond to the fastest edge of the signal). With the growth of density, the spectral energy

distribution move towards lower frequency range. This means that for the system with D¼ 2, the signal

spectrum is concentrated below half of the channel bit rate given by 1=T. The power of the highest

spectral components outside this half-bandwidth range is negligible. This means that for high-density

recording we can limit the channel bandwidth to 1=2T without loss of information and filtering the high

frequencies containing noise only.

Finding the Fourier transform of the dibit response we obtain the frequency response for the PR4

channel given by

H(w) ¼ 1� ei2wT , jH(w)j ¼ 2 sin (wT), 0 � w � p

T

For higher order PR channels we have different transition responses and accordingly different frequency

responses calculated in a similar fashion as for the PR4 channel. The frequency response for these

channels is shown in Fig. 18.6.

These lower frequency spectrum distributions of PR channels are closer to a typical frequency content

of raw nonequalized pulses. Hence, equalization for extended PR channels can become less critical and

requires less high frequency boost that may improve signal-to-noise ratio.

18.1.2 Physical Organization of Data on Disk

In most designs, the head is mounted on a slider, which is a small sled-like structure with rails. Sliders

are designed to form an air bearing that gives the lift force to keep the slider-mounted head flying at the

3.5

3

2.5

M
ag

ni
tu

de 2

1.5

1

0.5

0
0 0.1 0.2

PR4

EPR4

Normalized frequency
0.3 0.4 0.5

FIGURE 18.6 Frequency response of PR4 and EPR4 channel.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 7 11.10.2007 8:40pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-7

small and closely controlled height (the

so-called Winchester technology). A small fly-

ing height is desirable because it amplifies the

readback amplitude and reduces the amount of

field from neighboring magnetic domains

picked by the head, thus enabling sharper tran-

sitions in the readback signal and recording

more data on a disk; however, the surface

imperfections and dust particles can cause the

head to ‘‘crash.’’ Controlling the head-medium

spacing is of critical importance to ensure high

readback signal, and stable signal range. It is

also important during reading to keep the

head center above the track being read to reduce magnetization picked up from neighboring tracks.

The signal induced in the head as a result of magnetic transitions in a neighboring track is known as a

cross talk or inter-track interference. In order to position the head, special, periodic, wedge-like areas,

the so-called servo wedges, are reserved on a disk surface for radial position information. They typically

consume 5–10% of the disk surface available. An arch of a track laying in a servo wedge is called a servo

sector. The area between servo wedges is used to record data, and a portion of a track between two servo

sectors is referred to as a data sector or data field. In other words, the data and servo fields are time

multiplexed, or using disk drive terminology, the servo field is embedded in the data stream. To estimate

radial position a periodic waveform in a servo sector is detected, and the radial position error signal is

calculated based on the current estimated position of a head and the actual position of the track to be

followed, and then used in a head positioning servo system (Fig. 18.7).

18.1.3 Logical Organization of Data on a Disk

On a disk, data are organized in sectors. For a computer system, the sector is a sequence of (8-bit) bytes

within each addressable portion of data on a disk drive. The sector size is typically 512 bytes. For an

error control system, the sector is a sequence of error control codewords or blocks. For interleaved error

control systems, each sector contains as many blocks as there are interleave cycles. The block elements

are symbols that are not necessarily eight bit long. In the most general terms, the symbols are used in the

error control coding (ECC) system to calculate and describe error locations and values.

A read channel sees a sector as a sequence of modulation codewords together with synchronization

bits. Synchronization field is partitioned into a sector address mark, or sync mark, typically of length

around 20 bits, and phase lock loop (PLL) field, a periodic pattern whose length is about 100 bits used

for PLL synchronization. In addition to this, a secondary sync mark is placed within a data field and

used for increased reliability. A zero-phase start pattern of length 8–16 bits is used for initial estimation

of phase in the PLL. Figure 18.8 illustrates the format of user data on a disk.

18.1.4 Increasing Recording Density

Increasing areal density of the data stored on a disk can be achieved by reducing lengths of magnetic

domains along the track (increasing linear density) and by reducing a track width and track pitch

(increasing radial density). Although the radial density is mostly limited by the mechanical design of the

drive and ability to accurately follow the track, the linear density is a function of properties of magnetic

materials and head designs, and ability to detect and demodulate recorded data.

As linear density increases, the magnetic domains on a surface become smaller and thus thermally

unstable, which means that lower energy of an external field is sufficient to demagnetize them. This

effect is known as a superparamagnetic effect [1]. Another physical effect is the finite sensitivity of the

read head, i.e., at extremely high densities, since the domains are too small; the signal energy becomes so

small as to be comparable with the ambient thermal noise energy.

Servo wedge

Track

Data sector

Servo sector

FIGURE 18.7 Data and servo sectors.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 8 11.10.2007 8:40pm Compositor Name: TSuresh

18-8 Digital Systems and Applications

The orientation of magnetization on a disk can be longitudinal, which is typical for today’s systems, or

perpendicular. The choice of the media influences the way the magnetization is recorded on the disk.

Media with needle shaped particles oriented longitudinally tend to have a much higher remanent

magnetization in the longitudinal direction, and favor longitudinal recording. The head design must

support the favorable orientation of magnetization. Longitudinal orientation requires head shapes that

promote longitudinal fields such as ring heads. Similarly, some media are composed of crystallites

oriented perpendicularly to the field. Such media have a much higher remanent magnetization in the

perpendicular direction, and favor perpendicular recording. If a head design promotes perpendicular

fields, such as single pole heads, the result is perpendicularly recorded magnetization.

Some recent experiments have shown that media that favor perpendicular recording have better

thermal stability. This is why, lately, perpendicular recording is attracting a considerable attention in

magnetic recording community. Typically, in perpendicular recording a recording surface is made of a

hard ferromagnetic material, i.e., material requiring large applied fields to permanently magnetize it.

Once magnetized, the domains remain very stable, i.e., large fields are required to reverse the magnet-

ization. The recording layer is made thick so that, since each magnetic domain contains a large number

of magnetic particles, larger energy is required for demagnetization. The low remanence, low coercivity,

materials (the so-called soft materials) are placed beneath hard ferromagnetic surface (soft underlayer)

and used to conduct magnetic field back to another electromagnet pole. A pole-head geometry is used,

so that the medium can effectively travel through the head gap, and be exposed to stronger magnetic

field. A pole-head=soft-underlayer configuration can produce about twice the field that a ring head

produces. In this way sharp transitions can be supported on relatively thick perpendicular media, and

high frequencies (that get attenuated during readback) are written firmly. However, effects of demag-

netizing fields are much more pronounced in perpendicular recording systems, because in longitudinal

media the transitions are not that sharp.

18.1.5 Physical Limits on Recording Density

At extremely high areal densities each bit of information is written on a very small area. The track width

is small and magnetic domains contain relatively small numbers of magnetic particles. Because the

particles have random positions and sizes, large statistical fluctuations or noise on the recovered signal

can occur. The signal-to-noise ratio is proportional to the track width, and is inversely proportional to

the mean size of the particle and the standard deviation of the particle size. Therefore, increasing the

track size, increasing the number of particles by increasing media thickness, and decreasing the particle

Sector

ECC block

PLL field zps Sync mark Data field

Parity Information bits Parity Information bitsInformation bits

Modulation codeword Modulation codewordModulation codeword

FIGURE 18.8 Format of data on a disk.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 9 11.10.2007 8:40pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-9

size will improve the signal-to-noise ratio. Uniaxial orientation of magnetic particles also gives higher

signal-to-noise ratio; however, the requirement for thermal stability over periods of years dictates a

lower limit to the size of magnetic particles in a magnetic domain because ambient thermal energy

causes the magnetic signals to decay. Achieving both small particle size and thermal stability over time

can be done by using magnetic materials with higher coercivity, but there is a strong practical upper

limit to the coercivity that can be written, and it is determined by the saturation magnetization of the

head material.

In addition to the basic physics, a number of practical engineering factors must be considered

at extremely high densities. In particular, these factors include the ability to manufacture accurately

the desired head geometries and control media thickness, the ability to closely follow the written tracks,

to control head flying height, and the ability to maintain a very small, stable magnetic separation.

18.1.6 The Future

The hard drive areal densities have grown at an annual rate approaching 100%. Recently a 20 Gbit=in.2

has been demonstrated [5], and some theoretical indications of feasibility of extremely high densities

approaching 1 Tbit=in.2 have been given [8,9]. Although the consideration related to user needs

including higher capacity, speed, error performance, reliability, environment condition tolerances, etc.

are important, the factors affecting cost tend to dominate read channel architecture and design

considerations. Thus, achieving highest recording density with lowest component costs at high manu-

facturing yields is the ultimate goal.

With areal densities growing at an annual rate approaching 100%, real concern continues to be

expressed that we may be approaching a limit to conventional magnetic recording technology; however,

as long as the read channel is concerned, large opportunities are available to improve on the existing

signal processing, both with detectors better matched to the channel and by applying more advanced

detection, modulation, and coding schemes.

References

1. S.H. Charrap, P.L. Lu, and Y. He, ‘‘Thermal stability of recorded information at high densities,’’ IEEE

Trans. Magn., pt. 2, vol. 33, no. 1, pp. 978–983, Jan. 1997.

2. J.D. Coker, et. al., ‘‘Implementation of PRML in a rigid disk drive,’’ in Digest of Magnetic Recording

Conf. 1991, paper D3, June 1991.

3. G.D. Forney and A.R. Calderbank, ‘‘Coset codes for partial response channels; or, coset codes with

spectral nulls,’’ IEEE Transactions on Information Theory, vol. IT-35, no. 5, pp. 925–943, Sept. 1989.

4. H. Kobayashi and D.T. Tang, ‘‘Application of partial response channel coding to magnetic recording

systems,’’ IBM J. Res. Dev., vol. 14, pp. 368–375, July 1970.

5. M. Madison, et al., ‘‘20 Gb=in.2 Using a merged notched head on advanced low noise media,’’ in

MMM Conference, Nov. 1999.

6. H. Thapar and A. Patel, ‘‘A class of partial-response systems for increasing storage density in magnetic

recording,’’ IEEE Trans. Magn., vol. MAG-23, pp. 3666–3668, Sept. 1987.

7. H. Osawa, Y. Kurihara, Y. Okamoto, H. Saito, H. Muraoka, and Y. Nakamura, ‘‘PRML systems for

perpendicular magnetic recording,’’ J. Magn. Soc. Japan, vol. 21, no. S2, 1997.

8. R. Wood, ‘‘Detection and capacity limits in magnetic media noise,’’ IEEE Trans Magn., vol. MAG-34,

no. 4, pp. 1848–1850, July 1998.

9. R. Wood, ‘‘The feasibility of magnetic recording at 1 Tbit=in.2,’’ 36 IEEE Trans. on Magnetics, vol. 36,

no. 1, pp. 36–42, Jan. 2000.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 10 11.10.2007 8:40pm Compositor Name: TSuresh

18-10 Digital Systems and Applications

18.2 Read Channel Architecture

Bane Vasić, Pervez M. Aziz, and Necip Sayiner

The read channel is a device situated between the drive’s controller and the recording head’s preamplifier

(Fig. 18.9). The read channel provides an interface between the controller and the analog recording head,

so that digital data can be recorded and read back from the disk. Furthermore, it reads back the head

positioning information from a disk and presents it to the head positioning servo system that resides in

the controller. A typical read channel architecture is shown in Fig. 18.10. During a read operation, the

head generates a pulse in response to magnetic transitions on the media. Pulses are then amplified by the

preamplifier that resides in the arm electronics module, and fed to the read channel. In the read channel,

the readback signal is additionally amplified and filtered to remove noise and to shape the waveform,

and then the data sequence is detected (Fig. 18.10). The data to be written on a disk are sent from a read

channel to a write driver that converts them into a bipolar current that is passed through the

electromagnet coils. Prior to sending to read channel, user data coming from computer (or from a

network in the network attached storage devices) are encoded by an error control system. Redundant

bits are added in such a way to enable a recovery from random errors that may occur during reading data

from a disk. The errors occur due to number of reasons including: demagnetization effects, magnetic

field fluctuations, noise in electronic components, dust and other contaminants, thermal effects, etc.

Traditionally, the read channel and drive controller have been separate chips. The latest architectures

have integrated them into so called ‘‘super-chips.’’

18.2.1 Analog Front End

As a first step, the read signal is normalized with respect to gain and offset so that it falls into an expected

signal range. Variation of gain and offset is a result of variations in the head media spacing, variations in

magnetic and mechanical and electronic components in the drive, preamplifier and read channel. The

front end also contains a thermal asperity (TA) circuit compensation. Thermal asperity occurs when

head hits a dust particle or some other imperfection on a disk surface. At the moment of impact,

the temperature of the head rises, and a large signal at the head’s output is generated. During TA a

useful readback signal appears as riding on the back of a low frequency signal of much higher energy.

Disk drive

Arm electronic
module

Preamplifier

Write
driver

Electromagnetic
actuator

Read/write
head

Disk

Spindle

To computer or network

Read
channel

Read path

Head
positioning
information

Write path

Air bearing Arm

Drive controller

Data

Head-positioning
servo

system

Error
control
system

FIGURE 18.9 The block diagram of a disk drive.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 11 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-11

The beginning of this ‘‘background’’ signal can be easily predicted and the TA signal itself suppressed by

a relatively simple filter.

High-frequency noise is then removed with a continuous-time low pass filter to permit a sampling of

the signal without aliasing of high-frequency noise back into the signal spectrum. The filter frequently

includes programable cut-off frequency, which can be used to shape the signal to optimize data

detection. A programmable cut-off frequency is essential since the disk rotates with constant angular

velocity, and data rate varies by approximately a factor of two from the inner to outer radius of the disc.

It is also important for the analog filter bandwidth to be switched to allow for low cut-off frequencies

when processing servo sector information.

18.2.2 Precompensation

Nonlinear bit shift in magnetic recording is the shift in position of a written transition due to the

demagnetizing field from adjacent transitions. In a PRML channel, the readback waverofm is synchron-

ously sampled at regular intervals, and the sample values depend on the position of written transitions.

Therefore, nonlinear bit shift leads to error in sample values which, in turn, degrades the channel

performance. The write precompensation is employed to counteract the nonlinear bit shift. However,

determining the nonlinear bit shift is not simple and straightforward especially when one tries to fine

tune each drive for its optimum precompensation. The precompensation circuit generates the write

clock signal whose individual transition timing is delayed from its nominal position by the required

Read channel

Adaptive
equalizer

Read/write
head

Quantizer

Offset
control

Viterbi
detector

LMS
coefficient
adaptation

Preamplifier
Low-pass

filter

Gain
control

Analog
FIR
filter

Post-
processor

EE control
encoding/
decoding

Modulation
encoding/
decoding

Write
precompensation

+

Servo
address

mark
&

burst
detector

SYNC
mark

detector

Timing
recovery

Thermal
asperity
compen-

sation
Recovered clock

Quality
monitor

To the controller

Variable
gain

amplifier

to the Controller

FIGURE 18.10 A typical read channel architecture.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 12 11.10.2007 8:41pm Compositor Name: TSuresh

18-12 Digital Systems and Applications

precompensation amount. The amount of precompensation and the bit patterns requiring precompen-

sation can be found using the extracted pulse shape [10,18]. Another approach is a frequency-domain

technique that offers simple measurement procedure and a possible hardware implementation using a

band-pass filter [32] or using PRML sample values [33].

18.2.3 Partial-Response Signaling with Maximum
Likelihood Sequence Estimation

After sampling with a rate 1=T, the read signal is passed through an analog or digital front end filter and

detected using a maximum likelihood sequence detector. The partial-response signaling with maximum

likelihood (PRML) sequence estimation is proposed for use in magnetic recording by Kobayashi 30 years

ago [15,16]. In 1990 IBM produced the first disk drives employing PRML detection. Today’s all read

channels are based on some version of the PRML. Cideciyan et al. [3] described a complete PRML

systems including equalization, gain and timing control, and Viterbi detector. All basic functions of a

PRML system have remained practically unchanged, until the introduction of a postprocessor that

performs a special type of soft error correction after maximum likelihood sequence detection. Also,

significant improvements in all the subsystems have been made during last 10 years. The term ‘‘partial

response’’ comes from the fact that the sample of the equalized signal at, say, time nT (T is a signaling

interval), contains information not only on data bits at time nT, but also on neighboring bits, i.e.,

magnetic transitions. The number of adjacent bits that determine the sample at nT is referred to as

channel memory. The channel memory is a parameter that can be selected in the process of defining a

read channel architecture. The channel memory and the details of the partial response selection are

made based on an attempt to have the partial response be as close a match to the channel as possible.

Since the complexity of a maximum likelihood detector is an exponential function of a memory, it is

desirable to keep the memory low, but, the equalization required to achieve this might boost the high-

frequency noise, which result in decrease of a signal-to-noise ratio, called equalization loss. The typical

value of channel memory in today’s read channels is 4. The value of an equalized sample at time nT, yn
can be written as

yn ¼
XLh
k¼0

hkxn�k

where xn is a user-data bit recorded at time n (xn 2 {�1, þ1}), and Lh is a channel memory. The

coefficients hk form, h(D) ¼PLh
k¼0 hk �Dk , a partial response polynomial or partial response target (D is a

formal, time-delay variable). The main idea in partial response equalization is to equalize the channel to

a known and short target that is matched to the channel spectrum so that noise enhancement is

minimum. Therefore, the deliberate inter-symbol interference is introduced, but since the target is

known, the data can be recovered, as explained in the previous article.

18.2.4 Adaptive Equalization

To properly detect the user-data it is of essential importance to maintain the partial response target

during the detection. This implies that channel gain, finite-impulse response (FIR) filter coefficients, and

sampling phase must be adaptively controlled in real-time. Continuous automatic adaptations allow the

read channel to compensate for signal variations and changes that occur when drive operation is affected

by changes in temperature or when the input signals are altered by component aging. Comparing the

equalizer output samples with the expected partial response samples generates an error signal, which is

used to produce adaptive control signals for each of the adaptive loops. For filter coefficients control, a

least-mean square (LMS) algorithm is used [4]. LMS operates in the time domain to find filter

coefficients that minimize the mean-squared error between the samples and the desired response. Initial

setting of the filter coefficients is accomplished by training the filter with an on-board training sequence,

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 13 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-13

and the adaptation is continued while chip is reading data. Adaptation can be in principle performed on

all coefficients simultaneously at lower clock rate or on one coefficient at a time. Because disk channels

variations are slow relative to the data rate, the time-shared coefficient adaptation achieves the same

optimum filter response while consuming less power and taking up less chip area. Sometimes, to achieve

better loop stability, not all filter coefficients are adapted during reading data. Also, before writing, data

are scrambled to whiten the power spectral density and ensure proper filter adaptation.

The FIR filter also compensates for the large amount of group-delay variation that may be caused by a

low-pass filter with a nonlinear phase characteristics. Filters with nonlinear characteristics, such as the

Butter-worth filter, are preferred over, say, an equi-ripple design of the same circuit complexity, because

they have much better roll-off characteristics. The number of FIR filter coefficients in practical read

channels has been as low as 3 and as high as 10 with various trade-offs associated with the different

choices, which can be made.

18.2.5 Viterbi Detection

In many communications systems, a symbol-by-symbol detector is used to convert individual received

samples at the output of the channel to corresponding detected bits. In today’s PRML channels, a

Viterbi detector is a maximum likelihood detector that converts an entire sequence of received equalized

samples to a corresponding sequence of detected bits. Let y¼ (yn) be the sequence of received

equalized samples corresponding to transmitted bit sequence x¼ (xn). Maximum likelihood sequence

estimation maximizes the probability density p(yjx) across all choices of transmitted sequence x [7]. In

the absence of noise and mis-equalization, the relationship between the noiseless equalized samples zn
and the corresponding transmitted bits is known by the Viterbi detector and is given by

zn ¼
XL
k¼0

hkxn�k (18:1)

In the presence of noise and mis-equalization the received samples will deviate from noiseless values.

The Viterbi detector considers various bit sequences and efficiently compares the corresponding

expected PR channel output values with those actually received. For Gaussian noise at the output of

the equalizer and equally probable input bits, maximizing p(yjx) is equivalent to choosing as the correct

bit sequence the one closest in a (squared) Euclidean distance sense to the received samples. Therefore,

the following expression needs to be to minimized

min
xk

XP�1

n¼0

yn �
XL
k¼0

hkxn�k

" #2 !
(18:2)

The various components of Eq. 18.3 are also known as branch metrics. The Viterbi detector accom-

plishes the minimization in an efficient manner using a trellis-based search rather than an exhaustive

search. The search is effectively performed over a finite window known as the decision delay or path

memory length of the Viterbi detector. Increasing the window length beyond a certain value leads to

only insignificant improvements of the bit detection reliability or bit error rate (BER).

Despite the efficient nature of the Viterbi algorithm the complexity of a Viterbi detector increases

exponentially with the channel memory of the PR target. A target with channel memory of L� 1

requires for example a 2L�1 state Viterbi detector trellis. For a fully parallel Viterbi implementation, each

Viterbi state contains an add-compare-select (ACS) computational unit, which is used to sum up the

branch metrics of Eq. 18.4 and keep the minimum metric paths for different bit sequences. Also required

for the hardware is a 2L�1� P bit memory to keep a history of potential bit sequences considered across

the finite decision delay window.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 14 11.10.2007 8:41pm Compositor Name: TSuresh

18-14 Digital Systems and Applications

18.2.6 Timing Recovery

A phase-locked loop (PLL) is used to regenerate a synchronous clock from the data stream. The PRML

detector use decision directed timing recovery typically with a digital loop filter. The digital loop filter

parameters can be easily controlled using programmable registers and changed when read channel

switches from acquisition to tracking mode. Because a significant pipelining is necessary in the loop

logic to operate at high speeds, the digital loop filter architecture exhibits a relatively large amount of

latency. It can affect considerably the acquisition time when the timing loop must acquire significant

phase and frequency offsets. To ensure that only small frequency offsets are present, the synchronizer

VCO is phase-locked to the synthesizer during nonread times. For fast initial adjustment of the sampling

phase, a known preamble is recorded prior to user data. The time adjustment scheme is obtained by

applying the stochastic gradient technique to minimize the mean squared difference between equalized

samples and data signal estimates. To compensate for offset between the rate of the signal received and

the frequency of the local timing source the loop filter design allows for a factor DTn to be introduced, so

that the sample at discrete time n is taken TþDTn seconds after the sample at discrete time n� 1.

In acquisition mode, in order to quickly adjust the timing phase, large values for loop gains are

chosen. In tracking mode, the loop gains are lowered to reduce loop bandwidth.

18.2.7 Read Channel Servo Detection

In an embedded servo system (introduced in the previous article), the radial position of the read head is

estimated from two sequences recorded on servo wedges: track addresses and servo-bursts. The track

address provides a unique number for every track on a disk, while a servo-burst pattern is repeated on

each track or on a group of tracks. Determining the head position using only the track number is not

sufficient because the head has to be centered exactly on a given track. Therefore, the servo-burst

waveform is used in conjunction with the track address to determine the head position. Using the servo-

burst pattern, it is possible to determine the off-track position of a head with respect to a given track

with a high resolution. While positioning the head over a surface, the disk drive can be in either seeking

or tracking operation mode. In a seeking mode, the head moves over multiple tracks, trying to reach the

track with a desired address as quickly as possible, while in a tracking mode, the head tries to maintain

its position over a track. The track addresses are therefore used mostly in the seeking mode, while servo-

burst information is usually used in the tracking mode [25,30].

In read channels, periodic servo-burst waveforms are detected and used to estimate radial position.

The radial position error signal is calculated based on the current estimated position and the position of

the track to be followed, and then used in an external head positioning servo system. Generally, two

types of position estimators are in use: maximum likelihood estimators based on a matched filtering and

sub-optimal estimators based on averaging the area, or the peaks, of the incoming periodic servo-burst

waveform. A variety of techniques have been used to demodulate servo bursts, including amplitude,

phase, and null servo detectors. Today, most read channels use an amplitude modulation with either

peak or area detection demodulators.

Older generation channels generally implemented the servo functions in analog circuitry. The analog

circuitry of these servo channels partially duplicates functions present in the digital data channel. Now,

several generations of read-channel chips have switched from analog to digital circuits and digital signal

processing [8,34]. These channels reduce duplication of circuits used for servo and data and provide a

greater degree of flexibility and programmability in the servo functions.

Typically, a single analog-to-digital converter (ADC) or quantizer is used for both data datection and

servo position error signal estimation [8,20,27,34], but quantizer requirements are different in data and

servo fields. Compared to position error signal estimators, data detectors require a quantizer with higher

sampling clock rate. On the other hand position error signal estimators require a quantizer with finer

resolution. A typical disk drive has a data resolution requirement of around 6 bits, and a servo resolution

requirement of around 7 or 8 bits. Furthermore, servo bursts are periodic waveforms as opposed to data

streams. In principle, both the lower sampling clock rate requirement in the servo field and the

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 15 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-15

periodicity property of servo-burst signals can be exploited to increase the detector quantization

resolution for position error signal estimation. The servo field is oversampled asynchronously to

increase the effective quantizer resolution.

Track densities in today’s hard drives are higher than 25,000 tracks per inch, and the design of a

tracking servo system is far from trivial. Some of the recent results include [2,24–26]. Increasing the

drive level servo control loop bandwidth is extremely important. Typical bandwidth of a servo system is

about 1.5 kHz, and is mainly limited by the parameters that are out of reach of a read channel designer,

such as mechanical resonances of voice coil motor, arm holding a magnetic head, suspension, and other

mechanical parameters.

Another type of disturbance with a mechanical origins, that has to be also detected and controlled in a

read channel, is repeatable runout (RRO) in the position of the head with respect to the track center.

These periodic disturbances are inherent in any rotating machine, and can be the result of an eccentricity

of the track, offset of the track center with respect to the spindle center, bearing geometry, and wear and

motor geometry. The frequencies of the periodic disturbances are integer multiplies of the frequency of

rotation of the disk, and if not compensated they can be a considerable source of tracking error. In

essence the control system possesses an adaptive method to learn online the true geometry of the track

being followed, and a mechanism of continuous-time adaptive runout cancellation [31].

18.2.8 Postprocessor

Due to the channel memory and noise coloration, maximum likelihood sequence detector (Viterbi

detector) produces some error patterns more often than others. They are referred to as dominant error

sequences, or error events, and can be obtained analytically or through experiments and=or simulation.

Relative frequencies of error events strongly depend on a recording density.

Parity check processors combine syndrome decoding and soft-decision decoding [35]. Error event

likelihoods needed for soft decoding can be computed from a channel sequence by some kind of soft-

output Viterbi algorithm. By using a syndrome calculated for a received codeword, a list is created of all

possible positions where error events can occur, and then error event likelihoods are used to select the

most likely position and most likely type of the error event. Decoding is completed by finding the error

event position and type. The decoder can make two type of errors: it fails to correct if syndrome is zero

or it makes a wrong correction if syndrome is nonzero, but the most likely error event or combination of

error events do not produce right syndrome.

A code must be able to detect a single error from the list of dominant error events, and should

minimize the probability of producing zero syndrome when more than one error event occur in a

codeword.

Consider a linear code given by an (n� k)3 n parity check matrix H, with H capable of correcting or

detecting dominant errors. If all errors from a list were contiguous and shorter than m, then a cyclic

n� k¼m parity bit code could be used to correct a single error event; however, in reality, the error

sequences are more complex, and occurrence probabilities of error events of lengths 6, 7, 8, or more are

not negligible. Furthermore, practical reasons (such as decoding delay, thermal asperities, etc.) dictate

using short codes, and consequently, in order to keep code rate high, only a relatively small number of

parity bits is allowed, making the design of error event detection codes nontrivial.

The detection is based on the fact that we can calculate the likelihoods of each of dominant error

sequences at each point in time. The parity bits serve to detect the errors, and to provide some

localization in error type and time. The likelihoods are then used to choose the most likely error events

(type and location) for corrections. The likelihoods are calculated as the difference in the squared

Euclidean distances between the signal and the convolution of maximum likelihood sequence estimate

and the channel partial response, versus that between the signal and the convolution of an alternative

data pattern and the channel partial response. During each clock cycle, the lowestM are chosen, and the

syndromes for these error events are calculated. Throughout the processing of each block, a list is

maintained of the N most likely error events, along with their associated error types, positions, and

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 16 11.10.2007 8:41pm Compositor Name: TSuresh

18-16 Digital Systems and Applications

syndromes. At the end of the block, when the list of candidate error events is finalized, the likelihoods

and syndromes are calculated for each of six combinations of two candidate error events which are

possible. After disqualifying those pairs of candidates, which overlap in the time domain, and those

candidates and pairs of candidates which produced a syndrome, which does not match the actual

syndrome, the candidate or pair, which remains and which has the highest likelihood, is chosen for

correction.

18.2.9 Modulation Coding

Modulation of constrained coding is used to translate an arbitrary sequence of input data to a channel

sequence with special properties required by the physics of the medium [21]. Two large important

classes of channel constraints are run-length and spectral constraints. The run-length constraints [12]

bound the minimal and=or maximal lengths of certain types of channel subsequences, while the spectral

constraints include dc-free [11] and higher order spectral-null constraints [6,23]. The spectral con-

straints also include codes that produce spectral zero at rational sub-multiples of symbol frequency as

well as constraints that give rise to spectral lines. The most important class of runlength constraints is a

(d, k) constraint, where dþ 1 and kþ 1 represent minimum and maximum number of consecutive like

symbols or space between the adjacent transitions. Bounding minimal length consecutive like symbols

controls ISI in the excess bandwidth systems and reduces transition noise. Bounding the upper limits of

the mark lengths improves timing recovery and automatic gain control. In order to keep code rate high,

today’s read channels employ only k constrained codes. Typical code rates are: 16=17, 24=25, 32=34,

48=49. Modulation decodes can be either block-by-block or sliding-window. Block decoders determine

data word by using a single codeword, while sliding-window decoders require so-called look-ahead,

which means that the output data word is a function of several consecutive codewords. Due to inherent

nonlinearity, a modulation decoder may produce multiple errors as a result of a single erroneous input

bit. If a sliding-window decoding is used, an error can affect several consecutive data blocks. This effect is

known as an error propagation. The block codes are favored because they do not propagate errors.

A mathematically rigorous code design approach based on symbolic dynamics was developed by

Marcus and Siegel et al. [19,22]. The algorithm is known as the ‘‘state splitting algorithm’’ or Adler,

Coppersmith, and Hassner (ACH) algorithm [1]. Another constrained coding approach, championed by

Immink [14] emphasizes the low-complexity encoding and decoding algorithms [13]. Despite this nice

mathematical theory, design of constrained codes remains too difficult to be fully automated, and in the

art of designing efficient codes, human intervention and skill are still necessary.

18.2.10 Error Control Coding

In a conventional hard disk drives the error control coding (ECC) system does not reside in a read

channel; however, the ECC performance is linked to the performance of a detection algorithm, error

propagation in a modulation code, and it is natural to try to expand the read channel functionality to

error control as well. A new trend in industry is aimed toward designing an integrated circuit, so called

super chip with a such expanded functionality.

In the most general terms, the purpose of ECC is to protect user data, and this is achieved by

including redundant, so-called parity bits along with the data bits. The codes used in hard drives belong

to a large class of ECC schemes, called block codes. A block code is a set of codewords (or blocks) of a

fixed length n. The length is expressed in number of symbols, and a symbol is a binary word of length m.

Other parameters of a block code are k-number of data symbols in the block, and t-number of symbols

correctable by the ECC system [17,36].

Reed–Solomon (RS) codes [28] have been the class of codes most often used in the magnetic disk

storage for the last 15 years. The reason is their excellent performance in presence of error events that

exhibit burstiness, which is typical for magnetic recording channels, and lend themselves to high-speed

encoding=decoding algorithms required for high-speed disk drives [5,9,37]. Very often RS codes are

interleaved to reduce effect of long error burst, and to reduce the implementation cost by eliminating

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 17 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-17

conversion of bytes to possibly longer code symbols used in encoding and decoding. The parameters of

RS codes satisfy the following relations: n � 2m� 1, number of parity symbols n� k � 2t, and code rate

of the RS code r¼ k=n.

In today’s hard drives typically, a part of ECC decoding is performed in hardware with a throughput

equal to the data rate, and the other part is performed in firmware with much lower speed. In some

cases, such as thermal asperities, no error control is sufficient to recover the data. In this case, it is

necessary to retry reading the same sector. A choice between hardware or firmware correction depends

on the application, the data transfer protocol, and the bus transfer rate. In applications such as single-

user work-stations, short data transfers dominate, but streaming data transfers occasionally occurs

(during boot, large file transfers, etc.). Additionally, data read from the disk drive can be transmitted

to the host computer in a physically sequential or in any convenient order. If the bus transfer rate is

higher than the ECC hardware throughput, and if sufficiently long ECC firmware buffer is available to

store all the sectors, or if sectors are transmitted to the host computer in any convenient order all

firmware error recovery can be performed in parallel with disk reads without interrupting streaming

read operations. In the case of short packet transfers, it is better to perform read retry in parallel with

firmware error correction. Retries in conjunction with hardware correction typically consume less time

than firmware error correction. On the other hand, for long streaming transfers, correcting errors in

firmware in parallel with reading the sector is better strategy, provided that the firmware ECC through-

put is high enough to prevent buffer overflow. A detailed treatment of an error control system design

considerations can be found in [29].

18.2.11 The Effect of Thermal Asperites

As explained earlier, if a head hits a dust particle, a long thermal asperity will occur, producing a severe

transient noise burst, loss of timing synchronization, or even off-track perturbation. Error events

caused by TAs are much less frequent than random error events, but they exist and must be taken

into account during read channel design. If there were no TA protection in the read channel, a loss of

lock in timing recovery system would occur, causing massive numbers of data errors well beyond the

error correction capability of any reasonable ECC system. Despite TA protection, the residual error

cannot be completely eliminated, and many bits will be detected incorrectly; however, the read channel

should be designed to enable proper functioning of timing recovery in the presence of bogus samples.

Typically, the read channel estimates the beginning and length of TA and sends this information to the

ECC system, which may be able to improve its correction capability using so-called erasure information;

however, since the TA starting location is not known precisely, and the probability of random error in

the same sector is not negligible, the ECC system can misscorrect, which is more dangerous than not to

detect the error.

18.2.12 Error Performance Measures

A commonly used measure of ECC performance is a BER, which is defined as a ratio of unrecover-

able error events and total user data bits. An unrecoverable error event is a block that contains more

erroneous symbols than the ECC system can correct, and it may contain as many as exist in a single data

block protected by the ECC system. Various applications require different BERs, but they are typically in

the range of 10�12–10�15. Another ECC performance measure is undetected bit error rate (UBER),

which is a number of undetected error events per total number of user bits. In some cases the ECC

system detect that the sector contain errors, but is not able to correct them. Then a controller asks a read

channel to retry reading the same sector. The retry rate per bit is a useful measure of a data throughput.

The hard drive standards of a retry rate is 10�14. The performance measure used depends on the

application. For example UBER is much more important for bank transactions than for multimedia

applications ran on PC. All performance measures depend on a symbol length, number of correctable

errors, and symbol error statistics. On the other hand symbol error statistics depend on the read channel

error event distribution.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 18 11.10.2007 8:41pm Compositor Name: TSuresh

18-18 Digital Systems and Applications

References

1. R.L. Adler, D. Coppersmith, and M. Hassner, ‘‘Algorithms for sliding block codes: An application of

symbolic dynamics to information theory,’’ IEEE Trans. Inform. Theory, vol. IT-29, pp. 5–22, Jan.

1983.

2. D. Cahalan and K. Chopra, ‘‘Effects of MR head track profile characteristics on servo performance,’’

IEEE Trans. Magn., vol. 30, no. 6, Nov. 1994.

3. R.D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, ‘‘A PRML system for digital

magnetic recording,’’ IEEE J. Sel. Areas in Commun., vol. 10, no. 1, pp. 38–56, Jan. 1992.

4. J.M. Cioffi, W.L. Abbott, H.K. Thapar, C.M. Melas, and K.D. Fisher, ‘‘Adaptive equalization in

magnetic-disk storage channels,’’ IEEE Comm. Magazine, pp. 14–20, Feb. 1990.

5. E.T. Cohen, ‘‘On the implementation of Reed–Solomon decoders,’’ Ph.D. dissertation, University of

California, Berkeley, 1983.

6. E. Eleftheriou and R. Cideciyan, ‘‘On codes satisfying Mth order running digital sum constraints,’’

IEEE Trans. Inform. Theory, vol. 37, pp. 1294–1313, Sept. 1991.

7. G.D. Forney, ‘‘Maximum-likelihood sequence estimation of digital sequences in the presence of

intersymbol interference,’’ IEEE Trans. Inform. Thoery, vol. 18, no. 3, pp. 363–378, May 1972.

8. L. Fredrickson et al., ‘‘Digital servo processing in the Venus PRML read=write channel,’’ IEEE Trans.

Magn., vol. 33, pp. 2616–2619, Sept. 1997.

9. M. Hassner, U. Schwiegelshohn, and S. Winograd, ‘‘On-the-fly error correction in data storage

channels,’’ IEEE Trans. Magn., vol. 31, pp. 1149–1154, March 1995.

10. R. Hermann, ‘‘Volterra model of digital magnetic saturation recording channels,’’ IEEE Trans.

Magn., vol. MAG-26, no. 5, 2125–2127, Sept. 1990.

11. K.A.S. Immink, ‘‘Spectral null codes,’’ IEEE Trans. Magn., vol. 26, pp. 1130–1135, March 1990.

12. K.A.S. Immink, ‘‘Runlength-limited sequences,’’ Proc. IEEE, vol. 78, pp. 1745–1759, Nov. 1990.

13. K.A.S. Immink and L. Patrovics, ‘‘Performance assessment of DC-free multimode codes,’’ IEEE

Trans. Commun., vol. 45, pp. 293–299, March 1997.

14. K.A.S. Immink, Codes for Mass Data Storage Systems, Essen, Germany: Shannon Foundation

Publishers, 1999.

15. H. Kobayashi and D.T. Tang, ‘‘Application of partial-response channel coding to magnetic recording

systems,’’ Bell J. Res. and Develop., July 1970.

16. H. Kobayashi, ‘‘Correlative level coding and maximum-likelihood decoding,’’ IEEE Trans. Inform.

Theory, vol. IT-17, pp. 586–594, Sept. 1971.

17. S. Lin, An Introduction to Error-Correcting Codes. Englewood Cliffs, NJ: Prentice-Hall, 1970.

18. Y. Lin and R. Wood, ‘‘An estimation technique for accurately modeling the magnetic recording

channel including nonlinearities,’’ IEEE Trans. Magn., vol. MAG-25, no. 5, pp. 4058–4060, Sept.

1989.

19. R. Karabed and B.H. Marcus, ‘‘Sliding-block coding for input-restricted channels,’’ IEEE Trans.

Inform. Theory, vol. 34, pp. 2–26, Jan. 1988.

20. H. Kimura, T. Nishiya, T. Nara, and T. Komotsu, ‘‘A digital servo architecture with 8.8 bit resolution

of position error signal for disk drives,’’ in IEEE Globecom 97, Phoenix, AZ, 1997, pp. 1268–1271.

21. B. Marcus, P. Siegel, and J.K. Wolf, ‘‘Finite-state modulation codes for data storage,’’ IEEE J. Select.

Areas Commun., vol. 10, no. 1, pp. 5–37, Jan. 1992.

22. B.H. Marcus, ‘‘Sofic systems and encoding data,’’ IEEE Trans. Inform. Theory, vol. IT-31, pp. 366–

377, May 1985.

23. C. Monti and G. Pierobon, ‘‘Codes with multiple spectral null at zero frequency,’’ IEEE Trans.

Inform. Theory, vol. 35, no. 2, pp. 463–472, March 1989.

24. A. Patapoutian, ‘‘Optimal burst frequency derivation for head positioning,’’ IEEE Trans. Magn.,

vol. 32, no. 5, pt. 1, pp. 3899–3901, Sept. 1996.

25. A. Patapoutian, ‘‘Signal space analysis of head positioning formats,’’ IEEE Trans. Magn., vol. 33,

no. 3, pp. 2412–2418, May 1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 19 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-19

26. A. Patapoutian, ‘‘Analog-to-digital converter algorithms for position error signal estimators,’’ IEEE

Trans. Magn., vol. 36, no. 1, pt. 2, pp. 345–400, Jan. 2000.

27. D.E. Reed, W.G. Bliss, L. Du, and M. Karsanbhai, ‘‘Digital servo demodulation in a digital read

channel,’’ IEEE Trans. Magn., vol. 34, pp. 13–16, Jan. 1998.

28. I.S. Reed and G. Solomon, ‘‘Polynomial codes over certain finite fields,’’ J. Soc. Indust. Appl. Math.,

vol. 8, pp. 300–304, 1960.

29. C.M. Riggle and S.G. McCarthy, ‘‘Design of error correction systems for disk drives,’’ IEEE Trans.

Magn., vol. 34, 4 pt. 2, pp. 2362–2371, July 1998.

30. A.H. Sacks, ‘‘Position signal generation in magnetic disk drives,’’ Ph.D. dissertation, Carnegie-

Mellon University, Pittsburgh, PA, 1995.

31. A.H. Sacks, M. Bodson, and W. Messner, ‘‘Advanced methods for repeatable runout compensation

[disc drives],’’ IEEE Trans. Magn., vol. 31, no. 2, pp. 1031–1036, March 1995.

32. Y. Tang and C. Tsang, ‘‘A technique for measuring nonlinear bit shift,’’ vol. 27, no. 6, pp. 5326–5318,

Nov. 1991.

33. Y. Tang, R.L. Galbraith, J.D. Coker, P.C. Arnett, and R.W. Wood, ‘‘Precompesation value determin-

ation in a PRML channel,’’ IEEE Trans. Magn., vol. 32, no. 3, pp. 2013–1014, May 1996.

34. G.T. Tuttle et al., ‘‘A 130 Mb=s PRML read=write channel with digital-servo detection,’’ in Proc. IEEE

Int. Solid State Circuits Conf. 96, San Francisco, CA, Feb. 8–10, 1996, pp. 64–65.

35. J.L. Sonntag and B. Vasic, ‘‘Implementation and bench characterization of a read channel with parity

check post processor,’’ TMRC 2000, Santa Clara, CA, Aug. 2000.

36. S.B. Wicker, Error Control Systems for Digital Communication and Storage. Englewood Cliffs, NJ:

Prentice-Hall, 1995.

37. D.L. Whiting, ‘‘Bit-serial Reed-Solomon decoders in VLSI,’’ Ph.D. dissertation, California Inst.

Tech., Pasadena, 1984.

18.3 Adaptive Equalization and Timing Recovery

Pervez M. Aziz

Adaptive signal processing plays a crucial role in storage systems. Proper detection of the readback signal

by a Viterbi detector assumes that the signal has the right gain, is equalized to the partial response, and is

sampled at the proper sampling instances. In this section, the focus is mainly on equalization and timing

recovery. Some of the basic algorithms employed in equalization and timing recovery are reviewed.

Various architectures and algorithms are presented, which have been used in state-of-the-art read

channels. Finally, comparative performance data for some of these architectures are presented.

18.3.1 Adaptive Equalization

What is equalization? It is the act of shaping the read back magnetic recording signal to look like a target

signal specified by the partial response (PR). The equalized signal is made to look like the target signal in

both the time and frequency domain. In this subsection, various equalization architectures and strategies

are reviewed, which have been popular historically and still being used in present day read channels.

A quick review of the well-known least mean square (LMS) algorithm used for adaptive equalizers is also

provided. Finally, the performance implications of selecting several different equalizer architectures is

explored. This performance is measured in terms of bit error rate (BER) at the output of the read

channel’s Viterbi detector.

18.3.1.1 Equalization Architectures and Strategies

In PRML channels the read back signal will be sampled at some point in the data path for further digital

signal processing. A continuous time filter (CTF) with a low-pass characteristic will be present as an

antialiasing filter [1] prior to the sampling operation so that high-frequency noise is not aliased into the

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 20 11.10.2007 8:41pm Compositor Name: TSuresh

18-20 Digital Systems and Applications

signal band. This same CTF may also play a role in equalizing the read back signal to the target partial

response. Various architectures can be used to perform the required equalization. The equalizer

architecture can consist of a CTF, a finite impulse response filter (FIR), or both. The CTF parameters

may be fixed, programmable, or adaptive. The FIR filter coefficients may be fixed, programmable, or

adaptive. In addition, the FIR operation may occur in the sampled data analog domain or digital

domain. Following equalization, the data are detected using a Viterbi detector. Of course, quantization

by an analog-to-digital converter (ADC) occurs at some point before the Viterbi detector.

Figure 18.11 shows some examples of various equalizer architecture configurations. The first archi-

tecture (Type 1) consists of a CTF-only equalizer. The CTF is comprised of an all-pole low-pass filter

section whose purpose is to reject high-frequency noise for anti-aliasing. One key parameter in the CTF

is its low-pass bandwidth determined by its cutoff or corner frequency, fc. The type of CTF, fc, and its

order (or the number of poles it contains) will determine its low-pass rolloff characteristic. If the CTF is

expected to take part in equalization, it must also be able to provide some boost and does so by typically

having one or two real zeros at some frequency fz in its transfer function. These parameters are noted in

the figure.

The second architecture (Type 2) is one where both the CTF and an analog FIR are involved in

performing equalization. The third architecture (Type 3) is an analog FIR-only architecture in that the

CTF design does not consist of any zeros, i.e., its main role is to perform anti-aliasing and not provide

any boost for equalization. Finally, the last architecture (Type 4) is one where a CTF and FIR are both

involved in equalization except that the FIR operation is done digitally.

In general, there is a clear trade-off between the degree of flexibility of the equalizer and implemen-

tation complexity. The read-back signal characteristics change across the disk surface as manifested by

somewhat different channel bit densities (cbds) or pw50=T. Consequently, programmability of the

equalizer parameters is a mimimum requirement for optimum performance. The signal or some of

the equalizer parameters themselve may change with chip ageing and temperature variations [2].

Therefore, it is often desirable for some of the equalizer parameters to be continually adaptive to be

able to compensate for these effects.

18.3.1.2 CTF Configurations

Two common types of CTFs, which have been used in read channels are Butterworth filters and

equiripple linear phase filters. Butterworth filters have a maximally flat magnitude response but

fc fz

fc fz

fc fz

fc fz

CTF
T

FIR ADC

CTF
T

ADC Viterbi
detector

Viterbi
detector

Viterbi
detector

Viterbi
detector

CTF
T

FIR ADC

CTF
T

ADC FIR

(Type 2) CTF + Analog FIR equalizer

(Type 1) CTF only equalizer

(Type 4) CTF + Digital FIR equalizer

(Type 3) Analog FIR only equalizer (CTF has no boost but must perform anti-aliasing)

FIGURE 18.11 Various equalizer architectures.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 21 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-21

nonlinear phase response. Equiripple linear phase filters, as their name implies, have linear phase and

constant group delay over the passband [3,4]. For a given order, the Butterworth filters will have sharper

rolloff characteristics. One could also consider mixed filters whose poles are chosen to lie some

percentage of the distance in between the poles of a Butterworth and equiripple linear phase filter.

Figure 18.12 shows the normalized pole location on the s plane for a sixth-order Butterworth, a sixth-

order equiripple linear phase filter, as well as the poles for various sixth order mixed filters, which are

25%, 50%, 75%, and 90% away from the poles of the equiripple filter. Note that the Butterworth

poles lie on the unit circle. Figure 18.13 shows the corresponding magnitude responses for the filters,

while Fig. 18.14 shows the group delay responses. As can be observed, the Butterworth has the sharpest

lowpass rolloff and the equiripple filter has the shallowest rolloff but constant group delay over

the passband.

The CTF parameters can be programmable or adaptive [5,6]; however, most CTFs that have been used

in actual read channels have had programmable bandwidth and boosts any adaptivity being left to the

FIR. Adaptive CTF systems face some challenging issues as discussed in [7]. Also, some work has been

done to analytically determine the optimum CTF transfer functions [8,9].

The performance of equalizers involving several CTF configurations will be compared: fourth-order

Butterworth (b4), sixth-order Butterworth (b6), seventh-order equiripple linear phase (e7) all with

single zeros. We also examine a seventh-order equiripple linear phase CTF with two zeros (e7tz). The

linear phase of the all pole section is kept in the e7tz filter. Another filter considered is the fourth-order

50% mixed filter with one zero (em4).

18.3.1.3 FIR Filter and the LMS Algorithm

The FIR filter is important for equalization. Whether implemented as an analog sampled data filter or a

digital filter the FIR filter produces output samples y(n) in terms of input samples x(n) as

y(n) ¼
XL�1

k¼0

h(k)x(n� k) (18:3)

Eq Rip Lin Ph N = 6
But N = 6
Mix N = 6

 0.5

 1

 1.5

 2

 2.5

30

210

60

240

90

270

120

300

150

330

180 0

FIGURE 18.12 Normalized pole locations for sixth-order Butterworth and equiripple linear phase filters as well as

mixed filters.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 22 11.10.2007 8:41pm Compositor Name: TSuresh

18-22 Digital Systems and Applications

0 0.5

0

−1

But (−. N=6), Eq Rip Lin Ph (− − N=6) Mixed(− N=6,25%,50%,75%,90%)

−2

−3

−4

−5

−6

−7

−8
1 1.5 2 2.5 3 3.5

Frequency (radians)

A
tte

n
(d

B
)

FIGURE 18.13 Magnitude response for sixth-order Butterworth and equiripple linear phase filters as well as mixed

filters.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Frequency (radians)

G
ro

up
 d

el
ay

 (
se

co
nd

s)

But (−. N=6), Eq Rip Lin Ph (− − N=6) Mixed(− N=6,25%,50%,75%,90%)

FIGURE 18.14 Group delay response for sixth-order Butterworth and equiripple linear phase filters as well as

mixed filters.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 23 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-23

where h(k) are the FIR filter tap weights. As noted, it is very desirable for the FIR to be adaptive. The FIR

taps are adapted based on the well-known LMS algorithm [10,11]. Other adaptive algorithms can also

be found in [12] and [13].

The basic idea is to minimize the mean squared error with respect to some desired or ideal signal.

Let the desired or ideal signal be ŷ(n) in which case the error is e(n)¼ y(n)� ŷ(n). This minimization

is achieved by adjusting the tap value in the direction opposite to the derivative (with respect to the tap

values) of the expected value of the mean squared error. Dispensing with the expected value leads to the

LMS or stochastic gradient algorithm. The stochastic gradient for the kth tap weight is

D(k,n) ¼ � @

@h(k)
e2(n)
� � ¼ �2e(n)

@ê(n)

@h(k)
¼ �2e(n)

@y(n)

@h(k)
� ŷ(k)

@ŷ(n)

@h(k)

� �

¼ �2e(n)
@y(n)

@h(k)
(18:4)

where the partial derivative of ŷ(n) with respect to h(k) is zero. We can now expand y(n) as in Eq. 18.3

to further obtain

D(k,n) ¼ �2e(n)x(n� k) (18:5)

The gradient would actually be scaled by some tap weight update gain tug to give the following tap

update equation:

h(k,nþ 1) ¼ h(k,n)� 2tug e(n)x(n� k) (18:6)

The choice of this update gain depends on several factors: (a) it should not be too large so as to cause the

tap adaptation loop to become unstable, (b) it should be large enough that the taps converge within a

reasonable amount of time, (c) it should be small enough that after convergence the adaptation noise is

small and does not degrade the BER performance. In practice, during drive optimization in the factory

the adaptation could take place in two steps, initially with higher update gain and then with lower

update gain. During the factory optimization different converged taps will be obtained for different radii

on the disk surface. Starting from factory optimized values means that the tap weights do not have to

adapt extremely fast and so allows the use of lower update gains during drive operation. Also, this means

that the tap weights need not all adapt every clock cycle—instead a round-robin approach can be taken,

which allows for sharing of the adaptation hardware across the various taps. A simpler implementation

can also be obtained by using the signed LMS algorithm whereby the tap update equation is based on

using 2- or 3-level quantized version of x(n� k). For read channel applications, this can be done without

hardly any loss in performance.

A few other issues should be emphasized about the adaptive FIR. During a read event, the FIR filter is

usually adapted after the initial gain and timing recovery operations are performed over a preamble

field. Nevertheless, during the rest of the read event, the FIR filter equalizes the signal at the same

time that the gain and timing loops are operating. The adaptive gain loop uses an automatic gain

control (AGC) block to apply the correct gain to the signal to achieve the desired partial response

target values. Likewise the adaptive timing recovery loop works to adjust the sampling phase to achieve

the desired PR target values. It is necessary to minimize the interaction between these adaptive

loops. The FIR filter will typically have one tap as a ‘‘main’’ tap, which is fixed to minimize its

interaction with the gain loop. Another tap such as the one preceeding or following the main tap can

be fixed (but allowed to be programmable) to minimize interaction with the timing loop [14]. In some

situations it may be advantageous to have additional constraints to minimize the interaction with the

timing loop [15].

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 24 11.10.2007 8:41pm Compositor Name: TSuresh

18-24 Digital Systems and Applications

18.3.1.4 Performance Characterization

The performance of various equalizer architectures based on bit error rate simulations can now be

characterized. The equalizer types (with reference to Fig. 18.11) actually simulated are of Types 2

(CTFþ analog FIR) and 3 (anti-aliasing CTFþ analog FIR). One can consider the case where there

are very few taps as an approximation of the Type 1 (CTF only) equalizer. Although many actual read

channel architectures do use digital FIRs (Type 4), we do not consider this type for simulations here.

Although a digital FIR filter may be cost effective for implementation given a particular technology, it

does have two disadvantages compared with the analog FIR. With the analog FIR, quantization noise is

added after equalization and so is not enhanced through the equalizer whereas for the digital FIR the

quantization noise does pass through the equalizer and could be enhanced. Consequently, fewer

quantization levels can be used and this results in reduced chip area and power dissipation with the

analog FIR. Also, the digital FIR is likely to have more latency in producing its final output and this extra

latency may not hurt significantly but is nonetheless not beneficial for the timing loop.

18.3.1.4.1 Simulation Environment and Optimization Procedure

The simulation environment, including two system simulation models, and the optimization method-

ology by which the optimum performance is obtained for each equalizer architecture can now be

described. Finally, BER results quantifying the performance of the various architectures are presented.

To obtain a simulation bound for the performance of the best possible equalizer we use the system of

Fig. 18.15. The signalþ noise is fractionally sampled at a rate of T=5 and filtered with a fractionally

spaced FIR filter equalizer, which equalizes the signal to an EPR4 target. The channel bit period is T. The

output of the equalizer is then sampled at the channel bit rate of Tand these samples are presented to the

EPR4 Viterbi. The FIR has 125 taps (spanning 25T). The FIR tap weights are adapted from zero starting

values using the LMS algorithm. There is no quantization, AGC, or timing recovery. Therefore, the

performance is solely determined by the noise.

Pseudo random data are 16=17 modulation encoded to generate a signal at various cbds based on a

Lorentzian pulse shape. For each cbd, the SNR needed by the ‘‘ideal’’ T=5 oversampled system of Fig.

18.15 to produce a BER of 10�5 is determined. SNR is defined as the ratio of the isolated pulse peak to

rms noise in the Nyquist band. The (cbd, SNR) pairs are used for performing simulations with the

practical system of Fig. 18.16, which accurately models an actual read channel chip and a version of the

T=5 system where the equalized samples are quantized before being detected with the Viterbi detector.

Signals at several cbds or PW50=T values 1.9, 2.4, and 2.8 are examined. The SNRs needed for 1e-5 BER

for these densities are 21.66, 22.90, and 24.70 dB, respectively.

Let us now describe the simulation model for the actual read channel system. A block diagram of this

system is shown in Fig. 18.16. The system consists of AGC, CTF, T rate sampled analog FIR equalizer,

ADC quantizing the equalizer output, and an EPR4 Viterbi detector. Three decision directed adaptive

loops are used: LMS tap update loop, AGC loop, and digital PLL (DPLL) timing recovery loop. Note that

EPR4 equalizer
sample generation

Known
data

LMS tap
update

Output data

BER

T

125 Tap FIR

Input
signal

Noise

EPR4
sequence
detector

T/5

FIGURE 18.15 Block diagram of system with five times oversampled equalizer.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 25 11.10.2007 8:41pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-25

in this practical system the adaptive feedback loops are updated not based on known data but on

tentative or preliminary decisions made by the read channel. The algorithm used for the tap update is

the signed LMS algorithm as implied by the 3-level slicer shown in the figure.

Using the practical system model, BER simulations are performed for the various CTFs mentioned

earlier and FIRs of various number of taps. The simulations are performed with this realistic system

using the SNRs mentioned earlier. This allows the calculation of the BER degradation of the realistic

system with respect to the T=5 system for a given cbd and SNR.

For each CTF type, cbd, and FIR length we simulate the BER of the system across a space of equalizer

parameters fc, fz (which determines CTF boost), and the fixed programmable tap of the FIR, which

is labeled as pt in Fig. 18.16. The parameters are varied across the following ranges: fc is varied

between 20% and 38% of the channel bit rate, fz is varied to provide boosts between 2.6 and 8.6 dB,

while the programmable tap is varied between 40% and 60% of the main tap value. For CTFs with two

zeros the zeros are adjusted such that the total boost is in the above range. For the 10-tap FIR the fourth

tap is chosen to be the fixed main tap while for the 6- and 3-tap filters the second tap is chosen as the

main tap. For the other taps, the analog tap range was kept to be relatively large at ±80% of the main tap

value. In a real system, one would choose smaller ranges based on tap settings fitting into the

smaller range, which produced good results. For the equalizer configuration involving the FIR only

equalizer, FIRs with 4–20 taps are examined. The programmable tap pt is re-optimized for each cbd and

FIR filter length.

18.3.1.4.2 Results

Before comparing BER results across different equalizers, some results from the equalizer optimization

procedure are illustrated. Figure 18.17 shows a contour plot of the BER obtained with the b4 CTF with a

10-tap FIR at a cbd of 2.4 and a SNR, which gives close to 10�5 BER. The horizontal axis is CTF corner

frequency (fc) and the vertical axis is CTF boost in decibel. The plot is for one particular value of the

programmable FIR tap pt. The numbers on the contour plot are 103 log 10(BER) so that 10�5 BER

would correspond to 100. We observe that good BERs result for a large range of boosts and range of fc’s

centered in the plot. Upon examining contour plots for all the CTFs, we concluded that the b4 CTF

achieves good BERs for fc’s typically in the center of the range explored, while the b6 CTF the

performance is better at somewhat higher fc’s; however, the linear phase CTFs achieve good BERs at

very low fc’s. This is because CTFs with worse rolloff characteristics require a smaller fc to provide

enough attenuation at the Nyquist frequency for anti-aliasing. We observe that the BER performance is

mostly insensitive to the boost. This is because the adaptive FIR is able to provide any remaining

Non-adaptive
equalizer

parameters:

FIR

Adaptive decision driven feedback loops

ADC

Tentative decision
and error generation

for updating feedback
loops

fc

CTF

fz

T

pt

AGC

Signal

Noise

Sampler

Slicer

Output data
EPR4

sequence
detector

BER
Known data

FIGURE 18.16 Block diagram and simulation model of practical symbol rate sampled read channel system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 26 11.10.2007 8:42pm Compositor Name: TSuresh

18-26 Digital Systems and Applications

equalization needed. In practice, there will be a trade-off in how much boost the CTF is able to provide

and the corresponding analog tap ranges required by the FIR to provide any necessary remaining

equalization—the more equalization the FIR has to provide, the larger tap ranges it will require.

Now compare the BER performance of various Type 2 (CTFþ analog FIR) equalizers. Figure 18.18

shows the BER performance of different CTFs with a 10-tap FIR. The horizontal axis is cbd and the

vertical axis is the BER degradation (in dB) of the optimum BER with respect to the BER of 10�5

achieved by the ideal oversampled system using the T=5 equalizer. The performance of the CTFs is

similar across all cbds—they perform within 0.15 dB of one another. All perform within 0.25–0.4 dB of

the 10�5 BER achieved by the T=5 system. The linear phase of the seventh-order CTFs does not

necessarily yield superior performance. A final comment is needed about the plot—one should not

expect a fixed or monotonic relationship between cbd and the practical system BER in this plot. This is

due to the finite resolution of the equalizer optimization search and the fact that BERs are based on

observing 100 (vs. even larger number) bit errors.

As noted, the previous results were with a 10-tap FIR. Further simulations of the various CTFs with a

6-tap or even 3-tap show that the optimum BER performance is not very different than that with a 10-tap

FIR. These results are presented in Fig. 18.19 where the BER degradation (again with respect to the 10�5

achieved by the ideal system) of the optimum BER obtained for the various CTFs is plotted versus the

number of FIR taps for cbd¼ 2.4. This initially appears to be a surprising result, but this is not

unreasonable when one observes that with fewer number of taps, a large percentage of the CTF

programmings result in poor BER performance. This effect is shown in Fig. 18.20, which plots the

percentage of CTF programmings (with respect to the total number of programmings producing

convergent tap weights) producing BER worse than 43 10�5. With more taps the percentage of poor

programmings decreases. Thus, FIR filters with a few taps, with appropriately optimized CTF settings,

can perform as well as a FIR with 10 taps; however, the difficulty in keeping the nonadaptive CTF

parameters correct in the presence of realistic device conditions makes such a FIR with few taps

impractical to use.

24

fC=−3 dB Corner frequency of LPF part of CTF (MHz)

26 28 30 32 34 36 38

3

4

5

6

7

8

−20*log10(BER) for FILT=but4, CBD=2.8, SNR=24.7, PT=0.6

80

 80

82

 82

84

 84

86

 86
 88 88

 90

 90

 90

 92

92

B
oo

st
 fr

om
 s

in
gl

e
ze

ro
 (

dB
)

FIGURE 18.17 Boost bandwidth optimization.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 27 11.10.2007 8:42pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-27

1.8 2 2.2 2.4 2.6 2.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Channel bit density (CBD) or PW50/ T

O
pt

im
um

 B
E

R
 lo

ss
 v

s.
 id

ea
l (

dB
)

BER loss of optimum BER relative to ideal system

ideal+qnt
4th order Butterworth
6th order Butterworth
7th ord. lin. phs.
7th ord. lin. phs., symm. zeros
4th ord. mixed

FIGURE 18.18 CTF BER performance degradationwith respect to oversampled ideal system vs. cbdwith 10-tap FIR.

BER loss of optimum BER relative to ideal system

2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of FIR taps

O
pt

im
um

 B
E

R
 lo

ss
 v

s.
 id

 (
dB

)

ideal+qnt
4th order Butterworth
6th order Butterworth
7th ord. lin. phs.
7th ord. lin. phs., symm. zeros
4th ord. mixed

FIGURE 18.19 CTF BER degradation with respect to oversampled ideal system vs. number of taps (cbd ¼ 2.4).

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 28 11.10.2007 8:42pm Compositor Name: TSuresh

18-28 Digital Systems and Applications

Finally, examine the performance of Type 3 equalizers. Here, the anti-aliasing CTF is a seventh-order

linear phase filter. The performance of this equalizer is a function of the number of FIR taps. The BER

performance are shown in Fig. 18.21. The vertical axis is again the degradation with respect to the ideal

2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Number of FIR taps

%
 o

f c
on

ve
rg

ed
 s

et
tin

gs
 w

ith
 B

E
R

 >
 4

e-
5

Percentage of bad CTF settings vs. number of taps

4th order Butterworth
6th order Butterworth
7th ord. lin. phs.
7th ord. lin. phs., symm. zeros
4th ord. mixed

FIGURE 18.20 Percentage of bad CTF settings vs. number of taps (cbd ¼ 2.4).

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B
E

R
 lo

ss
 v

s.
 id

ea
l (

dB
)

Anti-aliasing (a.a.) CTF perf vs. number of taps, also shown a OPT CTF

a.a. CTF cbd=1.9
a.a. CTF cbd=2.4
a.a. CTF cbd=2.8
opt CTF cbd=2.4

FIGURE 18.21 BER degradation with respect to oversampled ideal system vs. number of taps with anti-aliasing

CTF (no boost).

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 29 11.10.2007 8:42pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-29

system BER of 10�5. The programmable tap of the FIR is optimized to yield the best performance in

each case. The main tap is placed roughly in the center. There is benefit in increasing the number of taps

from 4 to 6 to 10. Beyond 10 taps, however, there is more latency in the timing loop as the main tap

position is more delayed. This causes increased phase errors to enter the timing loop and outweighs the

benefit of enhanced equalization obtained with more taps. Although one could increase the number of

taps while keeping the main tap location mostly fixed, the FIR will then not be able to cancel the

precursor ISI as well with a CTF, which is not involved in equalization. Also shown (dashed plot) is the

performance of a Type 2 equalizer (CTF, with its corner frequency optimized and with an optimized zero

included to provide boost). Clearly the Type 2 equalizer outperforms the Type 3 equalizer.

18.3.1.5 Actual Equalizer Architectures

Various equalization architectures and examined their performance have been considered. Let us now

examine what actual architectures read channel vendors are using. Table 18.1 summarizes some of the

most commonly used architectures. For example, Agere Systems (Note: storage products unit of AT&T

was spun off to Lucent Technologies in 1996 and again spun off to Agere Systems in 2001) has been using

a Type 2 architecture with a fourth-order Butterworth CTF and 10-tap analog FIR. The CTF has a

programmable corner frequency and zero for providing boost. This architecture is still in place now.

Most other vendors have used Type 4 architectures (digital FIR) but with seventh-order equiripple linear

phase filters. The linear phase filters typically have two programmable zeros to provide boost. In the

examples of the Cirrus equalizers, the digital FIR does not appear to be adaptive. Some vendors such as

Cirrus and Marvell seem to have increased the number of FIR taps or the number of adaptive (vs. only

programmable) taps as the years have gone by. The Datapath equalizer cited is one of the few examples

of an all CTF equalizer.

18.3.1.6 Conclusions

The performance of various CTFþ adaptive analog FIR (Type 2) equalizers in equalizing a signal to an

EPR4 target has been quantified. It is shown that regardless of the number of taps in the FIR and CTF

type, the BER performance of the CTFþ FIR equalizers is approximately the same if the optimum fixed

equalizer parameters (CTF corner frequency, boost, FIR fixed tap) are chosen.

Therefore, the choice of CTF type should be based on other constraints such as area, power, speed

(data rate), as well the benefit of having one less analog block. It has also been shown that as the number

of taps is increased, the space of CTF parameter programmings producing BERs close to the optimum

increases significantly. Therefore, one can trade-off the cost of the FIR filter versus required accuracy in

the CTF setting and the sensitivity of the resulting performance.

The performance of Type 3 equalizers consisting of a T spaced FIR filter with only a Nyquist

antialiasing CTF was also examined. Also, the Type 3 equalizer cannot approach the performance of a

system whose CTF is involved in equalization and is optimized. Therefore, to make a valid comparison

between FIR and CTF equalizers, one must include a reasonably optimum CTF prior to the FIR.

It has been demonstrated that a wide variety of optimized CTFþ FIR equalizers can perform within

0.25 dB of the quantized system using the oversampled T=5 equalizer. As this 0.25 dB includes

TABLE 18.1 Examples of Equalizers Implemented on Read Channel Chips

CTF FIR

Company Type Order Zeros Taps Adaptive?

Analog=

Digital

Type

(Fig. 18.11) Ref=Yr Comments

Agere But 4th 2 10 yes analog 2 [16], 1995 8 adaptive taps

Cirrus EqRip 7th 2 3 no digital 2 [17], 1995 —

Cirrus EqRip 7th 2 5 no digital 2 [18], 1996 —

Datapath EqRip 7th 2 N=A N=A N=A 1 [19], 1997 No FIR

Marvell EqRip 7th ? 7 yes digital 2 [20], 1997 —

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 30 11.10.2007 8:42pm Compositor Name: TSuresh

18-30 Digital Systems and Applications

performance losses due to AGC and timing recovery, there is very little space left for improved

equalization with any other equalizer architecture.

18.3.2 Adaptive Timing Recovery

In storage systems such as PRML magnetic recording channels a clock is used to sample the analog

waveform to provide discrete samples to symbol-by-symbol (s=s) and sequence (Viterbi) detectors.

Improper synchronization of these discrete samples with respect to those expected by the detectors for a

given partial response will degrade the eventual BER of the system. The goal of adaptive timing recovery

is to produce samples for the s=s or sequence detector, which are at the desired sampling instances for

the partial response being used. In this subsection, the basics of timing recovery as well as commonly

used algorithms for timing recovery in magnetic recording channels are reviewed. Two classes of timing

recovery algorithms are presented: symbol rate VCO-based and interpolation-based algorithms. After a

discussion of the trade-offs between these two types of algorithms, the focus will be on the traditional

symbol rate VCO algorithms for the rest of the discussion. One of these timing recovery algorithms from

first principles will be derived. An analytical framework for comparing the performance of such

algorithms using timing loop noise induced output jitter as the performance criterion is provided.

Finally, quantitative comparative performance data for some of these algorithms based on the jitter

analysis as well as simulations, which measure timing loop jitter and BER, is provided.

18.3.2.1 Timing Recovery Basics

18.3.2.1.1 Symbol Rate VCO versus Interpolative Timing Recovery

Timing recovery schemes, which have been considered for magnetic recording channels, can be

broadly classified into two groups: traditional symbol rate VCO-based schemes and interpolative

schemes, [21,22], which sample slightly above the symbol rate. The key difference between the

schemes is that the symbol rate VCO scheme adapts or adjusts the phase and frequency of the sampling

clock to produce the desired samples whereas interpolative timing recovery samples the analog wave-

form using a uniformly sampled clock to produce samples from which the desired samples are

interpolated.

Figure 18.22 shows high-level block diagrams of both approaches. Let us describe the VCO-based

approach first. For the sake of the discussion the VCO approach is shown with an analog FIR equalizer.

Consequently the sampling occurs at the input of the FIR equalizer. The noisy equalized output y(k)

must be used to detect the timing error present in these samples. This is done using a phase detector. The

phase detector transforms an amplitude error in the samples to D(k), which is related to the desired

change in the sampling phase. The phase detector output is also called the timing gradient.

The phase detector may require the use of the noisy equalized samples y(k) or other signals derived

from it. The other signals may be the preliminary or tentative decisions d̂(k)s, decision directed

estimates of y(k), which are ŷ(k) or other signals. These auxiliary signals are generated by the block

labeled ‘‘Signal Generation for Phase Detector.’’ The y(k)s are used to generate preliminary (tentative)

decisions d̂(k) and an error signal e(k), and a decision directed estimate of the ideal equalized sample

value, ŷ(k).

The phase detector output is filtered by a loop filter T(z). The loop filter T(z) is usually a second order

DPLL with an additional delay term z�L, which models any latency through the timing loop. Such

latency arises from the group delay of the FIR, computations in the DPLL, calculating the signals needed

by the phase detector, etc. The filtered phase detector output is the input to a VCO, which causes the

actual sampling phase t to change. The VCO is an analog circuit under digital control. The analog part

can be a phase mixer, which is capable of adjusting the timing phase by small fractions of Twhere T is

the channel bit period. In such a case, the VCO acts as an amplitude to time converter and so modeled as

a simple gain. To give physical meaning to the system, the units of the signals are noted: the equalized

output after quantization by the ADC is in amplitude units of LSBs, the timing gradient D(k) or phase

detector output is proportional to an amplitude error and so is also in LSBs. The loop filter provides a

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 31 11.10.2007 8:42pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-31

In
te

rp
ol

at
io

n
fil

te
r

S
lig

ht
ly

 o
ve

rs
am

pl
ed

sy
nc

hr
on

ou
s

sa
m

pl
in

g

A
lth

ou
gh

 v
ar

io
us

 s
ig

na
ls

ar
e

sh
ow

n
as

 in
pu

t t
o

th
e

P
D

on
ly

 a
 s

ub
se

t o
f t

he
se

 a
re

 u
se

d
by

 d
iff

er
en

t P
D

s

(a
)

S
ym

bo
l r

at
e

V
C

O
 b

as
ed

 ti
m

in
g

re
co

ve
ry

T
en

ta
tiv

e
de

ci
si

on
ge

ne
ra

tio
n

P
ha

se
 o

ffs
et

ca
lc

ul
at

io
n

T
en

ta
tiv

e
de

ci
si

on
ge

ne
ra

tio
n

A
lth

ou
gh

 v
ar

io
us

 s
ig

na
ls

ar
e

sh
ow

n
as

 in
pu

t t
o

th
e

P
D

on
ly

 a
 s

ub
se

t o
f t

he
se

 a
re

 u
se

d
by

 d
iff

er
en

t P
D

s

(b
)

In
te

rp
ol

at
iv

e
tim

in
g

re
co

ve
ry

P
ha

se
de

te
ct

or
(P

D
)

∆(
k)

F
in

al
 d

ec
is

io
ns

S
ig

na
l g

en
er

at
io

n
fo

r
ph

as
e

de
te

ct
or

C

d(
k)

S
ig

na
l g

en
er

at
io

n
fo

r
ph

as
e

de
te

ct
or

F
IR

DA

C
T

F
K

V

Lo
op

 fi
lte

r
T

(z
)

S
eq

ue
nc

e
de

te
ct

or

d(
k)

In
pu

t
si

gn
al

N
oi

se
CDA

P
ha

se
de

te
ct

or
(P

D
)

A
G

C

C
T

F

In
pu

t
si

gn
al

N
oi

se
A

G
C

F
IR

y(
k)

(L
S

B
)D
ig

ita
l s

ig
na

l p
ro

ce
ss

in
g

kT

(k
)

D
ig

ita
l s

ig
na

l p
ro

ce
ss

in
g

D
P

LL
lo

op
 fi

lte
r

T
(z

)

F
in

al
 d

ec
is

io
ns

S
eq

ue
nc

e
de

te
ct

or

A
na

lo
g

pr
oc

es
si

ng

D
ig

ita
l s

ig
na

l p
ro

ce
ss

in
g

(L
S

B
)

(L
S

B
)

(T
)

V
C

O

(T
/L

S
B

)

kT
 +

t

F
IG

U
R
E
1
8
.2
2

(a
)
Sy
m
b
o
l
ra
te

V
C
O
-b
as
ed

ti
m
in
g
re
co
ve
ry

lo
o
p
.
(b
)
In
te
rp
o
la
ti
ve

ti
m
in
g
re
co
ve
ry

lo
o
p
.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 32 11.10.2007 8:42pm Compositor Name: TSuresh

18-32 Digital Systems and Applications

frequency dependent gain, so the input of the VCO is LSBs. The VCO has a gain of Kv in units of T=LSB,

so the output of the VCO has units of time, T. The VCO gain can also be thought of as a clock update

gain. For the specific system we will consider later, the phase mixer can make changes in the sampling

phase in steps of 0, ±1, ±2 T=64 or more. The choice of this factor of 64 is such that the quantization of

timing phase adjustment is well below the ADC quantization noise floor.

Let us now describe the interpolative timing recovery loop of Fig. 18.22. As noted, with this scheme,

an asynchronous clock is used to sample the input to the ADC after which a FIR filter performs the

necessary equalization. The asynchronous equalized samples are now used to interpolate samples at the

correct sampling instances dictated by the partial response. This is done with the interpolation filter,

which can be thought of as a filter which delays its input by an amount t, which is a fraction of the

channel bit period T [21]. Such an interpolation filter’s transfer function is z�t. The samples y(k) at the

output of the interpolation filter drive the phase detector and loop filter as in the VCO-based timing

loop. The loop filter output after being processed by the phase offset calculator produces the required

sampling phase change. For good operation, the loop must be able to produce a large number of

fractional delays (such as 32 or 64) and correspondingly would require as many such filters for each of

these delays. Figure 18.22 noted that the asynchronous sampling was performed at slightly above the

Nyquist rate. The reasons for this is to accomodate a frequency offset between the written signal and the

clock used to perform the asynchronous sampling. The magnitude of this frequency offset is usually

limited in practical systems to 1% or less and so very little oversampling is required; however, over-

sampling ratios of up to 5% produce some improvement in performance by reducing the sensitivity of

the aliasing with respect to the phase of the asynchronous sampling clock.

The advantages of the ITR-based timing loops are that they are all digital timing loops, which are

more amenable for design, verification, and less susceptible to process variations. Also, for the ITR

timing loop, the delays in the equalization filter and ADC do not contribute to the timing loop latency;

however, the interpolation filter is not an extremely small piece of hardware and could make the ITR

timing loop consume more chip area and power than a VCO-based loop. Practical design issues with the

ITR-based system such as adaptation of the equalizer based on asynchronous samples [22] and design of

the interpolation filter, have not been discussed. From a performance point of view, there is no

significant difference between the ITR- or VCO-based approaches as indicated by simulation results in

[21]. This also seems reasonable based on our observation in the subsection on adaptive equalization

where it was noted that a read channel system with practical equalization and timing recovery performed

within a few tenths of a decibel of the corresponding ‘‘ideal’’ system. Therefore, the choice between all

digital ITR-based system or a conventional VCO-based system needs to be based on the relative merits of

both systems from an ease of design and area=power standpoint.

18.3.2.1.2 Timing Loop Modes

Let us now further describe the operation of the entire timing loop. The entire timing recovery process

occurs in several steps: zero phase start (ZPS), acquistion mode (ACQ), and tracking mode (TRK).

During the ZPS and ACQ modes the disk controller must guarantee that the read channel is reading a

preamble signal known to the timing loop. The preamble signal for almost all magnetic recording

channels is a 2T pattern, which is the periodic data sequence ‘‘. . . 11001100. . . .’’ The purpose of the ZPS

is to obtain a good estimate of the initial phase error between the readback signal and the desired

samples for the 2T pattern. Once this estimate is obtained the sampling clock’s phase is changed by the

calculated amount to approximate the desired sampling phase. The next step is the ACQ process

where the sampling phase error is further reduced and the frequency offset between the input signal

and the sampling clock is compensated for to produce even more accurately sampled preamble samples.

Because the preamble is a known signal pattern, timing recovery is facilitated in that the preliminary

decisions can be obtained more reliably with less loop latency. Consequently, high loop filter update

gains can be used. Once this initial acquisition is complete, the timing loop transitions into a TRK,

which is intended for tracking slow variations in timing. In this mode the signal may contain any excess

preamble as well as random data, but no a priori assumption about the signal is made. The tentative

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 33 11.10.2007 8:42pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-33

decisions in the TRK mode are obtained with more loop latency and are not as reliable. The loop filter

update gains are correspondingly lower. A summary of the operation described is provided in Fig. 18.23.

More fine gradations of the loop filter gains (beyond the high=medium=low gains shown in Fig. 18.23

can be made across ACQ and TRK to produce improved performance [23]. Of course, there is a trade-

off between improved performance and somewhat enhanced circuit complexity so that one would

choose to increase the complexity only, until diminishing returns in performance is reached.

18.3.2.2 Symbol Rate Timing Recovery Schemes

Now consider in more detail the traditional symbol rate VCO-based schemes. A decision directed baud

or symbol rate timing recovery algorithm was first proposed by Mueller and Muller [24]. Their

technique relied on the concept of a ‘‘timing function.’’ f(t), which generates the proper amount of

timing phase adjustment for a given phase shift, t, in the signal. The function should be monotonic, and

have a zero output for zero sampling phase error. The Mueller and Muller (MM) technique provides a

means to derive a timing function from a linear combination of samples of the channel’s impulse

response. In practice, one can design timing gradients where the expected value equals the suitably

defined timing function. The timing gradients can be used to obtain the corresponding phase adjust-

ment signal. In some magnetic recording systems using a PR4 target, a MM timing gradient with a

second order DPLL was used to produce the necessary timing phase updates [8,25].

One can also derive timing recovery schemes based on other criteria such as the minimum mean

square error (MMSE) criterion. MMSE methods seek to minimize the expectation of the square of an

error signal e(k,t) with respect to the timing phase. The error signal is obtained by subtracting the

received equalized samples y(k,t) from the corresponding ‘‘ideal’’ samples ŷ(k). The minimization is

done by adjusting the timing phase in the direction opposite to the derivative of the expected value of

the squared error. In practice, one ignores the expected value and minimizes the squared error resulting

in a stochastic gradient algorithm. MMSE timing recovery has been proposed in [26] and examined to

some degree in [27] for PR magnetic recording channels. Another criterion, the maximum likelihood

(ML) criterion, has also been used to derive a phase detector [28].

The derivation of the MMSE gradient is reviewed, and note that the MMSE gradient yields suitable

timing functions. Also formulated is the MMSE timing recovery in the framework of a slope lookup

table (SLT) instead of a discrete time filtered version of symbol rate spaced equalized samples y(k,t). The

SLT approach leads to an efficient implementation with slopes expressed directly in terms of a discrete

time filtered version of the data bits d(k) instead of the equalized signal samples.

A methodology for an analytical performance evaluation of the timing loop where the timing loop

output noise jitter is the performance criterion. The analysis is described in detail for the SLT-based

MMSE timing loop and also applied to the MM timing loop. The quantitative results from this

technique are used to compare the SLT and MM timing loops. The ML loop is not considered further

here as it has somewhat adverse jitter properties compared with the other two timing loops [29]. Finally,

simulations results comparing the SLT and MM timing loops in terms of output noise jitter as well as

BER performance are presented.

Mode
name

Assumed
data

Loop filter
gains

Preamble

ZPS

Zero

(ACQ)
Tracking

(TRK)

Preamble
Excess preamble/

regular random data

High/
medium

Medium/
low

Acquisition

FIGURE 18.23 Timing loop operational modes: zero phase start, acquisition, and tracking.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 34 11.10.2007 8:42pm Compositor Name: TSuresh

18-34 Digital Systems and Applications

18.3.2.2.1 MMSE Slope Lookup Table Timing Recovery

Let us review MMSE timing recovery from first principles. The discussion is along the lines of [26] and

[27]. The expectation of the square of the error, e(k, t)¼ y(k, t)� ŷ(k), is minimized with respect to the

timing or sampling phase. Here,

ŷ(k) ¼
Xp�1

p¼0

h(p)d̂(k � p) (18:7)

and in the absence of any channel impairments we would have d̂(k)¼ d(k) and ŷ(k)¼ y(k). The

derivative of the expectation needs to be obtained with respect to t. Ignoring the expectation operator

we obtain a stochastic gradient algorithm [26]:

@

@t
e2(k,t)
� � ¼ 2y(k,t)

@y(k,t)

@t
� 2ŷ(k)

@y(k,t)

@t
¼ �2e(k,t)

@y(k,t)

@t

¼ �2e(k,t)
dy(t)

dt

� �
t¼kTþt

¼ �2e(k,t)s(k,t) (18:8)

Note that the MM approach was to generate a timing gradient from a suitably defined timing function

f(t). Here, a timing gradient has been derived from the MMSE criterion; however, the resulting timing

gradient should be a valid timing function, i.e., be monotonic, and have a zero-crossing for zero

sampling phase error. This has been shown in [27]. An expression for the timing function in terms of

the PR channel coefficients is [29]

f (t) ¼
X1
l¼�1

XP�1

p¼0|{z}
l 6¼p

h(p)
(�1)l�p

(l � p)T

2
66664

3
77775

2

(18:9)

The result of plotting f(t) in Eq. 18.9 for EPR4 is shown in Fig. 18.24. Let us now consider a MMSE-

based timing gradient or phase detector formulated in terms of a SLT. The signal slope is modeled in

terms of a slope generating filter, which when used to filter the data d(k) produces the slopes:

s(k) ¼ d(k)� c(k) ¼
XC2

c¼�C1

c(c)d(k � c) (18:10)

where the negative coefficient index indicates that the slope at time k depends on future bits (accomo-

dated by delaying the slope and adding the delay into the model as additional latency). C1þC2þ 1 is the

number of nonzero coefficients of the slope filter’s impulse response, c. The SLT output ŝ(k) approxi-

mates s(k), which depends on the data pattern. Such a SLT can be derived for any PR by correlating the

data with the actual signal slopes. In practice, it is enough to use fewer terms from the filter. Therefore,

the simplified SLT output can be represented as

ŝ(k) ¼
XB2

b¼�B1

c(b)d(k � b) (18:11)

where B¼B1þB2þ 1 is the size of the slope table input i.e., the number of data bits used in calculating

the slope. The SLT-based gradient is then,

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 35 11.10.2007 8:42pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-35

D(k) ¼ e(k)̂s(k) (18:12)

where the factor of �2 in Eq. 18.8 can be absorbed in the lookup table. In our analysis we need the slope

generating filter coefficients c(c). These coefficients c(c)s are obtained in the process of numerically

generating the signal slopes, which are correlated with the data.

Phase Detector Properties—Before computing the output noise jitter of the entire timing loop, the

properties of the phase detector must be analyzed. Quantities important for the performance of the

phase detector are its KPD and output noise standard deviation ratio KPD=sno
. The KPD is the ratio of

the mean phase detector output to a constant sampling phase error, t. The KPD can thus be thought of

as the signal gain of the timing loop where the signal is the sampling phase error. The output noise no(k)

is the equivalent noise at the output of the phase detector for a given input noise n(k) at the phase

detector input. The error, e(k), at the equalizer output is a combination of contributions from the

sampling phase error, t(k) and noise. Let n(k) represent the noise at the equalizer output (intersymbol

interferenceþfiltered equalized noise). We then have,

e(k) ¼ t(k)s(k)þ n(k) (18:13)

The phase detector output, D(k), is then

D(k) ¼ [t(k)s(k)þ n(k)]̂s(k) ¼ t(k)s(k)̂s(k)þ no(k) (18:14)

Figure 18.25 shows in detail the timing loop of Fig. 18.22 with the details of the SLT phase detector and

the composition of the error signal from the sampling phase and noise per Eq. 18.13.

Now find the statistical properties of KPD and no using e as the expectation operator. For a tractable

analysis we assume n(k) is AWG. To easily relate sn to the error event rate (EER) at the output of the

Viterbi detector, we assume that channel errors are dominated by a minimum distance error event (with

distance dmin).

0 0.1 0.2 0.3 0.4 0.5

0

−1

−2

−3

−4
−0.5 −0.4 −0.3 −0.2 −0.1

1

2

3

4

f(
ta

u)

tau (T)

EPR4 timing function

FIGURE 18.24 Timing function for an EPR4 partial-response channel.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 36 11.10.2007 8:43pm Compositor Name: TSuresh

18-36 Digital Systems and Applications

sn ¼ dmin=2

Q�1(EER)
(18:15)

The EER is the BER divided by the number of bit errors in the dominant error event. In Eq. 18.15 Q

refers to the well-known Q function defined by

Q(x) ¼ 1

2p

ð1
x

exp
y2

2

� �
dy (18:16)

Signal Gain (KPD) of the Phase Detector—Using the definition of KPD, for a constant sampling phase

error t,

KPD ¼ e{tŝ(k)s(k)þ n(k)̂s(k)}

t
¼ e{̂s(k)s(k)}þ e{n(k)̂s(k)}

t
(18:17)

Consider e{n(k)ŝ(k)}, where ŝ(k) is a linear function of the data bits, which can be realistically assumed

to be uncorrelated with the noise n(k). Therefore, this term is zero and as we should expect, the noise

does not contribute to the mean phase detector output. Thus,

KPD ¼ e{̂s(k)s(k)} ¼
XB1
b¼�B1

XC2�1

c¼�C1

c(b)c(c)e{d(k � b)d(k � c)} (18:18)

If d is uncoded, hence white, with zero mean, e{d(k� b) d(k� c)}¼sd
2 if b¼ c and is 0 if b 6¼ c.

Consequently, the KPD is

KPD ¼ s2
d

XB2

b¼�B1

C2(b) (18:19)

where it is assumed that slope table ouput is based on fewer than C1þC2þ 1 terms to reduce the

summation to be from b¼�B1 to B2. We note that the KPD values obtained here are equivalent to the

slopes of the f(t) versus t curve plotted in Fig. 18.24.

DPLL
filter
T(z)

KV
(T/LSB)

s(k)

Slope lookup
table (SLT)

n(k) (LSB)

s(k) (LSB/T)

(LSB)
τin

τout

τ(k) (T)

∆(k)e(k) (LSB)
(LSB)

d(k)

Phase detector

FIGURE 18.25 Timing loop with SLT phase detector.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 37 11.10.2007 8:43pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-37

Output Noise of the Phase Detector—Computing the autocorrelation,

e{n0(k)n0(k þ l)} ¼ e{n(k)̂s(k)n(k þ 1)̂s(k þ l)}

Because ŝ(k) is a filtered version of d(k), which is uncorrelated with n, n and ŝ are uncorrelated. Therefore,

e{n0(k)n0(k þ l)} ¼ e{n(k)n(k þ l)}e{̂s(k)̂s(k þ l)}

¼ Rn(l)e{̂s(k)̂s(k þ l)}

e{̂s(k)̂s(k þ l)} ¼
XB2

b¼�B1

XB2

b0¼�B1

c(b)c(b0)e{d(k � d)d(k þ l � b0)} (18:20)

With d being uncoded (hence white) and zero mean, e{d(k� b)d(kþ l� b0)}¼sd
2 if b0 ¼ bþ l and 0 if b0

6¼ bþ l. Also assuming, Rn (l)¼sn
2 d [l], i.e., n to be white, we need to consider only l¼ 0 in which case

we have b¼ b0. In that case,

e{n0(k)n0(k þ l)} ¼ s2
ns

2
dd[l]

XB2

b¼�B1

c2(b) (18:21)

Observe that the noise at the phase detector output is indeed white with standard deviation,

sn0 ¼ snsd

ffiXB2

b¼�B1

c2(b)

vuut (18:22)

18.3.2.2.2 Mueller and Muller Timing Loop

Now examine the properties of the MM timing gradient. This gradient is obtained as

D(k) ¼ y(k)ŷ(k � 1)� y(k � 1)ŷ(k) (18:23)

in terms of the equalized signal y(k) and its delayed version as well as the corresponding estimates of the

‘‘ideal’’ values ŷ for these signals. A block diagram of a MM timing loop using this gradient is shown in

Fig. 18.26. It is possible to evaluate this phase detector’s KPD and noise performance. This is accom-

plished by writing y(k) as ŷ(k)þ e(k), expanding e(k) as in Eq. 18.13 from which s(k) is further expressed

in terms of the slope generating filter based on Eq. 18.10. Likewise, ŷ(k) is expressed in terms of the PR

coefficients as per Eq. 18.7. The analysis makes the usual assumptions about the data and noise n(k)

being white. The details of the analysis can be found in [29] which yields,

KPD ¼ s2
d

X
c

X
m|fflfflfflffl{zfflfflfflffl}

m�c¼�1

c(c)h(m)�
X
c

X
m|fflfflfflffl{zfflfflfflffl}

m�c¼�1

c(c)h(m)

0
BBB@

1
CCCA (18:24)

where the sum over m is from 0 to P� 1 and that over c is from �C1 to C2þ 1.

The autocorrelation, Rno
(l) for the noise at the output of the phase detector, assuming the data to be

white, is also computed in [29]. It is shown that even with AWG noise at the phase detector input, i.e.,

noise with autocorelation Rn (l)¼sn
2 d [l], noise at the phase detector output is not white; however, it is

shown that if Rn (l)¼sd
2 d [l] the autocorrelation of Rno

(l) will be limited to only the first delay terms, i.

e., l¼ 1 and �1 so we have,

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 38 11.10.2007 8:43pm Compositor Name: TSuresh

18-38 Digital Systems and Applications

Rn0 (0) ¼ s2
n0
¼ 2s2

ds
2
n

XP�1

p¼0

h(p)2 (18:25)

and

Rno(l) ¼ Rno(� l) ¼ �s2
ds

2
n

XP�1

p¼0

XP�1

m¼0|fflfflfflffl{zfflfflfflffl}
p�m¼2

h(m)h(p) (18:26)

18.3.2.3 Performance Comparison of Symbol Rate Timing Loops

So far, the properties of the SLT and MM timing gradients or phase detectors have been examined. If the

noise at the phase detector output for both systems were white we could directly compare their

performance by comparing their respective KPD to sno
ratio as a kind of signal-to-noise ratio (SNR)

of the phase detector. The ratio would measure a signal gain (experienced by sampling phase errors) to

noise gain across the entire bandwidth. If the noise had been white for both systems this ratio would

scale similarly for both systems when measured over the effective noise bandwidth determined by the

loop filter; however, for the MM loop we observed that the noise at the phase detector output was not

white. Therefore, we must examine the timing loop performance at the output of the loop filter not just

at the output of the phase detector. Before continuing our analysis let us make some qualitative

comments about the loop filter.

18.3.2.3.1 Qualitative Loop Filter Description

A timing loop is a feedback control loop. Therefore, the stability=loop dynamics are determined by

the ‘‘gain’’ (in converting observed amplitude error to a timing update) of the phase detector and

the details of the loop filter. If the timing loop were needed to remove the effect of a sampling phase

error, a first order DPLL would be sufficient; however, the timing loop must also recover the proper

frequency with which to sample the signal. Therefore, the use of a second order DPLL loop filter is

needed. This allows the timing loop to continually generate small phase updates to produce a clock,

which not only has the correct sampling phase within a symbol interval T but which also has the correct

value for the symbol interval i.e., the correct clock frequency. DPLL here refers to the portion of

the overall loop filter transfer function T(z) without the fixed delay term z�L. In addition, important

to the performance of the loop is its noise performance, i.e., for a given level of input noise, the effect on

h(k)

h(k) y(k)

DPLL
filter
T(z)

y(k-1)

n(k) (LSB)

s(k) (LSB/T)

y(k)

d(k)

(LSB)y(k-1)

PR

Phase detector

τin
τout

τ(k) (T)

z−1

z−1

∆ (k)
KV

(T/LSB)

FIGURE 18.26 Timing loop with Mueller-Muller phase detector.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 39 11.10.2007 8:44pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-39

the jitter in sampling phase updates. The jitter properties are determined by the noise gain of the phase

detector as well as the loop filter properties. The loop filters out noise beyond the bandwidth of interest,

this bandwidth being determined by how rapidly the loop is designed to react to timing changes. As

mentioned earlier, the DPLL loop filter is a second order filter with an additional latency term. Its

transfer function is given by

T(z) ¼ z�L fg z
�1

1� z�1
þ pg

� �
z�1

1� z�1

� �
(18:27)

where fg and pg are frequency and phase update gains for the second order and first order sections,

respectively, while L is the loop latency. A block diagram of T(z) is also shown in Fig. 18.27a.

18.3.2.3.2 Noise Jitter Analysis of Timing Loop

Linearized Z domain analysis of the DPLL is now performed by replacing the phase detector with its

KPD (denoted by Kp in the equations for readability). In evaluating the SLTand MM DPLLs three sets or

combinations of pg and fg will be used: ‘‘LOW,’’ ‘‘MED,’’ and ‘‘HGH’’ where the LOW gains, are relatively

low update gains, which would be used in tracking mode, MED gains are moderate gains, and HGH

gains, are high gains, which might be used during acquisition. For the SLT and MM DPLLs the pg and fg
are scaled so that the same settings result in the about same transient response for a given sized phase or

frequency disturbance.

pg

fg

1st order path ->

2nd order path ->
(a)

(b)

n(k) (LSB)

KV
(T/LSB)(LSB)

Loop
filter
T(z)

(T)

Colored noise
if any (LSB)

Average
KPD of
phase

detector
(LSB/T)

For white noise at output
of phase detector

τin

τout

τ(k)(T)

σs = rms slope (LSB/T)

∆(k)

z−1

z−L
z−1

1−z−1

1−z−1

FIGURE 18.27 Linearized model: (a) second-order DPLL loop filter, (b) timing loop with phase detector modeled

by its average signal gain.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 40 11.10.2007 8:44pm Compositor Name: TSuresh

18-40 Digital Systems and Applications

The open loop DPLL transfer function, G(z), incorporating the loop filter L(z) and clock update

gain is

G(z) ¼ Kv

fg z
�1

1� z�1
þ pg

� �
z�L z�1

1� z�1

� �

Referring to the timing loop model of Fig. 18.27b, the closed loop transfer function (Tout=Tin)¼H(z) is

H(z) ¼ KpG(z)

1þ KpG(z)
(18:28)

Note that Kp has dimensions of LSB=T, Kv and G(z) have dimensions of T=LSB and H(z) is a transfer

function with respect to two time quantities. The effective noise bandwidth is then,

ENB ¼ 2

ð0:5
0

jH(f)j2df

An example of a closed loop transfer function for the SLT DPLL is shown in Fig. 18.28 for LOW

update gains. To find the effect of AWG noise, n(k), first convert the sn to an effective timing noise by

dividing by the rms slope, ss, of the signal that is obtained during the numerical generation of the

signal slopes and calculation of the slope generating filter coefficients. Now it can be multiplied by

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

−5

−10

−15

−20

5
Closed loop magnitude response

M
ag

. r
es

p.
 (

dB
)

Frequency

FIGURE 18.28 Closed loop frequency response of SLT DPLL for low pg and fg update gains.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 41 11.10.2007 8:44pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-41

the square root of the ENB to determine the corresponding noise induced timing jitter sj (units of T).

Therefore,

sj ¼ sn

ss

ffiffiffiffiffiffiffiffiffi
ENB

p
(18:29)

The equivalent model for the above method of analysis is shown in Fig. 18.27b.

For the SLT-based DPLL, the total jitter is simply the above sj. For the MM DPLL the phase detector

output noise is colored; however, we know its properties here and can examine its effect from this

point onwards. The only difference is that the closed loop transfer function seen by the MM phase

detector output noise is

F(z) ¼ G(z)

1þ KpG(z)
(18:30)

The noise jitter is then obtained as

sj ¼
ffi
2

ð0:5
0

Pn(f)jF(f)j2df
s

(18:31)

where Pn(f) is the noise p.s.d. at the phase detector output.

Figure 18.29 plots the jitter performance of the SLT- and MM-based DPLLs for three sets of (pg,fg):

LOW, MED, HGH. Shown are the output, noise-induced timing jitter of the loop for four channel error

event rates. Observe that the MM timing loop’s output noise jitter is almost the same but slightly better

than that of the SLT-based timing loop.

SLT/MM analytical output jitter

0.5
10−6 10−5 10−4 10−3

1

1.5

2

2.5

3

EER

T
/6

4

SLT HGH
MM HGH
SLT MED
MM MED
SLT LOW
MM LOW

FIGURE 18.29 Analytically calculated output jitter for SLT and MM timing loops.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 42 11.10.2007 8:44pm Compositor Name: TSuresh

18-42 Digital Systems and Applications

18.3.2.4 Jitter and BER Simulation Results

Simulations on the SLT-based timing loop and the MM loop are run within the simulator framework

described in Fig. 18.22. The same DPLL loop filter structure is used for both systems. Simulations are

run at a channel bit density bit of 2.8 without noise and SNRs, which correspond with channel EERs of

10�4 and 10�2. The steady-state jitter is examined in the DPLL output phase and the response of the

timing loop to a phase step in the data field. Figure 18.30 shows the transient phase response plots of the

SLTand MMDPLLs responding to a 0.1875T (12T=64) phase step in data field for the same LOW pg and

fg settings. Note that they have very similar responses. Table 18.2 shows the steady-state output jitter of

the two timing loops for various combinations of gains and noise levels corresponding to EERs of 10�4

and 10�2. The settled DPLL phases show some nonzero jitter without additive noise from quantization

effects. Timing jitter at the DPLL output is measured by measuring the standard deviation of the DPLL

phase. Again, observe that the two timing loops have very similar jitter numbers although the MM

timing loop jitter is slightly lower.

300 400 500 600 700 800 900 1000 1100 1200 1300 1400

300 400 500 600 700 800 900 1000 1100 1200 1300 1400

0

−5

−10

−15

−20

−20

−15

−15

−5

5
Phase transient for approx 0.1875T (12T/64) samp phase error

S
LT

 p
ha

se
 (

T
/6

4)

0

5

M
M

 p
ha

se
 (

T
/6

4)

Symbols

FIGURE 18.30 SLT and MM DPLL reaction to 0.1875T (12T=64) phase step. Low pg, fg gains. No noise in this

simulation.

TABLE 18.2 Simulation-Based Timing Loop Output Jitter sjt (Units of T=64) Performance of SLT and MM

Timing Loops for Final EERs of Zero (Noiseless), 10�4, and 10�2

SLT MMPD

pg, fg GAINS EER 0 EER 10�4 EER 10�2 EER 0 EER 10�4 EER 10�2

LOW 0.49 1.30 2.18 0.45 1.16 1.86

MED 0.49 1.69 2.99 0.46 1.56 2.51

HGH 0.67 2.67 4.86 0.70 2.67 4.38

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 43 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-43

Finally, the Viterbi detector BER performance is examined instead of the timing loop jitter perform-

ance for the read channel architecture of Fig. 18.31 employing the MM and SLT timing loops. Observe

that the BERs of the two systems are practically indistinguishable.

18.3.2.5 Conclusions

An overview of timing recovery methods for PRML magnetic recording channels, including interpola-

tive and traditional symbol rate VCO-based timing recovery methods, was provided. Also reviewed was

the MMSE timing recovery from first principles and its formulation in the framework of a SLT-based

timing gradient. A framework for analyzing the performance of the timing loops in terms of output

noise jitter was provided. The jitter calculation is based on obtaining linearized Z domain closed loop

transfer functions of the timing loop. Also compared was the output timing jitter, due to input noise, of

the SLT and MM timing loops—two commonly used timing loops. The jitter performance of the MM

loop is almost the same but very slightly better than that obtained with the SLT-based timing loop;

however, the Viterbi BER performance of read channel systems employing the two timing loops are

practically indistinguishable.

References

1. A. Oppenheim and R. Schafer, Discrete Time Signal Processing, Prentice-Hall, Englewood Cliffs, NJ,

1989.

2. K. Fisher, W. Abbott, J. Sonntag, and R. Nesin, ‘‘PRML detection boosts hard-disk drive capacity’’

IEEE Spectrum, pp. 70–76, November, 1996.

3. M.E. Van Valkenburg, Analog Filter Design, Holt Rinehart Winston, 1982.

4. R. Schaumann, M. Ghausi, and K. Laker, Design of Analog Filters, Prentice-Hall, Englewood Cliffs,

NJ, 1990.

19 19.5

10−2

10−3

10−4

10−5

20 20.5 21 21.5 22 22.5 23 23.5 24 24.5

SNR (dB)

B
E

R

BER comparison of SLT and MM timing loops

MM
SLT

FIGURE 18.31 Simulated BERs of practical read channel using SLT and MM timing loops.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 44 11.10.2007 8:45pm Compositor Name: TSuresh

18-44 Digital Systems and Applications

5. J. Park and L.R. Carley, ‘‘Analog complex graphic equalizer for EPR4 channels,’’ IEEE Transactions on

Magnetics, pp. 2785–2787, September, 1997.

6. A. Bishop, et al., ‘‘A 300 Mb=s BiCMOS disk drive channel with adaptive analog equalizer,’’ Digests,

Int. Solid State Circuits Conf., pp. 46–47, 1999.

7. P. Pai, A. Brewster, and A. Abidi, ‘‘Analog front-end architectures for high speed PRML magnetic

recording channels,’’ IEEE Transactions on Magnetics, pp. 1103–1108, March 1995.

8. R. Cideciyan and F. Dolivo, et al., ‘‘A PRML system for digital magnetic recording,’’ IEEE Journal on

Selected Areas in Communications, pp. 38–56, January, 1992.

9. G. Mathew, et al., ‘‘Design of analog equalizers for partial response detection in magnetic recording,’’

IEEE Transactions on Magnetics, pp. 2098–2107.

10. S. Qureshi, ‘‘Adaptive equalization,’’ in Proceedings of the IEEE, September, 1973, pp. 1349–1387.

11. S. Haykin, Communication Systems, John Wiley & Sons, New York, 1992, pp. 487–497.

12. S. Haykin, Adaptive Filter Theory, Prentice-Hall, 1996.

13. J. Bergmans, Digital Baseband Transmission and Recording, Kluwer Academic Publishers, Dordrecht,

the Netherlands, 1996.

14. P. Aziz and J. Sonntag, ‘‘Equalizer architecture tradeoffs for magnetic recording channels,’’ IEEE

Transactions on Magnetics, pp. 2728–2730, September, 1997.

15. L. Du, M. Spurbeck, and R. Behrens, ‘‘A linearly constrained adaptive FIR filter for hard disk drive

read channels,’’ in Proceedings, IEEE Int. Conf. on Communications, pp. 1613–1617.

16. J. Sonntag, et al., ‘‘A high speed low power PRML read channel device,’’ IEEE Transactions on

Magnetics, pp. 1186–1189, March, 1995.

17. D. Welland, et al., ‘‘Implementation of a digital read=write channel with EEPR4 detection,’’ IEEE

Transactions on Magnetics, pp. 1180–1185, March 1995.

18. G. Tuttle, et al., ‘‘A 130 Mb=s PRML read=write channel with digital-servo detection,’’ Digests, IEEE

Int. Solid-State Circuits Conf., 1996.

19. J. Chern, et al., ‘‘An EPRML digital read=write channel IC,’’ Digests, IEEE Int. Solid State Circuits

Conf., 1997.

20. N. Nazari, ‘‘A 500 Mb=s disk drive read channel in 0.25 mm CMOS incorporating programmable

noise predictive Viterbi detection and trellis coding,’’ Digests, Intl. Solid-State Circuits Conf.,

pp. 78–79, 2000.

21. M. Spurbeck and R. Behrens, ‘‘Interpolated timing recovery for hard disk drive read channels,’’ in

Proceedings, IEEE Int. Conf. on Communications, 1997, pp. 1618–1624.

22. Z. Wu and J. Cioffi, ‘‘A MMSE interpolated timing recovery scheme for the magnetic recording

channel’’, in Proceedings, IEEE Int. Conf. on Communications, 1997, pp. 1625–1629.

23. A. Patapoutian ‘‘On phase-locked loops and Kalman filters,’’ IEEE Transactions on Communications,

pp. 670–672, May, 1999.

24. K. Mueller and M. Muller, ‘‘Timing recovery in digital synchronous data receivers,’’ IEEE Transac-

tions on Communications, pp. 516–531, May, 1976.

25. F. Dolivo, W. Schott, and G. Ungerbock, ‘‘Fast timing recovery for partial response signaling

systems,’’ IEEE Conf. on Communications, pp. 18.5.1–18.5.4, 1989.

26. S. Qureshi, ‘‘Timing recovery for equalized partial-response systems,’’ IEEE Transactions on Com-

munications, pp. 1326–1331, December, 1976.

27. H. Shafiee, ‘‘Timing recovery for sampling detectors in digital magnetic recording,’’ IEEE Conf. on

Communications, pp. 577–581, 1996.

28. J. Bergmans, ‘‘Digital baseband transmission and recording,’’ Kluwer Academic Publishers, Dor-

drecht, the Netherlands, pp. 500–513, 1996.

29. P. Aziz and S. Surendran ‘‘Symbol rate timing recovery for higher order partial response channels,’’

IEEE Journal on Selected Areas in Communications, April, 2001 (to appear).

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 45 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-45

18.4 Head Position Sensing in Disk Drives

Ara Patapoutian

18.4.1 Introduction

Data in a disk drive is stored in concentric tracks on one or more disk platters. As the disks spin, a

magnetic transducer known as a read=write head, transfers information between the disks and a user [1].

When the user wants to access a given track, the head assembly moves the read=write head to the

appropriate location. This positioning of the head is achieved by use of a feedback servo system as shown

in Fig. 18.32. First, a position sensor generates a noisy estimate of the head location. Then by comparing

the difference between this estimate and the desired location, a controller is able to generate a signal to

adjust the actuator accordingly.

Two known approaches are used in sensing the head position. An external optical device can be used

to estimate the head position by emitting a laser light and then by measuring the reflected beam. This

approach is relatively expensive, may need frequent calibrations, and at present is limited to servo

writers, which are discussed later. In the second approach, a read head, which is designed primarily to

detect the recorded user data pattern, will itself sense position specific magnetic marks recorded on

a disk surface. Using statistical signal-processing techniques, the read waveform is decoded into a

head position estimate. At present this second approach is preferred for disk drives and is the topic

of this article.

In an embedded servo scheme, as shown in Fig. 18.33, a portion of each platter, which is divided

into multiple wedges, is reserved to provide radial and sometimes angular position information for

Position
sensor

Controller

Actuator

Read/write head

Spinning disk
Track

Desired position

FIGURE 18.32 Position control loop for a disk drive.

Servo
field

Data field

A disk
platter

A wedge

FIGURE 18.33 Data and servo fields on a disk drive.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 46 11.10.2007 8:45pm Compositor Name: TSuresh

18-46 Digital Systems and Applications

the read head. These reserved wedges are known as servo fields, and the number of wedges per surface

varies significantly amongst different products. A generic servo wedge provides radial estimates in

two steps. On a disk surface, each track is assigned a number known as the track address. These

addresses are included in a servo field, providing complete radial position information with accuracy

of up to a track. In other words, the information provided by a track address is complete but coarse.

The positional error signal (PES) complements the track address by providing a more accurate estimate

within a track. By combining these two estimates, a complete and accurate head position estimate can be

obtained.

A wedge may also contain coarse information regarding angular position if a specific address is

assigned to each wedge. The user data field, with its own address mark and timing capability, can

complement the wedge address by providing finer angular position estimates.

A typical wedge will have multiple sub-fields, as shown in Fig. 18.34. A periodic waveform, known

as a preamble, provides ample information to calibrate the amplitude of the waveform and, if

necessary, to acquire the timing of the recorded pattern. Frame synchronization, or the start of a

wedge, is recognized by a special sequence known as the address mark. This is followed by the track

and wedge addresses, and finally by the servo burst that provides information regarding the PES. These

multiple sub-fields can be divided into two distinct areas. Since the address mark, track address,

and wedge address are all encoded as binary strings, they are referred to as the digital field, as shown

in Fig. 18.34. By contrast, ignoring quantization effects of the read channel, the periodic servo burst

field is decoded to a real number representing the analog radial position. Thus, the format designs as

well as the demodulation techniques for the digital and burst fields are fundamentally different. The

digital field demodulator is known as the detector while the servo burst field demodulator is known as

the estimator.

Despite their differences, the two fields are not typically designed independently of each other. For

example, having common sample rates and common front-end hardware simplifies the receiver archi-

tecture significantly. Furthermore, it makes sense to use coherent or synchronous detection algorithms

with coherent estimation algorithms and vice versa.

Having a reserved servo field comes at the expense of user data capacity. A major optimization goal is

to minimize the servo field overhead for a given cost and reliability target. Both the servo format design

as well as that of the detectors=estimators in the read channel chip of a disk drive are optimized to

minimize this overhead.

This section reviews position sensing formats and demodulators. Because estimation and detection

are well-known subjects, presented in multiple textbooks [2,3], issues that are particular to disk drive

position sensors are emphasized. Furthermore, rather than the servo control loop design, the statistical

signal processing aspects of position sensing are presented. For a general introduction to disk drive servo

control design, the reader is referred to [4], where the design of a disk drive servo is presented as a case

study of a control design problem. In general, because of the proprietary nature of this technology, the

literature regarding head position sensing is limited to a relatively few published articles, with the

exception of patents.

When a disk drive is first assembled in a factory, the servo fields have to somehow be recorded on the

disk platters. Once a drive leaves the factory, these fields will only be read and never rewritten.

Preamble Address
mark

Track
address

Servo
bursts

Digital field

Wedge
address

FIGURE 18.34 A generic composition of a servo field.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 47 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-47

Traditionally, an expensive external device, known as the servo writer, introduced in Section 18.4.2,

records the servo fields. In general, the servo writing process constrains and affects the servo field format

choices as well as the demodulator performance. In the next section, the digital field format and

detection approaches are addressed, while in Section 18.4.4, the servo burst format and PES estimation

approaches are introduced.

18.4.2 Servo Writers

After a disk drive is assembled, the function of a servo writer is to record the servo wedges on a drive.

While the disks are spinning, an external servo writer senses the radial position usually through the head

assembly using the reflection of a laser beam. An external mechanical device moves the head assembly.

Finally, an external read head locks on a clocking track on a disk to locate the angular position. By

knowing both the radial and angular position, as well as controlling the radial position, the servo writer

records the wedges, track by track, using the native head of the drive.

Servo writing has been an expensive process. The servo writing time per disk is an important interval

that disk manufacturers try to minimize and is proportional to the number of tracks per disk surface, to

the spin of the disk drive, and to the number of passes needed to record a track. Since the number of

tracks per disk is increasing faster than the spin speed, the servo writer time becomes a parameter that

needs to be contained. To this end, the disk drive industry has attempted to minimize both servo writer

time and the servo writer cost.

Self-servo writing is a procedure where the wedges are written by the disk drive itself without using

any external device [5,6]. Here, the servo writing time is increased but the process is less costly. Many

hybrid proposals also use a combination of an external servo writer to record some initial marks and

then complete the wedges by using the drive itself. An example of such a process is the printed

media approach [7,8], where a master disk ‘‘stamps’’ each disk, and afterward the drive completes

writing the wedges.

In general, the servo writer cannot record an arbitrary wedge format. For example, it is very difficult

for a servo writer that records wedges track-by-track to record a smooth angled transition across the

radius. Furthermore, the wedges generated by a servo writer are not ideal. For example, servo writers

that record wedges track-by-track create an erase band between tracks [9], where due to head and disk

media characteristics, no transition is recorded in a narrow band between two adjacent tracks. Similarly,

because of uncertainties in the angular position, two written tracks may not be aligned properly causing

radial incoherence between adjacent tracks. These two impairments are illustrated in Fig. 18.35. In

summary, the servo writer architecture affects both the wedge format design as well as the demodulator

performance of a disk drive sensor.

18.4.3 The Digital Field

The digital servo field has many similarities to the disk drive user data field [10] and to a digital

communications system [2]. Each track in a digital field is encoded and recorded as a binary string

Transition

Track n

Track n + 1

Erase band

Radial
incoherence

FIGURE 18.35 Servo writer impairments: erase bands and radial incoherence.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 48 11.10.2007 8:45pm Compositor Name: TSuresh

18-48 Digital Systems and Applications

similar to a data field. What differentiates a digital servo field from others is its short block length, and

more importantly its off-track detection requirement.

Before discussing these differences, let us start by saying that a magnetic recording channel, for both

the data and servo digital fields, is an intersymbol interference (ISI) channel. When read back, the

information recorded in a given location modifies the waveform not only at that given location but also

in the neighboring locations. Finite length ISI channels can be optimally detected using sequence

detectors [11], where at least theoretically, all the field samples are observed before detecting them as

a string of ones and zeros. For about a decade now, such sequence detectors have been employed in disk

drives to detect the user data field.

The digital servo field length is very short relative to a data field. The present data sector length

is around 512 bytes long, whereas the servo digital information string is only a few bytes long. So,

whereas the percentage of overhead attributable to a preamble, address marks, and error correcting

codes (ECC) is relatively small compared to the user data field, the overhead associated with a digital

servo field can easily exceed one hundred percent. For example, it is well known that ECC coding

efficiency increases with block length, i.e. codes with very short block lengths have weak error correction

capability.

One strategy in minimizing the preamble field length is to use asynchronous detection, which usually

trades performance for format, since it does not require exact timing information.

A simple strategy in minimizing the digital field is to write only partial information per wedge [12].

For example, with a smart controller, the absolute track or wedge address may not be needed, since it

may be predicted using a state machine; however, such strategies improve format efficiency at the

expense of performance robustness and complexity.

18.4.3.1 Offtrack Detection

A primary factor that differentiates digital servo fields from other types of detection channels is the

requirement to detect data reliably at any radial position, even when the read head is between two

adjacent tracks. In contrast, a user data field is expected to be read reliably only if the read head is

directly above that specific track. As will be discussed shortly, such a constraint influences the ECC as

well as sequence detection strategies.

A related concern is the presence of radial incoherence, and the erase field introduced during servo

writing that are present when the read head straddles two tracks. The detector performance will suffer

from such impairments. Formats that tolerate such impairments are desired.

Because the recorded address mark and wedge address does not vary from one track to the next, the

emphasis is on track addresses. When the read head is in the middle of two adjacent tracks, with track

addresses X and Y, the read waveform is the superposition of the waveforms generated from each of

the respective addresses. In general, the resulting waveform cannot be decoded reliably to any one of

the two track addresses. A common solution is the use of a Gray code to encode track addresses, as

shown in Fig. 18.36, where any two adjacent tracks differ in their binary address representation in only

one symbol value. Hence, for the moment ignoring ISI, when the head is midway between adjacent

tracks, the detector will decode the address bits correctly except for the bit location where the two

adjacent tracks differ, that is, for the two track addresses labeled as X and Y, the decoder will decode the

waveform to either track address X or Y, introducing an error

of at most one track. By designing a radially periodic servo

burst field, with period of at least two track widths, track

number ambiguity generated by track addresses is resolved;

however, as will be discussed next, Gray codes complicate the

use of ECC codes and sequence detectors.

A Gray code restricts two adjacent tracks to differ in only a

single position, or equivalently forcing the Hamming distance

between two adjacent track addresses to be one. Adding an

+ − + + + −

+ − − + + −

X

Y

FIGURE 18.36 An example of two Gray-

coded track addresses. The two addresses

are different only in the third location.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 49 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-49

ECC field to the digital fields is desirable since reliable detection of track addresses is needed in the

presence of miscellaneous impairments such as electronic and disk media noise, radial incoherence,

erase bands, etc.; however, any ECC has a minimum Hamming distance larger than one. That is, it is not

possible to have two adjacent track-addresses be Gray and ECC encoded simultaneously. If an ECC field

is appended to each track address, it can be used only when the head is directly above a track. A possible

alternative is to write the track addresses multiple times with varying radial shifts so that, at any position,

the head is mostly directly above a track address [13]. Such a solution improves reliability at the expense

of significant format efficiency loss.

Another complication of introducing Gray codes results from the interaction of these codes with the

ISI channel. Consider an ISI free channel where the magnetic transitions are written ideally and where

the read head is allowed to be anywhere between two adjacent Gray coded track addresses X and Y. As

was discussed earlier, the track address reliability, or the probability that the decoded address is neither X

nor Y, is independent of the read head position. Next, it is shown that for an ISI channel the detector

performance depends on the radial position. In particular, consider the simple ISI channel with pulse

response 1�D, which approximates a magnetic recording channel. For such a channel, events of length

two are almost as probable as errors of length one (same distance but different number of neighbors).

Now, as the head moves from track X to Y, the waveform modification introduced by addresses X and Y,

at that one location where the two tracks differ, can trigger an error of length two. The detector may

decode the received waveform to a different track address Z, which may lie far from addresses X or Y. In

other words, in an ISI channel, whenever the head is between two tracks X and Y, the probability that the

received waveform is decoded to some other address Z increases.

For readers familiar with signal space representation of codewords, the ISI free and 1þD channels are

shown for the three addresses X, Y, and Z with their decision regions in Fig. 18.37. Let dh denote to the

shortest distance from codeword X to the decision boundaries of codeword Z. As shown in Fig. 18.37,

when the head is midway between tracks X and Y, the shortest distance to cross the decision boundaries

of codeword Z is reduced by a factor of
ffiffiffi
3

p
(or 4.77 dB). Therefore, when the head is in the middle of

two tracks, represented by addresses X and Y, the probability that the decoded codeword is Z increases

significantly. For an arbitrary ISI channel this reduction factor in shortest distance varies, and it can be

shown to be at most
ffiffiffi
3

p
.

A trivial solution to address both the ECC and ISI complications introduced by the Gray code is not to

use any coding and to write address bits far enough from each other to be able to ignore ISI effects. Then

a simple symbol-by-symbol detector is sufficient to detect the address without the need for a sequence

detector. Actually this is a common approach taken in many disk drive designs; however, dropping ECC

(a) (b)

dh dh

2dhX Y

Z

Y

Z

X

3
dh

dh

2dh

FIGURE 18.37 Signal space representation of three codewords. Configuration (a) ISI free (b) with ISI.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 50 11.10.2007 8:45pm Compositor Name: TSuresh

18-50 Digital Systems and Applications

capability affects reliability and forcing the magnetic recording channel to behave as ISI free requires

additional format.

Another approach is to use symbol based codes, such as a bi-phase code, rather than sequence-based

codes, that is, rather than maximizing the minimum distance between any two codewords, the distance

between two symbols is maximized. For example, in a magnetic recording channel, a bi-phase code

produces a positive pulse at the middle of the symbol for a symbol ‘‘1’’ and a negative pulse for a symbol

‘‘0,’’ increasing symbol reliability [13,14]. In this example, it can be shown that the ISI related

degradations are minimized and the detector performance is improved.

A fundamentally different approach would not make use of a Gray code at all. Instead, codes would be

designed from scratch in such a way that for any two addresses X and Y the distance between X and Y

would increase, as they are radially located further away from each other.

18.4.4 The Burst Field

In the previous subsection, track addresses were introduced, which provide head position information

to about single-track accuracy. To be able to read the data field reliably, it is essential to position the read

head directly upon the desired track within a small fraction of a track. To this end, the track number

addresses are complemented with the servo burst field, where the analog radial position is encoded in a

periodic waveform such as a sinusoid. Three ways to encode a parameter in a sinusoidal waveform are

used: amplitude, phase, and frequency [3]. Servo burst fields are also periodic radially. Because the track

address already provides an absolute position, such a periodicity does not create any ambiguity.

In a disk platter, information is recorded in one of two stable domains. Hence, a servo burst is

recorded as a periodic binary pattern. The read back waveform, at the head output, is periodic and will

contain both the fundamental and higher harmonics. The sinusoidal waveform is obtained by retaining

only the fundamental harmonic. For a given format budget, it is possible to maximize the power of the

read back waveform by optimizing the fundamental period [15]. If recorded transitions get too close, ISI

destroys most of the signal power. On the other hand, if transitions are far from each other, then the read

back pulses are isolated and contain little power.

In this subsection, first the impairment sources are identified. Afterward, various servo burst formats

and their performances are discussed [16,17]. Finally, various estimator characteristics and options are

reviewed.

18.4.4.1 Impairments

Here, impairments in a servo burst field are classified into three categories: servo-writer induced,

read head induced, and read channel induced. Not all impairments are present in all servo burst

formats.

As was discussed in Section 18.4.2, when the servo-writer records wedges track-by-track, erase band as

well as radial incoherence may be present between tracks, degrading the performance of some of the

servo burst formats. Also, the duty cycle of the recorded periods may be different than the intended 50%.

Finally, write process limitations result in nonideal recorded transitions.

The read head element as well as the preamplifier, which magnifies the incoming signal, generate

electronic noise, modeled by additive white Gaussian noise (AWGN). Also, in many situations the

width of the read head element ends up, being shorter than the servo burst radial width as shown in

Fig. 18.38a. As will be discussed shortly, for some formats, this creates saturated radial regions

where the radial estimates are not reliable [9]. Finally, the rectangular approximation of the read head

element shown in Fig. 18.38a is not accurate. More specifically, different regions of the read head may

respond differently to a magnetic flux. Hence, the read head profile may be significantly different than a

rectangle [18,19].

The read channel, while processing the read waveform, induces a third class of errors. Most present

estimators are digitally implemented and have to cope with quantization error. If only the first harmonic

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 51 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-51

of the received waveform is desired then suppressing higher harmonics may leave residues that may

interact with the first harmonic inside the estimator. Furthermore, sampling a waveform with

higher harmonic residues creates aliasing effects, where higher harmonics fold into the first harmonic.

Many read channel estimators require that the phase, frequency, or both phase and frequency of

the incoming waveform are known. Any discrepancy results in estimator degradation. Finally, estima-

torcomplexity constraints result in suboptimal estimators, further degrading the accuracy of the

position estimate.

18.4.4.2 Formatting Strategies

At present, the amplitude servo burst format, shown in Fig. 18.38a, is the most common format used

in the disk drive industry. Depending on the radial position of the read head, the overlap between the

head and the bursts A and B varies. Through this overlap, or amplitude variation, it is possible to

estimate the radial position. First, the waveforms resulting from the overlap of the read head and the

burst fields A and B are transformed into amplitude estimates. These amplitude estimates are then

subtracted from each other and scaled to get a positional estimate. As the head moves from track center

n to track center (nþ 1), the noiseless positional estimate, known as position error transfer function, is

plotted in Fig. 18.38b. Here, since the radial width of the servo burst is larger than the read element,

any radial position falls into either the linear region, where radial estimate is accurate, or in the saturated

region, where the radial estimate is not accurate [9]. One solution to withstand saturated regions is to

include multiple burst pairs, such that any radial position would fall in the linear region of at least one

pair of bursts. The obvious drawback of such a strategy is the additional format loss. The amplitude

format just presented does not suffer from radial incoherence since two bursts are not recorded radially

adjacent to each other.

Because nonrecorded areas do not generate any signal, in Fig. 18.38a only 50% of the servo burst

format is recorded with transitions or utilized. In an effort to improve the position estimate perform-

ance, the whole allocated servo area can be

recorded. As a result, at least two alternative for-

mats have emerged, both illustrated by Fig. 18.39.

In the first improved format, burst A is radially

surrounded by an antipodal or ‘‘opposite polarity’’

burst A0. For example, if burst A is recorded as

þþ��þþ��� � � then burst A0 is recorded as

��þþ��þþ� � �. For readers familiar with

digital communications, the difference between

the amplitude and antipodal servo burst

formats can be compared to the difference

A

B

Two servo bursts A and B

Track n

Track n +1

Read head

(b) Position error transfer function

A-B

Radial position

Saturated region

Linear region

(a) Amplitude burst format

FIGURE 18.38 The amplitude burst format and its position error transfer function as the head moves from center-

track n to center-track n þ 1.

A

B

Track n

Track n +1 A′

B′

FIGURE 18.39 Alternative burst formats where A0 and
B0 are either orthogonal to or of opposite polarity of A

and B, respectively.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 52 11.10.2007 8:45pm Compositor Name: TSuresh

18-52 Digital Systems and Applications

between on-off and antipodal signaling. In on-off

signaling, a symbol ‘‘0’’ or ‘‘1’’ is transmitted while

in antipodal signaling 1 or �1 is transmitted. Anti-

podal signaling is 6 dB more efficient than on-off

signaling. Similarly, it can be shown that the antipodal

servo burst format gives a 6-dB advantage with respect

to amplitude servo burst format under the AWGN

assumption [17].

Instead of recording A0 to be the opposite polarity

of A, another alternative is to record a pattern A0 that
is orthogonal to A. For example, it is possible to pick

up two sinusoids with different frequencies such that

the two waveforms are orthogonal over a finite burst

length interval. The resulting format is known as the

dual frequency format [20]. Inside the read channel, two independent estimates of the head position can

be obtained from two estimators, each tuned to one of the two frequencies. The final radial estimate is

the average of the two estimates, resulting in a 3-dB improvement with respect to the amplitude format,

again under AWGN assumption.

Unlike the amplitude format, these more sophisticated formats are in general more sensitive to other

impairments such as erase band and radial incoherence.

A fundamentally different format is presented in Fig. 18.40. Here, the transitions are skewed and the

periodic pattern gradually shifts in the angular direction as the radius changes. The radial information is

stored in the phase of the period, so it is called the phase format. In Fig. 18.40 two burst fields A and B

are presented where the transition slopes have the same magnitude but opposite polarities. An estimator

makes two phase estimates, one from the sinusoid in field A and another one from the sinusoid in field

B. By subtracting the second phase estimate from the first, and then by scaling the result, the radial

position estimate can be obtained. Similar to the antipodal format, it can be shown that the phase

pattern is 6 dB superior to the amplitude pattern [17] under AWGN. A major challenge for the phase

format is successfully recording the skewed transitions on a disk platter without significant presence of

radial incoherence and erase band.

18.4.4.3 Position Estimators

Estimating various parameters of a sinusoid is well documented in textbooks [3]. A decade ago

position estimators were mostly implemented by analog circuitry, whereas at present, digital imple-

mentation is the norm and the one considered in this article [21–25]. One way of classifying

estimators is to determine whether the phase and=or the frequency of the incoming waveform

are known.

Assume that the amplitude of a noisy sinusoid needs to be determined. If the phase of this waveform

is known, a matched filter can be used to generate the amplitude estimate. This is known as coherent

estimation. Under certain assumptions and performance criteria such a filter becomes optimal. When

the phase of the waveform is not known, but the frequency is known, then two matched filters can be

used, one tuned to a sine waveform while the other filter is tuned to a cosine waveform. The outputs of

the two filters are squared and added to give the energy estimate of the waveform. This is known as

noncoherent estimation and is equivalent to computing the Fourier transform at the first harmonic.

Other ad hoc estimators include the peak estimator and digital area estimators [26], which respectively

estimate the averaged peak and the mean value of the unsigned waveform. Neither of these estimators

requires the phase or the frequency of the waveform.

For the amplitude format, all the estimators mentioned here can be used. For the antipodal format,

the phase of the waveform is needed and therefore a single matched filter is the required estimator. For

Radial
 period

A B

Read head

Skewed
 transitions

++
+

−
−

−

FIGURE 18.40 The phase format.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 53 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-53

dual frequency format, we need two estimators, each tuned to a different frequency. Since the two

waveforms are orthogonal to each other, an estimator tuned to one of the waveforms will not observe the

other waveform. Each estimator can utilize a single matched filter for coherent estimation or two

matched filters for noncoherent estimation. Finally, for phase estimation, two matched filters are

utilized, similar to noncoherent estimation; however, rather than squaring and adding the filter outputs,

the inverse tangent function is performed on the ratio of the filter outputs.

References

1. Comstock, R.L. and Workman, M.L., Data storage in rigid disks, inMagnetic Storage Handbook, 2nd

ed., Mee, C.D. and Daniel, E.D., Eds., McGraw-Hill, New York, 1996, chap. 2.

2. Proakis, J.G., Digital Communications, 4th ed., McGraw-Hill, New York, 2000.

3. Kay, S.M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, Englewood

Cliffs, NJ, 1993.

4. Franklin, G.F., Powell, D.J., and Workman, M.L., Digital control of dynamic systems, 3rd ed.,

Addison-Wesley, Reading, MA, 1997, chap. 14.

5. Brown, D.H., et al., Self-servo writing file, US patent 06,040,955, 2000.

6. Liu, B., Hu, S.B., and Chen, Q.S., A novel method for reduction of the cross track profile asymmetry

of MR head during self servo-writing, IEEE Trans. on Mag., 34, 1901, 1998.

7. Bernard, W.R. and Buslik, W.S., Magnetic pattern recording, U.S. patent 03,869,711, 1975.

8. Tanaka, S., et al., Characterization of magnetizing process for pre-embossed servo pattern of plastic

hard disks, IEEE Trans. on Mag., 30, 4209, 1994.

9. Ho, H.T. and Doan, T., Distortion effects on servo position error transfer function, IEEE Trans. on

Mag., 33, 2569, 1997.

10. Bergmans, J.W.M., Digital Baseband Transmission and Recording, Kluwar Academic Publishers,

Dordrecht, 1996.

11. Forney, G.D., Maximum-likelihood sequence estimation of digital sequences in the presence of

intersymbol interference, IEEE Trans. on Info. Thy., 18, 363, 1972.

12. Chevalier, D., Servo pattern for location and positioning of information in a disk drive, U.S. patent

05,253,131, 1993.

13. Leis, M.D., et al., Synchronous detection of wide bi-phase coded servo information for disk drive,

U.S. patent 05,862,005, 1999.

14. Patapoutian, A., Vea, M.P., and Hung, N.C., Wide biphase digital servo information detection, and

estimation for disk drive using servo Viterbi detector, U.S. patent 05,661,760, 1997.

15. Patapoutian, A., Optimal burst frequency derivation for head positioning, IEEE Trans. on Mag., 32,

3899, 1996.

16. Sacks, A.H., Position signal generation in magnetic disk drives, Ph.D. dissertation, Carnegie Mellon

University, Pittsburgh, 1995.

17. Patapoutian, A., Signal space analysis of head positioning formats, IEEE Trans. on Mag., 33, 2412,

1997.

18. Cahalan, D. and Chopra, K., Effects of MR head track profile characteristics on servo performance,

IEEE Trans. on Mag., 30, 4203, 1994.

19. Sacks, A.H. and Messner, W.C., MR head effects on PES generation: simulation and experiment,

IEEE Trans. on Mag., 32, 1773, 1996.

20. Cheung, W.L., Digital demodulation of a complementary two-frequency servo PES pattern, U.S.

patent 06,025,970, 2000.

21. Tuttle, G.T., et al., A 130 Mb=s PRML read=write channel with digital-servo detection, Proc. IEEE

ISSCC’96, 64, 1996.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 54 11.10.2007 8:45pm Compositor Name: TSuresh

18-54 Digital Systems and Applications

22. Fredrickson, L., et al., Digital servo processing in the Venus PRML read=write channel, IEEE Trans.

on Mag., 33, 2616, 1997.

23. Yada, H. and Takeda, T., A coherent maximum-likelihood, head position estimator for PERM disk

drives, IEEE Trans. on Mag., 32, 1867, 1996.

24. Kimura, H., et al., A digital servo architecture with 8.8 bit resolution of position error signal for disk

drives, IEEE Globecom’97, 1268, 1997.

25. Patapoutian, A., Analog-to-digital converter algorithms for position error signal estimators, IEEE

Trans. on Mag., 36, 395, 2000.

26. Reed, D.E., et al., Digital servo demodulation in a digital read channel, IEEE Trans. on Mag., 34, 13,

1998.

18.5 Modulation Codes for Storage Systems

Brian Marcus and Emina Šoljanin

18.5.1 Introduction

Modulation codes are used to constrain the individual sequences that are recorded in data storage

channels, such as magnetic or optical disk or tape drives. The constraints are imposed in order to

improve the detection capabilities of the system. Perhaps the most widely known constraints are

the runlength limited (RLL(d,k)) constraints, in which ones are required to be separated by at least

d and no more than k zeros. Such constraints are useful in data recording channels that employ peak

detection: waveform peaks, corresponding to data ones, are detected independently of one another.

The d-constraint helps increase linear density while mitigating intersymbol interference, and the

k-constraint helps provide feedback for timing and gain control.

Peak detection was widely used until the early 1990s. Although it is still used today in some magnetic

tape drives and some optical recording devices, most high density magnetic disk drives now use a form

of maximum likelihood (Viterbi) sequence detection. The data recording channel is modeled as a linear,

discrete-time, communications channel with inter-symbol interference (ISI), described by its transfer

function and white Gaussian noise. The transfer function is often given by h(D)¼ (1 �D)(1þD)N,

where N depends on and increases with the linear recording density.

Broadly speaking, two classes of constraints are of interest in today’s high density recording channels:

(1) constraints for improving timing and gain control and simplifying the design of the Viterbi detector

for the channel and (2) constraints for improving noise immunity. Some constraints serve both

purposes.

Constraints in the first class usually take the form of a PRML (G, I) constraint: the maximum run of

zeros is G and the maximum run of zeros, within each of the two substrings defined by the even indices

and odd indices, is I. The G-constraint plays the same role as the k-constraint in peak detection, while

the I-constraint enables the Viterbi detector to work well within practical limits of memory.

Constraints in the second class eliminate some of the possible recorded sequences in order to

increase the minimum distance between those that remain or eliminate the possibility of certain

dominant error events. This general goal does not specify how the constraints should be defined, but

many such constraints have been constructed; see [20] and the references therein for a variety of

examples. Bounds on the capacities of constraints that avoid a given set of error events have been

given in [26].

Until recently, the only known constraints of this type were the matched-spectral-null (MSN)

constraints. They describe sequences whose spectral nulls match those of the channel and therefore

increase its minimum distance. For example, a set of DC-balanced sequences (i.e., sequences of ±1

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 55 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-55

whose accumulated digital sums are bounded) is an MSN constraint for the channel with transfer

function h(D)¼ 1�D, which doubles its minimum distance [18].

During the past few years, significant progress has been made in defining high capacity distance

enhancing constraints for high density magnetic recording channels. One of the earliest examples of such

a constraint is the maximum transition run (MTR) constraint [28], which constrains the maximum

run of ones. We explain the main idea behind this type of distance-enhancing codes in Section 18.5.3.

Another approach to eliminating problematic error events is that of parity coding. Here, a few bits of

parity are appended to (or inserted in) each block of some large size, typically 100 bits. For some of the

most common error events, any single occurrence in each block can be eliminated. In this way, a more

limited immunity against noise can be achieved with less coding overhead [5].

Coding for more realistic recording channel models that include colored noise and intertrack

interference are discussed in Section 18.5.4. The authors point out that different constraints, which

avoid the same prescribed set of differences, may have different performance on more realistic channels.

This makes some of them more attractive for implementation.

For a more complete introduction to this subject, the reader is referred to any one of the many

expository treatments, such as [16,17,24].

18.5.2 Constrained Systems and Codes

Modulation codes used in almost all contemporary storage products belong to the class of constrained

codes. These codes encode random input sequences to sequences that obey the constraint of a labeled

directed graph with a finite number of states and edges. The set of corresponding constrained sequences

is obtained by reading the labels of paths through the graph. Sets of such sequences are called

constrained systems or constraints. Figures 18.41 and 18.42 depict graph representations of an RLL

constraint and a DC-balanced constraint.

Of special interest are those constraints that do not contain (globally or at certain positions) a finite

number of finite length strings. These systems are called systems of finite type (FT). An FT system X over

alphabet A can always be characterized by a finite list of forbidden strings F ¼ {w1, . . . , wN} of symbols

in A. Defined this way, FT systems will be denoted by XF
A. The RLL constraints form a prominent class

of FT constraints, while DC-balanced constraints are typically not FT.

Design of constrained codes begins with identifying constraints, such as those described in the

Introduction, that achieve certain objectives. Once the system of constrained sequences is specified,

information bits are translated into sequences that obey the constraints via an encoder, which usually has

the form of a finite-state machine. The actual set of sequences produced by the encoder is called a

constrained code and is often denoted C. A decoder recovers user sequences from constrained sequences.

While the decoder is also implemented as a

finite-state machine, it is usually required to

have a stronger property, called sliding-

block decodablility, which controls error

propagation [24].

The maximum rate of a constrained code

is determined by Shannon capacity. The

Shannon capacity or simply capacity of a con-

strained system, denoted by C, is defined as

C ¼ lim
n!1

log2 N(n)

n

where N(n) is the number of sequences

of length n. The capacity of a constrained

0

0 1 1 1 2 1 3

0 0

FIGURE 18.41 RLL (1,3) constraint.

1

0

−1

1

1

−1

2

1 1

−1 −1

B

FIGURE 18.42 DC-balanced constraint.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 56 11.10.2007 8:45pm Compositor Name: TSuresh

18-56 Digital Systems and Applications

system represented by a graph G can be easily computed from the adjacency matrix (or state transition

matrix) of G (provided that the labeling of G satisfies some mildly innocent properties). The adjacency

matrix of G with r states and aij edges from state i to state j, 1 � i, j � r, is the r3 r matrix A¼A(G)¼
{aij}r3r. The Shannon capacity of the constraint is given by

C ¼ log2 l(A)

where l(A) is the largest real eigenvalue of A.

The state-splitting algorithm [1] (see also [24]) gives a general procedure for constructing constrained

codes at any rate up to capacity. In this algorithm, one starts with a graph representation of the desired

constraint and then transforms it into an encoder via various graph-theoretic operations including

splitting and merging of states. Given a desired constraint and a desired rate p=q � C, one or more

rounds of state splitting are performed; the determination of which states to split and how to split them

is governed by an approximate eigenvector, i.e., a vector x satisfying Aq x � 2p x.

Many other very important and interesting approaches are used to constrained code construction—

far too many to mention here. One approach combines state-splitting with look-ahead encoding to

obtain a very powerful technique which yields superb codes [14]. Another approach involves variable-

length and time-varying variations of these techniques [2,13]. Many other effective coding constructions

are described in the monograph [17].

For high capacity constraints, graph transforming techniques, such as the state-splitting algorithm,may

result in encoder=decoder architectureswith formidable complexity. Fortunately, a block encoder=decoder

architecture with acceptable implementation complexity for many constraints can be designed by well-

known enumerative [6], and other combinatorial [32] as well as heuristic techniques [25].

Translation of constrained sequences into the channel sequences depends on the modulation method.

Saturation recording of binary information on a magnetic medium is accomplished by converting an

input stream of data into a spatial stream of bit cells along a track where each cell is fully magnetized in

one of two possible directions, denoted by 0 and 1. Two important modulation methods are commonly

used on magnetic recording channels: non-return-to-zero (NRZ) and modified non-return-to-zero

(NRZI). In NRZ modulation, the binary digits 0 and 1 in the input data stream correspond to 0 and 1

directions of cell magnetizations, respectively. In NRZI modulation, the binary digit 1 corresponds to a

magnetic transition between two bit cells, and the binary digit 0 corresponds to no transition. For

example, the channel constraint which forbids transitions in two neighboring bit cells, can be accom-

plished by either F ¼ {11} NRZI constraint or F ¼ {101, 010} NRZ constraint. The graph representation

of these two constraints is shown in Fig. 18.43. The NRZI representation is, in this case, simpler.

00 0

1

0

0

00

11

1
(b)(a)

1

1

0

0

10 01

FIGURE 18.43 Two equivalent constraints: (a) F ¼ {11} NRZI and (b) F ¼ {101,010} NRZ.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 57 11.10.2007 8:45pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-57

18.5.3 Constraints for ISI Channels

This subsection discusses a class of codes known as codes, which avoid specified differences. This is the

only class of distance enhancing codes used in commercial magnetic recording systems. Two main

reasons for this are: these codes simplify the channel detectors relative to the uncoded channel and even

high rate codes in this class can be realized by low complexity encoders and decoders.

18.5.3.1 Requirements

A number of papers have proposed using constrained codes to provide coding gain on channels with

high ISI (see, for example, [4,10,20,28]). The main idea of this approach can be described as follows

[20]. Consider a discrete-time model for the magnetic recording channel with possibly constrained

input a¼ {an} C 2 � {0,1}1, impulse response {hn}, and output y¼ {yn} given by

yn ¼
X
m

amhn�m þ hn (18:32)

where h(D)¼Sn hn D
n¼ (1�D)(1þD)3 (E2PR4) or h(D)¼SnhnD

n¼ (1�D)(1þD)4 (E3PR4), hn are

independent Gaussian random variables with zero mean and variance s2. The quantity 1=s2 is referred

to as the signal-to-noise ratio (SNR). The minimum distance of the uncoded channel given by Eq.

18.32 is

d2min ¼ min
e(D) 6¼0

kh(D)e(D)k2

where e(D)¼Pi¼ 0
i� l eiD

i, (ei 2 {�1,0,1}, e0¼ 1, el� 1 6¼ 0) is the polynomial corresponding to a

normalized input error sequence e¼ {ei}i¼ 0
l�1 of length l, and the squared norm of a polynomial

is defined as the sum of its squared coefficients. The minimum distance is bounded from above by

jjh(D)jj2, denoted by

d2MFB ¼ kh(D)k2 (18:33)

This bound is known as the matched-filter bound (MFB) and is achieved when the error sequence of

length l¼ 1, i.e., e(D)¼ 1, is in the set

arg min
e(D) 6¼0

kh(D)e(D)k2 (18:34)

For channels that fail to achieve the MFB, i.e., for which d2min < jjh(D)jj2, any error sequences e(D)

for which

d2min < kh(D)e(D)k2 < kh(D)k2 (18:35)

are of length l� 2 and may belong to a constrained system XL
{�1,0,1}, where L is an appropriately chosen

finite list of forbidden strings.

For code C, the set of all admissible nonzero error sequences is written as

E(C) ¼ {e 2 {�1,0,1}1je 6¼ 0, e ¼ (a� b),a,b 2 C}

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 58 11.10.2007 8:45pm Compositor Name: TSuresh

18-58 Digital Systems and Applications

Given the condition E(C) � XL
{�1,0,1}, the least restrictive finite collection F of blocks over the alphabet

{0,1} can be identified so that

C � X {0,1}
F) E(C) � X {�1,0,1}

L (18:36)

18.5.3.2 Definitions

A constrained code is defined by specifying F , the list of forbidden strings for code sequences. Prior to

that one needs to first characterize error sequences that satisfy Eq. 18.35 and then specify L, the list of
forbidden strings for error sequences. Error event characterization can be done by using any of the

methods described by Karabed, Siegel, and Soljanin in [20]. Specification of L is usually straightforward.

A natural way to construct a collection F of blocks forbidden in code sequences based on the

collection L of blocks forbidden in error sequences is the following. From the above definition of

error sequences e¼ {ei} we see that ei¼ 1 requires ai¼ 1 and ei¼�1 requires ai¼ 0, i.e., ai¼ (1þ ei)=2.

For each block wE 2 L, construct a list FwE of blocks of the same length l according to the rule:

FwE ¼ {wc 2 {0,1}l jwi
C ¼ (1þ wEi)=2 for all i for which wEi 6¼ 0}:

Then the collection F obtained as F ¼[wE2L FwE satisfies requirement (Eq. 18.36); however, the

constrained system XF
{0,1} obtained this way may not be the most efficient. (Bounds on the achievable

rates of codes which avoid specified differences were found recently in [26].)

The previous ideas are illustrated in the example of the E2PR4 channel. Its transfer function is h(D)¼
(1�D)(1þD)3, and its MFB is jj(1�D)(1þD)3 � 1jj2¼ 10. The error polynomial e(D)¼ 1�DþD2 is

the unique error polynomial for which jj(1�D)(1þD)3 e(D)jj2¼ 6, and the error polynomials e(D)¼
1�DþD2þD5�D6þD7 and e(D) ¼Pl�1

i¼0 (�1)iDi for l � 4 are the only polynomials for which

jj(1�D)(1þD)3 e(D)jj2¼ 8 (see, for example, [20]).

It is easy to show that these error events are not in the constrained error set defined by the list of

forbidden error strings L¼ {þ�þ 00,þ�þ�}, whereþ denotes 1 and� denotes�1. To see this, note

that an error sequence that does not contain the string þ�þ00 cannot have error polynomials e(D)¼
1�DþD2 or E(D)¼ 1�DþD2þD5�D6þD7, while an error sequence that does not contain string

þ�þ� cannot have an error polynomial of the form e(D) ¼Pl�1
i¼0 (�1)iDi for l� 4. Therefore, by the

above procedure of defining the list of forbidden ode strings, we obtain the F ¼ {þ�þ} NRZ

constraint. Its capacity is about 0.81, and a rate 4=5 c code into the constraint was first given in [19].

In [20], the following approach was used to obtain several higher rate constraints. For each of the

error strings in L, we write all pairs of channel strings whose difference is the error string. To define F ,

look for the longest string(s) appearing in at least one of the strings in each channel pair. For the

example above and the þ�þ00 error string, a case-by-case analysis of channel pairs is depicted in

Fig. 18.44. We can distinguish two types (denoted by A and B in the figure) of pairs of code sequences

involved in forming an error event. In a pair of type A, at least one of the sequences has a transition run

of length 4. In a pair of type B, both sequences have transition runs of length 3, but for one of them the

run starts at an even position and for the other at an odd position. This implies that an NRZI

A

a : 0 1 10
 0 0 0

0
0

0
01

A

1 10

b :

a : 0
b : 0 0 0

1
1

0
01

B

1 1 10
1 0 0

0
0

0
01

A

1 1 10
1 0 0

1
1

0
01

A

0 1 10
0 0 0

0
0

1
11

B

0 1 10
0 0 0

1
1

1
11

A
1 1 10
1 0 0

0
0

1
11

A

1 1 10
1 0 0

1
1

1
11

FIGURE 18.44 Possible pairs of sequences for which error event þ�þ00 may occur.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 59 11.10.2007 8:46pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-59

constrained system that limits the run of 1s to 3 when it starts at an odd position, and to 2 when it starts

at an even position, eliminates all possibilities shown bold-faced in Fig. 18.44. In addition, this

constraint eliminates all error sequences containing the string þ�þ�. The capacity of the constraint

is about .916, and rate 8=9 block codes with this constraint have been implemented in several

commercial read channel chips. More about the constraint and the codes can be found in [4,10,20,28].

18.5.4 Channels with Colored Noise and Intertrack Interference

Magnetic recording systems always operate in the presence of colored noise intertrack interference, and

data dependent noise. Codes for these more realistic channel models are studied in [27]. The following is

a brief outline of the problem.

The data recording and retrieval process is usually modeled as a linear, continuous-time, communi-

cations channel described by its Lorentzian step response and additive white Gaussian noise. The most

common discrete-time channel model is given by Eq. 18.32. Magnetic recording systems employ

channel equalization to the most closely matching transfer function h(D) ¼Pn hnD
n of the form

h(D)¼ (1�D)(1þD)N. This equalization alters the spectral density of the noise, and a better channel

model assumes that the hn in Eq. 18.32 are identically distributed, Gaussian random variables with zero

mean, variance s2, and normalized cross-correlation E{hnhk}=s
2¼ rn� k.

In practice, there is always intertrack interference (ITI), i.e., the read head picks up magnetization

from an adjacent track. Therefore, the channel output is given by

yn ¼
X
m

amhn�m þ
X
m

xmgn�m þ hn (18:37)

where {gn} is the discrete-time impulse response of the head to the adjacent track, and x¼ {xn} 2 C is the

sequence recorded on that track. Assuming that the noise is white.

In the ideal case (Eq. 18.32), the probability of detecting b given that a was recorded is equal to

Q(d(e)=s), where d(e) is the distance between a and b given by

d2(e) ¼
X
n

X
m

emhn�m

 !2

(18:38)

Therefore, a lower bound, and a close approximation for small s, to the minimum probability of an

error-event in the system is given by Q(dmin,C=s), where

dmin,C ¼ min
e2 ec

d(e)

is the channel minimum distance of code C. We refer to

dmin ¼ min
e2 {�1,0,1}1

d(e) (18:39)

as the minimum distance of the uncoded channel, and to the ratio dmin,C=dmin as the gain in distance of

code C over the uncoded channel.

In the case of colored noise, the probability of detecting b given that a was recorded equals to

Q(D(e)=s), where D(e) is the distance between a and b given by

D2(e) ¼
P

n

P
m emhn�m

� �2h i2
P

n

P
k

P
m emhn�m

� �
rn�k

P
m emhk�m

� �

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 60 11.10.2007 8:46pm Compositor Name: TSuresh

18-60 Digital Systems and Applications

Therefore, a lower bound to the minimum probability of an error-event in the system is given by

Q(Dmin,C=s), where

Dmin,C ¼ min
e2EC

D(e)

In the case of ITI (Eq. 18.37), an important factor is the probability of detecting sequence b given that

sequence a was recorded on the track being read and sequence x was recorded on an adjacent track. This

probability is

Q(d(e,x)=s)

where d(e,x) is the distance between a and b in the presence of x given by [30]

d2(e,x) ¼ 1P
n

P
m emhn�m

� �2h i X n

X
memhn�m

	
2
þ
X

n

X
mxmgn�m

	
 X
memhn�m

	
� �2

Therefore, a lower bound to the minimum probability of an error-event in the system is proportional to

Q(dmin,C=s), where

dmin,C ¼ min
e 6¼ 0,x2C

d(e,x)

Distance dmin,C can be bounded as follows [30]:

dmin,C � (1�M)dmin,C (18:40)

where M¼maxn,x2C Smxmgn�m, i.e., M is the maximum absolute value of the interference. Note that

M¼Snjgnj. We will assume that M< 1. The bound is achieved if and only if there exists an e, d(e)¼
dmin,C, for which Smemhn�m 2 {�1, 0, 1} for all n, and there exists an x 2 C such that Sm xm gn�m¼�
M whenever Smemhn�m ¼ ±1.

18.5.5 An Example

Certain codes provide gain in minimum distance on channels with ITI and colored noise, but not on the

AWGN channel with the same transfer function. This is best illustrated using the example of the partial

response channel with the transfer function h(D)¼ (1�D)(1þD)2 known as EPR4. It is well known

that for the EPR4 channel dmin
2 ¼ 4. Moreover, as discussed in Section 18.5.3, the following result holds:

Proposition 1. Error events e(D) such that

d2(e) ¼ d2min ¼ 4

take one of the following two forms:

e(D) ¼
Xk�1

j¼0

D2j , k � 1

or

e(D) ¼
Xl�1

i¼0

(�1)iDi , l � 3

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 61 11.10.2007 8:46pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-61

Therefore, an improvement of error-probability performance can be accomplished by codes which

eliminate the error sequences e containing the strings �1 þ1 �1 and þ1 �1 þ1. Such codes were

extensively studied in [20].

In the case of ITI (Eq. 18.37), it is assumed that the impulse response to the reading head from an

adjacent track is described by g(D)¼aH(D), where the parameter a depends on the track to head

distance. Under this assumption, the bound Eq. 18.40 gives d2min � d2min (1� 4a)2. The following result

was shown in [30]:

Proposition 2. Error events e(D) such that

min
x2C

d2(e,x) ¼ d2min ¼ d2min(1� 4a)2 ¼ 4(1� 4a)2

take the following form:

e(D) ¼
Xl�1

i¼0

(�1)iDi , l � 5

For all other error sequences for which d2(e)¼ 4, we have minx2C d
2 (e, x)¼ 4(1� 3a)2.

Therefore, an improvement in error-probability performance of this channel can be accomplished by

limiting the length of strings of alternating symbols in code sequences to four. For the NRZI type of

recording, this can be achieved by a code that limits the runs of successive ones to three. Note that the set

of minimum distance error events is smaller than in the case with no ITI. Thus, performance improve-

ment can be accomplished by higher rate codes that would not provide any gain on the ideal channel.

Channel equalization to the EPR4 target introduces cross-correlation among noise samples for a range

of current linear recording densities (see [27] and references therein). The following result was obtained

in [27]:

Proposition 3. Error events e(D) such that

D2(e) ¼ D2
min

take the following form:

e(D) ¼
Xl�1

i¼0

(�1)iDi , l � 3, l odd

Again, the set of minimum distance error events is smaller than in the ideal case (white noise), and

performance improvement can be provided by codes which would not give any gain on the ideal

channel. For example, since all minimum distance error events have odd parity, a single parity check

code can be used.

18.5.6 Future Directions

18.5.6.1 Soft-Output Decoding of Modulation Codes

Detection and decoding in magnetic recording systems is organized as a concatenation of a channel

detector, an inner decoder, and an outer decoder, and as such should benefit from techniques known as

erasure and list decoding. To declare erasures or generate lists, the inner decoder (or channel detector)

needs to assess symbol=sequence reliabilities. Although the information required for this is the same one

necessary for producing a single estimate, some additional complexity is usually required. So far, the

predicted gains for erasure and list decoding of magnetic recording channels with additive white

Gaussian noise were not sufficient to justify increasing the complexity of the channel detector and

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 62 11.10.2007 8:47pm Compositor Name: TSuresh

18-62 Digital Systems and Applications

inner and outer decoder; however, this is not the case for systems employing new magneto-resistive

reading heads, for which an important noise source, thermal asperities, is to be handled by passing

erasure flags from the inner to the outer decoder.

In recent years, one more reason for developing simple soft-output channel detectors has surfaced.

The success of turbo-like coding schemes on memoryless channels has sparked the interest in using them

as modulation codes for ISI channels. Several recent results show that the improvements in performance

turbo codes offer when applied to magnetic recording channels at moderate linear densities are even

more dramatic than in the memoryless case [12,29]. The decoders for turbo and low-density parity

check codes (LDPC) either require or perform much better with soft input information which has to be

supplied by the channel detector as its soft output. The decoders provide soft outputs which can then be

utilized by the outer Reed-Solomon (RS) decoder [22]. A general soft-output sequence detection was

introduced in [11], and it is possible to get information on symbol reliabilities by extending those

techniques [21,31].

18.5.6.2 Reversed Concatenation

Typically, the modulation encoder is the inner encoder, i.e., it is placed downstream of an error-

correction encoder (ECC) such as an RS encoder; this configuration is known as standard concatenation

(Fig. 18.45). This is natural since otherwise the ECC encoder might well destroy the modulation

properties before passing across the channel; however, this scheme has the disadvantage that the

modulation decoder, which must come before the ECC decoder, may propagate channel errors before

they can be corrected. This is particularly problematic for modulation encoders of very high rate, based

on very long block size. For this reason, a good deal of attention has recently focused on a reversed

concatenation scheme, where the encoders are concatenated in the reversed order (Fig. 18.46). Special

arrangements must be made to ensure that the output of the ECC encoder satisfies the modulation

constraints. Typically, this is done by insisting that this encoder be systematic and then re-encoding the

parity information using a second modulation encoder (the ‘‘parity modulation encoder’’), whose

corresponding decoder is designed to limit error propagation; the encoded parity is then appended

to the modulation-encoded data stream (typically a few merging bits may need to be inserted in

between the two streams in order to ensure that the entire stream satisfies the constraint). In this

scheme, after passing through the channel the modulation-encoded data stream is split from the

modulation-encoded parity stream, and the latter is then decoded via the parity modulation decoder

before being passed on to the ECC decoder. In this way, many channel errors can be corrected before the

data modulation decoder, thereby mitigating the problem of error propagation. Moreover, if the data

Error
correction
encoder

Error
correction
decoder

Modulation
encoder

Modulation
decoder

Channel

FIGURE 18.45 Standard concatenation.

Data
modul.

encoder

Parity
modul.

encoder

Data
modul.

decoder

Systematic
ECC

encoder

Systematic
ECC

decoderAppend Channel Split

Parity
modul.

decoder
Parity Parity

FIGURE 18.46 Reversed concatenation.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 63 11.10.2007 8:47pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-63

modulation encoder has high rate, then the overall scheme will also have high rate because the parity

stream is relatively small.

Reversed concatenation was introduced in [3] and later in [23]. Recent interest in the subject has been

spurred on by the introduction of a lossless compression scheme, which improves the efficiency of

reversed concatenation [15], and an analysis demonstrating the benefits in terms of reduced levels of

interleaving [8]; see also [9]. Research on fitting soft decision detection into reversed concatenation can

be found in [7,33].

References

1. R. Adler, D. Coppersmith, and M. Hassner, ‘‘Algorithms for sliding-block codes,’’ IEEE Trans.

Inform. Theory, vol. 29, no. 1, pp. 5–22, Jan. 1983.

2. J. Ashley and B. Marcus, ‘‘Time-varying encoders for constrained systems: an approach to limiting

error propagation,’’ IEEE Trans. Inform. Theory, 46 (2000), 1038–1043.

3. W.G. Bliss, ‘‘Circuitry for performing error correction calculations on baseband encoded data to

eliminate error propagation,’’ IBM Tech. Discl. Bull., 23 (1981), 4633–4634.

4. W.G. Bliss, ‘‘An 8=9 rate time-varying trellis code for high density magnetic recording,’’ IEEE Trans.

Magn., vol. 33, no. 5, pp. 2746–2748, Sept. 1997.

5. T. Conway, ‘‘A new target response with parity coding for high density magnetic recording,’’ IEEE

Trans. Magn., vol. 34, pp. 2382–2386, 1998.

6. T. Cover, ‘‘Enumerative source encoding,’’ IEEE Trans. Inform. Theory, pp. 73–77, Jan. 1973.

7. J. Fan. ‘‘Constrained coding and soft iterative decoding for storage,’’ PhD Dissertation, Stanford

University, 1999.

8. J. Fan and R. Calderbank, ‘‘A modified concatenated coding scheme, with applications to magnetic

data storage,’’ IEEE Trans. Inform. Theory, 44 (1998), 1565–1574.

9. J. Fan, B. Marcus, and R. Roth, ‘‘Lossless sliding-block compression of constrained systems,’’ IEEE

Trans. Inform. Theory, 46 (2000), 624–633.

10. K. Knudson Fitzpatrick, and C.S. Modlin, ‘‘Time-varying MTR codes for high density magnetic

recording,’’ in Proc. 1997 IEEE Global Telecommun. Conf. (GLOBECOM ’97), Phoenix, AZ, Nov.

1997, pp. 1250–1253.

11. J. Hagenauer and P. Hoeher, ‘‘AViterbi algorithm with soft–decision outputs and its applications,’’ in

Proc. 1989 IEEE Global Telecommun. Conf. (GLOBECOM ’89), Dallas, TX, Nov. 1989, pp. 1680–1687.

12. C. Heegard, ‘‘Turbo coding for magnetic recording,’’ in Proc. 1998 Information Theory Workshop, San

Diego, CA, Feb. 8–11, 1998, pp. 18–19.

13. C.D. Heegard, B.H. Marcus, and P.H. Siegel, ‘‘Variable-length state splitting with applications to

average runlength-constrained (ARC) codes,’’ IEEE Trans. Inform. Theory, 37 (1991), 759–777.

14. H.D.L. Hollmann, ‘‘On the construction of bounded-delay encodable codes for constrained sys-

tems,’’ IEEE Trans. Inform. Theory, 41 (1995), 1354–1378.

15. K.A. Schouhamer Immink, ‘‘A practical method for approaching the channel capacity of constrained

channels,’’ IEEE Trans. Inform. Theory, 43 (1997), 1389–1399.

16. K.A. Schouhamer Immink, P.H. Siegel, and J.K. Wolf, ‘‘Codes for Digital Recorders,’’ IEEE Trans.

Infor. Theory, vol. 44, pp. 2260–2299, Oct. 1998.

17. K.A. Schouhamer Immink, Codes for Mass Data Storage, Shannon Foundation Publishers, The

Netherlands, 1999.

18. R. Karabed and P.H. Siegel, ‘‘Matched spectral null codes for partial response channels,’’ IEEE Trans.

Inform. Theory, 37 (1991), 818–855.

19. R. Karabed and P.H. Siegel, ‘‘Coding for higher order partial response channels,’’ in Proc. 1995 SPIE

Int. Symp. on Voice, Video, and Data Communications, Philadelphia, PA, Oct. 1995, vol. 2605, pp.

115–126.

20. R. Karabed, P.H. Siegel, and E. Soljanin, ‘‘Constrained coding for binary channels with high

intersymbol interference,’’ IEEE Trans. Inform. Theory, vol. 45, pp. 1777–1797, Sept. 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 64 11.10.2007 8:47pm Compositor Name: TSuresh

18-64 Digital Systems and Applications

21. K.J. Knudson, J.K. Wolf, and L.B. Milstein, ‘‘Producing soft-decision information on the output of a

class IV partial response Viterbi detector,’’ in Proc. 1991 IEEE Int. Conf. Commun. (ICC ’91), Denver,

CO, June 1991, pp. 26.5.1.–26.5.5.

22. R. Koetter and A. Vardy, preprint 2000.

23. M. Mansuripur, ‘‘Enumerative modulation coding with arbitrary constraints and post-modulation

error correction coding and data storage systems,’’ Proc. SPIE, 1499 (1991), 72–86.

24. B. Marcus, R. Roth, and P. Siegel, ‘‘Constrained systems and coding for recording channels,’’ Chapter

20 of Handbook of Coding Theory, edited by V. Pless, C. Huffman, 1998, Elsevier.

25. D. Modha and B. Marcus, ‘‘Art of constructing low complexity encoders=decoders for constrained

block codes,’’ IEEE J. Sel. Areas in Comm., (2001), to appear.

26. B.E. Moision, A. Orlitsky, and P.H. Siegel, ‘‘On codes that avoid specified differences,’’ IEEE Trans.

Inform. Theory, vol. 47, pp. 433–441, Jan. 2001.

27. B.E. Moision, P.H. Siegel, and E. Soljanin, ‘‘Distance Enhancing Codes for High-Density Magnetic

Recording Channel,’’ IEEE Trans. Magn., submitted, Jan. 2001.

28. J. Moon and B. Brickner, ‘‘Maximum transition run codes for data storage systems,’’ IEEE Trans.

Magn., vol. 32, pp. 3992–3994, Sept. 1996.

29. W. Ryan, L. McPheters, and S.W. McLaughlin, ‘‘Combined turbo coding and turbo equalization for

PR4-equalized Lorentzian channels,’’ in Proc. 22nd Annual Conf. Inform. Sciences and Systems,

Princeton, NJ, March 1998.

30. E. Soljanin, ‘‘On-track and off-track distance properties of Class 4 partial response channels,’’ in

Proc. 1995 SPIE Int. Symp. on Voice, Video, and Data Communications, Philadelphia, PA, vol. 2605,

pp. 92–102, Oct. 1995.

31. E. Soljanin, ‘‘Simple soft-output detection for magnetic recording channels,’’ in 1998 IEEE Int. Symp.

Inform. Theory (ISIT’00), Sorrento, Italy, June 2000.

32. A.J. van Wijngaarden and K.A. Schouhamer Immink ‘‘Combinatorial construction of high rate

runlength-limited codes,’’ Proc. 1996 IEEE Global Telecommun. Conf. (GLOBECOM ’96), London,

U.K., pp. 343–347, Nov. 1996.

33. A.J. van Wijngaarden and K.A. Schouhamer Immink, ‘‘Maximum run-length limited codes with

error control properties,’’ IEEE J. Select. Areas Commun., vol. 19, April 2001.

34. A.J. van Wijngaarden and E. Soljanin, ‘‘A combinatorial technique for constructing high rate MTR-

RLL codes,’’ IEEE J. Select. Areas Commun., vol. 19, April 2001.

18.6 Data Detection

Miroslav Despotović and Vojin Šenk

18.6.1 Introduction

Digital magnetic recording systems transport information from one time to another. In communication

society jargon, it is said that recording and reading information back from a (magnetic) medium is

equivalent to sending it through a time channel. There are differences between such channels. Namely, in

communication systems, the goal is a user error rate of 10�5 or 10�6. Storage systems, however, often

require error rates of 10�12 or better. On the other hand, the common goal is to send the greatest

possible amount of information through the channel used. For storage systems, this is tantamount to

increasing recording density, keeping the amount redundancy as low as possible, i.e., keeping the bit rate

per recorded pulse as high as possible. The perpetual push for higher bit rates and higher storage

densities spurs a steady increment of the amplitude distortion of many types of transmission and storage

channels.

When recording density is low, each transition written on the magnetic medium results in a relatively

isolated peak of voltage, and peak detection method is used to recover written information; however,

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 65 11.10.2007 8:47pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-65

when PW50 (pulse width at half maximum response) becomes comparable with the channel bit period,

the peak detection channel cannot provide reliable data detection, due to intersymbol interference (ISI).

This interference arises because the effects of one readback pulse are not allowed to die away completely

before the transmission of the next. This is an example of a so-called baseband transmission system, i.e.,

no carrier modulation is used to send data. Impulse dispersion and different types of induced noise at

the receiver end of the system introduce combination of several techniques (equalization, detection, and

timing recovery) to restore data. This section gives a survey of most important detection techniques in

use today assuming ideal synchronization.

Increasing recording density in new magnetic recording products necessarily demands enhanced

detection techniques. First detectors operated at densities at which pulses were clearly separated,

so that very simple, symbol-by-symbol detection technique was applied, the so-called peak detector

[30]. With increased density, the overlap of neighboring dispersed pulses becomes so severe (i.e., large

intersymbol interference—ISI) that peak detector could not combat with such heavy pulse shape degrad-

ation. To accomplish this task, it was necessary to master signal processing technology to be able to

implement more powerful sequence detection techniques. This section will both focus on this type of

detection already applied in commercial products and give advanced procedures for searching the

detection trellis to serve as a tutorial material for research on next generation products.

18.6.2 Partial-Response Equalization

In the classical peak detection scheme, an equalizer is inserted whose task is just to remove all the ISI so

that an isolated pulse is acquired, but the equalization will also enhance and colorize the noise (from

readback process) due to spectral mismatch. The noise enhancement obtained in this manner will

increase with recording density and eventually become intolerable. Namely, since such a full equalization

is aimed at slimming the individual pulse, so that it does not overlap with adjacent pulses, it is usually

too aggressive and ends up with huge noise power.

Let us now review the question of recording density, also known as packing density. It is often used

to specify how close two adjacent pulses stay to each other and is defined as PW50=T (see Section 18.1

for definition). Whatever tricks are made with peak detection systems, they barely help at PW50=T

ratios above 1.

Section 18.6 discusses two receiver types that run much less rapidly out of steam. These are the

partial-response equalizer (PRE) and the decision-feedback equalizer (DFE). Both are rooted in old

telegraph tricks and, just as is the case with peak detector, they take instantaneous decisions with respect

to the incoming data. Section 18.6 will focus mainly on these issues, together with sequence detection

algorithms that accompany partial-response (PR) equalization.

What is PR equalization? It is the act of shaping the readback magnetic recording signal to look like

the target signal specified by the PR. After equalization the data are detected using a sequence detector.

Of course, quantization by an analog-to-digital converter (ADC) occurs at some point before the

sequence detector.

The common readback structure consists of a linear filter, called a whitened matched filter, a symbol-

rate sampler (ADC), a PRE, and a sequence detector, Fig. 18.47. The PRE in this scheme can also be put

before the sampler, meaning that it is an analog, not a digital equalizer. Sometimes part of the equalizer

is implemented in the analog, the other part in the digital domain. In all cases, analog signal, coming

Whitened
matched

filter

PR
Equalizer

Viterbi
algorithmt = nTReceived

signal

y (t) yn in

Channel
sequence

PR
sequence

Estimated
input

sequence

FIGURE 18.47 Maximum-likelihood sequence detector.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 66 11.10.2007 8:47pm Compositor Name: TSuresh

18-66 Digital Systems and Applications

from the magnetic head, should have a certain and constant level of amplification. This is done in a

variable gain amplifier (VGA). To keep a signal level, VGA gets a control signal from a clock and gain

recovery system. In the sequel, we will assume that VGA is already (optimally) performed. In the design

of equalizers and detectors, low power dissipation and high speed are both required. The error

performances need to be maintained as well. So far, most systems seek for the implementations in the

digital domain, as is the case in Fig. 18.47, but it has been shown that ADC may contribute to the high-

frequency noise during the PR target equalization, causing a long settling time in clock recovery loop, as

well as degrading performance [33]. In addition, the ADC is also usually the bottleneck for the low-

power high-speed applications. On the other hand, the biggest problem for an analog system is the

imperfection of circuit elements. The problems encountered with analog systems include nonideal gain,

mismatch, nonlinear hold step, offset, etc.

Let us now turn to the blocks shown in Fig. 18.47. The first of them, the whitened matched filter, has

the following properties [7]:

Simplicity : a single filter producing single sample at the output is all that is needed. The response of the

filter is either chosen to be causal and hence realizable, or noncausal, meaning some delay has to be

introduced, yielding better performance.

Sufficiency : the filter is information lossless, in the sense that its sampled outputs are a set of sufficient

statistics for estimation of the input sequence.

Whiteness: the noise components of the sampled outputs are independent identically distributed

Gaussian random variables.

The whiteness and sufficiency property follow from the fact that the set of waveforms at the output of

the matched filter is an orthonormal basis for the signal space.

The next block is PRE. What is PR? Essential to PR techniques is that the PR sequence is obtained

from the channel sequence via a simple linear filter. More specifically, the impulse response of this filter

is such that the overall response is modeled as having only a few small integer-valued coefficients, the

condition actually considered crucial for the system to be called PR. This condition subsequently yields

relatively simple sequence detectors. The correlative level coding [3], also known as PR [31] is adopted

in digital communication applications for long time. Kobayashi [9] suggested in 1971 that this type of

channels can be treated as a linear finite state machine, and thus can be represented by the state diagram

and its time instant labeled counterpart, trellis diagram. Consequently, its input is best inferred using

some trellis search technique, the best of them (if we neglect complexity issues) being the Viterbi

algorithm [2] (if one is interested in maximizing the likelihood of the whole sequence; otherwise, a

symbol-by-symbol detector is needed). Kobayashi also indicated that the magnetic recording channel

could be regarded as the PR channel due to the inherent differentiation property in the readback process [8].

This is both present in inductive heads and in magnetoresistive (MR) heads, though the latter are

directly sensitive to magnetization and not to its change (this is due to the fact that the head has to be

shielded). In other words, the pulse will be read only when the transition of opposite magnet polarities

is sensed.

Basic to the PR equalization is the fact that a controlled amount of ISI is not suppressed by the

equalizer, but rather left for a sequence detector to handle. The nature of the controlled ISI is defined by

a PR. A proper match of this response to the channel permits noise enhancement to remain small even

when amplitude distortion is severe. In other words, PR equalization can provide both well-controlled

ISI and spectral match.

PR equalization is based on two assumptions:

. The shape of readback signal from an isolated transition is exactly known and determined.

. The superposition of signals from adjacent transitions is linear.

Furthermore, it is assumed that the channel characteristics are fixed and known, so that equaliza-

tion need not be adaptive. The resulting PR channel can be characterized using D-transform of the

sequences that occur, X(D)¼ I(D)H(D) [7] where H(D) ¼PM�1
i¼0 hiD

i , D represents the delay factor in

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 67 11.10.2007 8:47pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-67

D-transform and M denotes the order of the PR signals. When modeling differentiation, H(D)¼ 1�D.

The finite state machine (FSM) of this PR channel is known as the dicode system since there are only two

states in the transition diagram.

The most unclear signal transformation in Fig. 18.47 is equalization. What does it mean that the pulse

of voltage should look like the target signal specified by the PR (the so-called PR target)? To answer this

question let us consider the popular Class IV PR, or PRIV system.

For magnetic recording systems with PW50=T approximately equal to 2, comparatively little equal-

ization is required to force the equalized channel to match a class-4 PR (PR4) channel where H(D)¼
(1�D)(1þD)¼ 1�D2. Comparing to the Lorentzian model of Section 18.1, PR4 channel shows more

emphasis in the high frequency domain. The equalizer with the PR4 as the equalization target thus

suppresses the low frequency components and enhances the high frequency ones, degrading the

performance of all-digital detectors since the quantization noise, that is mainly placed at higher

frequencies, is boosted up.

The isolated pulse shape in a PR4 system is shown in Fig. 18.48. The transition is written at time

instant t¼ 0, where T is the channel bit period. The shape is oscillating and the pulse values at integer

number of bit periods before the transition are exactly zeros. Obviously, it is this latter feature that

should give us future advantage; however, at t¼ 0 and at t¼T, i.e., one bit period later, the values of the

pulse are equal to ‘‘1’’. The pulse of voltage reaches its peak amplitude of 1.273 at one half of the bit

period. Assume that an isolated transition is written on the medium and the pulse of voltage shown in

Fig. 18.48 comes to the PRML system. The PR4 system requires that the samples of this pulse should

correspond to the bit periods. Therefore, samples of the isolated PR4 pulse will be 00 . . . 011000 . . .

(of course, ‘‘1’’ is used for convenience, and in reality it corresponds to some ADC level).

Because the isolated transition has two nonzero samples, when the next transition is written, the

pulses will interfere. Thus, writing two pulses adjacent to each other will introduce superposition

between them, usually called a dipulse response, as shown in Fig. 18.49. Here, the samples are

[. . . ,0,0,1,0,�1,0,0, . . .], resulting from

0 0 0 1 1 0 0 0 from the first transition

þ 0 0 0 0� 1 � 1 0 0 from the second transition

0 0 0 1 0 � 1 0 0

Isolated pulse Two neighboring pulses

Peak detection

PR4 channel

2T

f = 1/T = 1.5f

(a) (b)

FIGURE 18.48 Capacity of PR4 channel.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 68 11.10.2007 8:47pm Compositor Name: TSuresh

18-68 Digital Systems and Applications

Now, there is no concern about linear ISI; once the pulses can be reduced to the predetermined simple

shape, the data pattern is easily recovered because superposition of signals from adjacent transitions is

known. In the above example, we see that sample ‘‘1’’ is suppressed by ‘‘�1’’ from the next transition.

It is a simple matter to check that all possible linear combinations of the samples result in only three

possible values {�1, 0, þ1} (naturally, it is that all parts of the system are working properly, i.e.,

equalization, gain, and timing recovery, and that the signal is noise free). A positive pulse of voltage is

always followed by a negative pulse and vice versa, so that the system can be regarded as an alternative

mark inversion (AMI) code.

The higher bit capacity of the PR4 channel can best be understood from Fig. 18.48. It is observed that

PR4 channel provides a 50% enhancement in the recording density as compared with the peak detection

(fully equalized) one, since the latter requires isolation of single bits from each other. In the next figure,

we see that the EPR4 channel (explained later) adds another 33% to this packing density. PR4 has

another advantage over all the other PR systems; since H(D)¼ 1�D2, the current symbol is correlated

to the second previous one, allowing the system to be modeled as two interleaved dicode channels,

implying the use of simple dicode detectors for even and odd readback samples. RLL coding is necessary

in this case, since nonideal tracking and timing errors result in a residual intermediate term (linear in D)

that induces correlation between two interleaved sequences, and thus degrades systems that rely on

decoupled detection of each of them.

RLL codes are widely used in conjunction with PR equalization in order to eliminate certain data

strings that would render tracking and synchronization difficult. If PR4 target is used, a special type of

RLL coding is used, characterized by (0, G=I). Here, G and I denote the maximum number of

consecutive zeros in the overall data string, and in the odd=even substrings, respectively. The latter

parameter ensures proper functioning of the clock recovery mechanism if deinterleaving of the PR4

channel into two independent dicode channels is performed. The most popular is the (0,4=4) code,

whose data rate is 7=8, i.e., whose data loss is limited to 12.5%.

Other PR targets are used besides PR4. The criterion of how to select the appropriate PR target is

based on spectral matching, to avoid introducing too much equalization noise. For instance, for

PW50=T� 2.25, it is better to model ISI pattern as the so-called EPR4 (i.e. extended class-4 partial

 Isolated pulse Two neighboring pulses

PR4 channel

EPR4 channel

f � = 1/T� = 1.33f

4T�

3T

(a) (b)

FIGURE 18.49 Capacity of EPR4 channel.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 69 11.10.2007 8:47pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-69

response) channel with H(D)¼ (1þD)2 (1�D)¼ 1þD�D2�D3. As the packing density goes up,

more low frequency components are being introduced (low compared to 1=T, that also increases as T is

shortened, in reality those frequencies are higher than those met for lower recording densities, respect-

ively greater T). This is the consequence of the fact that intersymbol interference blurs the boundary

between individual pulses, flattening the overall response (in time domain). The additional 1þD term

in the target PR effectively suppresses the unwanted high frequencies. EPR4 enables even higher

capacities of the magnetic recording systems than PRIV, observing the difference of 33% in the recording

density displayed in Fig. 18.49; however, a practical implementation of EPR4 is much more complex

than is the case with PR4. First, the deinterleaving idea used for PR4 cannot be implemented. Second,

the corresponding state diagram (and consequently trellis) now has eight states instead of four (two if

deinterleaving is used). Furthermore, its output is five-leveled, instead of ternary for the PR4 and the

dicode channel, so that a 4.4 dB degradation is to be expected with a threshold detector. Naturally, if

sequence detector is used, such as Viterbi algorithm (VA), this loss does not exist, but its elimination is

obtained at the expense of a significantly increased complexity of the detector. Furthermore, if such a

detector can be used, EPR4 has a performance advantage over PR4 due to less equalization noise

enhancement, cf. Fig. 18.50.

Let us reconsider the PR equalizer shown in Fig. 18.47. Following the approach from Reference 44, its

aim is to transform the input spectrum Y0(e j2pV) into a spectrum Y(e j2pV)¼Y0(e j2pV)jC(e j2pV)j2,
where C(e j2pV) is the transfer function of the equalizer. The spectrum Y(e j2pV)¼ I(e j2pV)jH(e j2pV)j2þ
N(e j2pV) where H(D) is the PR target. For instance, duobinary PR target (H(D)¼ 1þD) enhances low

frequencies and suppresses those near the Nyquist frequency V¼ 0.5, whereas dicode H(D)¼ (1�D)

does the opposite: it suppresses low frequencies and enhances those near V¼ 0.5.

In principle, the spectral zeros of H(e j2pV) can be undone via a linear (recursive) filter, but this would

excessively enhance any noise components added. The schemes for tracking the input sequence to the

system based on the PR target equalized one will

be reviewed later in this section. For instance, for

a PR4 system, a second-order recursive filter can

in principle be used to transform its input into an

estimate of the information sequence, Fig. 18.51.

Unfortunately, if an erroneous estimate is pro-

duced at any moment, all subsequent estimates

will be in error (in fact, they will no longer be in

the alphabet {�1, 0, 1}, enabling error monitoring

and simple forms of error correction [31]). To

avoid this catastrophic error propagation, resort

can be taken to a precoder.

Let us analyze the functioning of this pre-

coder in the case of the PR4 channel (1�D2)

5.0

3.0

1.0

1.0 1.5

Packing density (PW50/T)

N
oi

se
 e

nh
an

ce
m

en
t i

nd
ex

2.0 2.5

PR4 target

EPR4 target

FIGURE 18.50 Equalization noise enhancement in PR channels.

+

+

in xn

xnin

hn

dn

(a)

x MM

(b)
D2

D2

hn

în

în

FIGURE 18.51 (a) PR4 recursive restoration of infor-

mation sequence and (b) precoder derived from it.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 70 11.10.2007 8:47pm Compositor Name: TSuresh

18-70 Digital Systems and Applications

(generalization to other PR channels is trivial). Its function is to transform in into a binary sequence

dn¼ indn�2 to which the PR transformation is applied, Fig. 18.51b. This produces a ternary sequence

xn ¼ (d 	 h)n ¼ dn � dn�2 ¼ indn�2 � dn�2 ¼ (in � 1)dn�2

Because dn�2 cannot be zero, xn is zero iff in� 1¼ 0, i.e., in¼ 1. Thus, the estimate ı̂n of in can be formed

by means of the memoryless mapping (MM)

ı̂n ¼ 1, xn = 0

0, else

�

This decoding rule does not rely on past data estimates and thereby avoids error propagation altogether.

In practice, the sequences in and dn are in the alphabet {0, 1} rather than {�1, 1}, and the multiplication

in Fig. 18.51b becomes a modulo-2 addition (where 0 corresponds to 1, and 1 to �1).

The precoder does not affect the spectral characteristics of an uncorrelated data sequence. For

correlated data, however, precoding need not be spectrally neutral. It is instructive to think of the

precoder as a first-order recursive filter with a pole placed so as to cancel the zero of the partial response.

The filter uses a modulo-2 addition instead of a normal addition and as a result the cascade of filter and

PR, while memoryless, has a nonbinary output. The MM serves to repair this ‘‘deficiency.’’

Catastrophic error propagation can be avoided without precoder by forcing the output of the

recursive filter of Fig. 18.52 to be binary (Fig. 18.52a). An erroneous estimate ı̂n�2¼�in�2 leads

to a digit

Feedback detector

Feedback detector

+

+

in xn
hk

+

+

in xn
hn

(a)

în −2

în

(b)

D2

P (D)

în

FIGURE 18.52 Feedback detector.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 71 11.10.2007 8:47pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-71

ı̂n ¼ xn þ ı̂n�2 ¼ in � in�2 þ ı̂n�2 ¼ in � 2in�2

whose polarity is obviously determined by in�2. Thus, the decision ı̂n that is taken by the slicer in

Fig. 18.52a will be correct if in happens to be the opposite of in�2. If data is uncorrelated, this will happen

with probability 0.5, and error propagation will soon cease, since the average number of errors in a burst

is 1þ 0.5þ (0.5)2 þ� � � ¼ 2. Error propagation is thus not a serious problem.

The feedback detector of Fig. 18.52 is easily generalized to arbitrary partial response H(D). For

purposes of normalization, H(D) is assumed to be causal and monic (i.e., hn¼ 0 for n< 0 and h0¼ 1).

The nontrivial taps h1, h2, . . . together form the ‘‘tail’’ of H(D). This tail can be collected in P(D), with

pn¼ 0 for n � 0 and pn¼ hn for n � 1. Hence, hn¼ dnþ pn, where the Kronecker delta function dn
represents the component h0¼ 1. Hence

xn ¼ (i 	 h)n ¼ (i 	 (dþ p))n ¼ in þ (i 	 p)n:

The term (i * p)n depends exclusively on past digits in�1, in�2, . . . that can be replaced by decisions ı̂n�1,

ı̂n�2,. . . . Therefore, an estimate ı̂n of the current digit ı̂n can be formed according to ı̂n¼ xk (ı̂ * p)n as in

Fig. 18.52b. As before, a slicer quantizes ı̂n into binary decisions ı̂n so as to avoid catastrophic error

propagation. The average length of bursts of errors, unfortunately, increases with the memory order of

H(D). Even so, error propagation is not normally a serious problem [21]. In essence, the feedback

detector avoids noise enhancement by exploiting past decisions. This viewpoint is also central to

decision-feedback equalization, to be explained later.

Naturally, all this can be generalized to nonbinary data; but in magnetic recording, so far, only binary

data are used (the so-called saturation recording). The reasons for this are elimination of hysteresis and

the stability of the recorded sequence in time.

Let us consider now the way the PR equalizer from Fig. 18.47 is constructed. In Fig. 18.53, a discrete-

time channel with transfer function F(e j2pV) transforms in into a sequence yn¼ (i * f)nþ un, where un is

the additive noise with power spectral density U(e j2pV), and yn represents the sampled output of a

whitened matched filter. We might interpret F(e j2pV) as comprising two parts: a transfer function

H(e j2pV) that captures most of the amplitude distortion of the channel (the PR target) and a function

Fr(e
j2pV)¼ F(e j2pV)=H(e j2pV) that accounts for the remaining distortion. The latter distortion has only

a small amplitude component and can thus be undone without much noise enhancement by a linear

equalizer with transfer function

C(e j2pV) ¼ 1

Fr(e j2pV)
¼ H(ej2pV)

F(e j2pV)

This is precisely the PR equalizer we sought for. It should be stressed that the subdivision in Fig. 18.53 is

only conceptual. The equalizer output is a noisy version of the ‘‘output’’ of the first filter in Fig. 18.53

and is applied to the feedback detector of Fig. 18.52, to obtain decision variables ı̂n
0 and ı̂n. The precoder

and MM of Fig. 18.51 are, of course, also applicable and yield essentially the same performance.

+
Equalizerin xn

un

xn

yn
H (ej2πΩ)

F (ej2πΩ)

Fr(e
j2πΩ)

C (ej2πΩ) = Fr
−1(ej2πΩ)

>

FIGURE 18.53 Interpretation of PR equalization.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 72 11.10.2007 8:47pm Compositor Name: TSuresh

18-72 Digital Systems and Applications

The choice of the coefficients of the PRE in Fig. 18.47 is the same as for full-response equalization and

is explained in Section 18.3. Interestingly, zero-forcing here is not as bad as is the case with full-response

signaling and yields approximately the same result as minimum mean-square equalization. To evaluate

the performance of the PRE, let us assume that all past decisions that affect ı̂n are correct and that

the equalizer is zero forcing (see Section 18.3 for details). The only difference between ı̂n
0
and ı̂n is

now the filtered noise component (u * c)n with variance

s2
ZFPRE ¼

ð0:5
�0:5

U (ej2pV)jC(ej2pV)j2dV ¼
ð0:5
�0:5

U(ej2pV)jH(ej2pV)j2
jF(ej2pV)j2 dV

Because jH(e j2pV)j was selected to be small wherever jF(e j2pV)j is small, the integrand never becomes

very large, and the variance will be small. This is in marked contrast with full-response equalization.

Here, H(e j2pV)¼ 1 for all V, and the integrand in the above formula can become large at frequencies

where jF(e j2pV)j is small. Obviously, the smallest possible noise enhancement occurs if H(e j2pV) is

selected so that the integrand is independent of frequency, implying that the noise at the output of the

PRE is white. This is, in general, not possible if H(e j2pV) is restricted to be PR (i.e., small memory-order,

integer-valued). The generalized feedback detector of Fig. 18.52, on the other hand, allows a wide variety

of causal responses to be used, and here jH(e j2pV)j can be chosen at liberty. Exploitation of this freedom

leads to decision feedback equalization (DFE).

18.6.3 Decision Feedback Equalization

This subsection reviews the basics of decision feedback detection. It is again assumed that the channel

characteristics are fixed and known, so that the structure of this detector need not be adaptive.

Generalizing to variable channel characteristics and adaptive detector structure is tedious, but straight-

forward.

A DFE detector shown in Fig. 18.54, utilizes the noiseless decision to help remove the ISI.

There are two types of ISI: precursor ISI (ahead of the detection time) and postcursor (behind detection

time). Feedforward equalization (FFE) is needed to eliminate the precursor ISI, pushing its energy

into the postcursor domain. Supposing all the decisions made in the past are correct, DFE reproduces

exactly the modified postcursor ISI (with extra postcursor ISI produced by the FFE during the

elimination of precursor ISI), thus eliminating it completely, Fig. 18.55. If the length of the FFE

can be made infinitely long, it should be able to completely suppress the precursor ISI, redistributing

its energy into the postcursor region, where it is finally cancelled by feedback decision part. No

spectrum inverse is needed for this process, so noise boosting is much less than is the case with linear

equalizers.

The final decision of the detector is made by the memoryless slicer, Fig. 18.54. The reason why a slicer

can perform efficient sequence detection can be explained with the fact that memory of the DFE system

is located in two equalizers, so that only symbol-by-symbol detection can suffice. In terms of perform-

ance, the DFE is typically much closer to the maximum likelihood sequence detector than to the LE. If

the equalization target is not the main cursor, but a PR

system, a sequence detection algorithm can be used after-

wards. A feasible way to implement this with minimum

additional effort is the tree search algorithm used instead of

VA [6]. The simple detection circuitry of a DFE, consisting

of two equalizers and one slicer, makes implementation

possible. The DFE may be regarded as a generalization of

the PRE. In the DFE, the trailing portion of the ISI is not

suppressed by a forward equalizer but rather canceled by a

feedback filter that is excited by past decisions. Fortunately,

+

+

yn cn

P(D)

Prefilter

în

FIGURE 18.54 Decision feedback equalizer.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 73 11.10.2007 8:48pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-73

error propagation is typically only a minor problem and it can, in fact, be altogether avoided through a

technique that is called Tomlinson=Harashima precoding.

Performance differences between zero-forcing and minimum mean-square equalizers tend to be

considerably smaller in the DFE case than for the LE, and as a result it becomes more dificult to reap

SNR benefits from the modulation code. It can be proved that DFE is the optimum receiver with no

detection delay. If delay is allowed, it is better to use trellis-based detection algorithms.

18.6.3.1 RAM-Based DFE Detection

Decision feedback equalization or RAM-based DFE (Fig. 18.56) is the most frequent alternative to

PRML detection. Increase of bit density leads to significant nonlinear ISI in the magnetic recording

channel. Both the linear DFE [12,26] and PRML detectors do not compensate for the nonlinear ISI.

Furthermore, the implementation complexity of a Viterbi detector matched to the PR channel grows

exponentially with the degree of channel polynomial. Actually, in order to meet requirements for a high

data transfer rate, high-speed ADC is also needed. In the RAM-based DFE [19,24], the linear feedback

section of the linear DFE is replaced with a lookup table. In this way, detector decisions make up a RAM

address pointing to the memory location that contains an estimate of the post cursor ISI for the

particular symbol sequence. This estimate is subtracted from the output of the forward filter forming

the equalizer output. Lookup table size is manageable and typically is less than 256 locations. The major

disadvantage of this approach is that it requires complicated architecture and control to recursively

update ISI estimates based on equalizer error.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
−3T −2T −T 0

(a) (b)

PW50 = 2T

T 2T 3T −3T −2T −T 0 T 2T 3T

(c)

−3T −2T −T 0 T 2T 3T

FIGURE 18.55 Precursor and postcursor ISI elimination with DFE (a) sampled channel response, (b) after feed-

forward filter and (c) slicer output.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 74 11.10.2007 8:48pm Compositor Name: TSuresh

18-74 Digital Systems and Applications

18.6.4 Detection in a Trellis

A trellis-based system can be simply described as a finite state machine (FSM) whose structure may be

displayed with the aid of a graph, tree, or trellis diagram. A FSM maps input sequences (vectors) into

output sequences (vectors), not necessarily of the same length. Although the system is generally non-

linear and time-varying, linear fixed trellis based systems are usually met. For them,

F a � i[0,1]ð Þ ¼ a � F i[0,1]ð Þ
F i0[0,1] þ i

00
[0,1]

	

¼ F i0[0,1]

	

þ F i

00
[0,1)

	

where a is a constant, i[0,1] is any input sequence and F(i[0,1]) is the corresponding output sequence.

It is assumed that input and output symbols belong to a subset of a field. Also, for any d> 0, if

x[0,1]¼ F(i[0,1]) and i0l ¼ il–d, i
0
[0,d] ¼ 0[0,d] then F(i0[0,1])¼ x0[0,1], where xl

0 ¼ xl–d, x
0
[0,d],¼ 0[0,d]. It is

easily verified that F(�) can be represented by the convolution, so that x¼ i * h, where h is the system

impulse response (this is also valid for different lengths of x and i with a suitable definition of h). If h is

of finite duration, M denotes the system memory length.

Let us now consider a feedforward FSM with memory lengthM. At any time instant (depth or level) l,

the FSM output xl depends on the current input il and M previous inputs il�1, . . . , il�M. The overall

functioning of the system can be mapped on a trellis diagram, whereon a node represents one of qM

encoder states (q is the cardinality of the input alphabet including the case when the input symbol is

actually a subsequence), while a branch connecting two nodes represents the FSM output associated to

the transition between the corresponding system states.

A trellis, which is a visualization of the state transition diagram with a time element incorporated, is

characterized by q branches stemming from and entering each state, except in the first and last M

branches (respectively called head and tail of the trellis). The branches at the lth time instant are labeled

by sequences xl 2 X. A sequence of l information symbols, i[0,l] specifies a path from the root node to

a node at the lth level and, in turn, this path specifies the output sequence x[0,l]¼ x0 . x1 xl�1, where

. denotes concatenation of two sequences.

The input can, but need not, be separated in frames of some length. For framed data, where the

length of each input frame equals L branches (thus L q-ary symbols) the length of the output frame

Forward
filter

RAM
containing
estimates

of ISI

RAM
address

D

D

D

_

+_

Recovered data

Equalizer errror

Sampled channel data
+

FIGURE 18.56 Block diagram of a RAM-based DFE.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 75 11.10.2007 8:48pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-75

is LþM branches (LþM output symbols), where the M known symbols (usually all zeros) are

added at the end of the sequence to force the system into the desired terminal state. It is said that

such systems suffer a fractional rate loss by L=(LþM). Clearly, this rate loss has no asymptotic

significance.

In the sequel, the detection of the input sequence, i(0, 1), will be analyzed based on the corrupted

output sequence y[0,1]¼ x[0,1]þ u[0,1]. Suppose there is no feedback from the output to the input,

so that

P[ynjx0, . . . ,xn�1,xn,y0, . . . ,yn�1] ¼ P[ynjxn]

and

P[y1, . . . ,yN jx1, . . . ,xN] ¼
YN
n¼1

P[ynjxn]

Usually, u(0,1) is a sequence that represents additive white Gaussian noise sampled and quantized to

enable digital processing.

The task of the detector that minimizes the sequence error probability is to find a sequence which

maximizes the joint probability of input and output channel sequences

P y[0,LþM],x[0,LþM]

	

¼ P y[0,LþM]jx[0,LþM]

	

P x[0,LþM]ð Þ

Since usually the set of all probabilities P[x[0, LþM]] is equal, it is sufficient to find a procedure that

maximizes P[y[0, LþM]jx[0, LþM]], and a decoder that always chooses as its estimate one of the sequences

that maximize it or

m y[0,LþM]jx[0,LþM]

	

¼ A log2 P y[0,LþM]jx[0,LþM]

	

�f y[0,LþM]

	

¼ A

XLþM

l¼0

log2 (P[yl jxl]� f (yl))

(where A � 0 is a suitably chosen constant, and f(�) is any function) is called a maximum-likelihood

decoder (MLD). This quantity is called a metric, m. This type of metric suffers one significant

disadvantage because it is suited only for comparison between paths of the same length. Some

algorithms, however, employ a strategy of comparing paths of different length or assessing likelihood

of such paths with the aid of some thresholds. The metric that enables comparison for this type of

algorithms is called the Fano metric. It is defined as

mF y[0,l]jx[0,l]
	

¼ A log2

P y[0,l],x[0,l]

	

P y[0,l]ð Þ

¼ A
Xl
n¼0

log2
P[ynjxn]
P[yn]

� R

� �

If the noise is additive, white, and Gaussian (an assumption that is not entirely true, but that usually

yields systems of good performances), the probability distribution of its sample is

p[ynjxn] ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp � (yn � xn)
2

2s2

� �

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 76 11.10.2007 8:48pm Compositor Name: TSuresh

18-76 Digital Systems and Applications

The ML metric to be used in conjunction with such a noise is the logarithm of this density, and thus

proportional to �(yn� xn)
2, i.e., to the negative squared Euclidean distance of the readback and

supposed written signal. Thus, maximizing likelihood amounts to minimizing the squared Euclidean

distance of the two sequences, leading to minimizing the squared Euclidean distance between two

sampled sequences given by Sn(yn� xn)
2.

The performance of a trellis-based system, as is the case with PR systems, depends on the detection

algorithm employed and on the properties of the system itself. The distance spectrum is the property of

the system that constitutes the main factor of the event error probability of a ML (optimum) detector, if

the distance is appropriately chosen for the coding channel used [45]. For PR channels with additive

white Gaussian noise, it is the squared Euclidean distance that has to be dealt with. Naturally, since the

noise encountered is neither white, nor entirely Gaussisan, this is but an approximation to the properly

chosen distance measure.

As stated previously, the aim of the search procedure is to find a path with the highest possible

likelihood, i.e., metric. There are several possible classifications of detecting procedures. This classifica-

tion is in-line with systematization made in coding theory, due to fact that algorithms developed for

decoding in a trellis are general so that it could be applied to problem of detection in any trellis-based

system as well. According to detector’s strategies in extending the most promising path candidates we

classify them into breadth-first, metric-first, and depth-first, bidirectional algorithms, and into sorting

and nonsorting depending on whether the procedure performs any kind of path comparison (sifting or

sorting) or not. Moreover, detecting algorithms can be classified into searches thatminimize the sequence

or symbol error rate.

The usual measure of algorithm efficiency is its complexity (arithmetic and storage) for a given

probability of error. In the strict sense, arithmetic or computational complexity is the number of

arithmetic operations per detected symbol, branch, or frame; however, it is a usual practice to track

only the number of node computations, which makes sense because all such computations require

approximately the same number of basic machine instructions. A node computation (or simply

computation) is defined as the total number of nodes extended (sometimes it is the number of

metrics computed) per detected branch or information frame i[0,LþM]. One single computation

consists of determining the state in which the node is computing the metrics of all its successors.

For most practical applications with finite frame length, it is usually sufficient to observe node

computations since a good prediction of search duration can be precisely predicted. Nevertheless,

for asymptotic behavior it is necessary to track the sorting requirements too. Another important

aspect of complexity is storage (memory or space), which is the amount of auxiliary storage that is

required for detecting memory, processors working in parallel, etc. Thus, space complexity of an

algorithm is the size (or number) of resources that must be reserved for its use, while the

computational, or more precisely time complexity, reflects the number of accesses to this resources

taking into account that any two operations done in parallel by the spatially separated processors

should be counted as one. The product of these two, the time-space complexity, is possibly the best

measure of the algorithm cost for it is insensitive to time-space tradeoff such as parallelization or

the use of precomputed tables, although it also makes sense to keep the separate track of these two.

Finally, for selecting which algorithm to use, one must consider additional details that we omit

here, but which can sometimes cause unexpected overall performance or complicate the design of a

real-time detector. They include complexity of the required data structure, buffering needs, and

applicability of available hardware components.

18.6.4.1 Basic Breadth-First Algorithms

18.6.4.1.1 The Viterbi Algorithm (VA)

The VA was introduced in 1967 as a method of decoding convolutional codes. Forney showed in

1972 [7] that the VA solves the maximum-likelihood sequence detection (MLSD) problem in the

presence of ISI and additive white noise. Kobayashi and Tang [8] recognized that this algorithm is

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 77 11.10.2007 8:48pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-77

possible to apply in magnetic recording systems for detection purposes. Strategy to combine Viterbi

detector with PR equalization in magnetic recording channel resulted with many commercial products.

The VA is an optimal decoding algorithm in the sense that it always finds the nearest path to the noisy

modification of the FSM output sequence x[0,LþM), and it is quite useful when FSM has a short memory.

The key to Viterbi (maximum-likelihood, ML) decoding lies in the Principle of Nonoptimality [17]. If the

paths i0[0,l] and i00[0,l] terminate at the same state of the trellis and

m(y[0,l], x
0
[0,l]) > m(y[0,l], x

00
[0,l])

then i00[0,l] cannot be the first l branches of one of the paths i[0,LþM) that maximize the overall sequence

metric. This principle which some authors call the Principle of Optimality literally specifies the most

efficient MLD procedure for decoding=detecting in the trellis.

To apply VA as an ML sequence detector for a PR channel, we need to define the channel trellis

describing the amount of controlled ISI. Once we define the PR channel polynomial, it is an easy

task. An example of such trellis for PR4 channel with P(D)¼ 1�D2 is depicted in Fig. 18.57. The

trellis for this channel consists of four states according to the fact that channel input is binary and

channel memory is 2, so that there are four possible state values (00, 10, 01, 11). Generally, if the

channel input sequence can take q values, and the PR channel forms the ISI from the past M input

symbols, then the PR channel can be described by a trellis with qM states. Branches joining adjacent

states are labeled with the pair of expected noiseless symbols in the form channel_output=channe-

l_input. Equalization to P(D)¼ 1�D2 results in ternary channel output, taking values {0,±1}. Each

noiseless output channel sequence is obtained by reading the sequence of labels along some path

through the trellis.

Now the task of detecting i[0,1] is to find x[0,1] that is closest to y[0,1] in the Euclidean sense. Recall

that we stated as an assumption that channel noise is AWGN, while in magnetic recording systems after

equalization the noise is colored so that the minimum-distance detector is not an optimal one, and

additional post-processing is necessary, which will be addressed later in this chapter.

The Viterbi algorithm is a classical application of dynamic programming. Structurally, the algorithm

contains qM lists, one for each state, where the paths whose states correspond to the label indices are stored,

compared, and the best one of them retained. The algorithm can be described recursively as follows:

1. Initial condition: Initialize the starting list with the root node (the known initial state) and set its

metric to zero, l¼ 0.

2. Path extension: Extend all the paths (nodes) by one branch to yield new candidates, l¼ lþ 1, and

find the sum of the metric of the predecessor node and the branch metric of the connecting

branch (ADD). Classify these candidates into corresponding qM lists (or less for l<M). Each list

(except in the head of the trellis) contains q paths.

0/0

0/1

1/1
0000

0/0
1/1

0/1
−1/0

−1/0

1010

0101

1111

D D

+

PR4 channel partial response P (D) = 1-D2

−

FIGURE 18.57 PR4 channel trellis.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 78 11.10.2007 8:48pm Compositor Name: TSuresh

18-78 Digital Systems and Applications

3. Path selection: For each end-node of extended paths determine the maximum=minimum* of

these sums (COMPARE) and assign it to the node. Label the node with the best path metric to it,

selecting (SELECT) that path for the next step of the algorithm (discard others). If two or more

paths have the same metric, i.e., if they are equally likely, choose the best one at random. Find the

best of all the survivor paths, x0[0,l], and its corresponding information sequence i0[0,l] and release

the bit i0[l�d]. Go to step 2.

In the description of the algorithm we emphasized three Viterbi-characteristic operations—add,

compare, select (ADC)—that are performed in every recursion of the algorithm. So today’s specialized

signal processors have this operation embedded optimizing its execution time. Consider now the

amount of ‘‘processing’’ done at each depth l, where all of the qM states of the trellis code are present.

For each state it is necessary to compare q paths that merge in that state, discard all but the best path,

and then compute and send the metrics of q of its successors to the depth lþ 1.

Consequently, the computational complexity of the VA exponentially increases with M. These

operations can be easily parallelized, but then the number of parallel processors rises as the number

of node computations decreases. The total time-space complexity of the algorithm is fixed and increases

exponentially with the memory length.

The sliding window VA decodes infinite sequences with delay of d branches from the last received one.

In order to minimize its memory requirements (dþ 1 trellis levels), and achieve bit error rate only

insignificantly higher than with finite sequence VA, d is chosen as d� 4M. In this way, the Viterbi

detector introduces a fixed decision delay.

18.6.4.2 Example

Assume that a recorded channel input sequence x, consisting of L equally likely binary symbols from the

alphabet {0, 1}, is ‘‘transmitted’’ over PR4 channel. The channel is characterized by the trellis of

Fig. 18.57, i.e., all admissible symbol sequences correspond to the paths traversing the trellis from

l¼ 0 to l¼ L, with one symbol labeling each branch, Fig. 18.58. Suppose that the noisy sequence of

3
00

2.2
10

1.6
01

0.8
11

1.47
00

0.67
10

1.27
01

0.47
11

0.66
00

0.46
10

1.26
01

1.06
11

0.3
00

0.9
10

0.5
01

1.1
11

0.21
00

0.41
10

0.81
01

1.01
11

0.85
00

1.45
10

0.81
00

0 0

0.9

Sequence of samples at the channel output

Viterbi detected PR4 output

Data detected

Symbol-by-symbol
hard detection

1

0

0.2

0

1

1

0

−0.6

0

0

0

1

−1

−1

1

0

−0.3

0

0

0

1

−1

−1

1

0

0.6

0

0

0

1

−1

−1

1

0

0.9

0

0

0

1

−1

−1

1

0

1.2

0

0

0

1

−1

−1

1

0

0.3

0

0

0

1

−1

−1

1

00

0.01
10

0.05
01

0.65
11

2.91
00

1.51
10

2.11
01

0.71
11

1

1

1

0

0

0

0

0

0

0

0

1

1

1

Error

1

1

1

1

0

1

0

−1

0

−1

FIGURE 18.58 Viterbi algorithm detection on the PR4 trellis.

*It depends on whether the metric or the distance is accumulated.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 79 11.10.2007 8:48pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-79

samples at the channel output is y¼ 0.9, 0.2, �0.6, �0.3, 0.6, 0.9, 1.2, 0.3, . . . If we apply a simple

symbol-by-symbol detector to this sequence, the fifth symbol will be erroneous due to the hard

quantization rule for noiseless channel output estimate

ŷk ¼
�1 yk < �0.5

1 yk > 0.5

0 otherwise

(

The Viterbi detector will start to search the trellis accumulating branch distance from sequence y. In

the first recursion of the algorithm, there are two paths of length 1 at the distance

d(y,0) ¼ (0:9� 0)2 ¼ 0:81

d(y,1) ¼ (0:9� 1)2 ¼ 0:01

from y. Next, each of the two paths of length 1 are extended in two ways forming four paths of length 2

at squared Euclidean distance from the sequence y

d(y,(0,0)) ¼ 0:81þ (0:2� 0)2 ¼ 0:85

d(y,(0,1)) ¼ 0:81þ (0:2� 1)2 ¼ 1:45

d(y,(1,0)) ¼ 0:01þ (0:2� 0)2 ¼ 0:05

d(y,(1,1)) ¼ 0:01þ (0:2� 1)2 ¼ 0:65

and this accumulated distance of four paths labels the four trellis states. In the next loop of the algorithm

each of the paths are again extended in two ways to form eight paths of length 3, two paths to each node

at level (depth) 3.

Node 00

d(y,(0,0,0)) ¼ 0:85þ (�0:6� 0)2 ¼ 1:21

d(y,(1,0,�1)) ¼ 0:05þ (�0:6þ 1)2 ¼ 0:21 surviving path

Node 10

d(y,(0,0,1)) ¼ 0:85þ (�0:6� 1)2 ¼ 3:41

d(y,(1,0,0)) ¼ 0:05þ (�0:6� 0)2 ¼ 0:41 surviving path

Node 01

d(y,(0,1,0)) ¼ 1:45þ (�0:6� 0)2 ¼ 1:81

d(y,(1,1,�1)) ¼ 0:65þ (�0:6þ 1)2 ¼ 0:81 surviving path

Node 11

d(y,(0,1,1)) ¼ 1:45þ (�0:6� 1)2 ¼ 4:01

d(y,(1,1,0)) ¼ 0:65þ (�0:6� 0)2 ¼ 1:01 surviving path

Four paths of length 3 are selected as the surviving most likely paths to the four trellis nodes. The

procedure is repeated and the detected sequence is produced after a delay of 4M¼ 8 trellis sections.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 80 11.10.2007 8:49pm Compositor Name: TSuresh

18-80 Digital Systems and Applications

Note, Fig. 18.58, that the symbol-by-symbol detector error is now corrected. Contrary to this example, a

4-state PR4ML detector is implemented with two interleaved 2-state dicode, (1�D), detectors each

operating at one-half the symbol rate of one full-rate PR4 detector [35]. The sequence is interleaved,

such that the even samples go to the first and the odd to the second dicode detector, Fig. 18.59, so the

delay D in the interleaved detectors is actually twice the delay of the PR4 detector. A switch at the output

resamples the data to get them out in the correct order.

For other PR channels this type of decomposition is not possible, so that their complexity can become

great for real-time processing. In order to suppress some of the states in the corresponding trellis

diagram of those PR systems, thus simplifying the sequence detection process, some data loss has to be

introduced. For instance, in conjunction with precoding (1,7) code prohibits two states in EPR4 trellis:

[101] and [010]. This can be used to reduce the 8-state EPR4 trellis to 6-state trellis depicted in Fig. 18.60

and the number of add-compare-select units in the VA detector to 4. The data rate loss is 33% in this

case. Using the (2,7) code eliminates two more states, paying the complexity gain by a 50% data rate loss.

Because VA involves addition, multiplication, compare and select functions, which require complex

circuitry at the read side, simplifications of the receiver for certain PRs were sought. One of them is the

dynamic threshold technique [22]. This technique implies generating a series of thresholds. The read-

back samples are compared with them, just as for the threshold detector, and are subsequently included

in their modification. While preserving the full function of the ML detector, this technique saves

a substantial fraction of the necessary hardware. Examples of dynamic threshold detectors are given in

[30] and [6].

Viterbi I
1-D

Input Output

Odd

Even
Viterbi II

1-D

FIGURE 18.59 Implementation of 1-D2 Viterbi detector with two half-rate, 1-D detectors.

111

1/0

110 011

001100

000

−1/0

1/0

0/−1

0/−2 1/2

1/1

0/−1 1/1

000

001

100

011

110

111

0/0

1/1

1/2

0/−2

1/0

0/−1

0/1

1/0

0/−1

1/0

0/0

FIGURE 18.60 (1,7) coded EPR4 channel.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 81 11.10.2007 8:49pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-81

18.6.4.2.1 Noise-Predictive Maximum Likelihood Detectors

Maximum likelihood detection combined with PR equalization is a dominant type of detection

electronics in today’s digital magnetic recording devices. As described earlier, in order to simplify

hardware realization of the receiver, the degree of the target PR polynomial is chosen to be small with

integer coefficients to restrict complexity of Viterbi detection trellis. On the other hand, if the recording

density is increased, to produce longer ISI, equalization to the same PR target will result in substantial

noise enhancement and detector performance degradation. Straightforward solution is to increase the

duration of the target PR polynomial decreasing the mismatch between channel and equalization target.

Note that this approach leads to undesirable increase in detector complexity fixing the detector structure

in a sense that its target polynomial cannot be adapted to changing channel density.

The noise-predictive maximum likelihood (NPML) detector [20,32] is an alternative data detection

method that improves reliability of the PRML detector. This is achieved by embedding a noise

prediction=whitening process into the branch metric computation of a Viterbi detector. Using

reduced-state sequence-estimation [43] (see also the description of the generalized VA in this chapter),

which limits the number of states in the detector trellis, compensates for added detector complexity.

A block diagram of a NPML system is shown in Fig. 18.61. The input to the channel is binary

sequence, i, which is written on the disk at a rate of 1=T. In the readback process data are recovered via a

lowpass filter as an analog signal y(t), which can be expressed as y(t) ¼Pn inh(t � nT)þ u(t) where

h(t) denotes the pulse response and u(t) is the additive white Gaussian noise. The signal y(t) is sampled

periodically at times t¼ nT and shaped into the PR target response by the digital equalizer. The NPML

detector then performs sequence detection on the PR equalized sequence y and provides an estimate of

the binary information sequence i. Digital equalization is performed to fit the overall system transfer

function to some PR target, e.g., the PR4 channel.

The output of the equalizer yn þ in þ
PM

i¼1 fixn�i þ wn consists of the desired response and an

additive total distortion component wn , i.e., the colored noise and residual interference. In conventional

PRML detector, an estimate of the recorded sequence is done by the minimum-distance criteria as

described for the Viterbi detector. If the mismatch between channel and PR target is significant, the

power of distortion component wn can degrade the detector performance. The only additional com-

ponent compared to the Viterbi detector, NPML noise-predictor, reduces the power of the total

distortion by whitening the noise prior to the Viterbi detector. The whitened total distortion component

(Fig. 18.62) of the PR equalized output yn is

wn � ŵn ¼ wn �
XN
i¼1

wn�ipi

where the N-coefficient MMSE predictor transfer polynomial is P(D)¼ p1D
1þ p2D

2þ � � � þ pND
N. Note

that an estimate of the current noise sample ŵn is formed based on estimates of previous N noise

NPVA detector

Magnetic
recording
channel

AGC Lowpass
filter

PR digital
equalizer

Viterbi
detector

Predictor
P(D)

y

i

t=nT

+
i

u(t)
y(t)

FIGURE 18.61 Block diagram of NPVA detector.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 82 11.10.2007 8:49pm Compositor Name: TSuresh

18-82 Digital Systems and Applications

samples. Assuming the PR4 equalization of sequence y, the metric of the Viterbi detector can be

modified in order to compensate for distortion component. In this case, the equalizer output is

yn¼ xn� xn�2þwn and the NPML distance is

yn �
XN
i¼l

wn�ipi

 !
� (xn(Sk)� xn�2(Sj))

" #2

¼ yn �
XN
i¼l

(yn�i � x̂n�i(Sj)� x̂n�i�2(Sj))pi

 !
� (xn(Sk)� xn�2(Sj))

" #2

where x̂n�i(Sj), x̂n�i�2(Sj) represent past decisions taken from the Vitrebi survivor path memory

associated with state Sj. The last expression gives the flavor of this technique, but it is not suitable for

implementation so that the interested reader can find details in [20] how to modify this equation for

RAM lookup realization. Furthermore, in the same paper, a description of the general procedure to

compute the predictor coefficients based on the autocorrelation of the total distortion wn at the output

of a finite-length PR equalizer is given.

18.6.4.2.2 Postprocessor

As explained earlier, Viterbi detector improves the performance of a read channel by tracing the correct

path through the channel trellis [8]. Further performance improvement can be achieved by using soft

output Viterbi algorithm (SOVA) [14]. Along with the bit decisions, SOVA produces the likelihood of

these decisions, that combined create soft information. In principle, soft information can be passed to

hard drive controller and used in RS decoder that resides there, but at the present time soft decoding of

RS codes is still too complex to be implemented at 1 Gb=s speeds. Alternatively, much shorter inner code

is used. Because of the nonlinear operations on bits performed by the modulation decoder logic, the

inner code is used in inverse concatenation with modulation encoder in order to simplify calculation of

bit likelihood. Due to the channel memory and noise coloration, Viterbi detector produces some error

patterns more often than others [5], and the inner code is designed to correct these so-called dominant

error sequences or error events. The major obstacle for using soft information is the speed limitations and

hardware complexity required to implement SOVA. Viterbi detector is already a bottleneck and the most

complex block in a read channel chip, occupying most of the chip area, and the architectural challenges

in implementing even more complex SOVA would be prohibitive. Therefore, a postprocessor architec-

ture is used [18]. The postprocessor is a block that resides after Viterbi detector and comprises the block

for calculating error event likelihood and an inner-soft error event correcting decoder.

The postprocessor is designed by using the knowledge on the set of dominant error sequences

E¼ {ei}l�i and their occurrence probabilities P¼ (pi)1�i. The index i is referred to as an error type,

while the position of the error event end within a codeword is referred as an error position. The relative

frequencies of error events will strongly depend on recording density [36]. The detection is based on the

fact that we can calculate the likelihoods of each of dominant error sequences at each point in time. The

i = (xn−1 xn−2) Sk = (xn xn−1)
xn (Sk)−xn−2 (Sj)/xn (Sk)

∑−
N

i =1

wn−iPiWhitened PR equalizer output:

Channel memory state

yn

FIGURE 18.62 NPML metric computation for PR4 trellis.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 83 11.10.2007 8:49pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-83

parity bits detect the errors, and provide localization in error type and time. The likelihoods are then

used to choose the most likely error events for corrections.

The error event likelihoods are calculated as the difference in the squared Euclidean distances between

the signal and the convolution of maximum likelihood sequence estimate and the channel PR, versus

that between the signal and the convolution of an alternative data pattern and the channel PR. During

each clock cycle, the best M of them are chosen, and the syndromes for these error events are calculated.

Throughout the processing of each block, a list is maintained of the N most likely error events, along

with their associated error types, positions and syndromes. At the end of the block, when the list of

candidate error events is finalized, the likelihoods and syndromes are calculated for each of
N

L

� �
combinations of L-set candidate error events that are possible. After disqualifying those L-sets of

candidates, which overlap in the time domain, and those candidates and L-sets of candidates, which

produce a syndrome which does not match the actual syndrome, the candidate or L-set of candidates,

which remains and which has the highest likelihood is chosen for correction. Finding the error event

position and type completes decoding.

The decoder can make two types of errors: it fails to correct if the syndrome is zero, or it makes a

wrong correction if the syndrome is nonzero, but the most likely error event or combination of error

events does not produce the right syndrome. A code must be able to detect a single error from the list of

dominant error events and should minimize the probability of producing zero syndrome when more

than one error event occurs in a codeword. Consider a linear code given by an (n� k)3 n parity check

matrix H. We are interested in capable of correcting or detecting dominant errors. If all errors from a list

were contiguous and shorter than m, a cyclic n� k¼m parity bit code could be used to correct a single

error event [16]; however, in reality, the error sequences are more complex, and occurrence probabilities

of error events of lengths 6, 7, 8 or more are not negligible. Furthermore, practical reasons (such as

decoding delay, thermal asperities, etc.) dictate using short codes, and consequently, in order to keep the

code rate high, only a relatively small number of parity bits is allowed, making the design of error

event detection codes nontrivial. The code redundancy must be used carefully so that the code is optimal

for a given E.

The parity check matrix of a code can be created by a recursive algorithm that adds one column of H

at a time using the criterion that after adding each new column, the code error-event-detection

capabilities are still satisfied. The algorithm can be described as a process of building a directed graph

whose vertices are labeled by the portions of parity check matrix long enough to capture the longest

error event, and whose edges are labeled by column vectors that can be appended to the parity check

matrix without violating the error event detection capability [4]. To formalize code construction require-

ments, for each error event from E, denote by si,l a syndrome of error vector sl(ei) (si,l¼sl(ei) � HT),

where sl (ei) is an l-time shifted version of error event ei. The code should be designed in such a way

that any shift of any dominant error sequence produces a nonzero syndrome, i.e., that si,l 6¼ 0 for any 1�
i � I and 1 � l� n. In this way, a single error event can be detected (relying on error event likelihoods to

localize the error event). The correctable shifts must include negative shifts as well as shifts larger than n

in order to cover those error events that straddle adjacent codewords, because the failure to correct

straddling events significantly affects the performance. A stronger code could have a parity check matrix

that guaranties that syndromes of any two-error event-error position pairs ((i1, l1), (i2, l2)) are different,

i.e., si1,l1 6¼ si2,l2. This condition would result in a single error event correction capability. The codes

capable of correcting multiple error events can be defined analogously. We can even strengthen this

property and require that for any two shifts and any two dominant error events, the Hamming distance

between any pair of syndromes is larger than d; however, by strengthening any of these requirements the

code rate decreases.

If Li is a length of the ith error event, and if L is the length of the longest error event from E,

(L¼max1�i�l {Li}), then it is easy to see that for a code capable of detecting an error event from E that

ends at position j, the linear combination of error events and the columns of H from j� Lþ 1 to j has to

be nonzero. More precisely, for any i and any j (ignoring the codeword boundary effects)

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 84 11.10.2007 8:49pm Compositor Name: TSuresh

18-84 Digital Systems and Applications

X
1�m�Li

ei,m � hTj�Liþm 6¼ 0

where ei,m is the mth element of the error event ei, and hj is the jth column of H.

18.6.5 Advanced Algorithms and Algorithms under Investigation

This subsection gives a brief overview of less complex procedures for searching the trellis. It is intended

to give background information that can be used in future development if it shows up that NPVA

detectors and postprocessing are not capable of coping with ever-increasing storage densities and longer

PRs needed for them. In such cases, a resort has to be made to some sort of reduced complexity

suboptimal algorithms, whose performance is close to optimal. Explained algorithms are not yet

implemented in commercial products, but all of them are a natural extension of already described

procedures for searching the trellis.

18.6.5.1 Other Breadth-First Algorithms

18.6.5.1.1 The M-Algorithm

Since most survivors in the VA usually possess much smaller metrics than does the best one, all the states

or nodes kept are not equally important. It is intuitively reasonable to assume that unpromising

survivors can be omitted with a negligible probability of discarding the best one. The M-algorithm

[10] is one such modification of the VA; all candidates are stored in a single list and the best M � qM

survivors are selected from the list in each cycle. The steps of the M-algorithm are:

1. Initial condition: Initialize the list with the root node and set its metric to zero.

2. Path extension: Extend all the paths of length l by one branch and classify all contenders (paths of

length lþ 1) into the list. If two or more paths enter the same state keep the best one.

3. Path selection: From the remaining paths find the best M candidates and delete the others.

If l¼ LþM, take the only survivor and transfer its corresponding information sequence to the

output (terminated case, otherwise use the sliding window variation). Otherwise, go to step 2.

Defined in this way, theM-algorithm performs trellis search, while, when the state comparison in step

2 is omitted, it searches the tree, saving much time on comparisons but with slightly increased error

probability. When applied to decoding=detecting infinitely long sequences, it is usual that comparisons

performed in step 2 are substituted with the so-called ambiguity check [10] and a release of one decoded

branch. In each step this algorithm performs M node computations, and employing any sifting

procedure (since the paths need not be sorted) perform
Mq metric comparisons. If performed, the

Viterbi-type discarding of step 2 requests
M2q state and metric comparisons. This type of discarding

can be performed with
M log2 M comparisons (or even linearly) but than additional storage must be

provided. The space complexity grows linearly with the information frame length L and parameter M.

18.6.5.1.2 The Generalized Viterbi Algorithm

In contrast to the VA, which is a multiple-list single survivor algorithm, the M-algorithm is a single-list

multiple-survivor algorithm. The natural generalization to a multiple-list multiple-survivor algorithm was

first suggested by Hashimoto [39]. Since all the lists are not equally important, this algorithm, originally

called the generalized Viterbi algorithm (GVA), utilizes only qM1 lists (labels), where M1 � M. In each list

from all qM�M1þ1 paths, it retains the bestM1 candidates. The algorithm can be described as follows:

1. Initial condition: Initialize the starting label with the root node and set its metric to zero.

2. Path extension: Extend all the paths from each label by one branch and classify all successors into

the appropriate label. If two or more paths enter the same state keep the best one.

3. Path selection: From the remaining paths of each label find the best M1 and delete the others.

If l¼ LþM, take the only survivor and transfer its information sequence to the output (for the

terminated case, otherwise use the sliding window variant). Go to step 2.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 85 11.10.2007 8:49pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-85

When M1¼M, and M1¼ 1, the GVA reduces to the VA, and for M1¼ 0, M1¼M it reduces to the

M-algorithm. Like the M-algorithm, GVA in each step performs M1 node computations per label, and

employing any sifting procedure
M1qmetric comparisons. If performed, the Viterbi-type discarding of

step 2 requests
M1
2q or less state and metric comparisons per label.

18.6.5.2 Metric-First Algorithms

Metric-first and depth-first sequential detection is a name for a class of algorithms that compare paths

according to their Fano metric (one against another or with some thresholds) and on that basis decide

which node to extend next, which to delete in metric first procedures or whether to proceed with current

branch or go back. These algorithms generally extend fewer nodes for the same performance, but have

increased sorting requirements.

Sequential detecting algorithms have a variable computation characteristic that results in large

buffering requirements, and occasionally large detecting delays and=or incomplete detecting of the

received sequence. Sometimes, when almost error-free communication is required or when retransmis-

sion is possible, this variable detecting effort can be an advantage. For example, when a detector

encounters an excessive number of computations, it indicates that a frame is possibly very corrupted

meaning that the communication is insufficiently reliable and can ultimately cause error patterns in

detected sequence. In such situations the detector gives up detecting and simply requests retransmission.

These situations are commonly called erasures, and detecting incomplete. A complete decoder such as

the Viterbi detector=decoder would be forced to make an estimate, which may be wrong. The probability

of buffer overflow is several orders of magnitude larger than the probability of incorrect decision when

the decoder operates close to the so-called (computational) cutoff rate.

The performance of sequential detecting has traditionally been evaluated in terms of three charac-

teristics: the probability of sequence error, the probability of failure (erasure), and the Pareto exponent

associated with detecting effort.

18.6.5.2.1 The Stack Algorithm

The stack (or ZJ) algorithm was for the first time suggested by Zigangirov [1] and later independently by

Jelinek [1]. As its name indicates, the algorithm contains a stack (in fact, a list) of already searched paths

of varying lengths, ordered according to their metric values. At each step, the path at the top of the stack

(the best one) is replaced by its q successors extended by one branch, with correspondingly augmented

metrics. The check whether two or more paths are in the same state is not performed. This algorithm has

its numerous variations and we first consider the basic version that is closest to Zigangirov’s:

1. Initial condition: Initialize the stack with the root node and set its Fanometric to zero (or some large

positive number to avoid arithmetic with negative numbers, but low enough to avoid overflow).

2. Path extension: Extend the best path from the stack by one branch, delete it, sort all successors,

and then merge them with the stack so that it is ordered according to the path metrics.

3. Path selection: Retain the best Z paths according to the Fano metric. If the top path has the length

l¼ LþM branches, transfer its information sequence to the output (terminated case; otherwise, a

sliding window version has to be used); otherwise, go to step 2.

It is obvious that this algorithm does not consider path merging since the probability that the paths of

the same depth and the same state can be stored in the stack simultaneously is rather small. Nonetheless,

some authors [1] propose that a following action should be added to the step 2: If any of the 2K new

paths merges with a path already in the stack, keep the one with the higher metric.

The stack algorithm is based on the nonselection principle [17]. If the paths i[0,LþM)

0
and i[0,LþM)

00

through the tree diverge at depth j and

min {u(x0[0,l), y[0,l))}l2[jþ1,LþM) > min {u(x
00
[0,l), y[0,l))}l2[jþ1,LþM)

then i[0,LþM)

00
cannot be the path at the top of the stack when the stack algorithm stops.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 86 11.10.2007 8:49pm Compositor Name: TSuresh

18-86 Digital Systems and Applications

The computational complexity of the stack algorithm is almost unaffected by the code memory length,

but well depends on the channel performance. Its computational complexity is a randomvariable and so is

its stack size if not otherwise limited. The upper bound on the computational complexity is given by

P[C � h] < Ah�r 0 < r � 1

where A is a constant and r is a power that goes to unity as R! R0<RC and to zero as R! RC, where RC
is the channel capacity and R0 is the cutoff rate [17]. The distribution described previously is called a

Pareto distribution, and r a Pareto exponent.

Omit depth-first algorithms, such as the Fano algorithm, from consideration here, because they are

not interesting for PR detection.

18.6.5.3 Bidirectional Algorithms

Another class of algorithms are those that exploit bidirectional decoding=detection which is designed for

framed data. Almost all unidirectional procedures have their bidirectional supplements since Forney

showed that detecting could start from the end of the sequence provided that the trellis contains a tail.

All bidirectional algorithms employ two searches from both sides. The forward search is performed

using the original trellis code while the backward one employs the reverse code. The reverse trellis code is

obtained from the original code by time reversing.

18.6.5.3.1 The Bidirectional Stack Algorithm

This algorithmwas independently proposed by Šenk and Radivojac [40–42], and Kallel and Li [38]. It uses

two stacks F (forward) and B (backward, that uses the reverse code). It is based on notions of tunnel,

tentative decision, and discarding criteria. The tunnel is the unique sequenceT (0�T�M) branches long

that connect two states in the trellis. The tentative decision is the sequence LþM branches long that

connects the known initial and terminal trellis states (direction does not matter here) that has the

highest accumulated metric of all the sequences of that length analyzed so far. A set of discarding criteria

is a means to tell beforehand whether a partly explored path is likely to be a part of the finally detected

sequence or not (in the latter case, the path may be eliminated from the subsequent search). Because the

version [30] of the algorithm is a special case of [41] (when T¼ 0), the steps of the BSA are:

1. Place the root node into F stack, and the unique terminal node into B stack, associating them the

zero metric. Make one of these stacks active (e.g., the F one).

2. Choose the node with the largest metric (of length, say, l) from the active stack and eliminate it from

the stack. Link it via a tunnel (if a tunnel is possible, i.e., if the states match) to each of the existing

paths in the other stack whose lengths are L� lþM�T (if a tunnel isM branches long, then the best

path from the active stack can be linked to all the paths from the other stack whose lengths are L� l).

The total length of the paths obtained in this way is lþTþ (L� lþM�T)¼ LþM branches. Store

the best one into the tentative decision register. If there is already a path in the register, keep the better.

Prune the paths remaining in both stacks according to any of discarding criteria used. If both stacks

are emptied in this way, output the tentative decision as the decoder’s final decision and terminate the

algorithm. Otherwise, evaluate the metrics of all the successors of the processed path, and eliminate

all of them that do not conform to the discarding criteria established.

3. Sort the remaining successors into the active stack according to their metrics applying any

tie-breaking rule. Change the active stack and return to step 2.

After each tentative decision, several discarding criteria can be applied. In [41] Šenk andRadivojac applied

the nonselection principle and the maximum-likelihood criterion described. The algorithm can be easily

performed by two processors, although one node computation lasts longer than in the original stack

algorithm. Simulations showed [41] that the Pareto exponent of the BSA in the moment when the final

decision is obtained is approximately doubled, but the discarding criteria used did not provide the

termination at the same time. However, the algorithm may be stopped after the assigned time for its

execution has elapsed, and in such cases the erasure probability is substantially decreased.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 87 11.10.2007 8:50pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-87

Two additional bidirectional algorithms are worth mentioning. Belzile and Haccoun [11] investigated

the bidirectional M-algorithm. Since the M-algorithm inherently avoids erasures by its breadth-first

nature it still suffers from the correct path loss in its unidirectional version. Another interesting

algorithm is the bidirectional multiple stack algorithm [23]. It additionally decreases the erasure

probability of the MSA without compromising the error performance.

18.6.5.4 Algorithms That Minimize Symbol Error Rate

18.6.5.4.1 The BCJR Algorithm

So far, the algorithms that minimize the error probability of information sequence i[0,LþM) have been

considered. They accomplish it by searching for the ‘‘closest’’ sequence x[0,LþM) according to the metric

chosen; however, these algorithms do not necessarily minimize the symbol or bit error rate. The BCJR

algorithm was independently proposed by Bahl et al. [25] and McAdam et al. [27], but a more detailed

description can be found in [25]. The algorithm is a special case of amore general problemof estimating the a

posteriori probabilities of the states and transitions of a Markov source observed through a DMC, i.e., the

probabilities

P[sl ¼ i, slþ1 ¼ jjy[0,LþM)] (18:41)

or equivalently

sl(i,j) ¼ P[sl ¼ i, slþ1 ¼ j, y[0,LþM)] (18:42)

where sl is the state of the trellis during lth branch. Introducing

al(i) ¼ P[sl ¼ i, y[0,l)]

bl(i) ¼ P[y[l,LþM)jsl ¼ i]

gl(i,j) ¼ P[slþ1 ¼ j, yl jsl ¼ i]

(18:43)

it is not hard [25] to show that

alþ1(j) ¼
X2KM�1

i¼0

al(i)gl(i,j)

bl(j) ¼
X2KM�1

i¼0

blþ1(i)gl(i,j)

gl(i,j) ¼
X
xl

P[xl jsl ¼ i, slþ1 ¼ j]P[Slþ1 ¼ jjsl ¼ i]P[yl jxl]

sl(i,j) ¼ al(i)gl(i,j)bl(j)

(18:44)

The known initial conditions are a0(i¼ 0)¼ 1, a0(i 6¼ 0)¼ 0, bLþM(i¼ 0)¼ 1, bLþM(i 6¼ 0)¼ 0. Assuming

that the initial and terminating state in the trellis is the all zero state, the steps of the algorithm are

1. Initialize a0(i), and bLþM(i), for i¼ 0, 1, . . . , qM� 1 according to Eq. 18.44.

2. As soon as yl is received, compute al(i) and gl(i,j). Store al(i,j) for all l and i.

3. When the complete sequence y[0,LþM) is received, compute bl(i) using Eq. 18.44, and imme-

diately the probabilities sl(i,j). Group those sl(i,j) that have the same information sequence il,

and choose the largest as the decoder estimate.

The basic problem with the algorithm is that it requires both large storage and great number of

computations. All the values of al(i) must be stored, which requires almost (LþM)qKM memory

locations. The number of multiplications required for determining the al(i) and bl(i) for each l is

qMþ1, and there are qM additions of qK numbers as well. The computation of gl(i,j) is not costly and can

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 88 11.10.2007 8:50pm Compositor Name: TSuresh

18-88 Digital Systems and Applications

be accomplished by a table lookup. Finally, the computation of all sl(i,j) requires q
(Mþ1)þ1 multipli-

cations for each l, and q� 1 comparisons in choosing the largest il. Consequently, this is an algorithm

with exponential complexity and in practice can be applied only when M and L are short. Nevertheless,

it is used for iterative decoding where such requirements can be fulfilled, such as for turbo codes. The

main advantage of the algorithm in such cases is its ability to estimate P[slþ1¼ jjsl¼ i], which for the

possible transitions equals q�1 only in the first iteration.

18.6.5.4.2 The SOVA Algorithm

The soft-output Viterbi algorithm (SOVA) [15] is amodification of the VA that was designed with the aimof

estimating the reliabilityof everydetectedbit by theVA. It is applicableonlywhenq¼ 2.TheVA isusedhere in

its sliding window form, which detects infinite sequence with delay of d branches from the last received one.

The reliability (or soft value) of a bit i, L(i), is defined as L(i)¼ ln(P[i¼ 0]=P[i¼ 1]). The SOVA

further extends the third step in order to obtain this value, in the following way:

Path selection (extension): Let i[0,i�j)
(j) , j 2 {0, 1, . . . , d� 1} be the information sequences which merge

with i[0,l)
0

at depths l� j. Their paths have earlier been discarded due to their lower metrics. Let the

corresponding metric differences in the merging states be denoted Dj, and letJ ¼ fJ : i(j)l�d 6¼ i0l�dg. Then

L(i0l�d)� (1� 2il�d

0
)minj2JDj.

Because VA detecting metric can be modified in a way to take into account a priori knowledge of input

bit probabilities, the SOVA can be used as soft input-soft output (SISO) block in turbo decoding schemes.

References

1. A.J. Viterbi and J. Omura, Principles of Digital Communication and Coding,McGraw-Hill, Tokyo, 1979.

2. A.J. Viterbi, ‘‘Error bounds for convolutional codes and asymptotically optimum decoding algo-

rithm,’’ IEEE Trans. Inform. Theory, vol. IT-13, pp. 260–269, 1967.

3. A. Lender, ‘‘Correlative level coding for binary-data transmission,’’ IEEE Trans. Commun. Technol.

(Concise paper), vol. COM-14, pp. 67–70, 1966.

4. B. Vasic, ‘‘A graph based construction of high-rate soft decodable codes for partial response

channels,’’ to be presented at ICC2001, Helsinki, Finland, June 2001, 10–15.

5. C.L. Barbosa, ‘‘Maximum likelihood sequence estimators, a geometric view,’’ IEEE Trans. Inform.

Theory, vol. IT-35, pp. 419–427, March 1989.

6. C.D. Wei, ‘‘An analog magnetic storage read channel based on a decision feedback equalizer,’’ PhD

final report, University of California, Electrical Eng. Department, July 1996.

7. G.D. Forney, ‘‘Maximum likelihood sequence estimation of digital sequences in the presence of

intersymbol interference,’’ IEEE Trans. Inform. Theory, vol. IT-18, pp. 363–378, May 1972.

8. H. Kobayashi and D.T. Tang, ‘‘Application of partial response channel coding to magnetic recording

systems,’’ IBM J. Res. and Dev., vol. 14, pp. 368–375, July 1979.

9. H. Kobayashi, ‘‘Correlative level coding and maximum-likelihood decoding,’’ IEEE Trans. Inform.

Theory, vol. IT-17(5), pp. 586–594, 1971.

10. J.B. Anderson and S. Mohan, ‘‘Sequential coding algorithms: a survey and cost analysis,’’ IEEE Trans.

Comm., vol. COM-32(2), pp. 169–176, Feb. 1984.

11. J. Belzile and D. Haccoun, ‘‘Bidirectional breadth-first algorithms for the decoding of convolutional

codes,’’ IEEE Trans. Comm., vol. COM-41, pp. 370–380, Feb. 1993.

12. J. Bergmans, ‘‘Density improvements in digital magnetic recording by decision feedback equaliza-

tion,’’ IEEE Trans. Magn., vol. 22, pp. 157–162, May 1986.

13. J. Hagenauer, ‘‘Applications of error-control coding,’’ IEEE Trans. Inform. Theory, vol. IT-44(6), pp.

2531–2560, Oct. 1998.

14. J. Hagenauer and P. Hoeher, ‘‘AViterbi algorithm with soft decision outputs and its applications,’’ in

Proc. GLOBECOM 89, Dallas, Texas, pp. 47.1.1–47.1.7, Nov. 1989.

15. J. Hagenauer, ‘‘Source-controlled channel decoding,’’ IEEE Trans. Comm., vol. COM-41, pp. 370–

380, Feb. 1995.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 89 11.10.2007 8:50pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-89

16. J.K. Wolf and D. Chun, ‘‘The single burst error detection performance of binary cyclic codes,’’ IEEE

Trans. Commun., vol. 42(1), pp. 11–13, Jan. 1994.

17. J.L. Massey, Coding and Complexity, CISM courses and lectures No. 216, Springer-Verlag, Wien, 1976.

18. J.L. Sonntag and B. Vasic, ‘‘Implementation and bench characterization of a read channel with parity

check post processor,’’ Digest of TMRC 2000, Santa Clara, CA, August 2000.

19. J.M. Cioffi, W.L. Abbott, H.K. Thapar, C.M. Melas, and K.D. Fisher, ‘‘Adaptive equalization in

magnetic disk storage channels,’’ IEEE Communications Magazine, pp. 14–29, Feb. 1990.

20. J.D. Coker, E. Eleftheriou, R. Galbraith, and W. Hirt, ‘‘Noise-predictive maximum likelihood

(NPML) detection,’’ IEEE Trans. Magn., vol. 34(1), pp. 110–117, Jan. 1998.

21. J.J. O’Reilly and A.M. de Oliveira Duarte, ‘‘Error propagation in decision feedback receivers,’’ IEEE

Proc., Pt. F, vol. 132(7), pp. 561–566, Dec. 1985.

22. K. Knudson et al., ‘‘Dynamic threshold implementation of the maximum likelihood detector for the

EPR4 channel,’’ Conf. Rec. Globecom ‘91, pp. 2135–2139, 1991.

23. K. Li and S. Kallel, ‘‘A bidirectional multiple stack algorithm,’’ IEEE Trans. Comm., vol. COM-47(1),

pp. 6–9, Jan. 1999.

24. K.D. Fisher, J. Cioffi, W. Abbott, P. Bednarz, and C.M. Melas, ‘‘An adaptive RAM-DFE for storage

channels,’’ IEEE Trans. Comm., vol. 39, no. 11, pp. 1559–1568, Nov. 1991.

25. L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, ‘‘Optimal decoding of linear codes for minimizing

symbol error rate,’’ IEEE Trans. Inform. Theory, pp. 284–287, March 1974.

26. M. Fossorier, ‘‘Performance evaluation of decision feedback equalization for the Lorentzian chan-

nel,’’ IEEE Trans. Magn., vol. 32(2), March 1996.

27. P.L. McAdam, L.R. Welch, and C.L. Weber, ‘‘M.A.P. bit decoding of convolutional codes,’’ in Proc. of

ISIT 1972, Asilomar, USA.

28. P.R. Chevillat and D.J. Costello Jr., ‘‘A multiple stack algorithm for erasure free decoding of

convolutional codes,’’ IEEE Trans. Comm., vol. COM-25, pp. 1460–1470, Dec. 1977.

29. P. Radivojac and V. Šenk, ‘‘The Generalized Viterbi-T algorithm,’’ in Proc. of XXXIX Conference on

ETRAN, vol. 2, pp. 13–16, Zlatibor, Yugoslavia, June 1995.

30. P.H. Siegel and J.K. Wolf, ‘‘Modulation and coding for information storage,’’ IEEE Comm. Magazine,

Dec. 1991, pp. 68–86.

31. P. Kabal and S. Pasupathy, ‘‘Partial response signaling’’ IEEE Trans. Comm., vol. COM-23(9),

pp. 921–934, Sept. 1975.

32. P.R. Chevillat, E. Eleftheriou, and D. Maiwald, ‘‘Noise-predictive partial-response equalizers and

applications,’’ IEEE Conf. Records ICC’92, pp. 942–947, June 1992.

33. P.K. Pai, A.D. Brewster, and A.A. Abidi, ‘‘Analog front-end architectures for high-speed PRML

magnetic read channels,’’ IEEE Trans. Magn., vol. 31, pp. 1103–1108, 1995.

34. R.M. Fano, ‘‘A heuristic discussion of probabilistic decoding,’’ IEEE Trans. Inform. Theory, vol. IT-9,

pp. 64–74, April 1963.

35. R.D. Cideciyan et al, ‘‘A PRML system for digital magnetic recording,’’ IEEE J. Sel. Areas Commu-

nications, vol. 10, pp. 38–56, Jan. 1992.

36. S.A. Altekar, M. Berggren, B.E. Moision, P.H. Siegel, and J.K. Wolf, ‘‘Error-event characterization on

partial-response channels,’’ IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 241–247, Jan. 1999.

37. S.J. Simmons, ‘‘Breadth-first trellis decoding with adaptive effort,’’ IEEE Trans. Comm., vol. COM-

38(1), pp. 3–12, Jan. 1990.

38. S. Kallel and K. Li, ‘‘Bidirectional sequential decoding,’’ IEEE Trans. Inform. Theory, vol. IT-43(4)

pp. 1319–1326, July 1997.

39. T. Hashimoto, ‘‘A list-type reduced-constraint generalization of the Viterbi algorithm,’’ IEEE Trans.

Inform. Theory, vol. IT-33(6), pp. 866–876, Nov. 1987.

40. V. Šenk and P. Radivojac, ‘‘The bidirectional stack algorithm—simulation results,’’ in Proc. of

TELSIKS’95, pp. 349–352, Niš, Yugoslavia, Oct. 1995.

41. V. Šenk and P. Radivojac, ‘‘The bidirectional stack algorithm,’’ in Proc. of ISIT’97, p. 500, Ulm,

Germany, July 1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 90 11.10.2007 8:50pm Compositor Name: TSuresh

18-90 Digital Systems and Applications

42. V. Šenk, ‘‘Bistack—a bidirectional stack algorithm for decoding trellis codes,’’ in Proc. of XXXVI

Conference on ETAN, pp. 153–160, Kopaonik, Yugoslavia, 1992.

43. V.M. Eyuboglu and S.U. Quereshi, ‘‘Reduced-state sequence estimation with decision feedback and

set partitioning,’’ IEEE Trans. Comm., vol. 36(1), pp. 13–20, Jan. 1988.

44. J. Bergmans, Digital Baseband Transmission and Recording, Kluwer Academic, Dordrecht, the Nether-

lands, 1996.

45. M. Despotović and V. Šenk, ‘‘Distance spectrum of channel trellis codes on precoded partial response

1-D channel,’’ J. Facta Universitatis (Ni~s), vol. 1., pp. 57–72, 1995, http:==factaee.elfak.ni.ac.yu.

18.7 An Introduction to Error-Correcting Codes

Mario Blaum

18.7.1 Introduction

When digital data are transmitted over a noisy channel, it is important to have a mechanism allowing

recovery against a limited number of errors. Normally, a user string of 0s and 1s, called bits, is encoded

by adding a number of redundant bits to it. When the receiver attempts to reconstruct the original

message sent, it starts by examining a possibly corrupted version of the encoded message, and then

makes a decision. This process is called the decoding.

The set of all possible encoded messages is called an error-correcting code. The field was started in the

late 1940s by the work of Shannon and Hamming, and since then thousands of papers on the subject

have been published. Several very good books are available to touch different aspects of error-correcting

codes, for instance, [1,3–5,7,8], to mention just a few.

The purpose of Section 18.7 is to give an introduction to the theory andpractice of error-correcting codes. In

particular, it will be shown how to encode and decode themost widely used codes, Reed–Solomon (RS) codes.

In principle, it will assumed that the information symbols are bits, i.e., 0s and 1s. The set {0, 1} has a

field structure under the exclusive-OR (�) and product operations. This field is denoted as GF(2), which

means Galois field of order 2.

Roughly, two types of error-correcting codes are used—codes of block type and codes of convolu-

tional type. Codes of block type encode a fixed number of bits, say k bits, into a vector of length n. So,

the information string is divided into blocks of k bits each. Convolutional codes take the string of

information bits globally and slide a window over the data in order to encode. A certain amount of

memory is needed by the encoder; however, this section concentrates on block codes only. For more on

convolutional codes, see [3,8].

As stated previously, k information bits are encoded into n bits. So, we have a 1-1 function f,

f :GF(2)k ! GF(2)n

The function f defines the encoding procedure. The set of 2k encoded vectors of length n is called a code

of length n and dimension k, and we denote it as an [n, k] code. Codewords are called the elements of the

code while words are called the vectors of length n in general. The ratio k=n is called the rate of the code.

The error-correcting power of a code is characterized by a parameter called the minimum (Hamming)

distance of the code. Formally:

Definition 1 Given two vectors of length n, say a and b, we call the Hamming distance between a

and b the number of coordinates in which they differ (notation, dH (a, b)).

Given a code C of length n and dimension k, let

d ¼ minfdH (a, b): a 6¼ b, a, b 2 Cg

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 91 11.10.2007 8:50pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-91

d is the minimum (Hamming) distance of the code C, and C is an [n, k, d] code.

It is easy to verify that dH(a, b) satisfies the axioms of distance, i.e.,

1. dH (a, b)¼ dH (b, a),

2. dH (a, b)¼ 0 if and only if a¼ b,

3. dH (a, c) � dH(a, b)þ dH(b, c).

A sphere of radius r and center a are called the set of vectors that are at distance at most r from a. The

relation between d and the maximum number of errors that code C can correct is given by the following

lemma:

Lemma 1 The maximum number of errors that an [n, k, d] code can correct is b(d� 1)=2c, where
bxc denotes the largest integer smaller than or equal to x.

Proof: Assume that vector a was transmitted but a possibly corrupted version of a, for instance r, was

received. Moreover, assume that no more than b(d� 1)=2c errors have occurred.
Consider the set of 2k spheres of radius b(d� 1)=2c whose centers are the codewords in C. By the

definition of d, all these spheres are disjoint. Hence, r, belongs to one and only one sphere: the one whose

center is codeword a. So, the decoder looks for the sphere in which r belongs, and outputs the center of

that sphere as the decoded vector. Subsequently, whenever the number of errors is at most b(d� 1)=2c,
this procedure will give the correct answer.

Moreover, b(d� 1)=2c is the maximum number of errors that the code can correct. For let a, b 2 C
such that dH (a, b)¼ d. Let u be a vector such that dH (a, u) ¼ 1þ b(d � 1)=2c and dH (b, u) ¼
d � 1� b(d � 1)=2c. We easily verify that dH (b, u) � dH (a, u), so, if a is transmitted and u is received

(i.e., 1þb(d� 1)=2c errors have occurred), the decoder cannot decide that the transmitted codeword

was a, since codeword b is at least as close to u as a.

Example 1

Consider the following 1-1 relationship between GF(2)2 and GF(2)5 defining the encoding:

00 $ 00000

10 $ 00111

01 $ 11100

11 $ 11011

The four vectors in GF(2)5 constitute a [2,3,5] code C. From Lemma 1, C can correct one error.

For instance, assume that we receive the vector r¼ 10100. The decoder looks into the four spheres

of radius 1 (each sphere has six elements) around each codeword, finding that r belongs in the sphere

with center 11100. If we look at the table above, the final output of the decoder is the information

block 01.

Example 1 shows that the decoder has to make at most 24 checks before arriving to the correct

decision. When large codes are involved, as is the case in applications, this decoding procedure is not

practical, since it amounts to an exhaustive search over a huge set of vectors.

One of the goals in the theory of error-correcting codes is finding codes with rate and minimum

distance as large as possible. The possibility of finding codes with the right properties is often limited by

bounds that constrain the choice of parameters n, k, and d. Some of these bounds are given in the next

subsection.

Let us point out that error-correcting codes can be used for detection instead of correction of errors.

The simplest example of an error-detecting code is given by a parity code: a parity is added to a string of

bits in such a way that the total number of bits is even (a more sophisticated way of saying this is that the

sum modulo 2 of the bits has to be 0). For example, 0100 is encoded as 01001. If an error occurs, or,

more generally, an odd number of errors, these errors will be detected since the sum modulo 2 of the

received bits will be 1. Notice that two errors will be undetected. In general, if an [n, k, d] code is used for

detection only, the decoder checks whether the received vector is in the code or not. If it is not, then

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 92 11.10.2007 8:50pm Compositor Name: TSuresh

18-92 Digital Systems and Applications

errors are detected. It is easy to see that an [n, k, d] code can detect up to d� 1 errors. Also, one can

choose to correct less than b(d� 1)=2c errors, say s errors, by taking disjoint spheres of radius s around
codewords, and using the remaining capacity to detect errors. In other words, correct up to s errors or

detect up to sþ t errors when more than s errors occur.

Another application of error-correcting codes is in erasure correction. An erased bit is a bit that

cannot be read, so the decoder has to decide if it was a 0 or a 1. An erasure is normally denoted with the

symbol ‘‘?’’. For instance, 01?0 means that we cannot read the third symbol. Obviously, it is easier to

correct erasures than to correct errors, since in the case of erasures we already know the location, we

simply have to find what the erased bit was. It is not hard to prove that an [n, k, d] code can correct upto

d� 1 erasures. One may also want to simultaneously correct errors and erasures. In fact, a code C with

minimum distance d can correct s errors together with t erasures whenever 2sþ t � d� 1.

18.7.2 Linear Codes

The previous subsection showed that a binary code of length n is a subset of GF(2)n. Notice that, being

GF(2) a field, GF(2)n has a structure of vector space over GF(2). A code C is linear if it is a subspace

of GF(2)n, i.e.

1. 0 2 C
2. 8a, b 2 C, a � b 2 C

The symbol 0 denotes the all-zero vector. In general, vectors will be denoted with underlined letters,

otherwise letters denote scalars.

In the first subsection, it was assumed that a code had 2k elements, k being the dimension; however,

a code of length n can be defined as any subset of GF(2)n.

Many interesting combinatorial questions can be asked regarding nonlinear codes. Probably, the most

important question is the following: Given the length n and the minimum distance d, what is themaximum

number of codewords that a code can have? For more about nonlinear codes, the reader is referred to [4].

From now on, we assume that all codes are linear. Linear codes are in general easier to encode and decode

than their nonlinear counterparts; hence they are more suitable for implementation in applications.

In order to find the minimum distance of a linear code, it is enough to find its minimum weight. The

(Hamming) weight of a vector u is the distance between u and the zero vector. In other words, the weight

of u, denoted wH(u), is the number of nonzero coordinates of the vector u. The minimum weight of a

code is the minimum between all the weights of the nonzero codewords. The proof of the following

lemma is left as an exercise.

Lemma 2 Let C be a linear [n, k, d] code. Then, the minimum distance and the minimum weight

of C are the same.

Next, two important matrices are introduced that define a linear error-correcting code. A code C
is now a subspace, so the dimension k of C is the cardinality of a basis of C. Consider then an [n, k, d]

code C. A k3 n matrix G is a generator matrix of a code C if the rows of G are a basis of C. Given a

generator matrix, the encoding process is simple. Explicitly, let u be an information vector of length k

and G a k3 n generator matrix, then u is encoded into the n-vector v given by

v ¼ uG (18:45)

Example 2

Let G be the 23 5 matrix

G ¼ 0 0 1 1 1

1 1 1 0 0

� �

It is easy to see that G is a generator matrix of the [2,3,5] code described in Example 1.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 93 11.10.2007 8:51pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-93

Notice that, although a code may have many generator matrices, the encoding depends on the

particular matrix chosen, according to Eq. 18.45. We say that G is a systematic generator matrix if G

can be written as

G ¼ (Ik jV) (18:46)

where Ik is the k3 k identity matrix and V is a k3 (n� k) matrix. A systematic generator matrix has the

following advantage: given an information vector u of length k, the encoding given by Eq. 18.45 outputs

a codeword (u, w), where w has length n� k. In other words, a systematic encoder adds n� k redundant

bits to the k information bits, so information and redundancy are clearly separated. This also simplifies

the decoding process, since, after decoding, the redundant bits are simply discarded. For that reason,

most encoders used in applications are systematic.

A permutation of the columns of a generator matrix gives a new generator matrix defining a new

code. The codewords of the new code are permutations of the coordinates of the codewords of the

original code, therefore, the two codes are equivalent. Notice that equivalent codes have the same

distance properties, so their error correcting capabilities are exactly the same.

By permuting the columns of the generator matrix in Example 2, the following generator matrix G 0 is
obtained:

G0 ¼ 1 0 0 1 1

0 1 1 1 0

� �
(18:47)

The matrix G 0 defines a systematic encoder for a code that is equivalent to the one given in Example 1.

For instance, the information vector 11 is encoded into 11 101.

The second important matrix related to a code is the so-called parity check matrix. An (n� k)3 n

matrix H is a parity check matrix of an [n, k] code C if and only if, for any c 2 C,

cHT ¼ 0 (18:48)

where HT denotes the transpose of matrix H and 0 is a zero vector of length n� k. The parity check

matrix H is in systematic form if

H ¼ (W jIn�k) (18:49)

where In� k is the (n� k)3 (n� k) identity matrix and W is an (n� k)3 k matrix.

Given a systematic generator matrix G of a code C, it is easy to find the systematic parity check matrix

H (and conversely). Explicitly, if G is given by Eq. 18.46, H is given by

H ¼ (VT jIn�k) (18:50)

The proof of this fact is left to the reader.

For example, the systematic parity check matrix of the code, whose systematic generator matrix is

given by Eq. 18.47, is

H ¼
0 1 1 0 0

1 1 0 1 0

1 0 0 0 1

0
@

1
A (18:51)

Next is an important property of parity check matrices.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 94 11.10.2007 8:51pm Compositor Name: TSuresh

18-94 Digital Systems and Applications

Lemma 3 Let C be a linear [n, k, d] code and H a parity check matrix. Then, any d� 1 columns of

H are linearly independent.

Proof: Numerate the columns of H from 0 to n� 1. Assume that columns 0 � i1< i2 <� � �< im � n� 1

are linearly dependent, where m � d� 1. Without loss of generality, assume that the sum of these

columns is equal to the column vector zero. Let v be a vector of length n whose nonzero coordinates are

in locations i1, i2, . . . , im. Then,

vHT ¼ 0

hence v is in C. But v has weight m � d� 1, contradicting the fact that C has minimum distance d.

Corollary 1 For any linear [n, k, d] code, the minimum distance d is the smallest number m such

that there is a subset of m linearly dependent columns.

Proof: It follows immediately from Lemma 3.

Corollary 2 (Singleton Bound) For any linear [n, k, d] code,

d � n� k þ 1

Proof: Notice that, because H is an (n� k)3 n matrix, any n� kþ 1 columns are going to be linearly

dependent, so if d> n� kþ 1 we would contradict Corollary 1.

Codes meeting the Singleton bound are called maximum distance separable (MDS). In fact, except for

trivial cases, binary codes are not MDS. In order to obtain MDS codes, we will define codes over larger

fields, like the so-called Reed Solomon codes, to be described later in the chapter.

A second bound is also given relating the redundancy and the minimum distance of an [n, k, d] code

the so-called Hamming or volume bound. Let us denote by V(r) the number of elements in a sphere of

radius r whose center is an element in GF(2)n. It is easy to verify that

V (r) ¼
Xr
i¼0

n

i

� �
(18:52)

We then have:

Lemma 4 (Hamming bound) Let C be a linear [n, k, d] code, then

n� k � log2 V (b(d � 1)=2c) (18:53)

Proof: Notice that the 2k spheres with the 2k codewords as centers and radius b(d� 1)=2c are disjoint.
The total number of vectors contained in these spheres is 2k V(b(d� 1)=2c). This number has to be

smaller than or equal to the total number of vectors in the space, i.e.,

2n � 2kV (b(d � 1)=2c) (18:54)

Inequality (Eq. 18.53) follows immediately from Eq. 18.54.

A perfect code is a code for which inequality Eq. 18.53 is in effect equality. Geometrically, a perfect

code is a code for which the 2k spheres of radius b(d� 1)=2c and the codewords as centers cover the

whole space.

Not many perfect codes exist. In the binary case, the only nontrivial linear perfect codes are the

Hamming codes (to be presented in the Section 18.7.3) and the [7,12,23] Golay code. For details, the

reader is referred to [4].

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 95 11.10.2007 8:51pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-95

18.7.3 Syndrome Decoding, Hamming Codes,
and Capacity of the Channel

This subsection studies the first important family of codes, the so-called Hamming codes. As will be

shown, Hamming codes can correct up to one error.

Let C be an [n, k, d] code with parity check matrix H. Let u be a transmitted vector and r a possibly

corrupted received version of u. We say that the syndrome of r is the vector s of length n – k given by

s ¼ rHT (18:55)

Notice that, if no errors occurred, the syndrome of r is the zero vector. The syndrome, however, tells us

more than a vector being in the code or not. For instance, as before, that u was transmitted and r was

received, where r¼ u � e, e an error vector. Notice that,

s ¼ rHT ¼ (u � e)HT ¼ uHT � eHT ¼ eHT

because u is in C. Hence, the syndrome does not depend on the received vector but on the error vector.

In the next lemma, we show that to every error vector of weight �(d� 1)=2 corresponds a unique

syndrome.

Lemma 5 Let C be a linear [n, k, d] code with parity check matrix H. Then, there is a 1-1

correspondence between errors of weight �(d� 1)=2 and syndromes.

Proof: Let e1 and e2 be two distinct error vectors of weight �(d� 1)=2 with syndromes s1¼ e1H
T and

s2¼ e2H
T. If s1¼ s2, then s¼ (e1 � e2)H

T¼s1 � s2¼ 0, hence e1 � e2 2 C. But e1 � e2 has weight �d� 1,

a contradiction.

Lemma 5 gives the key for a decoding method that is more efficient than exhaustive search. We can

construct a table with the 1-1 correspondence between syndromes and error patterns of weight

�(d� 1)=2 and decode by lookup table. In other words, given a received vector, we first find its

syndrome and then we look in the table to which error pattern it corresponds. Once we obtain the

error pattern, we add it to the received vector, retrieving the original information. This procedure may

be efficient for small codes, but it is still too complex for large codes.

Example 3

Consider the code whose parity matrix H is given by Eq. 18.51. We have seen that this is a [2,3,5]

code. We have six error patterns of weight �1. The 1-1 correspondence between these error patterns and

the syndromes can be immediately verified to be

00000 $ 000

10000 $ 011

01000 $ 110

00100 $ 100

00010 $ 010

00001 $ 001

For instance, assume that we receive the vector r¼ 10111. We obtain the syndrome s¼ rHT¼ 100.

Looking at the table above, we see that this syndrome corresponds to the error pattern e¼ 00100.

Adding this error pattern to the received vector, we conclude that the transmitted vector was r �
e¼ 10011.

Given a number r of redundant bits, we say that a [2r� 1, 2r� r� 1, 3] Hamming code is a code

having an r3 (2r� 1) parity check matrix H such that its columns are all the different nonzero vectors of

length r.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 96 11.10.2007 8:51pm Compositor Name: TSuresh

18-96 Digital Systems and Applications

A Hamming code has minimum distance 3. This follows from its definition and Corollary 1. Notice

that any two columns in H, being different, are linearly independent. Also, if we take any two different

columns and their sum, these three columns are linearly dependent, proving our assertion.

A natural way of writing the columns of H in a Hamming code, is by considering them as binary

numbers on base 2 in increasing order. This means, the first column is 1 on base 2, the second column is

2, and so on. The last column is 2r� 1 on base 2, i.e., (1, 1, . . . , 1)T. This parity check matrix, although

nonsystematic, makes the decoding very simple.

In effect, let r be a received vector such that r¼ v � e, where v was the transmitted codeword and e is

an error vector of weight 1. Then, the syndrome is s¼ eHT, which gives the column corresponding to the

location in error. This column, as a number on base 2, tells us exactly where the error has occurred, so

the received vector can be corrected.

Example 4

Consider the [3,4,7] Hamming code C with parity check matrix

H ¼
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0
@

1
A (18:56)

Assume that vector r¼ 1100101 is received. The syndrome is s¼ rHT¼ 001, which is the binary

representation of the number 1. Hence, the first location is in error, so the decoder estimates that the

transmitted vector was v¼ 0100101.

We can obtain 1-error correcting codes of any length simply by shortening a Hamming code. This

procedure works as follows: assume that we want to encode k information bits into a 1-error correcting

code. Let r be the smallest number such that k � 2r� r� 1. Let H be the parity check matrix of a [2r� 1,

2r� r� 1, 3] Hamming code. Then construct a matrix H0 by eliminating some 2r� r� 1� k columns

from H. The code whose parity check matrix is H0 is a [kþ r, k, d] code with d � 3, hence it can correct

one error. We call it a shortened Hamming code. For instance, the [2,3,5] code whose parity check

matrix is given by Eq. 18.51 is a shortened Hamming code.

In general, if H is the parity check matrix of a code C, H0 is a matrix obtained by eliminating a certain

number of columns from H and C0 is the code with parity check matrix H0 we say that C0 is obtained by

shortening C.
A [2r� 1, 2r� r� 1, 3] Hamming code can be extended to a [2r, 2r� r� 1, 4] Hamming code by

adding to each codeword a parity bit, that is, the exclusive-OR of the first 2r� 1 bits. The new code is

called an extended Hamming code.

So far, we have not talked about probabilities of errors. Assume that we have a binary symmetric channel

(BSC), i.e., the probability of a 1 becoming a 0 or of a 0 becoming a 1 is p< .5. Let Perr be the probability of

error after decoding using a code, i.e., the output of the decoder does not correspond to the originally

transmitted information vector. A fundamental question is the following: given a BSC with bit error

probability p, does it exist a code of high rate that can arbitrarily lower Perr? The answer, due to Shannon, is

yes, provided that the code has rate below a parameter called the capacity of the channel, as defined next.

Definition 2 Given a BSC with probability of bit error p, we say that the capacity of the channel is

C(p) ¼ 1þ p log2 p þ (1� p) log2 (1� p) (18:57)

Theorem 1 (Shannon) For any e> 0 and R<C(p), there is an [n, k] binary code of rate k=n � R with

Perr< e.

For a proof of Theorem 1 and some of its generalizations, the reader is referred to [5], or even to

Shannon’s original paper [6].

Theorem 1 has enormous theoretical importance. It shows that reliable communication is not limited

in the presence of noise, only the rate of communication is. For instance, if p¼ .01, the capacity of the

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 97 11.10.2007 8:52pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-97

channel is C(.01)¼ .9192. Hence, there are codes of rate �.9 with Perr arbitrarily small. It also tells us not

to look for codes with rate .92 making Perr arbitrarily small.

The proof of Theorem 1, though, is based on probabilistic methods and the assumption of arbitrarily

large values of n. In practical applications, n cannot be too large. The theorem does not tell us how to

construct efficient codes, it just asserts their existence. Moreover, when we construct codes, we want

them to have efficient encoding and decoding algorithms. In the last few years, coding methods

approaching the Shannon limit have been developed, the so-called turbo codes. Although great progress

has been made towards practical implementations of turbo codes, in applications like magnetic

recording their complexity is still a problem. A description of turbo codes is beyond the scope of this

introduction. The reader is referred to [2].

18.7.4 Codes over Bytes and Finite Fields

So far, we have considered linear codes over bits. Next we want to introduce codes over larger symbols,

mainly over bytes. A byte of size v is a vector of v bits. Mathematically, bytes are vectors in GF(2)v.

Typical cases in magnetic and optical recording involve 8-bit bytes. Most of the general results in the

previous sections for codes over bits easily extend to codes over bytes. It is trivial to multiply bits, but we

need a method to multiply bytes. To this end, the theory of finite fields has been developed. Next we give

a brief introduction to the theory of finite fields. For a more complete treatment, the reader is referred to

Chapter 4 of [4].

We know how to add two binary vectors, we simply exclusive-OR them componentwise. What we

need now is a rule that allows us to multiply bytes while preserving associative, distributive, and

multiplicative inverse properties, i.e., a product that gives to the set of bytes of length v the structure

of a field. To this end, we will define a multiplication between vectors that satisfies the associated and

commutative properties, it has a 1 element, each nonzero element is invertible and it is distributive with

respect to the sum operation.

Recall the definition of the ring Zm of integers modulo m:Zm is the set {0, 1, 2, . . . , m� 1}, with a sum

and product of any two elements defined as the residue of dividing by m the usual sum or product. It is

not difficult to prove that Zm is a field if and only ifm is a prime number. Using this analogy, we will give

to (GF(2))v the structure of a field.

Consider the vector space (GF(2))v over the field GF(2). We can view each vector as a polynomial of

degree �v� 1 as follows: the vector a¼ (a0, a1, . . . , av�1) corresponds to the polynomial a(a)¼ a0þ a1
a þ� � �þ av�1 a

v�1.

The goal is to give to (GF(2))v the structure of a field. We will denote such a field by GF(2v). The sum

in GF(2v) is the usual sum of vectors in (GF(2))v. We need now to define a product.

Let f(x) be an irreducible polynomial (i.e., it cannot be expressed as the product of two polynomials of

smaller degree) of degree v whose coefficients are in GF(2). Let a(a) and b(a) be two elements of GF(2v).

We define the product between a(a) and b(a) in GF(2v) as the unique polynomial c(a) of degree �v� 1

such that c(a) is the residue of dividing the product a(a)b(a) by f(a) (the notation g(x) � h(x) (mod f

(x)) means that g(x) and h(x) have the same residue after dividing by f(x), i.e., g(a)¼ h(a)).

The sum and product operations defined above give to GF(2v) a field structure. The role of

the irreducible polynomial f(x) is the same as the prime number m when Zm is a field. In effect,

the proof that GF(2v) is a field when m is irreducible is essentially the same as the proof that Zm is a

field when m is prime. From now on, we denote the elements in GF(2v) as polynomials in a of

degree �v� 1 with coefficients in GF(2). Given two polynomials a(x) and b(x) with coefficients in GF

(2), a(a)b(a) denotes the product in GF(2v), while a(x)b(x) denotes the regular product of poly-

nomials. Notice that, for the irreducible polynomial f(x), in particular, f(a)¼ 0 in GF(2v), since f(x) � 0

(mod f(x)).

So, the set GF(2v) given by the irreducible polynomial f(x) of degree v is the set of polynomials of

degree �v� 1, where the sum operation is the regular sum of polynomials, and the product operation is

the residue of dividing by f(x) the regular product of two polynomials.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 98 11.10.2007 8:52pm Compositor Name: TSuresh

18-98 Digital Systems and Applications

Example 5

Construct the field GF(8). Consider the polynomials of degree �2 over GF(2). Let f(x)¼ 1þ xþ x3.

Since f(x) has no roots over GF(2), it is irreducible (notice that such an assessment can be made only for

polynomials of degree 2 or 3). Let us consider the powers of a modulo f(a). Notice that a3¼a3þ f

(a)¼ 1þa. Also, a4¼aa3¼a (1þa)¼aþa2. Similarly, we obtain a5¼aa4¼a(aþa2)¼a2þ
a3¼ 1þaþa2, and a6¼aa5¼aþa2þa3¼ 1þa2. Finally, a7¼aa6¼aþa3¼ 1.

Note that every nonzero element in GF(8) can be obtained as a power of the element a. In this case,

a is called a primitive element and the irreducible polynomial f(x) that defines the field is called a

primitive polynomial. It can be proven that it is always the case that the multiplicative group of a finite

field is cyclic, so there is always a primitive element.

A convenient description of GF(8) is given in Table 18.3. The first column in Table 18.3 describes the

element of the field in vector form, the second one as a polynomial in a of degree �2, the third one as a

power of a, and the last one gives the logarithm (also called Zech logarithm): it simply indicates the

corresponding power of a. As a convention, we denote by �1 the logarithm corresponding to the

element 0.

It is often convenient to express the elements in a finite field as powers of a; when we multiply two of

them, we obtain a new power of a whose exponent is the sum of the two exponents modulo 2v� 1.

Explicitly, if i and j are the logarithms of two elements in GF(2v), then their product has logarithm iþ j

(mod (2v� 1)). In the example above, if we want to multiply the vectors 101 and 111, we first look at

their logarithms. They are 6 and 5, respectively, so the logarithm of the product is 6þ 5 (mod 7)¼ 4,

corresponding to the vector 011.

In order to add vectors, the best way is to express them in vector form and add coordinate to

coordinate in the usual way.

18.7.5 Cyclic Codes

In the same way we defined codes over the binary field GF(2), we can define codes over any finite field

GF(2v). Now, a code of length n is a subset of (GF(2v))n, but since we study only linear codes, we require

that such a subset is a vector space. Similarly, we define the minimum (Hamming) distance and the

generator and parity check matrices of a code. Some properties of binary linear codes, like the Singleton

bound, remain the same in the general case. Others, such as the Hamming bound, require some

modifications.

Consider a linear code C over GF(2v) of length n. We say that C is cyclic if, for any codeword

(c0, c1, . . . , cn�1) 2 C, then (cn� 1, c0, c1, . . . , cn�2) 2 C. In other words, the code is invariant under

cyclic shifts to the right.

If we write the codewords as polynomials of degree<n with coefficients in GF(2v), this is equivalent to

say that if c(x) 2 C, then xc(x) mod(xn� 1) 2 C. Hence, if c(x) 2 C, then, given any polynomial w(x), the

residue of dividing w(x)c(x) by xn� 1 is in C. In particular, if the degree of w(x)c(x) is smaller than n,

then w(x)c(x) 2 C.
From now on, we write the elements of a cyclic code C as polynomials modulo xn� 1.

TABLE 18.3 The Finite Field GF(8) Generated by 1 þ x þ x3

Vector Polynomial Power of a Logarithm

000 0 0 �1
100 1 1 0

010 a a 1

001 a2 a2 2

110 1 þ a a3 3

011 a þ a2 a4 4

111 1 þ a þ a2 a5 5

101 1 þ a2 a6 6

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 99 11.10.2007 8:52pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-99

Theorem 2 C is an [n, k] cyclic code over GF(2v) if and only if there is a (monic) polynomial g(x)

of degree n� k such that g(x) divides xn� 1 and each c(x) 2 C is a multiple of g(x), i.e., c(x) 2 C if

and only if c(x)¼w(x)g(x), deg(w)< k. We call g(x) a generator polynomial of C.
Proof: Let g(x) be a monic (i.e., lead coefficient is 1) polynomial in C such that g(x) has minimal

degree. If deg(g)¼ 0 (i.e., g¼ 1), then C is the whole space (GF(2v))n, so assume deg(g) � 1. Let c(x) be

any element in C. We can write c(x)¼w(x)g(x)þ r(x), where deg(r)< deg(g). Because deg(wg)< n, g 2
C and C is cyclic, in particular, w(x)g(x) 2 C. Hence, r(x)¼ c(x)�w(x)g(x) 2 C. If r 6¼ 0, we would

contradict the fact that g(x) has minimal degree, hence, r¼ 0 and c(x) is a multiple of g(x).

Similarly, we can prove that g(x) divides xn� 1. Let xn� 1¼ h(x)g(x)þ r(x), where deg(r)< deg(g). In

particular, h(x)g(x) � �r(x) mod (xn� 1), hence, r(x) 2 C. Since g(x) has minimal degree, r¼ 0, so g(x)

divides xn� 1.

Conversely, assume that every element in C is a multiple of g(x) and g divides xn� 1. It is immediate

that the code is linear and that it has dimension k. Let c(x) 2 C, hence, c(x)¼w(x)g(x) with deg(w)< k.

Also, since g(x) divides xn� 1, xn� 1¼ h(x)g(x). Assume that c(x)¼ c0þ c1xþ c2x
2 þ� � �þ cn�1x

n�1,

then, xc(x) � cn�1þ c0x þ� � �þ cn�2x
n�1 (mod xn� 1). We have to prove that cn�1þ c0x þ� � �þ

cn�2x
n�1¼ q(x)g(x), where q(x) has degree �k� 1. Notice that

cn�1 þ c0x þ � � � þ cn�2x
n�1 ¼ cn�1 þ c0x þ � � � þ cn�2x

n�1 þ cn�1x
n � cn�1x

n

¼ c0x þ � � � þ cn�2x
n�1 þ cn�1x

n � cn�1(x
n � 1)

¼ xc(x)� cn�1(x
n � 1)

¼ xw(x)g(x)� cn�1h(x)g(x)

¼ (xw(x)� cn�1h(x))g(x)

proving that the element is in the code.

Theorem 2 gives a method to find all cyclic codes of length n, simply take all the (monic) factors

of xn� 1. Each one of them is the generator polynomial of a cyclic code.

Example 6

Consider the [4,7] cyclic code over GF(2) generated by g(x)¼ 1þ xþ x3. We can verify that x7 – 1¼ g(x)

(1þ x)(1þ x2þ x3); hence, g(x) indeed generates a cyclic code.

In order to encode an information polynomial over GF(2) of degree �3 into a codeword, we multiply

it by g(x).

Say that we want to encode u¼ (1, 0, 0, 1), which in polynomial form is u(x)¼ 1þ x3. Hence, the

encoding gives c(x)¼ u(x)g(x)¼ 1þ xþ x4þ x6. In vector form, this gives c¼ (1 1 0 0 1 0 1).

It can be easily verified that the [4,7] code given in this example has minimum distance 3 and is

equivalent to the Hamming code of Example 4. In other words, the codewords of the code given in this

example are permutations of the codewords of the [3,4,7] Hamming code given in Example 4.

The encoding method of a cyclic code with generator polynomial g is then very simple: we multiply

the information polynomial by g. However, this encoder is not systematic. A systematic encoder of a

cyclic code is given by the following algorithm:

Algorithm 1 (Systematic Encoding Algorithm for Cyclic Codes) Let C be a cyclic [n, k] code

over GF(2v) with generator polynomial g(x). Let u(x) be an information polynomial, deg(u)< k.

Let r(x) be the residue of dividing xn�k u(x) by g(x). Then u(x) is encoded into the polynomial c

(x)¼ u(x)� xk r(x).

We leave as an exercise proving that Algorithm 2 produces indeed a codeword in C.
Example 7

Consider the [4,7] cyclic code over GF(2) of Example 6. If we want to encode systematically the

information vector u¼ (1, 0, 0, 1) (or u(x)¼ 1þ x3), we have to obtain first the residue of dividing

x3u(x)¼ x3þ x6 by g(x). This residue is r(x)¼ xþ x2. Hence, the output of the encoder is c(x)¼ u

(x)� x4r(x)¼ 1þ x3þ x5þ x6. In vector form, this gives c¼ (1 0 0 1 0 1 1).

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 100 11.10.2007 8:52pm Compositor Name: TSuresh

18-100 Digital Systems and Applications

18.7.6 Reed Solomon Codes

Throughout this subsection, the codes considered are over the field GF(2v). Let a be a primitive element

in GF(2v), i.e., a2v�1¼ 1,ai 6¼ 1 for i 0 mod 2v� 1. A Reed–Solomon (RS) code of length n¼ 2v� 1 and

dimension k is the cyclic code generated by

g(x) ¼ (x � a)(x � a2) � � � (x � an�k�1)(x � an�k)

Each ai is a root of unity, x�ai divides xn� 1, hence, g divides xn� 1 and the code is cyclic.

An equivalent way of describing a RS code is as the set of polynomials over GF(2v) of degree � n� 1

with roots a, a2, . . . , an�k, i.e., F is in the code if and only if deg(F) � n� 1 and F(a)¼ F(a2)¼ � � � ¼ F

(an�k)¼ 0.

This property allows us to find a parity check matrix for a RS code. Say that F(x)¼ F0þ F1xþ � � � þ
Fn�1x

n�1 is in the code. Let 1 � i � n� k, then

F(ai) ¼ F0 þ F1a
i þ � � � þ Fn�1a

i(n�1) ¼ 0 (18:58)

In other words, Eq. 18.58 tells us that codeword (F0, F1, . . . , Fn�1) is orthogonal to the vectors (1, ai,

a2i, . . . , ai(n�1)), 1 � i � n� k. Hence, these vectors are the rows of a parity check matrix for the RS

code. A parity check matrix of an [n, k] RS code over GF(2v) is then

H ¼
1 a a2 . . . an�1

1 a2 a4 . . . a2(n�1)

..

. ..
. ..

. . .
. ..

.

1 an�k a(n�k)2 . . . a(n�k)(n�1)

0
BB@

1
CCA (18:59)

In order to show that H is in fact a parity check matrix, we need to prove that the rows of H are linearly

independent. The next lemma provides an even stronger result.

Lemma 6 Any set of n� k columns in matrix H defined by Eq. 18.59 is linearly independent.

Proof: Take a set 0 � i1< i2 <� � �< in�k � n� 1 of columns of H. Denote aij by aj, 1 � j � n� k.

Columns i1, i2, . . . , in�k are linearly independent if and only if their determinant is nonzero, i.e., if and

only if

det

a1 a2 . . . an�k

(a1)
2 (a2)

2 . . . (an�k)
2

..

. ..
. . .

. ..
.

(a1)
n�k (a2)

n�k . . . (an�k)
n�k

0
BBB@

1
CCCA 6¼ 0 (18:60)

Let

V (a1, a2, . . . , an�k) ¼ det

1 1 . . . 1

a1 a2 . . . an�k

..

. ..
. . .

. ..
.

(a1)
n�k�1 (a2)

n�k�1 . . . (an�k)
n�k�1

0
BBB@

1
CCCA (18:61)

We call the determinant V(a1, a2, . . . ,an�k) a Vandermonde determinant—it is the determinant of

an (n� k)3 (n� k) matrix whose rows are the powers of vector a1, a2, . . . ,an�k, the powers

running from 0 to n� k� 1. By properties of determinants, if we consider the determinant in Eq.

18.60, we have

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 101 11.10.2007 8:53pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-101

det

a1 a2 . . . an�k

(a1)
2 (a2)

2 . . . (an�k)
2

..

. ..
. . .

. ..
.

(a1)
n�k (a2)

n�k . . . (an�k)
n�k

0
BBB@

1
CCCA ¼ a1a2 . . .an�kV (a1, a2, . . . ,an�k) (18:62)

Hence, by Eqs. 18.60 and 18.62, since the aj’s are nonzero, it is enough to prove that V(a1, a2, . . . ,an�k)

6¼ 0. A well-known result in literature states that

V (a1, a2, . . . ,an�k) ¼
Y

1<i<j<n�k

(aj � ai) (18:63)

Because a is a primitive element in GF(2v), its powers a1, 0 � l � n� 1 are distinct. In particular,

the ai’s, 1 � i � n� k are distinct; hence, the product in the right-hand side of Eq. 18.63 is

nonzero.

Corollary 3 An [n, k] RS code has minimum distance d¼ n� kþ 1.

Proof: Let H be the parity check matrix of the RS code defined by Eq. 18.59. Notice that, since any n� k

columns in H are linearly independent, d � n� kþ 1 by Lemma 3.

On the other hand, d � n� kþ 1 by the Singleton bound (Corollary 2), so we have equality.

Because RS codes meet the Singleton bound with equality, they are MDS (see second subsection).

Example 8

Consider the [3,5,7] RS code over GF(8), where GF(8) is given by Table 18.3. The generator poly-

nomial is

g(x) ¼ (x � a)(x � a2)(x � a3)(x � a4) ¼ a3 þ ax þ x2 þ a3x3 þ x4

Assume that we want to encode the 3-byte vector u¼ 101 001 111. Writing the bytes as powers of a in

polynomial form, we have u(x)¼a6þa2xþa5x2.

In order to encode u(x), we perform

u(x)g(x) ¼ a2 þ a4x þ a2x2 þ a6x3 þ a6x4 þ a4x5 þ a5x6

In vector form the output of the encoder is given by 001 011 001 101 101 011 111. If we encode u(x)

using a systematic encoder (Algorithm 1), the output of the encoder is

a6 þ a2x þ a5x2 þ a6x3 þ a5x4 þ a4x5 þ a4x6

which, in vector form, is 101 001 111 101 111 011 011.

Next we make some observations:

. The definition given above for an [n, k] RS code states that F(x) is in the code if and only if it has

as roots the powers a, a2, . . . , an�k of a primitive element a; however, it is enough to state that F

has as roots a set of consecutive powers of a, say, am, amþ1, . . . ,amþn�k�1, where 0 � m � n� 1.

Although our definition (i.e., m¼ 1) gives the most usual setting for RS codes, often engineering

reasons may determine different choices of m. It is easy to verify that with the more general

definition of RS codes, the minimum distance remains n� kþ 1.

. Given an [n, k] RS code, there is an easy way to shorten it and obtain an [n� l, k� l] code for

l< k. In effect, if we have only k� l bytes of information, we add l zeros in order to obtain an

information string of length k. We then find the n� k redundant bytes using a systematic encoder.

When writing, of course, the l zeros are not written, so we have an [n� l, k� l] code, called a

shortened RS code. It is immediately verified that shortened RS codes are also MDS.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 102 11.10.2007 8:53pm Compositor Name: TSuresh

18-102 Digital Systems and Applications

We have defined RS codes, proven that they are MDS and showed how to encode them systematically.

The next step, to be developed in the next sections, is decoding them.

18.7.7 Decoding of RS Codes: The Key Equation

Through this subsection, C denotes an [n, k] RS code (unless otherwise stated). Assume that a codeword

F(x) ¼Pn�1
i¼0 Fix

i in C is transmitted and a word R(x) ¼Pn�1
i¼0 Rix

i is received; hence, F and R are

related by an error vector E(x) ¼Pn�1
i¼0 Eix

i, where R(x)¼ F(x)þ E(x). The decoder will attempt to

find E(x).

Let us start by computing the syndromes. For 1 � j � n� k, we have

Sj ¼ R(aj) ¼
Xn�1

i¼0

Ria
ij ¼

Xn�1

i¼0

Eia
ij (18:64)

Before proceeding further, consider Eq. 18.64 in a particular case.

Take the [n, n� 2] 1-byte correcting RS code. In this case, we have two syndromes S1 and S2. So, if

exactly one error has occurred, say in location i, by Eq. 18.64, we have

S1 ¼ Eia
i and S2 ¼ Eia

2i (18:65)

Hence, ai¼ S2=S1, so we can determine the location i in error. The error value is Ei¼ (S1)
2=S2.

Example 9

Consider the [3,5,7] RS code over GF(8), where GF(8) is given by Table 18.3.

Assume that we want to decode the received vector

r ¼ (101 001 110 001 011 010 100)

which, in polynomial form, is

R(x) ¼ a6 þ a2x þ a3x2 þ a2x3 þ a4x4 þ ax5 þ x6

Evaluating the syndromes, we obtain S1¼R(a)¼a2 and S2¼R(a2)¼a4. Thus, S2=S1¼a2, meaning

that location 2 is in error. The error value is E2¼ (S1)
2=S2¼ (a2)2=a4¼ 1, which, in vector form, is 100.

The output of the decoder is then

c ¼ (101 001 010 001 011 010 100)

which, in polynomial form, is

C(x) ¼ a6 þ a2x þ ax2 þ a2x3 þ a4x4 þ ax5 þ x6

Let E be the subset of {0, 1, . . . , n� 1} of locations in error, i.e., E¼ {l:El 6¼ 0}. With this notation, Eq.

18.64 becomes

Sj ¼
X
i2E

Eia
ij ,1 � j � n� k (18:66)

The decoder will find the error set E and the error values Ei when the error correcting capability of the

code is not exceeded. Thus, if s is the number of errors and 2s � n� k, the system of equations given by

Eq. 18.66 has a unique solution. However, this is a nonlinear system, and it is very difficult to solve it

directly.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 103 11.10.2007 8:54pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-103

In order to find the set of locations in error E and the corresponding error values {Ei :i 2 E}, we define
two polynomials. The first one is called the error locator polynomial, which is the polynomial that has as

roots the values a�i, where i 2 E. We denote this polynomial by a(x). Explicitly,

s(x) ¼
Y
i2E

(x � a�i) (18:67)

If somehow we can determine the polynomial s(x), by finding its roots, we can obtain the set E
of locations in error. Once we have the set of locations in error, we need to find the errors them-

selves. We define a second polynomial, called the error evaluator polynomial and denoted by v(x), as

follows:

v(x) ¼
Y
i2E

Ei
Y
i2E
l 6¼i

(x � a�1) (18:68)

An [n, k] RS code corrects at most (n� k)=2 errors, so we assume that j E j = deg(s)� (n� k)=2. Notice

also that deg(v)�j E j� 1, since v is a sum of polynomials of degree j E j � 1. Given a polynomial f(x)¼
a0þ a1x þ� � �þ amx

m with coefficients over a field F, we define the (formal) derivative of F, denoted f0, as
the polynomial

f 0(x) ¼ a1 þ 2a2x þ � � � þmamx
m�1

For instance, over GF(8), if f (x)¼aþa3xþa4x2, then f 0(x)¼a3 (since 2¼ 0 over GF(2)). The formal

derivative has several properties similar to the traditional derivative, like the derivative of a product,

(fg)0 ¼ f 0gþ fg 0. Back to the error locator and error evaluator polynomials, we have the following

relationship between the two:

Ei ¼ v(a�i)

s0(a�i)
(18:69)

Let us prove some of these facts in the following lemma:

Lemma 7 The polynomials s(x) and v(x) are relatively prime, and the error values Ei are given

by Eq. 18.69.

Proof: In order to show that s(x) and v(x) are relatively prime, it is enough to observe that they have

no roots in common. In effect, if a�j is a root of s(x), then j 2 E. By Eq. 18.68,

v(a�j) ¼
X
i2E

Ei
Y
i2E
l 6¼i

(a�j � a�l), ¼ Ej
Y
i2E
l 6¼i

(a�j � a�l) 6¼ 0 (18:70)

Hence, s(x) and v(x) are relatively prime.

In order to prove (18.69), notice that

s0(x) ¼
X
i2E

Y
i2E
l 6¼i

(x � a�1)

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 104 11.10.2007 8:54pm Compositor Name: TSuresh

18-104 Digital Systems and Applications

hence

s0(a�j) ¼
Y
i2E
l 6¼i

(a�j � a�1) (18:71)

By Eqs. 18.70 and 18.71, Eq. 18.69 follows.

The decoding methods of RS codes are based on finding the error locator and the error evaluator

polynomials. By finding the roots of the error locator polynomial, we determine the locations in error,

while the errors themselves can be found using Eq. 18.69. We will establish a relationship between s(x)

and v(x), but first we need to define a third polynomial, the syndrome polynomial. We define the

syndrome polynomial as the polynomial of degree �n� k� 1 where coefficients are the n� k syn-

dromes. Explicitly,

S(x) ¼ S1 þ S2x þ S3x
2 þ � � � þ Sn�kx

n�k�1 ¼
Xn�k�1

j¼0

Sjþ1x
j (18:72)

Notice that R(x) is in C if and only if S(x)¼ 0.

The next theorem gives the so-called key equation for decoding RS codes, and it establishes a

fundamental relationship between s(x), v(x), and S(x).

Theorem 3 There is a polynomial m(x) such that the error locator, the error evaluator and the

syndrome polynomials verify the following equation:

s(x)S(x) ¼ �v(x)þ m(x)xn�k (18:73)

Alternatively, Eq. 18.73 can be written as a congruence as follows:

s(x)S(x) ¼ �v(x)(mod xn�k) (18:74)

Proof: By Eqs. 18.72 and 18.66, we have

S(x) ¼
Xn�k�1

j¼0

Sjþ1x
j

¼
Xn�k�1

j¼0

X
i2E

Eia
i(jþ1)

 !
xj

¼
X
i2E

Eia
i
Xn�k�1

j¼0

(aix)j

¼
X
i2E

Eia
i (a

ix)n�k � 1

aix � 1

¼
X
i2E

Ei
(aix)n�k � 1

x � a�1
(18:75)

because
Pm

l¼0 a
l ¼ (amþ1 � 1)=(a � 1) for a 6¼ 1. Multiplying both sides of Eq. 18.75 by s(x), where

s(x) is given by Eq. 18.67, we obtain

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 105 11.10.2007 8:54pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-105

s(x)S(x) ¼
X
i2E

Ei((a
ix)n�k � 1)

Y
l2E
l 6¼i

(x � a�1)

¼ �
X
i2E

Ei
Y
l2E
l 6¼i

(x � a�1)þ
X
i2E

Eia
i(n�k)

Y
l2E
l 6¼i

(x � a�1)

0
B@

1
CAxn�k

¼ �v(x)þ m(x)xn�k

because v(x) is given by Eq. 18.68. This completes the proof.

The decoding methods for RS codes concentrate on solving the key equation. In the next section we

describe an efficient decoder based on Euclid’s algorithm for polynomials. Another efficient decoding

algorithm is the so-called Berlekamp–Massey decoding algorithm [1].

18.7.8 Decoding RS Codes with Euclid’s Algorithm

Given two polynomials or integers A and B, Euclid’s algorithm provides a recursive procedure to find the

greatest common divisor C between A and B, denoted C¼ gcd(A, B). Moreover, the algorithm also finds

two polynomials or integers S and T such that C¼ SAþTB.

Recall that we want to solve the key equation

m(x)xn�k þ s(x)S(x) ¼ �v(x)

In the recursion, xn–k will play the role of A and S(x) the role of B; s(x) and v(x) will be obtained at a

certain step of the recursion.

Let us describe Euclid’s algorithm for integers or polynomials. Consider A and B such that A � B if

they are integers, and deg(A) � deg(B) if they are polynomials. We start from the initial conditions

r�1¼A and r0¼B.

We perform a recursion in steps 1, 2, . . . , i,. . . . At step i of the recursion, we obtain ri as the residue of

dividing ri�2 by ri�1, i.e., ri�2¼ qiri�1þ ri, where ri< ri�1 for integers and deg(ri)< deg(ri�1) for

polynomials. The recursion is then given by

ri ¼ ri�2 � qiri�1 (18:76)

We also obtain values si and ti such that ri¼ siAþ tiB. Hence, the same recursion is valid for si and ti
as well:

si ¼ si�2 � qisi�1 (18:77)

ti ¼ ti�2 � qiti�1 (18:78)

Because r�1¼A¼ (1)Aþ (0)B and r0¼B¼ (0)Aþ (1)B, we set the initial conditions s�1¼ 1, t�1¼ 0,

s0¼ 0 and t0¼ 1.

Let us illustrate the process with A¼ 124 and B¼ 46. We will find gcd(124,46). The idea is to divide

recursively by the residues of the division until obtaining a last residue 0. Then, the last divisor is the gcd.

The procedure works as follows:

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 106 11.10.2007 8:55pm Compositor Name: TSuresh

18-106 Digital Systems and Applications

124 ¼ (1)124þ (0)46

46 ¼ (0)124þ (1)46

32 ¼ (1)124þ (�2)46

14 ¼ (�1)124þ (3)46

4 ¼ (3)124þ (�8)46

2 ¼ (�10)124þ (27)46

Because 2 divides 4, 2 is the greatest common divisor between 124 and 46.

The best way to develop the process above is to construct a table for ri, qi, si, and ti, using the

initial conditions and recursions in Eqs. 18.76 through 18.78. Table 18.4 provides such a table for

124 and 46.

From now on, let us concentrate on Euclid’s algorithm for polynomials. If we want to solve the key

equation

m(x)xn�k þ s(x)S(x) ¼ �v(x)

and the error correcting capability of the code has not been exceeded, then applying Euclid’s algorithm

to xn�k and to S(x), at a certain point of the recursion we obtain

ri(x) ¼ si(x)x
n�k þ ti(x)S(x)

where deg(ri) � b (n� k)=2 c� 1, and i is the first with this property. Then, v(x)¼�lri(x) and s(x)¼
lti(x), where l is a constant that makes s(x) monic. For a proof that Euclid’s algorithm gives the right

solution, see [1] or [5].

We illustrate the decoding of RS codes using Euclid’s algorithm with an example. Notice that we are

interested in ri(x) and ti(x) only.

Example 10

Consider the [3,5,7] RS code over GF(8) and assume that we want to decode the received vector

r ¼ (011 101 111 111 111 101 010)

which, in polynomial form, is

R(x) ¼ a4 þ a6x þ a5x2 þ a5x3 þ a5x4 þ a6x5 þ ax6

Evaluating the syndromes, we obtain

TABLE 18.4 Euclid’s Algorithm for gcd(124,46)

i ri qi si ¼ si�2 � qisi�1 ti ¼ ti�2 � qiti�1

�1 124 1 0

0 46 0 1

1 32 2 1 �2

2 14 1 �1 3

3 4 2 3 �8

4 2 3 �10 27

5 0 2 23 �62

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 107 11.10.2007 8:55pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-107

S1 ¼ R(a) ¼ a5

S2 ¼ R(a2) ¼ a

S3 ¼ R(a3) ¼ 0

S4 ¼ R(a4) ¼ a3

Therefore, the syndrome polynomial is S(x)¼a5þaxþa3x3.

Next, we apply Euclid’s algorithm with respect to x4 and to S(x). When we find the first i for which

ri(x) has degree �1, we stop the algorithm and obtain w(x) and s(x). The process is illustrated in

Table 18.5.

So, for i¼ 2, we obtain a polynomial r2(x)¼a5þa2x of degree 1. Now, multiplying both r2(x) and

t2(x) by l¼a5, we obtain v(x)¼a3þ x and s(x)¼a5þa4xþ x2.

Searching the roots of s(x), we verify that these roots are a0¼ 1 and a5; hence, the errors are in

locations 0 and 2. The derivative of s(x) is s0 (x)¼a4. By Eq. 18.69, we obtain E0¼v(1)=s 0 (1)¼a4

and E2¼v(a5)=s 0 (a5)¼a5. Adding E0 and E2 to the received locations 0 and 2, the decoder concludes

that the transmitted polynomial was

F(x) ¼ a6x þ a5x3 þ a5x4 þ a6x5 þ ax6

which, in vector form, is

c ¼ (000 101 000 111 111 101 010)

If the information is carried in the first three bytes, the output of the decoder is

u ¼ (000 101 000)

18.7.9 Applications: Burst and Random Error Correction

In the previous sections we have studied how to encode and decode RS codes. This subsection

will briefly examine how they are used in applications, mainly for correction of bursts of errors.

The two main methods for burst and combined burst and random error correction are interleaving

and product codes.

In practice, errors often come in bursts. A burst of length l is a vector whose nonzero entries are

among l consecutive (cyclically) entries, the first and last of them being nonzero. We consider binary

bursts, and we use the elements of larger fields (bytes) to correct them. Below are some examples of

bursts of length 4 in vectors of length 15:

0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

TABLE 18.5 Decoding of RS Codes Using Euclid’s Algorithm

i ri ¼ ri�2 � qiri�1 qi ti ¼ ti�2 � qiti�1

�1 x4 0

0 a5 þ ax þ a3x3 1

1 a2x þ a5x2 a4x a4x

2 a5 þ a2x a2 þ a5x 1 þ a6x þ a2x2

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 108 11.10.2007 8:55pm Compositor Name: TSuresh

18-108 Digital Systems and Applications

Errors tend to come in bursts not only because the channel is bursty. Normally, both in optical and

magnetic recording, data are encoded using a so-called modulation code, which attempts to match the

data to the characteristics of the channel. In general, the ECC is applied first to the random data and

then the encoded data are modulated using modulation codes (see the Section 18.5 on modulation

codes in this chapter). At the decoding, the order is reversed; when data exits the channel, it is first

demodulated and then corrected using the ECC. Now, the demodulator tends to propagate errors, even

single-bit errors. Although most modulation codes used in practice tend to control error propagation,

nevertheless errors have a bursty character. For that reason, we need to implement a burst-correcting

scheme, as we will see next.

A well-known relationship between the burst-correcting capability of a code and it redundancy is

given by the Reiger bound, to be presented next, and whose proof is left as an exercise.

Theorem 4 (Reiger Bound) Let C be an [n, k] linear code over a field GF(2v) that can correct all

bursts of length up to l. Then 2l � n – k.

Cyclic binary codes that can correct bursts were obtained by computer search. A well known family of

burst-correcting codes are the so-called Fire codes. Here, we concentrate on the use of RS codes for burst

correction. There are good reasons for this. One of them is that, although good burst-correcting codes

have been found by computer search, there are no known general constructions giving cyclic codes that

approach the Reiger bound. Interleaving of RS codes on the other hand, to be described below, provides

a burst-correcting code whose redundancy, asymptotically, approaches the Reiger bound. The longer the

burst we want to correct, the more efficient the interleaving of RS codes is. The second reason for

choosing interleaving of RS codes, and probably the most important one, is that, by increasing the error-

correcting capability of the individual RS codes, we can correct multiple bursts, as we will see. The

known binary cyclic codes are designed, in general, to correct only one burst.

Let us start with the use of regular RS codes for correction of bursts. Let C be an [n, k] RS code over

GF(2b) (i.e., b-bit bytes). If this code can correct s bytes, in particular, it can correct a burst of length up

to (s – 1)bþ 1 bits. In effect, a burst of length (s� 1)bþ 2 bits may affect sþ 1 consecutive bytes,

exceeding the byte-correcting capability of the code. This happens when the burst of length (s� 1)bþ 2

bits starts in the last bit of a byte. How good are then RS codes as burst-correcting codes? Given a binary

[n, k] code that can correct bursts of length up to l, we define a parameter, called the burst-correcting

efficiency of the code, as follows:

el ¼ 2l

n� k
(18:79)

Notice that, by the Reiger bound, el � 1. The closer el is to 1, the more efficient the code is for correction

of bursts. Going back to our [n, k] RS code over GF(2b), it can be regarded as an [nb, kb] binary code.

Assuming that the code can correct s bytes and its redundancy is n� k¼ 2s, its burst-correcting

efficiency is

e(s�1)bþ1 ¼ (s � 1)b þ 1

bs

Notice that, for s!1, e(s�1)bþ1 ! 1, justifying our assertion that for long bursts, RS codes are efficient

as burst-correcting codes (as a comparison, the efficiency of Fire codes asymptotically tends to 2=3);

however, when s is large, there is a problem regarding complexity. It may not be practical to implement a

RS code with too much redundancy. Moreover, the length of a RS code is limited, in the case of 8-bit

bytes, it cannot be more than 256 (when extended). An alternative would be to implement a 1-byte

correcting RS code interleaved s times.

An [n, k] code interleaved m times is illustrated in Fig. 18.63. Each column c0,j, c1,j, . . . , cn�1,j is a

codeword in an [n, k] code. In general, each symbol ci,j is a byte and the code is a RS code. The first k

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 109 11.10.2007 8:56pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-109

bytes carry information bytes and the last n – k

bytes are redundant bytes. The bytes are read in

row order, and the parameter m is called the depth

of interleaving. If each of the individual codes can

correct up to s errors, the interleaved scheme can

correct up to s bursts of length up tom bytes each,

or (m� 1)bþ 1 bits each. This occurs because a

burst of length up to m bytes is distributed among

m different codewords. Intuitively, interleaving

‘‘randomizes’’ a burst.

The drawback of interleaving is delay. Notice

that we need to read most of the information

bytes before we are able to calculate and write

the redundant bytes. Thus, we need enough buffer

space to accomplish this.

Interleaving of RS codes has been widely used in magnetic recording. For instance, in a disk, the

data are written in concentric tracks, and each track contains a number of information sectors. Typically,

a sector consists of 512 information 8-bit bytes (although the latest trends tend to larger sectors).

A typical embodiment would consist in dividing the 512 bytes into four codewords, each one contain-

ing 128 information bytes and six redundant bytes (i.e., each interleaved shortened RS codeword

can correct up to three bytes). Therefore, this scheme can correct up to three bursts of length up to

25 bits each.

A natural generalization of the interleaved scheme described above is product codes. In effect, we

may consider that both rows and columns are encoded into error-correcting codes. The product of

an [n1, k1] code C1 with an [n2, k2] code C2, denoted C13 C2, is illustrated in Fig. 18.64. If C1 has

minimum distance d1 and C2 has minimum distance d2, it is easy to see that C13 C2 has minimum

distance d1d2.

In general, the symbols are read out in row order (although other readouts, like diagonal readouts,

are also possible). For encoding, first the column redundant symbols are obtained, and then the

row redundant symbols. For obtaining the checks on checks ci,j, k1 � i � n1� 1, k2 � j � n2� 1, it is

easy to see that it is irrelevant if we encode on columns or on rows first. If the symbols are read in

row order, normally C1 is called the outer code and C2 the inner code. For decoding, many possible

procedures are used. The idea is to correct long bursts together with random errors. The inner code C2
corrects first. In that case, two events may happen when its error-correcting capability is exceeded:

either the code will detect the error event or it will miscorrect. If the code detects an error event

(that may well have been caused by a long burst), one alternative is to declare an erasure in the

whole row, which will be communicated to the outer code C1. The other event is a miscorrection, that

c0,0

c1,0

c2,0

ck−1,0

cn−1,0

ck+1,0

ck ,0

c0,1

c1,1

c2,1

ck−1,1

cn−1,1

ck+1,1

ck ,1

c0,2

c1,2

c2,2

ck−1,2

cn−1,2

ck+1,2

ck ,2

c0,m−1

c1,m−1

c2,m−1

ck−1,m−1

cn−1,m−1

ck+1,m−1

ck ,m−1

FIGURE 18.63 Interleaving m times of code C.

c0,0
c1,0
c2,0

ck1−1,0

cn1−1,0

ck1+1,0

ck1,0

c0,1
c1,1
c2,1

ck1−1,1

cn1−1,1

ck1+1,1

ck1,1

c0,2
c1,2
c2,2

ck1−1,2

cn1−1,2

ck1+1,2

ck1,2

c0,k2−1
c1,k2−1
c2,k2−1

ck1−1,k2−1

cn1−1,k2−1

ck1+1,k2−1

ck1,k2−1

c0,k2

c1,k2

c2,k2

ck1−1,k2

cn1−1,k2

ck1+1,k2

ck1,k2

c0,k2+1
c1,k2+1
c2,k2+1

ck1−1,k2+1

cn1−1,k2+1

ck1+1,k2+1

ck1,k2+1

c0,n2−1
c1,n2−1
c2,n2−1

ck1−1,n2−1

cn−1,n2−1

ck1+1,n2−1

ck1,n2−1

FIGURE 18.64 Product code C1 3 C2.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 110 11.10.2007 8:56pm Compositor Name: TSuresh

18-110 Digital Systems and Applications

cannot be detected. In this case, we expect that the errors will be corrected by the error-erasure decoder

of the outer code.

Product codes are important in practical applications. For instance, the code used in the DVD (digital

video disk) is a product code where C1 is a RS code and C2 is a RS code. Both RS codes are defined over

GF(256), where GF(256) is generated by the primitive polynomial 1þ x2þ x3þ x4þ x8.

References

1. R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, Reading, MA, 1983.

2. C. Heegard and S.B. Wicker, Turbo Coding, Kluwer Academic Publishers, Dordrecht, the Netherlands,

1999.

3. S. Lin and D.J. Costello, Error Control Coding: Fundamentals and Applications, Prentice-Hall, Engle-

wood Cliffs, NJ, 1983.

4. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing

Company, 1978.

5. R.J. McEliece, The Theory of Information and Coding, Addison-Wesley, Reading, MA, 1977.

6. C.E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst. Tech. Journal, vol. 27, pp. 379–

423 and 623–656, 1948.

7. W. Wesley Peterson and E.J. Weldon, Error-Correcting Codes, MIT Press, Cambridge, MA, second

edition, 1984.

8. S. Wicker, Error Control Systems for Digital Communications and Storage, Prentice-Hall, Englewood

Cliffs, NJ, 1995.

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 111 11.10.2007 8:56pm Compositor Name: TSuresh

A Read Channel for Magnetic Recording 18-111

Vojin Oklobdzija/Digital Systems and Applications 6195_C018 Final Proof page 112 11.10.2007 8:56pm Compositor Name: TSuresh

VI
Operating
System

19 Distributed Operating Systems Peter Reiher ..19-1

Definitions and Importance . Why Are Distributed Operating Systems

Hard to Build? . Components of Distributed Operating Systems .

Sample Distributed Operating Systems . Recent Research in Distributed

Operating Systems . Resources for Studying Distributed Operating Systems

Vojin Oklobdzija/Digital Systems and Applications 6195_S006 Final Proof page 1 4.10.2007 4:03pm Compositor Name: VBalamugundan

VI-1

Vojin Oklobdzija/Digital Systems and Applications 6195_S006 Final Proof page 2 4.10.2007 4:03pm Compositor Name: VBalamugundan

19
Distributed Operating

Systems

Peter Reiher
University of California

19.1 Definitions and Importance ... 19-1

19.2 Why Are Distributed Operating Systems Hard
to Build? ... 19-2

19.3 Components of Distributed Operating Systems......... 19-4
File Systems . Interprocess Communications Services .

Naming Services . Recovery, Reliability, and Fault Tolerance

Services . Process Migration . Security Services

19.4 Sample Distributed Operating Systems....................... 19-9
Locus . Amoeba . Plan 9

19.5 Recent Research in Distributed Operating
Systems ... 19-10
Peer Computing . Server Farms and Grid Computing .

Distributed Systems for Ubiquitous Computing . Botnets

19.6 Resources for Studying Distributed Operating
Systems ... 19-13

19.1 Definitions and Importance

A distributed operating system is a software that runs on several machines and its purpose is to provide a

useful set of services, usually to make the collection of machines behave more like a single machine. The

distributed operating system plays the same role in making the collective resources of the machines more

usable that a typical single-machine operating system plays in making that machine’s resources

more usable.

Distributed operating systems are usually viewed as running cooperatively on all machines whose

resources they control. These machines might be capable of independent operation or they might be

usable merely as resources in the distributed system. Unlike parallel operating systems, a distributed

operating system typically runs on loosely coupled hardware. Parallel operating systems tend to focus on

making all available resources usable by a single large task, whereas distributed operating systems focus

on making the collection of resources usable by a set of loosely cooperating users. Network operating

systems are sometimes regarded as systems that attempt merely to make the network connecting the

machines more usable, without regard for some of the larger problems of building effective distributed

systems. The distinctions between parallel, distributed, and network operating systems are somewhat

arbitrary, because all the operating systems must handle similar problems.

Distributed operating systems are not in common use today. Although many interesting research

systems have been built since the 1970s, and some systems have been in use for many years, they have not

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 1 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-1

displaced traditional operating systems designed primarily to support single machines; however, some of

the components originally built for distributed operating systems have become commonplace in today’s

systems, notably services to access files stored on remote machines. The failure of distributed operating

systems to capture a large share of the marketplace may be primarily due to our lack of understanding on

how to build them, or perhaps their lack of popularity stems from users not really needing many

distributed services not already provided.

Distributed operating systems are also an important field for study because they have helped drive

general research in distributed systems. Replicated data systems, authentication services such as Ker-

beros, agreement protocols, methods of providing causal ordering in communications, voting and

consensus protocols, and many other distributed services have been developed to support distributed

operating systems, and have found varying degrees of success outside that field. Popular distributed

component services like CORBA owe some of their success to applying hard lessons learned by

researchers in distributed operating systems. The popularity of the World Wide Web suggests that

users would desire a more global view of the resources available to them than is provided by today’s

operating systems.

Distributed operating systems are hard to design properly. They must solve inherently hard problems

in system design. Further, they must properly trade-off issues of performance, user interfaces, reliability,

and simplicity. The relative scarcity of such systems, and the fact that most commercial operating

systems’ design still focuses on single-machine systems suggests that no distributed operating system yet

developed has found the proper trade-off among these issues.

Research continues in distributed operating systems, particularly in certain critical elements of them

that have obvious value, especially file systems and other forms of data sharing. Other continuing

research in distributed operating systems focuses on their use in important special cases, such as high-

performance clustered servers and grid computing. The increasing popularity of portable and handheld

computers may lead to more distributed operating system research to support mobile computing. The

emerging field of ubiquitous computing offers different hardware, networking, and application charac-

teristics likely to spur further research on distributed operating systems. Peer systems, currently used

primarily to share data, are also likely to spur further research in distributed operating systems issues.

19.2 Why Are Distributed Operating Systems Hard to Build?

This question touches directly on why distributed operating systems are not commonly used and also

helps explain why research continues rapidly in certain areas, whereas it moves more slowly in others.

One core problem for distributed operating system designers is concurrency and synchronization.

These issues arise in single-machine operating systems, but they are easier to solve there. Typical single-

machine systems run a single thread of control simultaneously, simplifying many synchronization

problems. Further, they typically have access to memory, registers, or other useful physical resources

that are directly accessible by all processes that they must synchronize. These shared resources allow use

of simple and fast synchronization primitives, such as semaphores. Even modern machines that have

multiple processors typically include hardware that makes it easier to synchronize their operations.

Distributed operating systems lack these advantages. Typically, they must control a collection of

processors connected by a network, most often a local area network (LAN), but occasionally a network

with even more difficult characteristics. The access time across this network is orders of magnitude larger

than the access time required to reach local main memory and even more orders of magnitude larger

than that required to reach information in a local processor cache or register. Further, such networks are

not as reliable as a typical bus, so, messages are more likely to be lost or corrupted. At best, this

unreliability increases the average access time.

This imbalance means that running blocking primitives across the network is often infeasible. The

performance implications for the individual component systems and the system as a whole do not

permit widespread use of such primitives. Designers must choose between looser synchronization

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 2 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-2 Digital Systems and Applications

(leading to odd user-visible behaviors and possibly fatal system inconsistencies) and sluggish

performance. The increasing gap between processor and network speeds suggests that this effect will

only get worse.

Theoretical results in distributed systems are discouraging. Research on various forms of the Byzan-

tine general problem and other formulations of the problems of reaching decisions in distributed

systems has provided surprising results with bad implications for the possibility of providing perfect

synchronization of such systems. Briefly, these results suggest that reaching a distributed decision is not

always possible in common circumstances. Even when it is possible, doing so in unfavorable conditions

is very expensive and tricky. Although most distributed systems can be designed to operate in more

favorable circumstances than these gloomy theoretical results describe (typically by assuming less drastic

failure modes or less absolute need for complete consistency), experience has shown that even pragmatic

algorithm design for this environment is difficult.

A further core problem is providing transparency. Transparency has various definitions and aspects,

but at a high level it simply refers to the degree to which the operating system disguises the distributed

nature of the system. Providing a high degree of transparency is good because it shields the user from the

complexities of distribution. On the other hand, it sometimes hides more than it should, it can be

expensive and tricky to provide, and ultimately it is not always possible. A key decision in designing a

distributed operating system is how much transparency to provide, and where and when to provide it.

A related problem is that the hardware, which the distributed operating system must virtualize, is

more varied. A distributed operating system must make not only a file on disk appear to be in the main

memory, as a typical operating system does, but also a file on a different machine appear to be on the

local machine, even if it is simultaneously being accessed on yet a third machine. The system should not

just make a multi-machine computation appear to run on a single machine, but should provide

observers on all machines with the illusion that it is running only on their machine.

Distributed operating systems also face challenging problems because they are typically intended to

continue correct operation despite failure of some of their components. Most single-machine operating

systems provide very limited abilities to continue operation if key components fail. They are certainly

not expected to provide useful service if their processor crashes. A single processor crash in a

distributed operating system should allow the remainder of the system to continue operations largely

unharmed. Achieving this ideal can be extremely challenging. If the topology of the network connecting

the system’s component nodes allows the network to split into disjoint pieces, the system might also

need to continue operation in a partitioned mode and would be expected to rapidly reintegrate when the

partitions merge.

The security problems of a distributed operating system are also harder. First, data typically moves

over a network, sometimes over a network that the distributed operating system itself does not directly

control. Second, access control and resource management mechanisms on single machines typically take

advantage of hardware that helps keep processes separate, such as page registers. Distributed

operating systems cannot rely on this advantage. Third, distributed operating systems are typically

expected to provide some degree of local control to users on their individual machines, while still

enforcing general access control mechanisms. When an individual user is legitimately able to access any

bytes stored anywhere on his own machine, preventing him from accessing data that belongs to others is

a much harder problem, particularly if the system strives to provide controlled high-performance access

to that data.

Distributed operating systems must often address the issue of local autonomy. In many (but not all)

architectures, the distributed system is composed of workstations whose primary job is to support one

particular user. The distributed system must balance the needs of the entire collection of supported users

against the natural expectation that one’s machine should be under one’s own control. The local

autonomy question not only has clear security implications, but also relates to how resources are

allocated, how scheduling is done, and other issues.

In many cases, distributed operating systems are expected to run on heterogeneous hardware.

Although commercial convergence on a small set of popular processors has reduced this problem to

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 3 4.10.2007 3:16pm Compositor Name: VBalamugundan

Distributed Operating Systems 19-3

some extent, the wide variety of peripheral devices and customizations of system settings provided by

today’s operating systems often makes supposedly identical hardware behave radically differently. If a

distributed operating system cannot determine whether running the same operation on two different

component nodes produces the same result, it will face difficulties in providing transparency and

consistency.

All the previously mentioned problems are exacerbated if the system scale becomes sufficiently large.

Many useful distributed algorithms scale poorly, because the number of messages they require faces

combinatorial explosion, or because the delays required to include large numbers of nodes in compu-

tations become unreasonable, or because data structures grow in proportion to the number of partici-

pants. High scale ensures that partial failures will become more common, and that low probability

events will begin to pop up very often. High scale might also imply that the distributed operating system

must operate away from the relatively friendly world of the LAN, leading to greater heterogeneity and

uncertainty in communications.

An entirely different paradigm of building system software for distributed systems can avoid some of

these difficulties. Sensor networks, rather than performing general-purpose computing, are designed

only to gather information from sensors and send it to places that need it. The nodes in a sensor network

are typically very simple and have low power in many dimensions, from CPU speed to battery. As a

result, while inherently distributed systems, sensor network nodes must run relatively simple code.

Operating systems designed for sensor networks, like TinyOS [1], are, thus, themselves extremely simple.

By proper design of the operating system and algorithms that perform the limited applications, a

sensor network achieves a cooperative distributed goal without worrying about many of the classic

issues of distributed operating systems, such as tight synchronization, data consistency, and partial

failure. This approach does not seem to offer an alternative when one is designing a distributed

operating system for typical desktop or server machines, but may prove to be a powerful tool for

other circumstances in which the nodes in the distributed systems need to do only very particular and

limited tasks.

19.3 Components of Distributed Operating Systems

Distributed operating systems consist of components that generally mirror these in their single-machine

counterparts. Some of these components are typically little altered from single-machine operating

systems. For example, many distributed operating systems schedule their tasks per machine, using

standard scheduling mechanisms. Unless distributed shared memory is supported, components of the

operating system that support virtualmemory, paging, and swapping are typically similar to other operating

systems. Support for devices and the use of device drivers is also usually much like that in a single-

machine operating system. Note that these similarities are merely the rule in distributed operating

systems, and that some such systems handle even these components differently than in single-machine

operating systems.

The components that tend to be most different are file systems, interprocess communications,

synchronization, reliability and recovery, and security. Also, some distributed operating systems include

support for process migration, a facility that makes no sense in an operating system that limits its view

to the boundaries of a single machine.

19.3.1 File Systems

File systems were quickly recognized as one of the areas of a distributed operating system that required

the most attention. Before the development of distributed operating systems, remote file access was

limited to explicit copying, perhaps aided by a program such as FTP. Distributed operating system

designers recognized the value added to a computer on a network by giving it better access to files stored

on other machines. The approach was generally to provide some integrated view of the collection of files

stored on the various machines of the distributed system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 4 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-4 Digital Systems and Applications

A key question in distributed file system design is the degree of transparency provided. At one

extreme, services like FTP offer very little transparency. File locations must be explicitly named; the

names effectively change if the file is moved to another machine, and files are accessed very differently if

they are stored locally or remotely. Such services do not even allow all normal file operations to be

performed on a remote file. At the other extreme, some distributed operating systems tried to conceal

the actual location of the file whenever possible. The most successful distributed file systems (NFS and

the Windows file-sharing services) provide various intermediate points of transparency. NFS does not

make file locations explicit in its naming conventions, but a single file may need to be accessed by

different names on different machines. The Windows file-sharing service makes file locations explicit,

requiring that users access remote files by looking under icons representing remote machines. But both

services support their file access interface for both remote and local files, permitting these files to be read,

written, and executed. This degree of transparency has proven to be the minimal acceptable amount that

users demand. The World Wide Web provides this same amount of transparency, for example, except

that it does not allow remote writing.

Other file system issues must be handled by the distributed operating system. Typically, remote access

is slower than local access (though in modern systems, accessing data stored in the main memory of a

remote machine may be faster than accessing data stored on a local hard disk drive). Many distributed

file systems seek to conceal this speed difference, typically by providing a local copy of the data, thereby

avoiding expensive remote access. Caching of data blocks from remote files is common, often using the

same facilities that cache data blocks fetched from local disks. The Andrew file system [2] uses a different

approach, caching whole files for extended periods (including over reboots) at client sites.

Updates cause cache consistency problems. When a local file is written, invalidating locally cached

copies of the written block is straightforward and quick. Invalidating remotely cached copies is slower

and more difficult, since the local operating system must signal the remote machine’s system to perform

the actual invalidation. Even being able to do so requires that the local machine keep track of remotely

cached copies. If the local machine does keep track of these copies, the remote machine might need to

signal the local machine if the cached copy is discarded. Handling all cases of partial and transient

failures complicates the problem. The Andrew file system is one system that has successfully handled

these problems, aided in part by its use of reliable server machines that store the true permanent copy of

all files. If writes are rare, ignoring the consistency problem and accepting occasional reads of stale

cached blocks may be a better solution than trying to maintain perfect consistency of the cached copies.

The Sun Microsystems implementation of NFS improves on this approach at a reasonable cost by having

caching clients periodically check to see if their cached copy is still fresh. This solution still allows use of

stale data, but can be tuned to trade-off freshness versus cost. Not caching at all is another solution, but

one with serious performance implications.

When file copies are to be permanently stored at a location, they switch from being cached to being

replicated. Replicating files has several advantages, including superior fault tolerance, high performance

for all file operations, and good support for disconnected operations, which is especially valuable for

mobile computing. Replicating files has a significant cost, however. Beyond the mere storage costs of

keeping multiple permanent copies of the same bits, maintaining consistency among replicated files is

difficult. Generally, replicated file systems must trade the consistency of the replicas against file system

performance. Higher consistency is possible using conservative replication methods, which ensure that

no inconsistent updates to files are possible. Conservative methods often have high costs and limit file

availability, however. Optimistic replication reverses these advantages and disadvantages, offering lower

cost and higher availability at the risk of permitting inconsistencies, which must then be handled by

some method—typically a reconciliation process that tries to merge the results of conflicting updates.

Sample replicated file systems include Coda (which uses optimistic client=server replication) [3] and

Ficus (which uses optimistic peer replication) [4]. The systems in wide commercial use tend not to

provide full functionality replicated file systems because of their cost and complexity.

File replication is widely used in an informal fashion. For example, programs that automatically

distribute new versions of executables to all machines in an office are performing a limited form of file

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 5 4.10.2007 3:16pm Compositor Name: VBalamugundan

Distributed Operating Systems 19-5

replication. Mechanisms like the Microsoft Briefcase offer limited forms of file replication for special

cases, such as sharing files between a desktop and a portable computer, where typically only one machine

is active at any given moment. By leveraging the special circumstances of such uses, many of the harder

problems of file replication can be avoided. Such adoption of simple limited expedients for common

circumstances is characteristic of much real-world use of distributed operating systems technology.

File migration is another alternative available to distributed file systems to avoid performance

problems. Files move to the sites that use them. This paradigm requires a high degree of transparency,

since all processes in the system must be able to access all files, local or remote, under the same names.

Otherwise, applications might stop working when the file migrates from site to site. Further, such

alternatives face difficulties in preventing popular files from moving constantly. This paradigm of remote

data access has been more widely used and studied in the field of distributed shared memory.

19.3.2 Interprocess Communications Services

Many distributed operating systems are designed to support distributed computations, where cooper-

ating processes run on different nodes. Allowing the processes to cooperate implies that they can

exchange information, which in turn implies a need for interprocess communications (IPC) services.

Single-machine systems have the same requirement, so a variety of IPC services exist for such

environments, including remote procedure calls, messages, and shared memory. Generally, the imple-

mentation of these services in single-machine environments leverages shared hardware. For example, all

three of these services are provided in most single-machine operating systems by writing information

into main memory that can be read by all communicating processes, or by copying information from the

memory of one process into the memory of another, or into buffers provided by the operating system.

The shared hardware and the synchronization provided by the shared processor simplify many issues in

making these IPC services work.

In a normal distributed system, the participating machines communicate only by passing messages

across a network. Such networks typically do not offer the guarantees available from the shared hardware

of a single machine. Further, the participating machines are typically under the control of their local

processor. No single processor controls the complete collection. These characteristics require different

implementations of familiar IPC services.

Message-passing IPC shares many characteristics of the single-machine case. Bytes are gathered into

an explicit message. Instead of merely being transferred from one buffer to another on the same

machine, the message goes over the network. Failure of the network or the receiver introduces new

problems. The issue of how long to block the sender is also different, since the time required to confirm

delivery of the message in the remote case can be much longer than in the local case. Issues of message

addressing must also be considered. In a single-machine system, all addressable processes are locally

known. In a distributed system, some facility must be provided to allow the local process to discover the

addressable names of remote processes and to send messages to those names.

Remote procedure call (RPC) faces similar challenges. In a single machine, remote procedures are not

that remote. Although they may have a different address space, the local operating system has access to

all necessary facilities of both the calling and called processes. In distributed systems, the caller is on one

machine and the called process on another. Further, the actual transfer of data must take place via

messages crossing the network. One implication is that call-by-reference must be translated to call-by-

return-value. Other complexities exist, including some similar to those for message passing. Another

issue is handling partial failures. Either the caller or the called process can fail independently of the other,

requiring the operating system on the surviving machine to recover.

Shared memory is the hardest common IPC mechanism to provide in distributed operating systems

because it relies most heavily on hardware characteristics not present in the distributed environment.

Early distributed operating systems did not provide shared memory across the network; however, as

LANs became more capable, researchers tackled the difficult problems of providing the semantics of

shared memory across the network. This problem spawned much research, which will not be covered in

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 6 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-6 Digital Systems and Applications

detail here. A slightly closer look at the concept of distributed shared memory will reveal why this

research was necessary.

As before, the distributed system can only communicate via messages. Yet the distributed operating

system must provide the illusion that two processes on different machines are sharing a single piece of

physical memory. The basic approach is to give each process access to a local copy of the memory, and

then have the operating systems work behind the scenes to provide a consistent view between the

processes. Another approach is to migrate the memory segments between machines, as needed. This

approach can run into difficulties if processes frequently access the same memory locations. Also,

because the overheads of handling shared memory at the word level are too extreme, distributed shared

memory systems must aggregate words into shared blocks. If the aggregation is too large, false sharing

occurs, where one process accesses the first part of a block while another process accesses the second

part. Because the two parts are aggregated into a single block, the block must migrate back and forth,

despite the processes actually addressing totally different words of memory.

Alternately, memory segments can be replicated. Doing so leads to problems when writes occur. Either

the other copies of the segment must be updated (before they are accessed again) or they must be

invalidated. Either approach requires much bookkeeping and incurs overheads when writes occur. False

sharing effects can also play a role here, since writing to the first word of a block tends to invalidate or

cause updates to the entire block.

Much research has been performed on distributed shared memory. Although distributed shared

memory has been demonstrated to be feasible, its performance, complexity, and limitations have

prevented it from becoming popular. Few systems today provide this facility. Research continues on

distributed shared memory, but not as widely as in the past.

19.3.3 Naming Services

Names play an important role in operating systems. Many operating systems support several distinct

name spaces for different purposes. For example, one name space might describe the file system, while

another describes the processes running on a machine, and another name space describes the users

permitted to work on the machine. One legacy of UNIX systems is that the file name space is used

aggressively to provide name spaces for things that are not classically files, such as devices and

interprocess communication services. (One distributed operating system, Plan 9, relies on this abstrac-

tion for all its naming needs [5].)

Distributed operating systems have similar naming needs, but now some of the entities that must be

named are not located on the local machine. As before, these entities are of various types. The

distributed nature of the system leads to different problems, however. For example, in a single machine,

one directory can contain the names of all the entities in the system. Scaling and organizational concerns

usually lead to breaking the single directory into hierarchical components, but there are relatively few

difficulties with maintaining a single name space that describes the name-to-resource mappings of

anything currently available in the system.

In a distributed system, independently operating nodes can create, destroy, and change names rapidly.

These operations are local, so they are likely to appear instantly in the local name space. But how do the

other machines in the system become aware of namespace changes?

One approach is to build a single global namespace for the entire distributed system. The Locus

Operating System took this approach, for example [6]. It extended the standard UNIX file system

naming convention across multiple machines. By providing a single hierarchical name space, the naming

changes made by one machine were available to all machines. An advantage of this approach is high

transparency. Files (and other nameable resources) had the same names on all machines, which provided

an easier model for users. The difficulties with the Locus approach are that it scales poorly and only

works well when all machines tend to be connected most of the time. Maintaining a global name space

on multiple machines is very hard. Further, if replication is being used, name space changes in one

replica can sometimes conflict with name space changes in other replicas.

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 7 4.10.2007 3:16pm Compositor Name: VBalamugundan

Distributed Operating Systems 19-7

The Andrew file system [2] overcame some of these problems by storing all files on reliable servers.

Whole file caching was used to provide fast access on machines that interacted directly with users. The

Andrew file system has been operated at high scale, but usually in circumstances where one collocated set

of servers can access all clients via a high-speed reliable network.

Windows file sharing and NFS provide a more limited form of global name space. In the Windows

file-sharing service, each machine has complete autonomy over its own name space, and exports that

name space to remote machines explicitly, under its own machine name. NFS allows portions of one

machine’s name space to be spliced into the name spaces of other machines at fairly arbitrary points.

Neither service is as transparent as a true global name space, but many control problems are avoided. As

the World Wide Web has demonstrated, such a name space can scale well; however, the World Wide

Web’s name space also demonstrates some problems with the approach, such as poor results when a

resource changes its location, since such a change implies a name change.

19.3.4 Recovery, Reliability, and Fault Tolerance Services

Because distributed operating systems are more prone to partial failure, some such systems provide

special facilities for recovery. The system itself must have internal mechanisms (typically hidden from

normal users) that handle failure problems. These facilities ensure that services like the file system and

name spaces continue to exhibit reasonable behavior even in the face of failures. The two-phase commit

protocol is commonly used to provide the transactional services such facilities require. The system might

also provide process checkpointing facilities, services that allow cooperative processes on different

machines to deal with failure of some of their components, or the ability to request replication or

backup versions of important processes or data.

Arguably, such services are best provided transparently. Typical users and programmers are not

experts in the complexities of distributed computations and failure handling, so few of them can

make effective use of any such tools that the system provides. On the other hand, transparent recovery

and reliability services are hard to provide, and nontransparent, but powerful, recovery services may be

better than weaker transparent ones.

19.3.5 Process Migration

Some distributed operating system designers have foreseen value in permitting running processes to be

migrated to other nodes, for load balancing, to achieve better performance for high-priority processes,

to move processes closer to critical resources (typically files), or to provide improved reliability.

Migrating a process at any arbitrary stage in its operations is difficult. The Locus Operating System

provided such a facility, but handling all complex cases is tricky. A more common approach is to only

migrate processes that are in safe states where the more complex situations cannot arise. Typically, this

means they are temporarily quiescent until the migration completes. Not providing process migration at

all is even more common. Process migration has not been a popular capability in the systems that do

provide it.

19.3.6 Security Services

Single-machine operating systems provide some degree of security by relying on the characteristics of

the hardware they run, and by leveraging the fact that the operating system trusts itself. Access control

mechanisms for files, separation of data belonging to different processes, and authentication of users to

the system work on these assumptions. In a distributed operating system, communications often go over

insecure shared networks, and the remote operating systems might not be as fully trusted as the local

system. The security problems are thus harder to solve, and distributed operating systems sometimes

provide facilities to handle the problems.

The use of an insecure network is typically handled by either authenticating or encrypting

network traffic. A properly designed cryptographic system can usually make it difficult for outsiders

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 8 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-8 Digital Systems and Applications

to improperly inject or alter traffic, or to read secret information in transit. Such a cryptographic

approach does not solve all problems, since one system must still rely on a remote system to enforce

security restrictions just as the local system would. For example, if a sensitive file is stored at node A,

when node B requests access to the file, node A can check that the request was made by a user with the

right to view the file; however, if in response node A provides blocks of the file to the proper user on

node B, node A must trust that node B will not maliciously or accidentally also provide the blocks to

improper users. Node B has concerns, as well, because it cannot determine if node A has properly

applied access control to the file. If node A has not done so, node B might provide its user with data that

should be inaccessible. These concerns make it relatively difficult to set up a distributed operating system

in environments where all participant systems do not completely trust one another.

Assuming that the nodes are all trustworthy to the extent that they will properly handle data that they

can legitimately access, the distributed system must still authenticate the participants’ requests. Other-

wise, a node might tag requests to remote nodes from user X with the identity of user Y, allowing X to

access data improperly. The remote node must independently verify that the request really came from

user Y. Many cryptographically based mechanisms can provide such authentication. One option is the

Kerberos system, which allows machines in a distributed environment to authenticate identities and

provide controlled access to services [7]. Security designers are generally happiest with heavily tested and

used mechanisms, because they are less likely to have undiscovered security bugs, so Kerberos’ long

history and the amount of scrutiny applied to it make it popular.

19.4 Sample Distributed Operating Systems

19.4.1 Locus

The Locus Operating System was an early ambitious attempt to build a distributed operating system that

provided all users with a single system image [6]. It was developed at UCLA and the Locus Computing

Corporation throughout the 1980s and into the 1990s. Locus was intended to be UNIX-compatible,

both in terms of the operating system interface provided and the experience of users. Ideally, a Locus

user would be given the illusion of a single large UNIX system vastly more powerful than any single-

machine system could be. In actuality, the distributed operating system would run on each component

node of the system. The nodes worked together to maintain the single image.

The Locus system achieved some success, but ran into several problems that prevented it from

becoming popular. The system demonstrated the value and feasibility of providing high transparency

in a distributed operating system, and pioneered concepts such as file replication. But the challenges of

providing a true single image were immense. Particularly, handling all of the difficult uncommon cases

properly required much complexity. Further, one fundamental mechanism in achieving the single

system image was to reach agreement on the set of participating nodes, a task that proved difficult

and expensive. The final lesson from the Locus project was that, although transparency was valuable and

attractive, too much concentration on providing complete transparency in all circumstances could be

counterproductive.

19.4.2 Amoeba

Amoeba provides service to a large community of users working at low-powered workstation systems.

Amoeba maintains a pool of servers capable of working interchangeably with any of the workstations, as

well as some specialized servers [8].When a user logs in to an Amoebaworkstation, he is implicitly logging

onto the entire distributed system. The Amoeba system software assigns user tasks to one or more

machines in the server pool, handling all issues of communications and synchronization. Because any

task can potentially run on any server in the pool, Amoeba must provide a high degree of transparency.

Persistent data is typically stored remotely from both the workstation currently occupied by the user and

the machines in the server pool working on the request, which also implies a need for high transparency.

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 9 4.10.2007 3:16pm Compositor Name: VBalamugundan

Distributed Operating Systems 19-9

Amoeba provides RPC and reliable multicast for interprocess communications. It handles issues of

network security by using randomly assigned ports to conceal communications and by requiring

cryptographic capabilities to access resources.

Amoeba provides a distributed file system with replication capabilities. The Amoeba file system only

permits creation of files, not their alteration. Instead of altering an existing file, a new file is created with

the altered contents. This choice simplifies many replication issues, but requires users to adopt a

different model of file behavior than is typical.

Amoeba was used for production purposes in several environments, and is available from Vrije

Universiteit, where it was developed.

The design philosophy behind Amoeba and many other distributed operating systems is to support

operations at one large, well-connected organization. Designers also assume that it is more economical

to provide low-powered machines as a front end and perform the system’s serious work on pools of

servers. When a cheap workstation can provide all the computational and storage resources required by a

particular user, there is less advantage in this approach; however, it still has some advantages because of

system simplifications inherent in localizing important operations in well-connected, well-maintained

servers. Also, this model is not well suited for integrating portable computers, because these machines

can be disconnected from the network and are expected to continue providing service. Issues of local

autonomy that can be tricky for systems like Locus are often less problematic for systems like Amoeba,

since there is no concept of permanent ownership of a particular machine by an individual user.

19.4.3 Plan 9

Plan 9 is one of the more recent attempts to build a new distributed operating system [5]. Plan 9’s

approach to building a distributed operating system shares some similarities to Amoeba’s. The system is

designed primarily to support a single large organization, using a pool of CPU servers, file servers, and

many terminal servers. All machines are connected by a high-speed LAN. All resources in Plan 9 are

represented in a name space that resembles a UNIX file system. A user at a terminal requests resources by

mounting name space components representing those resources into his own name space. One standard

protocol handles access to all resources, be they files, devices, or interprocess communications facilities.

Plan 9 is still in use and being studied, with its most recent release being in 2002, but has not achieved

widespread popularity.

19.5 Recent Research in Distributed Operating Systems

Although distributed operating systems have not become ubiquitous, their goals continue to be tempt-

ing, and the success and importance of some distributed operating system components suggest that

further research and development is worthwhile. Further, changes in the use of computers, such as

mobile computing and ubiquitous computing, demand new research to handle the problems of

distribution encountered in these new environments.

Few attempts were made in the past decade to produce revolutionary new general-purpose distributed

operating systems akin to Locus, Amoeba, and Plan 9. The focus has been on producing better

distributed services and designing distributed operating systems for important special uses.

19.5.1 Peer Computing

In the last decade, a method of harnessing the power of multiple machines called peer computing has

become popular. While the general field of peer computing is broad, its most common applications are

to allow users to share data stored on a very large number of computers among themselves easily and

efficiently. Typically, each user in a peer system stores some data, which is made available to others. In

some versions of peer computing, the users’ machines might also help find data that is not even stored

on their machines.

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 10 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-10 Digital Systems and Applications

Peer computing is commonly spoken of in two styles, structured and unstructured. Modern peer

systems of both styles have significant structure, but those called structured are usually built around

precisely defined distributed data structures and algorithms, whereas those called unstructured are more

loosely organized and less predictable in their connectivity and behavior.

Structured peer computing is commonly built around a variant of a distributed hash table. Data

available in the system is stored at particular places that are chosen from among the participating nodes

by performing some kind of hash on the data’s name or other attributes. Lookup is performed by

hashing the same information, then going to the participating site indicated by the hash result to obtain

the content. Since these systems assume that there are large numbers of participants, and that the system

can never count on a particular participant to be available at any given time, sophisticated methods are

used to optimize the amount of storage required for each participating node to perform lookups and the

number of nodes that must be visited to find a copy of the desired data. Different structured peer

systems vary significantly in issues of implementation and performance under differing circumstances.

Much research has been performed on structured peer systems in recent years. Two of the most popular

versions are Chord [9] and Pastry [10]. Practical use of such systems to solve real problems is still in its

infancy, however.

Unstructured peer systems present the mirror image of the state of structured file systems. They are

very widely used in the real world, but organized research into their proper design and behavior is

relatively young, though some work on their performance has been done in recent years [11]. Unstruc-

tured peer systems are commonly used to share data among ordinary users. In many, though not all,

cases, the data is media files, such as songs or videos. Much of the data that is shared is protected by

copyright laws in some nations, and copyright holders often do not give their permission to share their

data over these systems. This legal issue has had impacts on the design of these systems. For example, the

first popular peer file-sharing service, Napster, used a central directory for pointers to content, with

the content itself stored on participating users’ systems. Legal challenges in the United States led the

company running the central directory to shut it down, which in turn caused the death of the service.

Subsequent peer systems have often been designed to avoid any single point that can similarly be shut

down by legal challenges.

Designers of unstructured peer systems have faced difficult challenges in providing good functionality

in the face of high scale, while not centralizing any features of the system. Many of the solutions that

have been adopted seem to be independent rediscoveries of principles of distributed systems design from

earlier decades. Some prominent peer file-sharing systems include Gnutella, Kazaa, e-Donkey, and

BitTorrent, an interesting exercise in harnessing the combined networking power of multiple machines

to speed up data transfer. The popularity of some of these services is extremely broad, with estimates of

the total fraction of Internet bandwidth being used to support them ranging as high as 60% [12].

While similar in some ways to earlier distributed file systems, most peer data systems also have

significant differences. They are usually not intended as a true file system. They generally do not allow

writing of the data in question. They typically are invoked from a special program or command line,

rather than from a general file system interface. In many cases, they do not guarantee that they will find

the data requested, even if the data is available somewhere in the overall peer network. This restriction is

suitable for certain important applications, but does not match the expected behavior of a single

machine’s file system, and thus is not quite consistent with the distributed operating system designer’s

dream of a true distributed file system.

19.5.2 Server Farms and Grid Computing

In the 1990s, much effort was directed toward building powerful server farms from commodity

hardware, primarily to offer Internet services at lower cost than large server solutions. Also, if well

designed, these systems could be easily upgraded, as service requirements grew by simply adding more

commodity servers. Generally, such systems required some form of load balancing to assign incoming

requests to servers in the pool, and often some method of sharing the vital data required to provide the

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 11 4.10.2007 3:16pm Compositor Name: VBalamugundan

Distributed Operating Systems 19-11

service. This method might be as simple as replicating static data on all servers in the pool, or as

complicated as a distributed database sitting behind the pooled servers.

Such systems were generally built as pure servers designed for whatever particular purpose their

owners had. However, as more scientific communities required large quantities of computing power to

handle their problems, a more sophisticated method of providing distributed services over the Internet

became popular. In essence, a community of users pooled their computing and communications

resources, typically scattered all across the Internet, to provide sufficient power to handle large

computing problems. Since each user in the community required the full power of the resources only

some of the time, the community was able to timeshare its total resources, vastly increasing each user’s

compute power, while adding little or no cost to his computer facilities. This approach is commonly

called grid computing [13].

Forerunners of grid computing include systems that harvested spare cycles on a local area network for

use by local users and specialized systems that used spare cycles on home computers to apply to

embarrassingly parallel problems, such as SETI@home and cracking cryptographic challenges. Grid

computing required more complex distributed systems technology than these systems, because it needed

to run truly cooperative processes across a wide range of hardware and network conditions. Issues of

proper placement of data, scheduling tasks according to the power of particular pieces of hardware,

handling some forms of hardware and software heterogeneity, and ensuring that network capabilities

matched the requirements of the division of labor became important. While generally the paradigm

assumed that no machines failed during the course of the computation, and that the user who had

obtained the resources was able to keep them until finished, or at least for a pre-agreed period of time,

some effort to handle partial failures and disconnections was also necessary.

Grid computing is widely used by many communities whose needs are well met by its strengths. A

typical grid computing support system is not really a distributed operating system, per se, but certainly

must address many of the same issues as distributed operating systems, such as synchronization, data

sharing, partial failure, distributed scheduling, interprocess communications, local autonomy, and, in

certain aspects, security. The Globus toolkit is one popular and representative approach for solving the

problems facing grid computing [14].

19.5.3 Distributed Systems for Ubiquitous Computing

Many researchers predict that homes, offices, and other buildings of the future will contain large

numbers of objects that have embedded processors and communications devices. For example, all

appliances in a house might contain processing and communications capabilities. Also, humans may

carry several computing and communications devices on their bodies, in much the same way that most

people today wear a watch or carry a cellphone. The purposes and uses of machines in these environ-

ments are not yet clear, but they seem likely to differ from the way office workstations in a LAN or

machines browsing the Web behave. Plausibly, they will require different sets of system services than

today’s distributed system services. Various researchers have started examining the requirements of these

systems and designing distributed services for them.

One area of interest is naming in such systems. The publish=subscribe model of naming has been

proposed and implemented in systems like the Jini service discovery system. In this model, devices on

the network publish their capabilities, and other devices that hear the publications subscribe to the

services they are interested in. Another proposed model of naming for this environment is intentional

naming, where the system provides name resolution and request routing via a self-configured overlay

network [15]. In such systems, users name objects by what they want to do with them, and the naming

service takes responsibility for forwarding the request to some entity capable of fulfilling their need.

Ubiquitous computing systems require persistent storage, both to access standard persistent data (e.g.,

files) and to allow the system to keep track of the state required to give users a consistent view of the

world. Mobility, limited communications links, security concerns, and varying capabilities of participant

machines make providing persistent data harder. One approach is exemplified by OceanStore, which

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 12 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-12 Digital Systems and Applications

postulates a utility-like model for providing persistent data handling in a ubiquitous environment [16].

OceanStore uses replication aggressively and relies on a combination of fast (but not always successful)

search techniques and slow (but reliable) lookup algorithms. There are some obvious similarities

between OceanStore and some of the peer networking techniques discussed earlier.

19.5.4 Botnets

For many years, unprincipled Internet users have tried to compromise and control the machines of other

users. Their widespread success has led to almost an embarrassment of riches, with collections of

hundreds, thousands, or, in some documented cases, tens of thousands of other peoples machines

under their control [17]. Simultaneously, criminals have developed ways to make use of large numbers

of compromised machines to make money illicitly, from sending vast amounts of spam to performing

extortion via distributed denial of service attacks. These activities often require some degree of

coordination among the army of compromised nodes, which are often called zombie nodes. In recent

years, the criminals who control these zombie nodes have started to turn to distributed system

techniques to perform such coordination. A collection of such zombie nodes controlled in this fashion

is usually called a botnet.

Currently, the degree of sophistication used in the real world to control botnets is modest, but touches

upon many of the issues important in design of distributed operating systems. There is usually a need to

provide secure access to the nodes in the botnet, since other criminals will seize them for their own

purposes, if they are not protected. New software must be distributed in an effective manner to all botnet

nodes, which is a very primitive form of a distributed file system. Theymust be able to receive and perform

commands from their masters, requiring some degree of synchronization and, perhaps, interprocess

communications. Botnet nodes are, physically at least, under some degree of control by their true owners,

who might remove the botnet code or simply take them off line, requiring some method of handling

failure of zombies. When the size of the botnet gets above a few nodes, automated techniques to handle

these problems become vital. When the size gets to the thousands, introducing a more structured system,

typically hierarchical, is beneficial. Existing botnet control code uses primitive techniques of these kinds.

Botnets are in their infancy, and we should expect to see more sophisticated distributed system

techniques applied to them as the needs and ambitions of the criminals controlling them become

greater. An interesting distributed systems problem that might well be unique to botnets is that law

enforcement and those attacked by them obviously would like to disable them. Relatively little research

ever went into explicit attempts to make standard distributed operating systems fail, so this is fertile

ground for new research.

19.6 Resources for Studying Distributed Operating Systems

Research continues in the field of distributed operating systems. Some of the work is commercial, but

much of it is described in the research literature. The principal conferences where distributed operating

system research appears most often are the biannual Symposium on Operating Systems (SOSP), the

biannual Conference on Operating Systems Design and Implementation (OSDI, held in alternate years

with SOSP), and the annual Usenix Technical Conference. Interesting research on more specialized areas

often appears in other venues. For example, mobile computing distributed system research often appears

in the MOBICOM conference, and distributed systems security research will often appear in security

conferences. The annual Usenix Conference on File and Storage Technology (FAST) often has papers on

distributed file system issues. A workshop called HotOS publishes early results on new areas of research

in operating systems, including distributed operating systems.

The primary journals where distributed operating systems research appears are the ACM Transac-

tions on Computing Systems and the IEEE Transactions on Computers. Again, research on specialized

topics often appears in other journals, such as mobile computing research in mobile networks and

applications (MONET).

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 13 4.10.2007 3:16pm Compositor Name: VBalamugundan

Distributed Operating Systems 19-13

References

1. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K., System architecture directions for

networked sensors, in Proceedings of the ACM ASPLOS IX, November 2000, pp. 93–104.

2. Howard, J. et al., Scale and performance in a distributed file system, ACM Transactions on Computer

Systems, 6(1): 51–81, February 1988.

3. Satyanarayanan, M. et al., Coda: A highly available file system for a distributed workstation

environment, IEEE Transactions on Computers, 39(4): 447–459, April 1990.

4. Guy, R. et al., Implementation of the ficus replicated file system, in Proceedings of the 1990 Usenix

Summer Technical Conference, June 1990, pp. 63–71.

5. Pike, R. et al., The use of name spaces in Plan 9, Operating Systems Review, 27(2): 72–76, April 1993.

6. Popek, G. and Walker, B., The Locus Distributed Operating System,MIT Press, Cambridge, MA, 1985.

7. Steiner, J., Neuman, C., and Schiller, J., Kerberos: An authentication service for open network

systems, in Proceedings of the Usenix Winter Conference, February 9–12 1988, pp. 191–202.

8. Tannenbaum, A. et al., Experiences with the Amoeba distributed operating system, Communications

of the ACM, 33(12): 46–63, 1990.

9. Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishna, H., Chord: A scalable peer-to-peer

lookup service for internet applications, ACM SIGCOMM 01, August 2001, pp. 149–160.

10. Rowstran, A. and Druschel, P., Pastry: Scalable, distributed object location and routing for large-

scale peer-to-peer systems, in Proceedings of the 18th IFIP=ACM International Conference on Dis-

tributed Systems Platforms (Middleware 2001), November 2001, pp. 329–350.

11. Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., and Zahorjan, J., Measurement, modeling,

and analysis of a peer-to-peer file-sharing workload, Symposium on Operating Systems Principles,

pp. 314–329, 2003.

12. Parker, A. P2P in 2005, http:==www.cachelogic.com=research=2005_slide01.php, 2004.

13. Foster, I., Kesselman, C., and Tuecke, S., The anatomy of the grid: Enabling scalable virtual

organizations, International Journal of Supercomputer Applications, 15(3): 200–222, 2001.

14. Foster, I., The globus toolkit version 4: Software for service-oriented systems, IFIP International

Conference on Network and Parallel Computing, Springer-Verlag, LNCS 3779, pp. 2–13, 2005.

15. Adjie-Winoto, W. et al., The design and implementation of an intentional naming system, in

Proceedings of the 17th Symposium on Operating System Principles, December 1999, pp. 186–201.

16. Kubiatowicz, J. et al., OceanStore: An architecture for global-scale persistent storage, in Proceedings

of the 9th International Conference on Architectural Support for Programming Languages and

Operating Systems, November 2000, pp. 190–201.

17. The Honeynet Project and Research Alliance, Know your enemy: Tracking botnets, http:==www.

honeynet.org=papers=bots=, March 2005.

Vojin Oklobdzija/Digital Systems and Applications 6195_C019 Final Proof page 14 4.10.2007 3:16pm Compositor Name: VBalamugundan

19-14 Digital Systems and Applications

VII
New Directions
in Computing

20 SPS: A Strategically Programmable System M. Sarrafzadeh, E. Bozorgzadeh,

R. Kastner, and S.O. Memik ... 20-1

Introduction . Related Work . Strategically Programmable System .

Overview of SPS . Target Applications . Experiments . Conclusion

21 Reconfigurable Processors John Morris, Danny F. Newport, Don Bouldin,

Ricardo E. Gonzalez, and Albert Wang .. 21-1

Reconfigurable Computing . Using Configurable Computing Systems .

Xtensa: A Configurable and Extensible Processor

22 Roles of Software Technology in Intelligent Transportation Systems

Shoichi Washino ..22-1

Background of Intelligent Transportation Systems . An Overview of Japanese

ITS and the Nine Developing Fields of Japanese ITS . Status of Japanese

ITS Development . Issues of ITS Development and Roles of Software

Technology . Practices of Software Development of Both In-Vehicle

Navigation System and ITS Simulator . Conclusion

23 Media Signal Processing Ruby Lee, Gerald G. Pechanek, Thomas C. Savell,

Sadiq M. Sait, Habib Youssef, and Mohammad Faheemuddin23-1

Instruction Set Architecture for Multimedia Signal Processing . DSP Platform

Architecture for SoC Products . Digital Audio Processors for Personal Computer

Systems . Modern Approximation Iterative Algorithms and Their Applications in

Computer Engineering . Parallelization of Iterative Heuristics

24 Internet Architectures Borko Furht ... 24-1

Introduction . Evolution of Internet-Based Application

Service Architectures . Application Server . Implementations of Internet

Architectures . A Contemporary Architecture for Application Service

Providers . Evaluation of Various Architectures . Conclusions

25 Microelectronics for Home Entertainment Yoshiaki Hagiwara25-1

Introduction . Basic Semiconductor Device Concepts . LSI Chips

for Home Entertainment . Conclusion

Vojin Oklobdzija/Digital Systems and Applications 6195_S007 Final Proof page 1 4.10.2007 4:02pm Compositor Name: VBalamugundan

VII-1

26 Mobile and Wireless Computing John F. Alexander, Raymond Barrett,

Babak Daneshrad, Samiha Mourad, Garret Okamoto, Mohammad Ilyas,

Abdul H. Sadka, Giovanni Seni, Jayashree Subrahmonia,

Larry Yaeger, and Ingrid Verbauwhede .. 26-1

Bluetooth—A Cable Replacement and More . Signal Processing ASIC

Requirements for High-Speed Wireless Data Communications . Communication

System-on-a-Chip . Communications and Computer Networks . Video over

Mobile Networks . Pen-Based User Interfaces—An Applications Overview .

What Makes a Programmable DSP Processor Special?

27 Data Security Matthew Franklin .. 27-1

Introduction . Unkeyed Cryptographic Primitives . Symmetric Key

Cryptographic Primitives . Asymmetric Key Cryptographic

Primitives . Other Resources

Vojin Oklobdzija/Digital Systems and Applications 6195_S007 Final Proof page 2 4.10.2007 4:02pm Compositor Name: VBalamugundan

VII-2 Digital Systems and Applications

20
SPS: A Strategically

Programmable System

M. Sarrafzadeh
E. Bozorgzadeh
R. Kastner
S.O. Memik
University of California

20.1 Introduction... 20-1

20.2 Related Work ... 20-3

20.3 Strategically Programmable System............................. 20-4

20.4 Overview of SPS .. 20-5
Versatile Parameterizable Blocks . SPS Framework .

Architecture Formation . Fixed Architecture Configuration

20.5 Target Applications ... 20-7
Filter Operations Block . Thresholding Block . Pixel

Modification Block

20.6 Experiments ... 20-8
Application Profiling . Reconfiguration Time

20.7 Conclusion ... 20-10

20.1 Introduction

Programmability and reconfigurability are considered to be a key ingredient for future silicon platforms

[1]. An increase in the complexity of integrated circuits and a shorter time-to-market requirement result

in a need to develop hardware platforms shared across multiple applications. In the next generation of

electronic systems, it is expected that the conventional embedded systems are unlikely to be sufficient to

meet the timing, power, and cost of such systems. Diversity and increasing number of applications do

not allow fully customized system design methodology for each application such as ASIC designs. One

of the fundamental keys is integrating programmability and reconfiguration in the systems [1,2]. On the

other hand, the current general-purpose fully programmable solutions cannot satisfy the future aggres-

sive timing and power constraints. Therefore, a new design methodology has to be developed to

combine reconfiguration into system design for future applications. One of the techniques to handle

the increased complexity in integrated circuits is programmable system-on-a-chip (SoC) design meth-

odology [1]. In this style, there is a combination of IP cores, programmable logic core, and memory

blocks on a chip.

System design can be viewed in a variety of levels of granularity from architecture level to

logic=interconnection level. Configuration can be applied in different hierarchy levels of a design [1].

For instance, programmability in logic=interconnect level of system is realized via a programmable

module such as FPGA chip. Reconfigurable devices provided the necessary flexibility in such systems.

FPGAs are mostly the reconfiguration cores. An FPGA is an array of logic blocks placed in an

infrastructure of interconnections, which can be configured in logic functionality of logic blocks,

interconnection between logic blocks, and input=output (I=O) interface (see Fig. 20.1). SRAM-based

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 1 4.10.2007 3:13pm Compositor Name: VBalamugundan

20-1

FPGAs allows reconfiguration of the device via string of bits loaded from external source once or several

times. An FPGA is programmable at hardware level. Many high-performance operations, such as

computationally intensive signal processing functions can be implemented very efficiently using FPGAs.

Xilinxy first introduced FPGAs in mid-1980s. In the past, considerable research effort was made for

developing programmable architectures in the past. Also, numerous commercial programmable devices

were introduced; however, not many works have been published on how those architectures were

designed. The latest FPGA devices are provided by companies such as Xilinxy, Alteray, Actely, and

Lucenty. Industrial designers are increasingly capturing their designs using hardware description

languages such as VHDL and Verilog. There are tools developed for FPGAs, which synthesize designs

in VHDL format or other description format. Current synthesis tools for FPGAs are provided by

companies Synopsysy, Synplicityy, and Leonado Spectrumy. Physical design tools perform placement

and routing for FPGAs. Xilinxy and Alteray provide place=route tools for their own FPGA devices.

Today’s high-volume applications require a fabric with higher complexity and better performance

than FPGAs. Also, shorter development cost and more flexible reconfiguration are required. Several

contributions have been made in FPGA devices toward this direction. Capacity of FPGAs has been

increased. High-density FPGAs are available in the market offering competitive solutions to ASICs and

programmable systems such as DSPs. Hierarchical features have been added into logic and routing

architecture of FPGAs. The new generation of FPGAs have a trend towards embedding coarser grain

units. Most applications require a large amount of storage. Architectural support for implementation of

memory is crucial. Some FPGA devices have embedded memory (RAM, ROM). In addition, imple-

menting general logic in these embedded arrays of memory blocks is viable. In order to support high

repetitive and data intensive computation on FPGAs more efficiently, arithmetic resources have been

developed. Examples of such enhancement are cascade chain, multipliers, and dedicated adders, etc.

Fine-grain FPGA architectures are shifting towards new architectures where memory blocks, hard IPs,

and even CPUs are being integrated into FPGAs. In these designs the traditional FPGA is not a co-

processor, instead a reconfigurable fabric is embracing all the mentioned components and enabling a

much tighter integration among them. Today, FPGA CAD tools provide integration of macro blocks into

designs. Macro blocks are optimized for area, delay, or power consumption. In addition, placement of

such macro blocks can be predefined in CAD tools such as CoreGEN@ integrated with Xilinxy design

implementation tool. MemGen@ and LogiBlox@ in Xilinxy tool enable the implementation of

embedded memory blocks. Hence, tool vendors are moving to higher-level optimization. There is better

integration between synthesis and physical design tool.

I/O pad
Routing switch box

Routing segments
Configurable logic block

S S

CLB CLB CLB

S S

S S

CLB CLB CLB

S S

S S

CLB CLB CLB

S S

S S S S

FIGURE 20.1 An array of logic blocks.

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 2 4.10.2007 3:13pm Compositor Name: VBalamugundan

20-2 Digital Systems and Applications

Flexibility in reconfigurable systems comes at the expense of the reconfiguration time. The amount of

time required to set the function to be implemented on the reconfigurable logic is the configuration

time, which can become a serious bottleneck especially in systems where run-time reconfiguration is

performed [3,4].

We have introduced a new architecture for a system that uses reconfigurable logic, which is referred as

strategically programmable system (SPS) [5]. The basic building blocks of our architecture are para-

meterized functional blocks that are pre-placed within a fully reconfigurable fabric. They are called

versatile parameterizable blocks (VPBs). When implementing an application, operations that can be

mapped onto these fixed blocks will be performed by the VPBs; computational blocks that will be

instantiated on the fully reconfigurable portion of the chip will perform the remaining operations.

Properties of VPBs will be discussed in more detail in later sections. The motivation is to generate

reconfigurable architectures that target a set of applications. Such architectures would contain VPBs to

specially suit the needs of the particular family of applications. Yet the adaptable nature of our

programmable device should not be severely restricted. The SPS will remain flexible enough to imple-

ment a very broad range of applications, thanks to the reconfigurable resources. These powerful features

help our architecture maintain its tight relation to its predecessors, traditional FPGAs. At the same time

the SPS is forming one of the first efforts in the direction of context-specific programmable devices.

Because the VPBs are custom made and fixed on the chip, they do not require configuration, hence

there are considerably less switches to program as compared to the implementation of the same design

on a traditional FPGA. More important, an instance of our SPS architecture is generated such that for a

given set of applications the suitably selected fixed blocks provide the best performance.

In the proceeding sections, we introduce the basic concepts of our architecture and the notion of

generating an instance of the SPS architecture for a given set of applications. We present a framework

that provides tools for generating SPS instances and implementing applications once a fixed SPS

architecture is given. In the following section, we present related work in the field of reconfigurable

architecture. Examples of versatile programmable blocks are presented in Sections 20.3 through 20.5 as

well as details of our architecture. We complement our architecture with tools that perform the mapping

of applications onto the architecture and the actual implementation and tuning for an application on

our platform. These two major tasks will be discussed in Section 20.4. In Section 20.6, we present our

preliminary results.

20.2 Related Work

With the current trend towards hybrid programmable architectures, new systems with embedded

reconfigurable cores are also being developed. Among these architectures the basic distinction is due

to the level of granularity of the reconfigurable logic.

Commercial FPGAs from several vendors such as Xilinxy, Alteray, and Actely are available in the

market. Traditional FPGA chips like Xilinxy 4000 series, or Alteray Flex family all contain some form

of an array of programmable logic blocks. Those blocks usually are not very complex and contain a few

LUTs and a small amount of storage elements. They are designed for general-purpose use. Since they

only contain fine-grain reconfigurable logic, for a new application to be implemented the whole chip

goes through a configuration phase. Although newer devices such as Xilinxy Virtex FPGA allow partial

reconfiguration of selected rows or columns, this is still a critical issue.

Hybrid systems also contain reconfigurable cores as coprocessors. The Garp architecture developed at

Berkeley combines a MIPS-II processor with a fine-grained FPGA coprocessor on the same die [6].

Unlike the Garp architecture the main load of hardware implementation lies on the coarse grain

parameterized blocks in SPS architecture.

Chimaera [7] is a single chip integration of reconfigurable logic with a host processor. The reconfi-

gurable coprocessor is responsible for performing the reconfigurable functional unit (RFU) instructions.

An RFU instruction is any instruction from the program running on the host processor that is

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 3 4.10.2007 3:13pm Compositor Name: VBalamugundan

SPS: A Strategically Programmable System 20-3

performed by the reconfigurable coprocessor. The Chimaera architecture is for a very specific class of

data path applications and still requires a large amount of reconfiguration time.

Another reconfigurable architecture with fine granularity is the dynamically programmable gate array

(DPGA) [8]. Although the logic structure is just like existing FPGAs, DPGAs differ from traditional

FPGAs by providing on-chip memory for multiple array configurations. The on-chip cache exploits

high, local on-chip bandwidth to perform quick reconfiguration.

In addition, several systems with coarse-grain granularity exist, such as RaPiD [9], Raw [10], and

Pleiades [11]. RaPiD is a configurable architecture that allows the user to construct custom application-

specific architectures in a run-time configurable way. The system is a linear array of uncommitted

functional units, which contain datapath registers, three ALUs, an integer multiplier, and some local

memory. The RaPiD architecture targets applications that can be mapped to deep pipelines formed from

the repeated functional units.

The Reconfigurable Architecture Workstation (Raw) is a set of replicated tiles, where each tile contains

a simple RISC-like processor, small amount of bit-level configurable logic, and some memory for

instructions and data.

The CS2112 reconfigurable communications processor (RCP) from Chameleon Systems, Inc.y

contains reconfigurable fabric organized in slices, each of which can be independently reconfigured.

The CS2112 includes four slices consisting of three tiles. Each tile comprises seven 32-bit datapath units,

two 163 24-bit single-cycle multipliers, four local store memories, and a control logic unit. The RCP

uses a background configuration plane to perform quick reconfiguration. This reconfigurable fabric is

combined with a 32-bit embedded processor subsystem.

The Pleiades architecture is a processor approach that combines an on-chip microprocessor with an

array of heterogeneous programmable computational units of different granularities, connected by a

reconfigurable interconnect network. The programmable units areMACs, ALUs, and an embedded FPGA.

Xilinxy has recently introduced the Virtex-II@ devices from the new Xilinx Platform FPGAs. The

Virtex-II architecture includes new features such as up to 192 dedicated high-speed multipliers.

Designers can use Virtex-II@ devices to implement critical DSP elements of emerging broadband

systems. This is somewhat a similar effort in the same direction that we are heading. The Virtex-II

device is providing the dedicated high-performance multipliers for DSP applications like the VPBs on

the SPS, which are intended to improve performance for a set of applications. SPS differs from a Virtex-

II device in the following:

. The architecture can contain blocks of various complexities. Depending on the requirements of

the applications fixed blocks can be as complex as an FFT block or as simple as an adder or

multiplier. Examples of VPBs will be provided in the next section.

. The generation of an SPS instance is automated. Given a set of target applications an architecture

generation tool determines the number and types of VPBs to be placed on the chip. Although the

Virtex-II device is still general purpose, an instance of an SPS will be more context-defined

according to a given set of applications.

20.3 Strategically Programmable System

Recently, reconfigurable fabric was integrated into SoCs forming hybrid (re)configurable systems.

Hybrid (re)configurable systems contain some kind of computational unit, e.g., ALUs, intellectual

property units (IPs) or even traditional general-purpose processors, embedded into a reconfigurable

fabric (see Fig. 20.2).

One type of hybrid reconfigurable architecture embeds reconfigurable cores as a coprocessor to a

general-purpose microprocessor, e.g., Garp [6] and Chimaera [7]. Another direction of new architec-

tures considers integration of highly optimized hard cores and hardwired blocks with reconfigurable

fabric. The main goal here is to utilize the optimized blocks to improve the system performance.

Such programmable devices are targeted for a specific context—a class of similar applications, such as

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 4 4.10.2007 3:13pm Compositor Name: VBalamugundan

20-4 Digital Systems and Applications

DSP, data communications (Xilinx Platform Ser-

ies), or networking (Lucent’s ORCA1). The

embedded fixed blocks are tailored for the crit-

ical operations common to the application class.

In essence, the programmable logic is supported

with the high-density high-performance cores.

The cores can be applied at various levels, such

as the functional block level, e.g., fast. Fourier

transform (FFT) units, or at the level of basic

arithmetic operations (multipliers).

Presently, a context-specific architecture is

painstakingly developed by hand. The SPS

explores an automated framework, where a sys-

tematic method generates context-specific pro-

grammable architectures.

The basic building blocks of the SPS architecture are parameterized functional blocks called VPBs.

They are preplaced within a fully reconfigurable fabric. When implementing an application, operations

can be performed on the VPBs or mapped onto the fully reconfigurable portion of the chip. An instance

of our SPS architecture is generated for a given set of applications (specified by C or Fortran code). The

functionality of the VPBs is tailored towards implementing those applications efficiently. The VPBs

are customized and fixed on the chip; they do not require configuration, hence there are considerably

less configuration bits to program as compared to the implementation of the same design on a

traditional FPGA.

The motivation is to automate the process of developing hybrid reconfigurable architectures that

target a set of applications. These architectures would contain VPBs that specially suit the needs of the

particular family of applications. Yet, the adaptable nature of our architecture should not be severely

restricted. The SPS remains flexible enough to implement a very broad range of applications due to the

reconfigurable resources. These powerful features help the architecture maintain its tight relation to its

predecessors, traditional FPGAs. At the same time the SPS is forming one of the first efforts in the

direction of context-specific programmable devices.

In general, two aspects are part of the SPS system. The first area involves generating a context-specific

architecture given a set of target applications. Once there is a context-specific architecture, one must also

be able to map any application to the architecture.

20.4 Overview of SPS

20.4.1 Versatile Parameterizable Blocks

The main components of SPS are the VPBs. The VPBs are embedded in a sea of fine-grain program-

mable logic blocks. Consider a lookup table (LUT) based logic blocks commonly referred to as

combinatorial logic blocks (CLBs), though it is possible to envision other types of fine-grain logic

blocks, e.g., PLA-based blocks.

Essentially, VPBs are hard-wired ASIC blocks that perform a complex function. Because the VPB is

fixed resource, it requires little reconfiguration time when switching the functionality of the chip.*

Therefore, SPS is not limited by large reconfiguration times like current FPGAs. But, the system must

strike a balance between flexibility and reconfiguration time. The system should not consist mainly of

VPBs, as it will not be able to handle a wide range of functionality.

RAM

R
A

M

ALU

MAC

MAC

Fast Fourier
transform

FIGURE 20.2 A hybrid (re) configurable system.

*By functionally, we mean the application of the chip can change entirely, e.g., from image detection to image

restoration, or part of the application can change, e.g., a different image detection algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 5 4.10.2007 3:13pm Compositor Name: VBalamugundan

SPS: A Strategically Programmable System 20-5

There is a considerable range of functionality for the VPBs. It ranges from high-level intensive tasks

such as FFT to a ‘‘simple’’ arithmetic task like addition or multiplication. Obviously, there is a large

range of complexity between these two extremes. Because we are automating the architecture generation

process, we wish to extract common functionality for the given context (set of applications). The

functionality should be as complex as possible while still serving a purpose to the applications in the

context. An extremely complex function that is used frequently in only one application of the context

would be wasted space when another application is performed on that architecture.

The past decade has brought about extensive research as to the architecture of FPGAs. As we

previously discussed, many researchers have spent copious amounts of time analyzing the size and

components of the LUT and the routing architecture. Instead of developing a new FPGA architecture,

the SPS leverages the abundant body of FPGA architecture knowledge for our system. Embedding the

VPBs into the programmable logic is the most important task for the SPS architecture generation.

20.4.2 SPS Framework

In this section, the tools and algorithms that actually generate strategically programmable systems and

perform the mapping of applications on the architecture are discussed. The architecture formation

phase and the architecture configuration phase are the two major parts of the framework. The SPS

framework is summarized in Fig. 20.3.

20.4.3 Architecture Formation

This task can be described as making the decision on the versatile programmable blocks to place on the

SPS chip along with the placement of fine-grain reconfigurable portion and memory elements, given an

application or class of applications. In this phase, SPS architecture is customized from scratch given

Application
classification

Embedded
memory

C program

VPBs

Manufacturer

CAD tool

User

VPB library

Reconfigurable logic

Routing architecture

High-level synthesis

Configured SPS chip

High-level
application specification

Placement

High level
synthesis

Mapping onto VPBs

Scheduling/allocation

Mapping onto
reconfigurable unit

Placement
&

routing

FIGURE 20.3 Summary of SPS framework.

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 6 4.10.2007 3:13pm Compositor Name: VBalamugundan

20-6 Digital Systems and Applications

certain directives. This process requires a detailed description of the target application as an input to the

formation process. A tool will analyze these directives and generate the resulting architecture. Again, the

relative placement of these blocks on the SPS chip along with the memory blocks and the fully

reconfigurable portions need to be done by the architecture formation tool.

Unlike a conventional fine-grain reconfigurable architecture, a uniform distribution of configurable

logic blocks does not exist on the SPS. Hence, for an efficient use of the chip area as well as high

performance, the placement of VPBs on the chip and the distribution of configurable logic block arrays

and memory arrays among those are critical. The fact that the routing architecture supports such hybrid

architecture is equally important and requires special consideration. If the routing architecture cannot

provide sufficient routing resources between the VPBs and the configurable blocks, the hardware

resources will be wasted. The type and number of routing tracks and switches need to be decided

such that the resulting routing architecture can support this novel architecture most efficiently. The

most important issues here is the routability of the architecture and the delay in the connections.

20.4.4 Fixed Architecture Configuration

Another case to be considered is mapping an application onto a given architecture. At this point we need

a compiler tailored for our SPS architecture. This SPS compiler is responsible for three major tasks.

The compiler has to identify the operations, groups of operations, or even functions in the given

description of the input algorithm that are going to be performed by the fixed blocks. These portions

will be mapped onto the VPBs and the information regarding the setting of the parameters of the VPBs

will be sent to the SPS chip.

Second, the SPS compiler has to decide how to use the fully reconfigurable portion of the SPS. Based

on the information on the available resources on the chip and the architecture, mapping of suitable

functions on the fine-grain reconfigurable logic will be performed. Combining these two tasks the

compiler will generate the scheduling of selected operations on either type of logic.

Finally, memory and register allocation need to be done. An efficient utilization of the available RAM

blocks on the SPS has to be realized.

20.5 Target Applications

The first set of applications is DSP applications. Repetitive arithmetic operations on a large amount of

data can be very efficiently implemented using hardware. The primary examples focus on several image-

processing applications. This soon will be extended to cover other types of applications. First, algorithms

that have common properties and operations are grouped together. Such algorithms can use a common

set of VPBs for their implementation. The algorithms and the classes to which they belong are

summarized in Table 20.1.

Image-processing operations can be classified into three categories. Those that generate an output

using the value of a single pixel (point processing), those that take a group of neighboring pixels as input

(local processing), and those that generate their output based upon the pixel values of the whole image

(global operations) [12]. Point and local processing operations are the most suitable for hardware

implementation, because they are highly parallelizable. We have designed three blocks, each representing

TABLE 20.1 Classification of Algorithms

Algorithms Operations Class

Image restoration, mean computation,

noise reduction, sharpening=smoothing filter

Weighted sum, addition,

subtraction, multiplication

Filter operations

Image half-toning, edge detection Comparison Thresholding

Image darkening, image lightening Addition, subtraction Pixel modification

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 7 4.10.2007 3:13pm Compositor Name: VBalamugundan

SPS: A Strategically Programmable System 20-7

one algorithm class. The blocks that we are cur-

rently considering are described in the following.

Later, a reference will be made to the implemen-

tation of these blocks on fully reconfigurable logic

versus the parameterized block realization and

present the potential reduction in the number of

configuration bits.

20.5.1 Filter Operations Block

Many signal-processing algorithms are in essence

filtering operations. Basically weighted sum of a

collection of pixels indicated by the current pos-

ition of the mask over the image is computed for

each pixel.

The filter block is currently the most complex

block we have designed. It is developed to cover an iterative image restoration algorithm, and several

other filtering operations such as, mean computation, noise reduction, high pass sharpening, Laplace

operator, and edge detection operators (e.g., Prewitt, Sobel). The block diagram is shown in Fig. 20.4.

The general form of the computation that this block performs is given by the following equations:

weighted sum¼ Sum{wi� input pixeli}

output pixel value¼B� input pixel valueþA�pixel value from prev iteration�b�weighted sum

þ c�weighted sum

This block takes five parameters that define its operation. The mask coefficients array holds the values

of the coefficients. The parameters B, A, and c all take the value zero for all the functions except the

iterative image restoration algorithm.

20.5.2 Thresholding Block

The operators in this class produce results based on a single pixel’s value. The computation is rather

simple; it compares the value of the input pixel to a predetermined threshold value. The output pixel

value is determined accordingly. The parameters of this block are the threshold value T and the

algorithm selection input. For the image halftoning application, the threshold value T is set to be 127,

where the pixel values range between 0 (black) and 255 (white). If the pixel value is above threshold,

output is given as 255, otherwise it is 0. For the edge detection operation, the output is set equal to the

input value if the pixel value is above threshold, and to 0 otherwise.

20.5.3 Pixel Modification Block

Pixelmodification operations are point-processing operations. This block performs darkening, lightening,

and negation of images. It takes two parameters, J and algorithm selection input ALG. For the darkening

operation a positive value J is added to the input pixel value. Lightening is achieved by subtracting J from

each input pixel. The negative of an image is achieved by subtracting the input pixel value from J, which

takes the value 255 for this case.

20.6 Experiments

In this section, the author presents the experiments to estimate the potential gain in reconfiguration time

that our SPS architecture will yield. This is an exploration of the reduction in reconfiguration bits that

would follow as a result of providing preplaced computation blocks with our coarse grain architecture.

Out

Configuration

Processing cycle:

Av = In � w;

Out = B.In + A.In1 + (b−c).Av;

w B A b c

In

In1 = In;

FIGURE 20.4 Block diagram.

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 8 4.10.2007 3:13pm Compositor Name: VBalamugundan

20-8 Digital Systems and Applications

20.6.1 Application Profiling

First, a profiling has been done on the image processing benchmarks in order to gain insight into what

type of components are used more frequently. Such a profile can give directives to the architecture

formation tool and guide it to employ certain blocks. Looking at the numbers and types of components

that were selected by our scheduling tool, we have obtained the component usage profile as shown in

Fig. 20.5. The first version of the experimental SPS architecture will be created, given the directives from

the profiling information. According to Fig. 20.5 the most popular component is the adder with an

average of approximately 14 adders per benchmark. Some components such as the 8-bit multiply and

bit-wise could not average over 1. These components can be eliminated and we will focus on the rest and

decide how many of each of the remaining ones to use on the SPS. If the numbers are normalized

according to the constant multiplier, for each constant multiplier there would be one comparator, one

subtractor, two right shifters, two left shifters, and seven adders. In the next section, this information will

be used to estimate the gain of fixing different numbers of components on the chip. The start point will

be the relative usage values given by our analysis.

20.6.2 Reconfiguration Time

In the ideal case, the preplaced blocks should cover all the operations in our target applications such that

we can fully exploit the benefits of the custom designed high-performance blocks and improved

reconfiguration time. In reality it is not possible to create such an architecture that would support

every operation that might be encountered in a wide variety of applications. Hence, in cases where

provided blocks are not adequate, extra components are instantiated on the reconfigurable fabric. Here,

we evaluate the gain that the VPBs would bring to the configuration process. Our scheduler uses the

blocks that are made available and as many additional components as necessary for the best latency. As a

result it produces an assignment of the operations to the hardware resources.

Compare the implementation of the same design on two architectures: a traditional fine-grain FPGA

and a SPS. We are fixing certain blocks on the SPS assuming they are pre-placed blocks on the chip. These

blocks will be the gain in reconfiguration time if they are used by the given application. The potential gain

is modeled in configuration time by assuming that the number of configuration bits is proportional to the

amount of logic to be implemented on the reconfigurable fabric. The higher the contribution of the

preplaced blocks is to the total design, the more reduction in reconfiguration time is achieved.

Initially, an architecture is evaluated, which contains low-level blocks such as adders and subtractors.

A set of functional blocks fixed on the chip is provided to the scheduler for operation assignment. The

scheduler decides on the types and numbers of additional components, if they are needed. The first

experiment fixes seven 8-bit adders, one 8-bit subtractor, two right shifters, two left shifters, and one

16
14
12

A
ve

ra
ge

 u
sa

ge

10
8
6
4
2
0

A
dd

S
hi

ft
le

ft

S
hi

ft
rig

ht

S
ub

C
om

pa
re

C
on

st
an

t
M

ul
tip

ly

N
eg

at
e

8-
bi

t
M

ul
tip

ly

B
itw

is
e

an
d

Components

FIGURE 20.5 Component usage profile.

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 9 4.10.2007 3:14pm Compositor Name: VBalamugundan

SPS: A Strategically Programmable System 20-9

constant multiplier. Then we have doubled the amount of hardware fixed in proportion at each step

except the last one, where we have increased the fixed hardware 50% from the previous setup. Figure

20.6 presents the relative gains in configuration times for different setups. Observe how the gain in

reconfiguration time improves with more logic provided, and how this trend saturates at a certain point.

For the initial architecture setup the average reduction in reconfiguration time is 35%. Observe that, as

resources available on the chip are duplicated, this reduction goes as high as 75%.

If a VPB can cover all operations of an application, then the largest gain can be obtained. Our image

processing blocks presented in Section 20.5 will serve this purpose. They are capable of supporting

several different image-processing applications. For the three blocks that we are initially considering, the

potential savings in the number of programming bits is shown in Table 20.2. We have synthesized three

parameterized designs for these blocks and obtained area information. Using the CLB count for these

blocks we can estimate the number of programming bits required, proportional to the size of the designs

just as we did for the first set of experiments. We assume that the reconfigurable fabric is similar to a

Virtex chip. By using the numbers reported in [13] we derive the number of programming bits required

per CLB and hence per parameterizable block.

20.7 Conclusion

A novel reconfigurable architecture was presented. The SPS can provide the degree of flexibility required

in today’s systems. Although offering high-performance for its application set and still a high degree of

flexibility for other applications, the architecture promises a good performance and smaller reconfigur-

ation time as well. Experiments indicate that a proper selection of common blocks among a fairly wide

range of applications can yield an average reduction of 35% up to 100% in the number of programming

bits that need to be transferred to the chip for configuration=reconfiguration. Because the VPBs

eliminate a considerable amount of programming switches on the chip, the improvement in delay will

120

100

80

60

40

20

0
Initial

hardware
Doubled

Architecture setups

%
 r

ed
uc

tio
n

in
 c

on
fig

ur
at

io
n

tim
e

Quadrupled 50%
increased from

previous

FIGURE 20.6 Relative gains in configuration times for different setups.

TABLE 20.2 Programming Bits Required Implementing

the VPBs with Reconfigurable Logic

Parameterizable Block Size (CLBs) Programming Bits

Pixel modification 30 29,910

Thresholding 11 10,967

Filtering 99 98,703

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 10 4.10.2007 3:14pm Compositor Name: VBalamugundan

20-10 Digital Systems and Applications

be accompanied by improved power consumption as well. The individual VPBs will be designed

targeting the best trade-off between delay and power consumption. Implementation of applications

that are within the covering region of this system will highly benefit from these abilities.

References

1. P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh, ‘‘A quick safari through the

reconfiguration jungle,’’ in Proceeding of Design Automation Conference, June 2001.

2. K. Kuetzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, ‘‘System level design:

orthogonalization of concerns and platform-based design,’’ IEEE Transactions on Computer-Aided

Design of Ciruits and Systems, Vol. 19, No. 12, Dec. 2000.

3. Ray Bittner and Peter Athanas, ‘‘Wormhole run-time reconfiguration,’’ in Proceedings of the 1997

ACM Fifth International Symposium on Field-Programmable Gate Arrays, 1997, pp. 79–85.

4. J.G. Eldredge and B.L. Hutchings, ‘‘Run-time reconfiguration: a method for enhancing the func-

tional density of SRAM-based FPGAs,’’ in Journal of VLSI Signal Processing, Vol. 12, 1996.

5. S.O. Memik, E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh, ‘‘SPS: a strategically programmable

system,’’ in Reconfigurable Architecture Workshop, April 2001.

6. J.R. Hauser and J. Wawrzynek, ‘‘Garp: A MIPS processor with a re-configurable co-processor,’’ in

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

7. S. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao, ‘‘The chimaera reconfigurable functional unit,’’ IEEE

Symposium on FPGAs for Custom Computing Machines, 1997.

8. E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon, ‘‘A first generation DPGA implementation,’’

FPD95, Canadian Workshop of Field-Programmable Devices, May 29-June 1, 1995.

9. C. Ebeling, D. Cronquist, and P. Franklin, ‘‘Configurable computing: the catalyst for high-

performance architectures,’’ in Proceedings of the IEEE International Conference on Application-

specific Systems, Architectures, and Proc., July 1997, pp. 364–372.

10. E. Waingold et al., ‘‘Baring it all to software: The Raw machine,’’ IEEE Computer, Sept. 1997.

11. H. Zhang et al., ‘‘A IV heterogenous reconfigurable processor IC for baseband wireless applications,’’

ISSCC.

12. B. Wilkinson and M. Allen, Parallel Programming, Prentice-Hall, 1999.

13. Xilinx, Inc., ‘‘Virtex FPGA series configuration and readback,’’ Application Note: Virtex Series.

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 11 4.10.2007 3:14pm Compositor Name: VBalamugundan

SPS: A Strategically Programmable System 20-11

Vojin Oklobdzija/Digital Systems and Applications 6195_C020 Final Proof page 12 4.10.2007 3:14pm Compositor Name: VBalamugundan

21
Reconfigurable

Processors

John Morris
Auckland University

Danny F. Newport
Don Bouldin
University of Tennessee

Ricardo E. Gonzalez
Albert Wang
Tensilica, Inc.

21.1 Reconfigurable Computing... 21-1
Preamble . Programmable Hardware . Reconfigurable

Systems . Applications . Reconfigurable Processors vs.

Commodity Processors . Dynamic Reconfiguration . Hybrid

Systems . Programming Reconfigurable Systems . Conclusions

21.2 Using Configurable Computing Systems 21-18
Introduction . Configurable Components . Configurable

Computing System Architectures . Selected Applications .

Virtual Computing Power . Development Systems

21.3 Xtensa: A Configurable and Extensible Processor.... 21-25
Introduction . Processor Development . Overview of

Xtensa . Instruction Set Extension . Application

Examples . Conclusions

21.1 Reconfigurable Computing

John Morris

21.1.1 Preamble

Architects of general-purpose processors face a herculean task: to design a processor that will run every

application fast. However, applications vary widely in instruction mix, frequency, and patterns of

data access, input and output bandwidth requirements, etc. A designer may incorporate elaborate and

space-consuming circuitry that simulation shows will dramatically improve performance for one

application but has no effect on another—or worse, slows it down. For example, designers will normally

incorporate as large a cache as space allows on a die, since cache speeds up most applications; however,

the data cache adds nothing to the performance of an application that copies data from one place

to another.

Programmable hardware can be used to build systems in which the circuitry matches the structure of

the problem. In particular, inherent parallelism in problems, which a general-purpose processor—

despite multiple ‘‘go-fast’’ enhancements—cannot exploit, can be exploited in a system in which

multiple circuits are used to speed up the computation.

21.1.2 Programmable Hardware

Programmable hardware has evolved in capability and performance—tracking processor capabilities for

many years now. Designers have a wide spectrum of devices that they can draw upon—from ones that

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 1 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-1

provide a handful of gates and flip-flops to ones that provide well over a million gates.* In addition,

modern devices provide:

. Considerable on-chip memory: this partially overcomes an inability of early devices to effectively

solve problems that required more than a few memory bits

. Large numbers of I=O pins—permitting high data bandwidths between a custom processor and

its environment

. Multiple I=O protocols, such as LVDS, GTL, and LVPECL—enabling high speed serial channels

between the device and other components of a system

Programmability may be provided by a number of technologies:

. Fuses or anti-fuses, in which links are programmed open or closed

. EEPROM, in which a configuration bit is stored in nonvolatile read-only memory, and

. Static RAM cells, which store configuration bits, but, which need to be reloaded every time the

device is powered up

Thus, a designer has a broad palette of devices on which to base a system design. All the usual trade-offs

apply: in particular, the ability to change the circuit by reprogramming it invariably introduces a speed

penalty. A configurable circuit is more complex and has longer propagation delays than a fixed one: this

translates to a slower maximum clock frequency. This trade-off is discussed further when we consider

whether an application is a good candidate for a reconfigurable processor compared to a general-

purpose commodity processor.

A number of terms have been used to describe programmable devices. Simple early devices (ones with

a simple programmable and-or array, coupled with �10 flip-flops and �20 I=O pins) were commonly

called ‘‘programmable array logic’’ chips or PALs, but a host of other similar terms have been used for

marketing purposes. The most important group of devices for building processors are now almost

universally termed ‘‘field programmable gate arrays’’ (FPGAs)y and this chapter section will focus on

them as the key building blocks of a reconfigurable system. As with general-purpose processors,

designing a ‘‘universal’’ FPGA is essentially an impossible task and a number of different architectural

styles have been proposed and manufactured. The following subsections will describe the key elements of

some representative devices.

21.1.2.1 FPGA Architectures

An FPGA’s capability can usually be described in terms of three elements:

. Logic blocks: These are small blocks of logic, commonly consisting of a small number of simple

and-or arrays, some multiplexers for steering signals, one or two flip-flops. Other features such as

memory bits, lookup tables, special logic for handling the carry chains in adders, etc., may be

present also. Marketing pressures have produced a bewildering array of names for these blocks:

fortunately, most of them are readily understood. Examples are logic array blocks (Altera APEX

20k family), logic elements (Altera FLEX 10KE), macrocells (Altera MAX7000=MAX3000),

configurable logic blocks (Xilinx), and programmable function units (Lucent ORCA).

. Routing resources: A typical FPGA will provide lines of various lengths to interconnect the logic

blocks. Short lines provide low propagation delay paths between neighbouring blocks; longer

lines connect more distant blocks with low delay. A small number of buffered low delay lines,

which can interconnect large groups of logic blocks are usually provided for clocks.

. I=O buffers: Special purpose logic blocks provide interfaces to external circuitry. In modern

devices, the I=O buffers provide a variety of electrical protocols eliminating the need to use

*2001 value: apply Moore’s Law for 2002 and forward.
yMarket habits die hard, though: Altera persists in referring to its devices as programmable logic devices (PLDs).

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 2 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-2 Digital Systems and Applications

special interface buffers. Reducing chip-to-chip connections provides greater data transfer band-

width between the reconfigurable processor and its environment.

Recent devices include memory blocks, which may be configured in several ways.

21.1.2.1.1 Xilinx 4000 and on

Xilinx’ 4000 series devices [1] were not the first of their family, there were several antecedents; however,

in order to avoid turning this chapter section into a history lesson, I will describe it first. It is a good

representative of a number of commercially available devices.

Control Logic Blocks—Figure 21.1 shows the essential features of the 4000 series control logic blocks

(CLBs). It contains three logic function blocks—each capable of implementing any arbitrarily defined

boolean function of its inputs—and two flip-flops controlled by a common clock. ‘‘Programming’’ the

device sets the logic functions in the logic function blocks, the signal steering multiplexors and the

set=reset control. There are nine basic inputs: F1–4, G1–4, and C4 (a direct data input to the flip-flops)

and four outputs—two registered and two combinatorial. Paths can be chosen which bypass either or

both flip-flops. Xilinx’s designers have chosen to implement a moderately complex logic block. In

contrast, Altera devices have simpler logic blocks with a single flip-flop [2] and Quicklogic’s super cells

are more complex [3]. Lucent refers to the ORCA logic block as a programmable functional unit (PFU)

reflecting its complexity: 19 inputs and 4 flip-flops [4]. Additionally, the logic in the function blocks can

be configured to act as a block of RAM, which can be configured as 163 1, 163 2, or 323 1 bit blocks.

Without this capability, applications requiring memory are forced to use the CLB flip-flops, using a

whole CLB for each 2 bits. This was a significant limitation of early devices, but newer ones, in addition

to the 32 bits per CLB provided in the 4000 series, provide dedicated RAM blocks with significant

capacities [2,5].

Routing Resources—A great challenge to FPGA designers is achieving a good balance in the allocation of

die area to programmable logic (the CLBs) versus routing resources. The XC4000 designers provide a

combination of short lines which connect each CLB to a programmable switch matrix adjacent to it,

Bypass

Flipflop
D QS

R

Flipflop
D QS

R

Bypass

C1−4

G1−4

F1−4

Logic
function

of Fi

Logic
function

of Gi
Logic

function
of F′,G′
and C′

Program configurable
multiplexer

G′

C′ S/R
control

YQ

X

XQ

Y

F′

Clock

FIGURE 21.1 Simplified block diagram of the Xilinx XC4000 device control logic block. (The XC4000 CLBs have

additional capabilities [1].)

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 3 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-3

double and quad length lines which connect every second (or fourth) switch matrix, and long lines

which run the entire length of a device (see Fig. 21.2). Connections through the switch matrices provide

ultimate flexibility—any CLB may be connected to any other; however, there is a penalty: the switch

points are implemented with pass transistors which add to the propagation delay of any signal passing

through them. Thus, the short lines through the switch matrices should not be used for critical signals

connecting widely separated CLBs. The double, quad, or long lines need to be used to reduce delays.

Predicting the optimal allocation for any application is obviously a hard task and many strategies may be

seen in the commercially available devices. For example, Altera’s Apex 20K devices employ a hierarchical

structure, grouping basic logic elements (LEs) into logic array blocks (LABs), which are in turn grouped

into MegaLABs [2]. Each block has appropriate internal routing resources. Copper is also used to reduce

resistance and thus propagation delay.

I=O Buffers—I=O buffers provide circuitry to interface with external devices. Apart from input buffers

and output drivers, the main additional feature is the ability to latch both inputs and outputs. The

simplified diagram of an XC4000 I=O buffer (IOB) in Fig. 21.3 shows the output driver, input buffer,

registers, several inverters, and the programmable multiplexors. The inverters provide almost all

combinations of normal and inverted direct output or latched signals synchronized with direct or

inverted clocks: this avoids the need to use resources in the CLBs simply to invert signals. Limited slew

rate control was also added to the output buffers—a precursor to the support for multiple electrical

protocols now found in more modern designs.

Additional Features—Adders, including counters, occur on the critical paths in many calculations,

so the 4000 series, like most of its modern counterparts, provides ‘‘fast-carry’’ logic. Ripple carry adders

IO
B

IOB

IO
B

CLB

IOB

CLB

CLB

IOB

CLB

CLB

IOB

CLB CLB CLB

IO
B CLB

CLB

CLB

CLB

Direct connections
Double lines
Long lines

PSMPSM

PSM PSM

PSM

PSM

FIGURE 21.2 Conceptual view of the routing on an XC4000 device showing the pattern of logic blocks (CLBs)

embedded in ‘‘channels’’ of routing resources. Direct connections to the programmable switch matrix (PSM) are

shown as well as the patterns for double lines connecting every second PSM. Similarly, quad lines (omitted) connect

every fourth PSM. Long lines run the length of horizontal and vertical channels. This is a concept diagram only:

actual devices may differ in details [1].

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 4 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-4 Digital Systems and Applications

are simple, regular, and use minimal logic, but they must wait until a carry bit has ‘‘rippled’’ through

all the summing (full adder) blocks. By providing a fast, direct path for carry bits between blocks,

the critical delay in a ripple carry adder is significantly reduced. The fast carry logic is so effective

that there is no advantage to be gained from more complex adders, such as carry-lookahead ones. A

carry-lookahead adder requires a much larger number of CLBs and the signal propagation

times between these additional CLBs outweigh any benefit to be gained from a complex adder: trials

with carry-lookahead adders show them to be slower than ripple carry adders that use the fast-carry

logic [6].

The special needs of global clocks are addressed by providing ‘‘semi-dedicated’’ I=O pads connected to

four primary global buffers designed for minimum delay and skew. The clocks of each CLB can be

connected to these global buffers, a set of secondary buffers or any other internal signal. Thus multiple

global and local clock domains can be established.

Problem diagnosis and boundary scan testing is facilitated through support for IEEE 1149.1 (JTAG)

boundary scan logic attached to each I=O buffer.

The CLB structure lends itself to efficient implementation of functions of up to 9 inputs, but address

decoders commonly require many more bits. Special decoders accepting up to 132 bits for large XC4000

devices are provided to ensure fast, resource-efficient decoding.

A simple internal oscillator and divider provides clock signals when precise frequencies are not

required.

21.1.2.1.2 Virtex

The Virtex family [5] are enhanced versions of the Xilinx 4000 series. Improved process technology has

allowed the gate capacity to exceed one million (43 106 are claimed for the largest member of the

family, requiring 2 MB of configuration data). Supply voltages as low as 1.8 Vallow internal clocks up to

400 MHz to be used.

Memory—Blocks of dedicated memory are now provided, which can be programmed to a number of

single- and dual-port configurations. This will allow considerable performance enhancements for

designs which were previously forced to use external memory.

Slew
rate

QD

DQ

Input
clock

Output
clock

I/O pad

Input buffer

Out

In

Output
enable

FIGURE 21.3 Simplified block diagram showing essential features of the Xilinx XC4000 input=output block (IOB).

(The XC4000 IOBs have additional capabilities [1].)

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 5 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-5

I=O Buffers—One of the most dramatic additions to the newest devices from all manufacturers is the

support of numerous electrical protocols at the I=O pins. For example, Virtex supports single-ended

standards: LVTTL, LVCMOS, PCI-X, GTL, GTLP, HSTL, SSTL, AGP-2X and differential standards:

LVDS, BLVDS, ULVDS, LDT, and LVPECL. Support for PCI-X means that a Virtex device can

implement the industry-standard PCI interface, considerably reducing the complexity of PCI cards

which can now combine interface logic, control logic, some memory, and external bus interfaces (e.g.,

LVDS) in a single chip.

Virtex devices are also partially reconfigurable: individual columns may be reprogrammed.

21.1.2.1.3 Algotronix

Algotronix’s approach to FPGA design was radically different from the Xilinx* approach. Cells were

much simpler and used for routing as well as logic. The basic cell in shown in Fig. 21.4. By using a much

simpler cell, it becomes possible to fit more logic per silicon die and the XC6264 device [7] was rated as

containing 105 gate equivalents early in 1997—about twice as many as devices with distinct logic blocks

and routing resources at the same time. Routing—other than between neighboring cells—uses the logic

cells programmed simply to route a signal from input to output. Signals routed in this way pass through

transmission gates and suffer significant delays, so the XC6200 devices provided a hierarchy of ‘‘Fast-

LANE’’ connections, which linked lines of 4 and 16 cells.

These devices also permitted fast reconfiguration: the SRAM cells that hold the configuration data can

be directly addressed so that part of an operating circuit may be quickly reconfigured. (By contrast, the

XC4000 devices are programmed either with a serial bit stream or byte-by-byte from an EEROM—

requiring milliseconds for a complete chip to be reconfigured.)

The ‘‘sea-of-gates’’ approach provided by the XC6200 devices may be viewed as one end of a spectrum

stretching from simple cell=no dedicated routing devices to complex cell=dedicated routing devices such

D
Q′
Q

W′E′S′N′

N′

WS EN

SE W F

S
E

N
F

W ENF

SS′

E
E

′

W
′

E
′

S
′

N
′

W
S

E
N

W
W

′

S
N

W
F

W
′

E
′

S
′

N
′

W
S

E
N

N

F

ClkSout

W
ou

t E
out

Nout

FIGURE 21.4 Block diagram of the cell in an XC6200 device. This cell is used for routing also.

*However, Algotronix was taken over by Xilinx and its devices appeared as the Xilinx XC6200 series [7].

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 6 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-6 Digital Systems and Applications

as the XC4000 and most other commercially available devices. Regular applications requiring large

numbers of operations or very wide uniform data paths are likely to match a sea-of-gates device better.

Less regular problems with complex control requirements—requiring functions of many signals—are

likely to match the complex logic device devices better. The industry, however, appears to have voted

strongly for complex logic block devices and the XC6200 series is no longer commercially available.

21.1.3 Reconfigurable Systems

Reconfigurable systems are easy to build: a designer has only to decide what interconnection patterns

will best serve the needs of target applications and some systems, e.g., UWA’s Achilles, even allow that to

be deferred. The major proportion of the circuitry may be changed once the basic hardware system has

been constructed. As a consequence, an enormous number of experimental and several commercial

systems have been built: Guccione has compiled a list, it contains summaries of over 80 systems [8]. An

attempt to cover all of these is clearly futile: a small representative sample has been chosen.

21.1.3.1 SPLASH 2

One of the best known systems is SRC’s SPLASH 2 [9]. It consists of an array of FPGAs and interface

allowing the array to be attached to a SPARC host. The FPGA array itself was composed of a number of

array boards, each containing 17 Xilinx XC4010 FPGAs—16 ‘‘computing’’ devices and one interface

device. Typical of devices of its time (�1990), the XC4010 can provide limited amounts of memory itself,

so 512 KB of conventional memory were attached to each FPGA. Apart from nearest neighbour connec-

tions, a crossbar switch permitted dynamic (‘‘almost’’ tick-by-tick [9]) connection changes to be made.

21.1.3.2 Programmable Active Memories (PAM)

A dozen copies of the variant named DECPeRLe-1 found their way into research centers around the

world and were applied to a diverse set of problems [10]. The computing surface was a 43 4 array of

XC3090 devices with seven additional FPGAs acting as memory and interface controllers. FPGAs in the

array were connected directly to each of their four neighbours. Devices in each row and column shared

common 16-bit buses, so that there were four 64-bit buses running the length of the array—one for each

geographic direction N, S, E, and W. Static RAM was added to provide the storage lacking in the early

devices used and FIFOs provided elasticity in a high-speed interface to a host processor. Vuillemin et al.

discuss an extensive list of problems to which PAMs were applied [10]: long integer arithmetic, RSA

cryptography, molecular biology, finite differences, neural networks, video compression, image classifi-

cation, image analysis, cluster detection, image acquisition, stereo vision, sound synthesis, and Viterbi

decoding.

They consistently applied the following rule in deciding what part of any problem should be allocated

to the hardware:

‘‘Cast the inner loop in PAM hardware; let software handle the rest [10]!’’

PAM spawned a successor, PAMETTE, a PCI card with 5 Xilinx 4000 series devices on it [11]. One

device served as the PCI interface with the remaining four arranged in a 23 2 matrix. SRAM and DRAM

may be added and provision is made for external connections via a daughter board. A large number of

similar boards—all with the same basic idea: place a number of FPGAs on a card, which may be inserted

into the bus of a suitable host—have been designed by research groups. Several commercial products are

also available.

21.1.3.3 SPACE

The Scalable Parallel Architecture for Concurrency Experiments (SPACE) machine was developed at the

University of Strathclyde [12]; it was followed by the SPACE-II, built at the University of South Australia

[13]. Both variants used fine-grain FPGAs (Algotronix CAL1024s in SPACE and Xilinx XC6216s in

SPACE 2) as the primary target was the simulation of highly concurrent systems such as digital circuits,

traffic systems, particle flow, and electrical stimuli models of the heart. SPACE 2 processor boards

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 7 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-7

contained 8 XC6216 processor FPGAs and an XC4025 providing a PCI interface to an Alpha host. On

each board, the fine-grained processors are connected in a mesh in order to provide a seamless array of

gates on the board. Additional memory (32 Mb of static RAM) was present on each board. A secondary

backplane allowed high-bandwidth connections between SPACE 2 boards.

21.1.3.4 Achilles

The Achilles architecture aims to provide much more flexible interconnection patterns: Figure 21.5

shows the 3-D arrangement in which small PCBs containing a single FPGA are arranged in a vertical

‘‘stack’’ [14,15]. A limited number of fixed bussed interconnections are provided at the base of the stack,

committing only about one-third of the available I=O pins to fixed interconnect. A second side of the

stack is used for programming and diagnostic connections: this enables the stack to be ‘‘gang’’

programmed—each FPGA is loaded with an identical program—or individually. The remaining two

sides have uncommitted connections: connectors are provided for groups of eight signals and ribbon

cables are used to connect FPGAs as the target application requires. This system offers wide variations in

communication patterns at the expense of manual reconfiguration.

21.1.4 Applications

The list of applications, which have been successfully implemented in reconfigurable hardware systems,

is long; it includes applications from such diverse areas as:

. Image processing

. Cryptography

. Database and text searching

. Compression

. Signal processing

It is generally straightforward to transfer an algorithm from a general-purpose processor to reconfigur-

able hardware; synthesizers which convert VHDL or Verilog models into the bit streams necessary to

program an FPGA-based system are available and efficient; however, a successful transfer must provide a

FIGURE 21.5 Achilles 3-D stack. Each small PCB contains one FPGA: connections are made by cabling between

the connectors visible on each small PCB.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 8 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-8 Digital Systems and Applications

solution which is more efficient, by some criterion, than the same algorithm running on fast commodity

general-purpose processors. Reconfigurable hardware generally runs slower,* consumes more power, and

costsmore than commodity processors. This remains true at most points in the performance spectrum. At

the low performance end, small processors, e.g., Motorola’s HC11 series, are available at very low cost and

very low power consumption and will thus perform simple control and data processing tasks effectively.

Although a modern FPGA may outperform the relatively slow processors available at the low end of the

performance spectrum, there are a host of general-purpose embedded processors, e.g., the PowerPC-based

devices, which will provide the additional processing power while still consuming less power and costing

less than an FPGA. At the high performance end of the spectrum, the internal clock speeds of FPGAs lag

behind those of commodity processors and thus their sequential processing capability does not match that

of, for example, a state-of-the-art Pentium or SPARC processor; however, although it is clear that

reconfigurable hardware will not provide efficient solutions for all problems, there are areas in which it

is extremely efficient.

The general characteristics of successful applications are

(a) Sufficient parallelism: The processing algorithm must have sufficient inherent parallelism to allow

multiple processing pipelines to be created. This parallelism can be either direct or pipelined.

(b) Low storage requirements: Early FPGAs provided very few bits of memory—the flip-flops in logic

blocks were an expensive way to provide memory. Later FPGAs have addressed this problem by

allowing the configuration bits to be used as lookup tables and thus provides tens of bits per logic

block. The newest generation of FPGAs provide blocks of dedicated memory but capacities are

measured in megabits, not megabytes. Although external memory can always be added and wide

buses employed to provide high bandwidth, this uses valuable I=O pins, the path to external

memory is likely to become a bottleneck and limit performance.

(c) ‘‘Decision-free’’ processing patterns: Multiplexors in the data paths will readily handle simple

decisions, which switch the dataflow between down-line functional blocks, but complex decision

trees will generally not map efficiently to hardware. When large numbers of branches exist,

inevitably many paths are little used and thus expensive to implement in fixed hardware relative

to their benefit. In particular, error handling logic will generally be complex relative to its

frequency of use. Complex decision logic is efficiently handled in high-performance modern

processors, which move common logic to cache at the expense of little used code. When branches

have similar probabilities, speculative execution ensures good average rates of instruction com-

pletion. However, this criterion for successful hardware implementation should be applied with

caution: if high throughput for all possible processing paths is required, then the resources

devoted to implementing all paths (including little used ones) may be justified. In the near

future, dynamically reconfigurable logic may also provide effective solutions when there are

complex decision trees.

(d) Ability to use local (i.e., between neighbouring devices) data paths in problems that are large

enough to require multiple devices. Most systems provide high-bandwidth paths between nearest

neighbors with lower-bandwidth multiple device buses and global interconnects. The 3-D

Achilles design provides more device-device data path flexibility but at a cost—wiring patterns

must be set up manually for each application [14].

(e) Integer arithmetic: Although it is possible to implement arbitrary precision floating-point

processors in FPGAs, the number of logic blocks required and hence the delays introduced

by data paths between logic blocks make them expensive in area and low in performance

compared to those found in superscalar processors.y On the other hand, the ability to easily

implement arbitrary precision integer arithmetic allows a reconfigurable system designer to pack

*However, Tsu et al., argue that there is no inherent reason why an FPGA should be slower [16].
ySuperscalar processor manufacturers are also prepared to invest large amounts in order to win benchmark

competitions, which allows man-years of effort to be used to optimize individual circuits and layouts.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 9 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-9

more functional units of higher performance into a given area by choosing the minimum

required word length.

21.1.4.1 Image Processing

Real-time image processing presents a classic application for custom processors. A stream of pixels

emanating from a camera can be passed through a wide deep pipeline—performing as many unrelated

and complex operations on each pixel as needed. Unrelated operations (e.g., threshholding and mask-

ing) are performed in parallel and complex operations (e.g., masking) are performed in deep pipelines.

For basic operations, little storage is required and the relatively inefficient memory on an FPGA suffices.

A masking operation, such as applying a 33 3 mask to a group of neighboring pixels, requires the

storage of two scanlines in a shift register and thus is feasible in large FPGAs. The reverse process,

visualisation, or the processing of machine generated images for display is already the domain of special

purpose processors, but market volumes have justified use of ASICs.*

21.1.4.2 Stereo Vision

The matching problem dominates research into fully automated stereo vision systems; it requires the

comparison of pixels (or regions of pixels) to determine matches between corresponding segments of

two images. The distance between matching regions on the left and right images (the disparity) is

combined with camera system geometry to determine the distance to objects in the field of view.

Without the apparent ability of a human brain to ‘‘jump’’ to the obvious match, a machine must try all

possible disparities in order to find candidate matches between pixels or to correlate regions. Objects

close to the camera system have disparities approaching infinity, but one of the major applications of

stereo vision is collision avoidance in which it is possible to put a lower bound on the distances of objects

from the camera.y In practical camera systems, this results in a need to consider objects with disparities

from 0 pixels (i.e., at infinity) to of the order of 10–100 pixels at closest permissible approach. Thus this

problem has all of the required attributes for an efficient pipeline parallel implementation:

. Parallelism of 10–100 or more

. Simple calculations (comparing pixel intensities)

. Regular computation (the same correlation operators are applied to each pixel)

Woodfill et al., using the census transform to reduce problems caused by intensity variations and depth

discontinuities, programmed a PARTS engine [17] to calculate object depths frompairs of 3203 240 pixel

images. With a maximum disparity of 32, their systemwas able to compute depth at 42 frames per second

[18]. They estimated that it was performing about 2.33 109 RISC equivalent operations per second.

Piacentino et al. have built a video processing system (Sarnoff Vision Front End 200) in which reconfigur-

able processing elements are used not only for stereo computations, but for motion estimation and

warping also [19]. They estimate that the VFE-200 can provide �500 GOPS of processing power.

21.1.4.3 Encryption=Decryption

Shand and Vuillemin have used RSA cryptography as a benchmark for their PAM machines; they were

able to demonstrate an order of magnitude improvement in performance relative to the best software

implementations of the time. In 1992, PAM achieved over 1 Mb=s for 512 bit keys compared to 56 kb=s

on a 150 MHz Alpha processor [20]. This relative performance will not change; state-of-the-art FPGAs

can now fit the entire PAM system in a single device, giving the reconfigurable hardware system

additional speed as it no longer needs to use slower inter-device links or external memory.

*However, prototyping designs which are destined for ASICs are a major application for reconfigurable processors.

They can be used to ensure that a design is correct and that the siliconwill function correctly first time. Some foundries

will take FPGA-based designs and convert them directly to ASICs.
yThe vehicle carrying the camera system is expected to move away before this bound is violated.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 10 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-10 Digital Systems and Applications

Symmetric encryption algorithms are easily and efficiently implemented in FPGAs; they require a

number of ‘‘rounds’’ of application of simple operations. Each round can be implemented as a pipeline

stage. Thus, as an example, TwoFish [21] requires 16 rounds of lookup table accesses, which can be

implemented as a 16-stage pipeline. This allows a stream of 32-bit input data words to be encrypted at

very high input frequencies with a latency of 16 cycles. In a study of four AES candidates, Elbirt et al.

report an order of magnitude difference between FPGA-based implementations and the best software

ones [22]; however, they also note that for one AES candidate, CAST-256, FPGA implementations were

slower than their software counterparts. This result highlights the fact that the performance advantage of

commodity processors can only be overcome when the problem matches the capabilities of FPGA-based

custom processors. By adding further pipeline stages within each round—24 for TwoFish, for example—

Chodowiec et al. were able to achieve throughputs greater than 10 Gb=s for five of the AES candidate

algorithms (12 Gb=s using a 95 MHz internal clock for Rijndael, the eventual winner of the AES

competition) [23].

Secure communications systems require encryption hardware; placing the encryption subsystem in

hardware makes it less susceptible to tampering and enables keys to be hidden in ‘‘write-only’’ registers.

Reconfigurable hardware provides an additional capability, algorithm agility [24]. This not only enables

an encryption algorithm which has become insecure to be replaced with a secure one, but permits an

algorithm independent security protocol to use the hardware effectively, loading the appropriate

algorithm on a transaction-by-transaction basis.

21.1.4.4 Compression

Using a systolic array style implementation of the LZ algorithm, Huang et al. were able to obtain

throughputs 30 times greater than those achievable with commodity processors [25]. This speedup was

obtained even though their FPGAs (Xilinx XC4036s) were clocked at 16 MHz versus 450 MHz for the

fastest software implementation. Huang et al. believe that even better relative performance would be

obtained from modern FPGAs, e.g., Altera’s APEX 20K devices have built-in content addressable

memories (CAMs), which would speed up the process of matching input strings with the dictionary.

21.1.4.5 Arithmetic

When designing a reconfigurable system, the widths of arithmetic function units, and hence their

propagation delays, can be constrained trivially to the number of bits actually required for the

application. This saves space, logic resources, and time. Designers also have considerable flexibility

when complex arithmetic expressions must be evaluated; they can choose a single-stage combinatorial

circuit or increase throughput by adding registers and forming a pipeline. This can often be done at

essentially no cost: the logic blocks contain flip-flops already, so there is no space penalty and negligible

time penalty.

An application requiring floating point arithmetic may be a poor candidate for a reconfigurable

system—to achieve performance comparable to that offered by a commodity processor will require

significant effort; however, reconfigurable systems are excellent at processing streams of data from

sensors: this data will be fixed point and readily handled by the same circuits used for integer arithmetic.

21.1.4.5.1 CORDIC

Even trigonometric functions of fixed-point data are readily implemented using CORDIC arithmetic.

CORDIC algorithms are iterative, but require only shifts and adds. Again, the designer has a large space

in which to work [26]. Bit-serial designs are simple and compact, but require many cycles; this may not

be a problem if the input data rate is relatively slow. An iterative bit-parallel design will require more

space but fewer cycles. Finally, the iterative loop can be unrolled by one or more stages to produce the

desired throughput=space balance.

21.1.4.6 String and Text Matching

Genetic sequencing technology is just one technology that is producing enormous databases of data that

must be searched. Thus, there has been considerable interest in hardware to accelerate the process of

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 11 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-11

comparing new sequences with those in existing databases. Biologists use a measure known as the edit

distance when comparing sequences. A simple implementation of a dynamic algorithm can compute the

edit distance in O(mn) time (m,n¼ length of source and target sequences, respectively), but if the

calculation is carried out on a processor array, then it can be seen that all operations on the diagonal

may be performed in parallel. A single board Splash 2 machine achieved a factor of 20 speedup over a

CM-2—a massively parallel processor [27]!

Similarly, full text searching of documents for relevance has sufficient parallelism to make FPGA-

based hardware effective. When document content cannot be adequately described by keywords, a

searcher will supply a list of relevant words and require that every word of every document be checked

against the list in order to build a relevance score for each document. Gunther et al. demonstrated that

the original SPACE machine was effective in this application [28]. They used a technique called ‘‘data

folding’’ in which the data are built into the circuitry. Match circuitry is built for each of the words in the

list of relevant words and incorporated into a fixed matching structure. This is an excellent example of

the power of partial reconfiguration; circuit patterns corresponding to the relevant words are loaded for

each new search. They demonstrate that matching in hardware does not need to be limited to direct

character-by-character matching. It is possible to implement simple regular expressions allowing, e.g.,

matching on the root of a word only. Overall the system is able to test for each word in the relevant list in

parallel and aggregate a weighted relevance score as the document is read, results become available at a

rate which is basically limited by the rate at which documents can be read from disc.

21.1.4.7 Simulations

Cellular automata map readily to reconfigurable systems. They involve arrays of cells: each cell is a

simple finite state machine whose behavior depends only on its current state and the state of cells in its

immediate environment. Milne extends the fundamental cellular automata concept by removing the

restrictions on identical components, uniform update and synchronization of all updates to create

generalized cellular automata (GCA); an example of traffic system simulation is described—digital

circuits and forest fire development are further systems, which have suitable characteristics [13].

Petri net models are also used extensively in simulation studies; as with cellular automata, there is

abundant low level parallelism to be exploited—the firability of each transition can be evaluated

simultaneously. Petri net models are based on simple units—places and transitions. It is possible to

create generic models in VHDL for these units [14], paving the way to automatic generation of VHDL

code from natural visual representation of Petri nets, which can be compiled and downloaded to suitable

hardware. A single Achilles stack is able to accommodate a model containing of the order of 200

transitions [14].

21.1.5 Reconfigurable Processors vs. Commodity Processors

Any special purpose hardware has to compete with the rapid increase in performance of commodity

processors. Despite the relative inefficiency of a general-purpose processor for many applications, if the

special purpose hardware only provides a speedup of, say 2, then Moore’s Law will ensure that the

advantage of the special purpose hardware is lost in a year.* When assessing whether an application will

benefit from use of a reconfigurable processor, one has to keep the following points in mind.

21.1.5.1 Raw Performance

The raw performance of FPGA-based solutions will always lag behind that of commodity processors.

This is superficially reflected in maximum clock speeds: an FPGA’s maximum clock speed will typically

be one-third or less of that of a commodity processor at the same point in time. This is inevitable and

will continue: the reconfiguration circuitry loads a circuit and requires space, increasing its propagation

delay and reducing the maximum clock speed.

*The author has (somewhat arbitrarily) shortened the ‘‘break-even’’ point from the 18 months of Moore’s Law,

because the extra cost of additional hardware needs to be factored in versus using cheap commodity hardware.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 12 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-12 Digital Systems and Applications

21.1.5.2 Parallelism

Thus, to realize a benefit from a reconfigurable system, the application must have a considerable degree

of inherent parallelism which can be used effectively.

The parallelism may be exploited simply by deploying multiple processing blocks—each processing a

separate data element at the same time—followed by some ‘‘aggregation’’ circuitry, which reduces results

from the individual processing blocks in some way.

21.1.5.3 Long Pipelines

Alternatively, a long pipeline may be employed in which the same data element transits multiple

processing blocks in successive clock cycles. This approach trades latency for throughput: it may take

many cycles—the latency—for the first result to appear, but after that new processed data are available

on each clock cycle giving high throughput. Many signal processing tasks can effectively use long

pipelines.

21.1.5.4 Memory

FPGA devices do not provide large amounts of memory efficiently: recent devices (e.g., Altera’s APEX

20K devices [2]) do attempt to address this deficiency and provide significant dedicated memory

resources; however, the total number of memory bits remains relatively small and is insufficient to

support applications which require large amounts of randomly accessible data. This means that,

although preprocessing an image which is available as a pixel stream from a camera for edge detection

is feasible, subsequent processing of the image in order to segment it is considerably more difficult. In

the first case, to apply a 33 3 mask to the pixel stream, only two preceding rows of the image need be

stored. The application of the 33 3 mask requires a maximum of nine basic multiply-accumulate

operations. Thus, it can be effectively handled in a 9-stage pipeline—easily allowing an edge-detected

image to be produced at the same rate as the original image is streamed into the FPGA (allowing for an

8-pixel clock latency before the first result is available). In the second, the whole image needs to be stored

and be available for random access. Although an FPGAwith auxillary memory might handle this task, it

is less likely to offer a significant advantage over a general-purpose processor.

21.1.5.5 Regularity

A processing pipeline with large numbers of decisions (if .. then .. else blocks in a high-level language

program) is also not likely to be efficiently implemented in reconfigurable hardware. In such a pipeline,

there will generally be a large number of branches which are rarely taken, but all need to be implemented

in hardware, taking up considerable space (or numbers of logic blocks). Paths with large numbers of

blocks of variable size also present a problem for the fixed routing resources in a device.

21.1.5.6 Power and Cost

FPGAs consume more power and cost more per gate than either commercial processors or custom

ASICs. Although FPGA technology tracks processor technology and power consumption is being

reduced through lower power supply voltages and reduced transistor size, it is unlikely that one will

see reconfigurable technology in micro power applications such as wearable computers; however,

experiments are underway to test their viability in spacecraft, where power is limited [29]. The cost

factor is generally offset in low volume production by the significantly lower design cost, faster design

cycles, and ease with which modifications can be incorporated.

21.1.6 Dynamic Reconfiguration

There is considerable interest in the ability to reconfigure a running circuit. This would allow applica-

tions (or groups of applications) to load circuits on demand to meet the requirements of a current task.

This would make a reconfigurable system a truly general purpose one: able to load processing tasks as

demanded by the input data.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 13 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-13

Although most commercial devices require a complete new configuration program to be loaded every

time, usually by paths with limited bandwidths requiring thousands of cycles to completely reprogram a

device, some commercially available devices have had limited dynamic reprogramming capabilities for

some time, e.g., the original Algotronix CAL1024, its successor the Xilinx XC6200 (both now out of

production), Atmel’s AT6000 (now superceded), AT40K, and Xilinx’s Virtex family.

These devices extend the standard device programming model by allowing a part of the configuration

to be reloaded from an external source: an alternative has been proposed—the DPGA model [30]. A

DPGA device would hold several configurations in the configuration memory for each logic block and

allow the context to select one dynamically. The flexibility gained from this arrangement allows much

more effective gate utilization—at the expense of the additional space for the configuration memory and

context selection logic.

Noting some of the limitations introduced by conventional approaches to dynamic reloading of

configuration data, Vasilko and Ait-Boudaoud have proposed an optical system for transferring

new configuration data to a device [31]. Optical buses not only allow massively parallel data transfer

but provide an additional dimension for information transfer and thus reduce the conflict for routing

space between data paths and configuration nets. The advent of devices similar to their proposals would

remove some of the practical limitations constraining effective dynamically reconfigurable systems.

One requirement for effective run-time reconfiguration is a model which allows a computation to be

split into swappable computational blocks. Caspi et al. summarise several proposed models in introdu-

cing their SCORE (Stream Computations for Reconfigurable Extension) model [32]. SCORE divides a

computation into fixed size pages, which can be swapped between the running hardware and backup

store. A dataflow computation model is used, allowing the run-time system to manage resources: a

dataflow model is ‘‘memory-less’’ as far as the programmer is concerned. Data flowing between pages is

buffered transparently by the run-time system when necessary.

21.1.7 Hybrid Systems

Hybrid systems couple a conventional processor and an area of uncommitted logic that may be

configured to suit the demands of algorithms in which the conventional processor cannot exploit data

or pipeline parallelism. Berkeley’s Garp processor is an example of this approach [33]. Garp contains a

RISC processor core (MIPS-II) and 323 23 array of logic blocks. A 24th column of logic blocks is

responsible for communication outside the array. Logic blocks take up to four 2-bit inputs and produce

2-bit outputs: a row of the array can thus process up to four 46-bit words. Garp’s designers hypothesize

that the reconfigurable section may be used effectively to implement the critical kernels found in most

code: the ability to hard-wire the control logic will reduce instruction fetch bottlenecks and better

exploit parallelism. Memory queues, which handle streaming of data to and from memory, were added

because many applications which use reconfigurable systems effectively process streams of data.

Results from the Garp simulator on a wavelet image compression program showed an overall speedup

of 2.9 compared to the MIPS processor. Individual kernels within this program showed speedups up to

12, observed when a kernel had high exploitable instruction level parallelism and the configuration

loading time could be amortized over many compute cycles. Comparisons of Garp’s performance with a

4-issue superscalar processor also showed significant speedups, indicating that Garp was able to exploit

more instruction level parallelism, sustaining 10 instructions per cycle in many cases.

21.1.8 Programming Reconfigurable Systems

21.1.8.1 High-Level Hardware Design Languages

The design flow for a reconfigurable system is shown in Fig. 21.6; a high-level hardware design language

(HDL) is usually used for the software modeling stage: VHDL and Verilog are widely used as excellent

support tools are available. The design process is basically identical to that used for any software system:

specifications are drawn up and validated, software models created and verified and the compiled

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 14 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-14 Digital Systems and Applications

‘‘program’’ is loaded onto the target devices or burnt into ROMs. The only significant difference is that

two compilers are generally used. A simulator compiles VHDL or Verilog source and produces

diagnostic output not only as text to consoles or logged to files, but as waveforms or lists of changes

in signal values. When the designer has verified that the models perform in accordance with their

specifications under simulation, a synthesizer compiles the source again to a netlist—an intermediate

representation of the final circuit. Device-specific place-and-route tools take netlists as input and place

logic into logic blocks and configure the FPGA’s routing resources to make the necessary connections

between logic blocks and I=O pins. The output of this stage is a configuration file—a stream of bits

which are loaded onto the device to program its internal registers, multiplexors, etc. For many designs,

the whole process (synthesis ! place-and-route ! configuration bit stream) can be viewed as a single

step black-box, which turns verified HDL models into configuration files. Whilst it may take several

hours for a complex system, it does not require any input from the user. The designer will usually simply

advise the tools whether speed or area is the primary constraint. Significant interaction with the place-

and-route tools is needed only if there are performance constraints which cannot be met with default

parameters: in this case, manual placement of logic blocks can assist in satisfying the constraints.

21.1.8.2 Other Languages

Other routes from high-level languages are possible: Callahan et al. describe a tool which starts with C

[34]: it is aimed at ‘‘dusty-deck’’ systems. Of more potential for effective use of reconfigurable systems

are special purpose high-level languages such as Milne’s process algebra, CIRCAL [35].

21.1.9 Conclusions

In this chapter, instead of providing a litany of praise for reconfigurable computing in all its forms, the

author has tried to set out the general characteristics of problems, which a reconfigurable processor

might be expected to solve efficiently. A key requirement is clearly sufficient exploitable parallelism, but

that may appear either as raw or pipeline parallelism. Raw parallelism is a requirement to perform many

simultaneous operations on a single item of data or the same operation on many data items, which may

be presented to the reconfigurable hardware at the same instant. Pipeline parallelism, on the other hand,

requires many operations to be performed on individual elements of a data stream, allowing a deep

Simulation Synthesis

Place−and−route

Specification

Program device

Software models

Net lists

Configuration
bit stream

HDL codeHDL code

Waveforms
signal lists

reports

FIGURE 21.6 Design flow using an HDL (e.g., VHDL). Note the absence of a feedback loop in the synthesis

branch: for a design verified in simulation, the synthesis process is a black box.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 15 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-15

pipeline to process data at its arrival rate and produce results in real time, even if some latency penalty

must be paid.

Reconfigurable systems are always competing against the inexorable rise in the power of general-

purpose processors. Although reconfigurable devices track the performance gains due to better device

technology, they inevitably lack the commercial drive that propels commodity processors forward in

performance and thus lag behind their better funded cousins in raw performance. Thus, when con-

sidering a special purpose processor for any task, one must keep in mind the performance point at which

commodity processors will be when the design is complete. With ‘‘multimedia extensions’’ such as MMX

and Altivec, commodity processors even have limited parallel processing capabilities; however, these are

limited to very regular computations and a reconfigurable system—with its ability to implement

multiple parallel data paths—will generally be better at matching the ‘‘shape’’ of a multiple processing

step algorithm. The use of high-level design languages, such as VHDL and Verilog, also shortens design

cycles making time-to-completion for projects based on reconfigurable hardware considerably shorter

than custom hardware designs.

Thus, although problems that fail to meet the criteria are set out here, and thus will be more effectively

solved using commodity processors, the author has shown that many problem domains also exist in

which large numbers of individual problems are well suited to reconfigurable processors.

In this chapter, discussion of successes has, for the most part, focussed on systems in which

reconfiguration times are long—requiring hours if the time for synthesis software to compile, analyze,

and place and route a model expressed in a high-level design language is included; however, there is

much active research into dynamically reconfigurable systems, which has the goal of producing

hardware whose function may be altered as quickly and conveniently as the general-purpose processors.

The significant problems with which researchers in this area are now grappling will be solved eventually.

Thus, we can anticipate systems in which parallelism present at some level in virtually all problems,

which cannot be exploited now, will be exploited by systems that have been configured on-the-fly. As

with statically programmed systems, when data paths can be provided that match problem structures,

we will obtain orders of magnitude larger processing powers efficiently. We will not need to use large

processor arrays in which many processors are needed for a few vital steps but are idle for much of

the time.

References

1. Xilinx, Inc., XC4000 data book, 1997.

2. Altera Corp., APEX 20K Programmable Logic Device Family Data Sheet, http:==www.altera.

com=literature=lit-apx.html, 2001.

3. QuickLogic Corp., QuickLogic: Beyond Programmable Logic, Sunnyvale, California, 2001.

4. Lucent Technologies, Inc., ORCA Series 2 Field-Programmable Gate Arrays, June 1999.

5. Xilinx, Inc., Virtex-II 1.5 V Platform FPGA Family, http:==www.xilinx.com=partinfo=ds013-2.pdf,

2001.

6. Baskoro, E. and Morris, J., Fast adders in FPGAs, Technical Report TR2001-01, Centre for Intelligent

Information Processing Systems, University of Western Australia, 2001.

7. Xilinx, Inc., XC6200 Field Programmable Gate Arrays, 1997.

8. Guccione, S., List of FPGA-based computing machines, www.io.com=�guccione=HW_list.html,

1999.

9. Buell, D.A., Arnold, J.M., and Kleinfelder, W.J., Splash 2: FPGAs in a Custom Computing Machine,

IEEE Computer Society Press, California, 1996.

10. Vuillemin, J., et al., Programmable active memories: reconfigurable systems come of age, IEEE Trans.

on VLSI Systems, 4, 1, 56, 1996.

11. Moll, L. and Shand, M., Systems performance measurement on PCI Pamette, in IEEE Symp. on

FPGAs for Custom Computing Machines, Pocek, K.L. and Arnold, J., Eds., Napa Valley, CA, p. 125,

1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 16 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-16 Digital Systems and Applications

12. Cockshott, W.P., Barrie, P., McCaskill, G., and Milne, G.J., Realising massively concurrent systems on

the SPACE Machine, in Proc. IEEE Workshop on FPGAs for Custom Computing Machines, Buell, D.

and Pocek, K., Eds., IEEE Computer Society Press, 1993.

13. Milne, G.J., Reconfigurable custom computing as a supercomputer replacement, in Proc. 4th

International Conference on High-Performance Computing, Bangalore, India, p. 260, Dec. 1997.

14. Morris, J., Bundell, G.A., and Tham, S., A reconfigurable processor for Petri net simulation, in Proc.

HICSS-33, El-Rewini, H. and Helal, S., Eds., Maui, HI, 2000.

15. Tham, S., Achilles: High bandwidth, low latency interconnection for parallel processors, PhD Thesis,

Electrical and Electronic Engineering, University of Western Australia, 2001.

16. Motorola Semiconductor Products, MPC500, MPC800 microprocessors, http:==e-www.motorola.

com=index.html, 2001.

17. Woodfill, J., von Herzen, B., and Zabih, R., Real-time stereo vision on the PARTS reconfigurable

computer, in 5th IEEE Symp on FPGAs for Custom Computing Machines, Pocek, K.L. and Arnold, J.,

Eds., Napa Valley, CA, p. 201, 1997.

18. Woodfill, J., von Herzen, B., and Zabih, R., Frame-rate robust stereo on a PCI board, http:==www.cs.

cornell.edu=rdz=Papers=Archive=fpga.pdf, 1998.

19. Piacentino, M.R., van der Wal, G.S., and Hansen, M.W., Reconfigurable elements for a video

pipeline processor, in 7th IEEE Symp on Field-Programmable Custom Computing Machines, Pocek,

K.L. and Arnold, J., Eds., p. 82, 1999.

20. Shand, M. and Vuillemin, J., Fast implementation of RSA cryptography, in Proc 11th IEEE Sympo-

sium on Computer Arithmetic, Windsor, Ontario, 1993.

21. Schneier, B. et al., Twofish: a 128-bit block cipher, http:==www.counterpane.com=twofish-paper.

html, 2001.

22. Elbirt, A.J. et al., An FPGA implementation and performance evaluation of the AES block cipher

candidate algorithm finalists, in The Third Advanced Encryption Standard Candidate Conference,

New York, April 13–14, 2000.

23. Chodowiec, P., Khuon, P., and Gaj, K., Fast implementations of secret-key block ciphers using mixed

inner- and outer-round pipelining, in 9th ACM Intl Symp on Field-Programmable Gate Arrays,

Schlag, M., Ed., Feb. 2001.

24. Paar, C. et al., An algorithm-agile cryptographic co-processor based on FPGAs, in Reconfigurable

Technology: FPGAs for Computing Applications, Proc. SPIE, Schewel, J. et al., Eds., 3844, p. 11,

1999.

25. Huang, W.-J., Saxena, N., and McCluskey, E.J., A Reliable LZ data compressor on reconfigurable

coprocessors, in 8th IEEE Symposium on Field-Programmable Custom Computing Machines, Pocek,

K.L. and Arnold, J., Eds., p. 175, 2000.

26. Andraka, R., A survey of CORDIC algorithms for FPGA based computers, in Proc 6th Intl Symp on

Field Programmable Gate Arrays, Kaptanoglu, S., Ed., p. 191, 1998.

27. Hoang, D.T., Searching genetic databases on Splash 2, in Buell, D.A., Arnold, J.M., and Kleinfelder,

W.J., Splash 2: FPGAs in a Custom Computing Machine, IEEE Computer Society Press, California,

1996.

28. Gunther, B.K., Milne, G.J., and Narasimhan, L., Assessing document relevance with run-time

reconfigurable machines, in 4th IEEE Symposium on FPGAs for Custom Computing Machines,

p. 10, 1996.

29. Bergmann, N.W. and Dawood, A., Adaptive interfacing with reconfigurable computers, in Proc

Australasian Computer Systems Architecture Conference, Heiser, G., Ed., p. 11, 2001.

30. DeHon, A., DPGA utilization and application, in Proc ACM=SIGDA 4th International Symposium on

Field Programmable Gate Arrays, Ebeling, C., Ed., 1996. Extended version available via anonymous

FTP transit.ai.mit.edu:transit-notes=tn129.ps.Z

31. Vasilko, M. and Ait-Boudaoud, D., Optically reconfigurable FPGAs: Is this a future trend?, in Proc

6th Intl Workshop of Field-Programmable Logic and Applications, Darmstadt, LNCS, Hartenstein,

R.W., and Glesner, M., Eds., 1142, p. 270, 1996.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 17 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-17

32. Caspi, E., Chu, M., Huang, R., Yeh, J., Markovskiy, Y., Wawrzynek, J., and André DeHon, A., Stream

computations organized for reconfigurable execution (SCORE), in 10th Intl Conference on Field

Programmable Logic and Applications, LNCS, Hartenstein, R.W. and Gruenbacher, H., Eds., p. 1896,

2000 also http:==www.cs.berkeley.edu=projects=brass=documents=score_tutorial.html.

33. Callahan, T.J., Hauser, J.R., and Wawrzynek, J., The Garp architecture and C compiler, IEEE

Computer, 33, 4, 62, 2000.

34. Callahan, T.J. and Wawrzynek, J., Instruction level parallelism for reconfigurable computing, in 8th

International Workshop Field-Programmable Logic and Applications, LNCS, Hartenstein, R. and

Keevalik, A., Eds., p. 1482, 1998.

35. Tsu, W. et al., in Proc. 7th International Symposium on Field Programmable Gate Arrays, Trimberger,

S., Ed., 1999.

36. Diessel, O. and Milne, G., Compiling process algebraic descriptions into reconfigurable logic, in Proc

15th IPDPS Workshops, LNCS 1800, Rolim, J. et al., Eds., p. 916, 2000.

21.2 Using Configurable Computing Systems

Danny F. Newport and Don Bouldin

21.2.1 Introduction

Configurable computing systems use reprogrammable logic components, which are now capable of

providing more than 10 million logic gates on a single chip. These systems can be reconfigured at

runtime, enabling the same hardware resource to be reused depending on its interaction with external

components, data dependencies, or algorithm requirements.

In essence, a specialized instruction set and arithmetic units can be configured as desired by an

application designer on an as-needed basis to achieve optimal performance. The location of configurable

componentswithin a computing system isoneof the keys to achievemaximumefficiency andperformance.

Avariety of architectures driven by the location of configurable components are described in a later section.

21.2.2 Configurable Components

Before describing various architectures of configurable computing systems, an understanding of the

internal structure of FPGAs, the major component of a configurable computing system is necessary.

In 2006, the top two FPGA vendors were Altera Corporation and Xilinx, Inc. The FPGA products from

these, and other vendors, differ in their internal structure and programming. However, the basic internal

structure for FPGAs can be illustrated as shown in Fig. 21.7. Note that the PLB blocks are programmable

logic blocks and the PI blocks are programmable interconnect. A current trend among the FPGAvendors

is to also include RAM or a fixed microprocessor core on the same integrated circuit as the FPGA. This

enables even greater system flexibility in a design.

The means by which the logic blocks and interconnect are configured for specific functions are of a

proprietary nature and specific to each vendor’s FPGA families. In general terms, the logic blocks and

interconnect have internal structures that ‘‘hold’’ the current configuration and when presented with

inputs will produce the programmed logic outputs. This configuration is FPGA specific and contained

in a vendor-specific file. A specific FPGA is programmed by downloading the information in this file

through a serial or parallel logic connection.

The time required to configure an FPGA is known as the configuration time. Configuration times

vary based on the FPGA family and the size of the FPGA. For a configurable computing system

composed of several FPGAs, the configuration time is based not only on the configuration time of

the individual FPGAs but also on how all the FPGAs are configured. Specifically, the FPGAs could

be configured serially, in parallel, or a mixture of serial and parallel depending upon the design of

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 18 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-18 Digital Systems and Applications

the system. Thus, this time can vary from hundreds of nanoseconds to seconds. This directly impacts the

types of applications that have improved performance on a particular configurable computing system.

A configurable computing system that has a configuration time on the order of seconds is best suited

for applications that do not require reconfigurations ‘‘on the fly,’’ i.e., applications with a single

configuration associated with them or the ones that are pipelined with slow pipeline stages. On the

other hand, a configurable computing system that has a very short configuration time can be used for

the same applications as one with a slower configuration time and applications that require on-the-fly

reconfiguration.

As implied previously, the configurable component of a configurable computing system can be

composed of a single FPGA or multiple FPGAs. Many architectures are used for a configurable

component composed of multiple FPGAs. Figure 21.8 illustrates the basic architectures from which

most of these architectures would be derived. Note that these architectures are very similar, or identical,

to those used for parallel processing systems. As a matter of fact, many of the paradigms used in

configurable computing systems are derived from parallel processing systems. In many cases, a configur-

able computing system is the hardware equivalent of a software parallel processing system. Figure 21.8a

is a pipelined architecture with the FPGAs hardwired from one to the other. This type of architecture

is well suited for functions that have streaming data at specific intervals. Note that variations of

this architecture include pipelines with feedback, programmable interconnect between the FPGAs, and

RAM associated with each FPGA. Figure 21.8b is an array of FPGAs hardwired to their nearest

neighbors. This type of architecture is well suited for functions that require a systolic array. Note, as

with the pipelined architecture, that variations of this architecture include arrays with feedback,

programmable interconnect between the FPGAs, and RAM associated with each FPGA. Also note that

an array of FPGAs is very similar to the internal structure of a single FPGA. Thus, one has a hierarchy of

configurability.

Connections to external pins

Connections to external pins

C
on

ne
ct

io
ns

 to
 e

xt
er

na
l p

in
s

C
on

ne
ct

io
ns

 to
 e

xt
er

na
l p

in
s

PI

PLB PLB PLB PLB

PLB PLB PLB PLB

PLB PLB PLB PLB

PLB PLB PLB PLB

PI PI PI

PI PI PI PI

PI PI PI PI

PI PI PI PI

FIGURE 21.7 Basic internal structure of an FPGA.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 19 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-19

21.2.3 Configurable Computing System Architectures

The placement of one or more configurable components within a computing system is largely deter-

mined by the requirements of the application. Several architectures are shown in Fig. 21.9. In some cases

as shown in Fig. 21.9a, no additional computing power is required and the component can be utilized in

a stand-alone mode. This situation occurs in Internet routing nodes and in some data acquisition

(a)

(b)

FPGA

FPGA FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA

FIGURE 21.8 Basic architectures for multiple FPGAs.

(a)

Configurable
component

Configurable
component

Configurable
component

Configurable
component

DSP or
CPU

DSP or
CPU

DSP or
CPU

Configurable
component

DSP or
CPU

DSP or
CPU

(b)

(c)

(d)

(e)

FIGURE 21.9 CPU=configurable computing architectures.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 20 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-20 Digital Systems and Applications

systems as well as controllers for actuators. Note that the use of FPGAs to replace logic or to be used as

state machines is a typical application of this type of architecture. This type of application was the first

widespread use of FPGAs.

For configurable computing systems, configurable components are more commonly coupled with

conventional DSPs or CPUs such that the processor can accomplish general-purpose computing while

acceleration of specialized functions can be performed by the configurable components. The type of

general-purpose computing required by the application determines the choice of a DSP or CPU. An

application involving signal processing would naturally lead to the use of a DSP. Whereas, an application

involving user interaction or user services (disks, etc.) would more likely lead to the use of a general

purpose CPU. For this discussion on general configurable computing system architectures, the type of

general-purpose processor used is irrelevant; however, it is very relevant when an actual application and

system are being developed.

Figures 21.9b–e depict architectures that have configurable components coupled with DSPs or CPUs.

The communication requirements between the different types of processors determine the amount of

bandwidth and latency provided. If infrequent communication is needed, a serial line or some other

slow-speed connection may be sufficient as shown in Fig. 21.9b. For higher bandwidth applications,

placing the two types of components on a bus or some other high-speed connection as shown in

Fig. 21.9c may be appropriate. In both of these cases, tasks best suited for a particular component can be

delegated to that component and sharing of data and results are facilitated. Figure 21.9d depicts

the tightest coupling with the lowest latency and highest bandwidth since both types of components

are placed inside the same package. Often, the DSP or CPU manages the data, especially when disk

storage is involved. When the data is being acquired at a high rate from a sensor, the configurable

component is often used to perform initial operations to reduce the size of the data. Thus, the DSP or

CPU has only a fraction of the data to be processed or stored. Note that the current trend to include

RAM and a fixed microprocessor core on the same integrated circuit as the FPGA is an implementation

of this architecture. Another variation of this theme of placing the configurable component within the

system just where it is needed can be seen in a network of workstations as shown in Fig. 21.9e. In this

case, the configurable component can be inserted into the router itself to perform dedicated operations

as the data is passed from processor node to processor node. The processing performed in this manner

appears to be ‘‘free’’ as it occurs during message passing.

21.2.4 Selected Applications

Several classes of applications have improved performance when implemented on configurable comput-

ing systems including image analysis, video compression, and molecular biology. In general, these

applications exploit the parallel processing power of configurable computers. Current applications that

exert high demand for reconfigurable systems include communications andmobile systems, which utilize

FPGAs to provide more flexible operations than ASICs yet higher speed and lower power than CPUs.

Applications that can benefit from variable-grain parallelism of FPGAs are hot prospects to emerge as

high-volume applications in the near future, especially as improvements in data movement are made.

21.2.4.1 Image Analysis

Image analysis requires manipulating massive amounts of data in parallel and performing a variety of

data interaction (e.g., point operations, neighborhood operations, and global operations). Many of these

operations are ideally suited for implementation on a configurable computing system due to the parallel

nature of the operations. Example implementations are image segmentation, convolution, automated

target recognition (ATR), and stereo vision. Image segmentation is often the first step in image analysis

and consists of extracting important image features. For intensity images (i.e., those represented by

point-wise intensity levels), the four popular approaches are threshold techniques, edge-based methods,

region-based techniques, and connectivity-preserving relaxation methods. A systolic array of configur-

able components, similar to that depicted in Fig. 21.8b, can be used to perform an edge-based image

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 21 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-21

segmentation. Implementation results for various applications have shown that this approach is superior

to the conventional digital signal processor approach.

Two-dimensional convolution is commonly used for filtering, edge detection, and feature extraction.

The basic idea is that a window of some finite size and shape is scanned across the image. The output

pixel value is the weighted sum of the input pixels within the window where the weights are the values of

the filter assigned to every pixel of the window itself. Using a systolic array of configurable components,

the convolution window can be applied in parallel with an output pixel value being produced as new

pixel values are provided. The storage of intermediate pixel values within the window is inherent in the

systolic array structure. Implementation results have shown impressive performance gains.

ATR is a computationally demanding application in real-time image analysis problems. The objective

of an ATR system is to analyze a digitally represented input scene to locate or identify all objects of

interest automatically. Typically, algorithms begin with a preprocessing step to identify regions of

interest in the input image. Next, template matching is performed to correlate these regions of interest

with a very large number of target templates. The final identification step identifies the template and the

relative offset at which peak correlation occurs. The template matching process is the most computa-

tionally intensive among these three steps and has the potential of being implemented in a parallel form.

Therefore, the template matching is a good candidate to be mapped into a configurable computing

system. Implementation results have shown significant performance improvements.

Stereo vision involves locating the same features in each of two images and then measuring the

distances to objects containing these features by triangularization. Finding corresponding points or

other kinds of features in two images, such that the matched points are the same projections of a point in

the scene, is the fundamental computational task. Matching objects at each pixel in the image leads to a

distance map. This is very similar to the template matching process in an ATR system and implemen-

tation results are similar.

21.2.4.2 Image and Video Compression

Image and video compression are used in many current and emerging products. Image compression is

widely used in desktop publishing, graphic arts, color facsimile, and medical imaging. Video compres-

sion is at the heart of digital television set-top boxes, DSS, HDTV decoders, DVD players, video

conferencing, Internet video, and other applications. Compression reduces the requirements for storage

of large archived pictures, less bandwidth for the transmission of the picture from one point to another,

or a combination of both. Image and video processing typically require high data throughout and

computational complexity. JPEG is widely used for compressing still pictures, and MPEG or wavelets are

more appropriate for compressing videos or general moving pictures.

A configurable component using a pipelined approach, as depicted in Fig. 21.8a, provides a much

cheaper and more flexible hardware platform than special image compression ASICs, and it can

efficiently accelerate desktop computers. A speed improvement over a modern workstation of a factor

of 10 or more can be obtained for JPEG image compression.

21.2.4.3 Molecular Biology

Scanning a DNA database is a fundamental task in molecular biology. This operation consists of

identifying those sequences in the DNA database that contain at least one segment sufficiently similar

to some segment of a query sequence. The computational complexity of this operation is proportional

to the product of the length of the query sequence and the total number of nucleic acids in the database.

In general, segment pairs (one from a database sequence and one from query sequence) may be

considered similar if many nucleotides within the segment match identically. This similarity search

may take several hours on standard workstations when using common software that is parameterized for

high sensitivity.

One method of performing DNA database searches is to use a dynamic programming algorithm for

computing the edit distance between two genetic sequences. This algorithm can be implemented on a

configurable computing system configured as two systolic arrays. Execution has been found to be several

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 22 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-22 Digital Systems and Applications

orders of magnitude faster than implementations of the same algorithm on a conventional computer.

Another method is to use a systolic filter for speeding up the scan of DNA databases. The filter can be

implemented on a configurable computing system, which acts as a coprocessor that performs the more

intensive computations occurring during the process. An implementation of this system boosted the

performances of the conventional workstation by a factor ranging from 50 to 400.

21.2.5 Virtual Computing Power

Quantifying computing power is a challenging task due to differing computing architectures and

applications. Vuillemin et al. [13] define virtual computing power based on the number of program-

mable active bits (PABs) and the operating frequency. He defines a ‘‘reference’’ PAB as a 4-input Boolean

function. These functions are essentially the core configurable elements of a configurable computing

component; however, each vendor defines them differently. For example, Xilinx calls them logic cells

(LCs) and organizes them into groups of four called configurable logic blocks (CLBs). Whereas, Altera

calls them logic elements (LEs) and organizes them into groups of 10 called logic array blocks (LABs). As

newer and larger FPGAs with new architectures are constructed, the vendors will likely rename these

logic blocks. But the configurable blocks can always be defined as Boolean functions.

21.2.6 Development Systems

Developing applications for microprocessor-based systems is currently far easier than developing

applications for a configurable computing system. Microprocessor development systems have been

optimized over years, even decades, while those for configurable computing systems are in their infancy.

A design for a single FPGA is typically created using tools similar to those used for other digital systems,

tools such as schematic capture, VHDL, etc. Owing to the proprietary nature of FPGAs, however, a

designer must typically use the design tools available from the FPGA vendor.

A software design environment that facilitates the rapid development of applications on configur-

able computing systems should permit high-level design entry, simulation, and verification by appli-

cation designers who need not be familiar with the details of the hardware. Of course, on occasions, it

may be necessary to expose to the application designer those hardware details deemed essential to

ensure feasible and efficient implementations. Metrics and visualization are desirable to assist the

application designer in achieving near-optimal system implementation rapidly. The tools available

from the FPGA vendors are currently intended for digital systems designers and not the application

designer. Research efforts under way at various universities and start-up companies are producing the

first development systems for configurable computing systems similar to those for microprocessor

systems.

Glossary

Configurable computing systems: Systems that use reprogrammable logic components, typically

field-programmable gate arrays (FPGAs), to implement a specialized instruction set and arith-

metic units to improve the performance of a particular application. These systems can be

reconfigured, enabling the same hardware resource to be reused depending on its interaction

with external components, data dependencies, or algorithm requirements.

Configuration time: Time required to program an FPGA or configurable computing system with a

given configuration. This time varies from hundreds of nanoseconds to seconds, depending on the

system and the FPGAs that are used in the system.

Field-programmable gate array: Integrated circuit containing arrays of logic blocks and program-

mable interconnect between these blocks. The logic blocks can be configured to implement simple

or complex logical functions and can be changed as required. Example functions are registers,

adders, and multipliers. The programmable interconnect permits the construction of even more

complex functions or systems.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 23 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-23

FPGA: Acronym for field-programmable gate array.

Reconfigurable computing systems: Alternate term for configurable computing systems. This

term is usually used to indicate that the system can be reconfigured at any time for some desired

function.

To Probe Further

More in-depth information on configurable computing systems is readily available. The first sources of

information are the FPGA vendors. A few of these are

1. Altera Corporation, San Jose, CA. http:==www.altera.com.

2. Atmel Corporation, San Jose, CA. http:==www.atmel.com.

3. Xilinx, Inc., San Jose, CA. http:==www.xilinx.com.

Several sites on the World Wide Web are dedicated to configurable computing systems. A search

using the terms configurable computing systems or reconfigurable computing systems via any of the

search engines will yield a great number of hits. One of these sites is http:==www.optimagic.com that

provides information on not only configurable computing systems but also programmable logic in

general.

Currently, few books focus specifically on configurable computing systems; however, many books

about programmable logic provide excellent references for someone interested in configurable

computing. Some of these are the following:

4. J. Hamblen, T. Hall and M. Furman, Rapid Prototyping of Digital Systems, ISBN 0-387-27728-5,

Springer, NY, 2006.

5. M. Gokhale and P. Graham, Reconfigurable Computing, ISBN 0-387-26105-2, Springer, NY, 2005.

6. C. Maxfield, The Design Warrior’s Guide to FPGAs, ISBN 0-750-67604-3, Elsevier, Burlington,

MA, 2004.

7. W.Wolf, FPGA-Based System Design, ISBN 0-131-42461-0, Prentice-Hall, Englewood Cliffs, NJ, 2004.

Many excellent conferences are held annually to provide the latest information on configurable

computing systems from the FPGAs to development systems. Some of these conferences are as

follows:

8. Symposium on Field-Programmable Custom Computing Machines (FCCM), http:==www.fccm.org.

9. ACM=SIGDA International Symposium on Field-Programmable Gate Arrays, (FPGA). http:==www.

Isfpga.org.

10. International Workshop on Field Programmable Logic and Applications (FPL), http:==www.fpl.org.

11. Reconfigurable Architectures Workshop (RAW), http:==www.ece.lsu.edu=vaidy=raw06=.

12. Design Automation Conference (DAC), http:==www.dac.com.

The proceedings from these conferences contain many articles on not only configurable comput-

ing systems but also applications for which configurable computing systems have been shown to be

effective. The configurable computing systems are applied in other areas such as cryptography,

fingerprint matching, multimedia, and astronomy.

More in-depth information on virtual computing power and a list of applications of configurable

computing system is as follows:

13. J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard, Programmable active

memories: Reconfigurable systems come of age, IEEE Trans. VLSI Syst., 4(1): 56–69, 1996.

More information on research and development into design tools for configurable computing

may be obtained by visiting the Web sites of the research groups involved. Some of these are:

14. Brigham Young University, Configurable Computing Web page, http:==splish.ee.byu.edu and the

JHDLWeb page, http:==www.jhdl.org.

15. University of Cincinnati, REACT Web page, http:==www.ececs.uc.edu=�dal=acs=index.htm.

16. Colorado State University, CAMERON Project Web page, http:==cs.colostate.edu=cameron.

17. Northwestern University, A Matlab Compilation Environment for Adaptive Computing Systems

Web page, http:==www.ece.nwu.edu=cpdc=Match=Match.html.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 24 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-24 Digital Systems and Applications

18. University of Southern California, DEFACTO Web page, http:==www.isi.edu=asd=defacto.

19. University of Tennessee, CHAMPION Web page, http:==microsys6.engr.utk.edu=�bouldin=darpa.

21.3 Xtensa: A Configurable and Extensible Processor

Ricardo E. Gonzalez and Albert Wang

21.3.1 Introduction

Until a few years ago, processors were only sold as packaged individual ICs. However, the growing density

of CMOS circuits created an opportunity for incorporating the processor as part of a larger system on a

chip. Initial processor designs for this market were based on the processor existing as a separate entity, and

cores were handcrafted for each manufacturing process technology, resulting in costly and fixed solutions.

Furthermore, it was not possible to modify these cores for the particular application, in much the same

way that it was not possible to modify a stand-alone prepackaged processor.

Xtensa is a processor core designed with ease of integration, customization, and extension in mind.

Unlike previous processors, Xtensa lets the system designer select and size only the features required for

a given application. The configuration and generation process is straightforward and lets the designer

define new system-specific instructions if preexisting features don’t provide the required functionality.

Furthermore, Xtensa fits easily into the standard ASIC design flow. Xtensa is fully synthesizeable, and

designers can use the most popular physical-design tools during the place-and-route process.

21.3.2 Processor Development

Application-specific processor development is an active area of research in the CAD, computer archi-

tecture, and VLSI design communities. Early attempts to add application-specific instructions to

general-purpose computer engines relied on writable micro-code [1,2]. These techniques dynamically

augmented the base instruction set with application-specific instructions.

More recent research focuses on automatic instruction set design [3,4] or on reconfigurable, also

called retargetable, processors [5]. These groups, however, try to solve slightly different problems than

those addressed by Xtensa. Automatic instruction set design systematically analyzes a benchmark

program to derive an entirely new instruction set for a given microarchitecture. Our group—here

referred to as ‘‘we’’—focuses on how to generate a high-performance and low-power implementation of

a given microarchitecture with application-specific extensions. In this respect, automatic instruction set

design is a good complement to our work. Once the instruction set additions are derived automatically

by analyzing the benchmark program, they can be given to the Xtensa processor generator to obtain a

high-performance, low-power implementation. Reconfigurable or retargetable processors couple a

general-purpose computer engine with various amounts of hardware-programmable logic. In the

extreme, the entire processor is implemented using hardware-programmable logic. The technique,

however, is limited by the large difference in operating frequency between programmable and nonpro-

grammable logic. Processors implemented entirely using programmable logic operate an order of

magnitude slower than nonconfigurable processors implemented in a comparable process technology.

Razdan and Smith present an interesting compromise [5]. Their approach couples a custom-designed

high-performance processor with small amounts of hardware-programmable logic. Their system uses

compiler-generated information to dynamically reconfigure a small amount of hardware-programmable

logic to implement new application-specific functional units. This technique also has limitations due to

the disparity in operating frequency of programmable and nonprogrammable logic. Thus, the new

functional units must be extremely simple or be deeply pipelined.

The authors’ approach is similar to that taken by Razdan and Smith except that we don’t attempt to

dynamically reconfigure the system. The Tensilica processor generator adds the application-specific

functionality at the time the hardware is designed. Thus, the extensions are implemented in the

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 25 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-25

same logic family as the rest of the processor. This eliminates the disadvantages of using programmable

logic for implementing the extensions, but precludes modification of the extensions for different

applications.

Due to a lack of automated tools, designers incorporated application-specific functionality in CPUs

by adding specialized coprocessors [6,7]. This approach introduces communication overhead between

the CPU and the coprocessor, making system design more arduous. Recently, with the advent of

synthesizeable processors, some groups have proposed manual modification of the register-transfer

level (RTL) description of the processor and the software development tools [8]. This approach is

tedious and error prone. Furthermore, the extensions are only applicable to one implementation. If

users want to add similar extensions to a future implementation of the same processor, they must

modify the RTL again.

The authors’ research differs from previous studies because we use a high-level language to express

processor extension. This language, called Tensilica Instruction Extension (TIE), expresses the semantics

and encoding of instructions. TIE can add new functionality to the RTL description and automatically

extend the software tools. This lets the system developer code applications in a high-level language, such

as C or Cþþ. TIE imposes restrictions on functions that designers can describe, which greatly simplify

verification of the processor and extensions. Because the extensions become an integral part of the

processor, there is no communication overhead.

21.3.3 Overview of Xtensa

We designed the Xtena instruction set architecture (ISA) to allow ease of extension and configuration.

Furthermore, the ISA minimizes code size, reduces power dissipation, and maximizes performance.

The Xtensa ISA consists of a base set of instructions, which exist in all Xtensa implementations, plus a

set of configurable options. The designer can choose, for example, to include a 16-bit multiply-accumulate

option if it is beneficial to the application. The base ISA defines approximately 80 instructions and is a

superset of traditional 32-bit RISC instruction sets [10]. The architecture achieves smaller code size

through the use of denser encoding and register windows. The ISA defines 24- and 16-bit instruction

formats, as opposed to 32-bit formats found in traditional RISC instruction sets. The Xtensa architecture

provides a rich set of operations despite the smaller instruction size. These sophisticated instructions, such

as single-cycle compare and branch, enable higher code density and improve performance.

The size of Xtensa instructions is encoded in the instruction, enabling 24- and 16-bit instructions to

freely intermix at a fine granularity. The 16-bit instructions are a subset of the 24-bit instructions. Thus,

the compiler optimization to reduce code size is trivial: replacing 24-bit instructions with their 16-bit

equivalent. The compiler can reduce code size without sacrificing performance.

21.3.3.1 Hardware Implementation

We built the first implementation of Xtensa around a traditional RISC five-stage pipeline, with a 32-bit

address space. Many other characteristics of the processor implementation, however, are configurable.

The configurability and extensibility of the implementation matches those of the architecture. Figure

21.10 shows a high-level block diagram of Xtensa. The base ISA features correspond to roughly 80

instructions. The designer can size or select configurable options, for example, how many physical

registers to include in the implementation, or the size of the instruction and data caches. Optional

features, shown as medium-gray in the figure, are selections the designer can make, such as whether to

include a 16-bit multiply-accumulate functional unit. Optional and configurable functions let the

designer select whether to include that feature and also to size it. For example, whether to include

data watch-point registers and, if so, how many. Xtensa optionally supports several data formats such as

fixed-point and floating-point. Vectra adds a configurable fixed-point vector coprocessor.

Table 21.1 shows a few of the configuration parameters and associated legal values available in the

current Xtensa implementation. Unlike conventional processors, Xtensa gives designers a choice regard-

ing the functionality of the processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 26 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-26 Digital Systems and Applications

21.3.3.2 Configuration

The configuration process begins by accessing the Tensilica processor generator Web page at http:==www.

tensilica.com. Here, using a standard browser, the designer can select and size the desired features. The

site’s configuration page gives the designer instant feedback on whether a particular choice will affect

the speed, power, or area of the core. The user interface warns the designer of conflicting options or

requirements for a particular option.

The designer starts the generation process at the push of a button. The generation process produces

the processor’s configured RTL description and its configured software development tools. The software

tools consist of an ANSI C=Cþþ compiler, linker, assembler, debugger, code profiler, and instruction set

simulator.

Function & optional

Configurable
Base ISA feature

Interrupt control

Data address watch 0 to n

Instruction address watch 0 to n

TRACE port

JTAG tap

On chip debug

Exception
support Designer-

defined
execution

units

Data

Instruction

Data
address

Pr
oc
es
so
r
c

on
tr
ol
s

Align and decode

ALU

Register file

M
e
m
or
y
pr
ot
ec
ti
o
n

Pr
oc
es
so
r
in
te
rf
ac
eWrite

buffer

Data memory
or cache & tags

Instruction
memory

Branch logic and
instruction fetch

Instruction
address

FPU

Vectra DSP

MAC 16

MUL 16

MUL 32Timers 0 to n

Designer-
defined
register

files

Configurable
advanced designer
defined
coprocessors

Function optional

FIGURE 21.10 Block diagram of Xtensa.

TABLE 21.1 Xtensa Configuration Parameters

Parameter Legal Values

Instruction=data cache size 1–256 KB

Instruction=data cache associativity Direct-mapped, 2-way, 4-way

Instruction=data RAM size 1 KB, 2 KB, 4 KB, 8 KB, 16 KB

Instruction=data ROM size 1 KB, 2 KB, 4 KB, 8 KB, 16 KB

Size of windowed register file 32, 64

Number of interrupts 0–32

Interrupt levels 0–3

Timers 0–3

Memory order Big-endian, little-endian

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 27 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-27

The generation process takes approximately one hour to complete. After the process is complete, the

designer can download and install the RTL and software development tools. At this point, the designer

can either compile an application and measure the performance using the instruction set simulator, or

start the hardware synthesis using the RTL description.

The software tools are built on top of the industry-standard GNU tools and include an optimizing C

compiler enabling application development in a high-level language. The instruction set simulator and

code profiler help the designer quickly identify bottlenecks in application performance. Optionally, the

designer can recode the application to work around these bottlenecks or add new instructions to the

processor designed to optimize this particular application.

The designer can map the RTL description to a gate-level netlist using industry-standard synthesis

tools. Included with the RTL description are a set of synthesis scripts that help automate this process.

These scripts let designers quickly obtain a fully optimized gate-level netlist of Xtensa. Tensilica also

provides a set of scripts to automate the place-and-route process. It is common for new users to place

and route Xtensa within a day or two of downloading the configured RTL.

21.3.4 Instruction Set Extension

Hardware designers realized the advantages of extending a general-purpose processor with application

specific functional units long time ago [6,7]. Until now, however, the only way to do this was to add the

functional units as a coprocessor. This often meant there was some communication overhead between

the processor and the application-specific logic. Also, often the coprocessor would require sophisticated

control, which had to be implemented with finite state machines or with micro-sequencers.

The Tensilica processor generator provides a more flexible and powerful approach to processor

extension. Using TIE the system designer can describe, at a high-level, the functionality of the new

functional units. The TIE compiler will then automatically generate an efficient pipelined implementa-

tion. The system designer must specify only the functionality of the new hardware and the required (and

architecturally visible) storage elements—register files and special-purpose state elements. The pipeline

flip-flops and the bypass and interlock detection logic are then automatically generated by the TIE

compiler. Furthermore, the TIE compiler (TC) will automatically extend the software tools so that the

new hardware is accessible from C=Cþþ.

Using TIE has many advantages over more traditional methods of extension. First, the sophisticated

control can now be accomplished using software—making it easier to debug and optimize. Second, the

system designer can quickly prototype different design alternatives enabling him (or her) to quickly

converge to a good solution to the problem. Third, verification of the new hardware’s functionality can be

done using the instruction set simulator (ISS), which can simulate hundreds of thousands of instruction

per second, rather than on the RTL model, which can only simulate hundreds of cycles per second.

Similar to most previous machine description languages [14], TIE is an instruction set architecture

(ISA) description language. It relies on a tool, the TIE compiler, to generate an efficient hardware

implementation and required additions to the software tools, including the compiler, ISS, and debugger.

TIE is not intended to be a complete processor description language. Instead, the TIE language provides

designers simple ways to describe a broad variety of computational instructions, yet allows the TIE

compiler to generate efficient hardware. The language is simple enough for a wide range of designers to

master, yet general enough to allow description of sophisticated ISAs. The rest of this section describes

the capabilities of the TIE language.

TIE lets the designer specify the mnemonic, encoding, and semantics of new instructions. The

designer uses a combination of field, opcode, operand, and iclass statements to describe

the format and encoding of an instruction. The field statement gives a name to a group of bits in

the instruction word. The opcode statement assigns instruction fields with values. The operand
statement specifies how an instruction’s operand is encoded in an instruction field. The iclass
statement describes the assembly format for an instruction and lists the input and output operands of

the instruction. A large set of predefined instruction fields and operands (used to describe the

base Xtensa ISA) can be used directly in the TIE description. The following example describes two

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 28 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-28 Digital Systems and Applications

instructions: A4 and S4. These instructions take two 32-bit operands from the core register file, perform

four 8-bit additions and subtractions and store the result back to the core register file:

opcode A4 op2¼0 CUST0
opcode S4 op2¼1 CUST0
iclass RR {A4, S4} {out arr, in ars, in art}

The first two lines define the opcodes for A4 and S4 as sub-opcodes of a previously defined opcode

CUST0 with the addition of field op2 equal to 0 and 1, respectively. The third line makes use of the pre-

defined register operands arr, ars, and art, and defines two new assembly instructions,

A4 arr, ars, art
S4 arr, ars, art

21.3.4.1 Customized Datapath

The computational part of an instruction is specified in a TIE reference block. The syntax of a

reference block is very similar to the Verilog hardware description language. The variables used in the

reference block are predefined (if they appear in the iclass statement), or locally declared variables.

The reference block for the A4 and S4 instructions defined in the previous section are shown below,

reference A4 {
assign arr¼{
ars[31:24]þ art[31:24],
ars[32:16]þ art[23:16],
ars[15:8]þ art[15:8],
ars[7:0]þ art[7:0]};

}
reference S4 {

assign arr¼{
ars[31:24]– art[31:24],
ars[32:16]– art[23:16],
ars[15:8]– art[15:8],
ars[7:0]– art[7:0]};

}

The reference description for the two instructions is simple and direct, yet may not result in the best

hardware implementation. For example, the logic for addition and subtraction could be shared between

the two instructions. TIE allows the designer to describe this high-level hardware sharing

between multiple instructions using the semantic block. The semantic block is similar to a

reference block but allows multiple instructions to be described at the same time. The semantics

of A4 and S4, for example, can be described as follows:

{semantic add sub {A4, S4}}
assign arr¼{
ars[31:24]þ(S4 ? �art[31:24]: art[31:24])þS4,
ars[32:16]þ(S4 ? �art[23:16]: art[23:16])þS4,
ars[15:8]þ(S4 ? �art[15:8]: art[15:8])þS4,
ars[7:0]þ(S4 ? �art[7:0]: art[7:0])þS4};

}

The semantic statements allow more efficient hardware implementation, while the reference
statements are easier to write, are better suited for inclusion in documentation and are a better source

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 29 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-29

for simulation code. Thus, TIE allows instructions to have either a reference block, a semantic
block, or both. Most often, designers will write the reference description first. Once they have verified the

correctness and usefulness of the instruction they write the semantics to optimize the hardware

implementation. TIE allows formal equivalence checking between the semantic and reference descrip-

tion to ensure the implementation is identical.

21.3.4.2 Multi-Cycle Instructions

To keep up with the speed of Xtensa, which is pipelined and runs at a high clock rate, instructions with

complex computation may require multiple cycles to complete. Writing and verifying multi-cycle instruc-

tions is a challenging task for designer unfamiliar with the processor’s pipeline, especially if the designermust

add the appropriate data-forwarding and interlock detection logic. TIE provides a schedule statement

that alleviates this problem. The schedule statement captures the timing requirements of the instruction. The

designer can then rely on the TIE compiler to derive the implementation automatically. For example, a

multiply-accumulate (MAC) instruction that performs the following operation: acc¼accþ(a*b)
typically requires at least two cycles in a pipelined processor. In order to achieve one MAC per cycle

throughput, the hardware must use (read) the a and b operands at the beginning of the first cycle, use

acc at the beginning of the second cycle, and produce a new acc at the end of the second cycle. The timing of

the instruction can be described in TIE as

schedule MAC_SCHEDULE {MAC} {
use a¼1;
use b¼1;
use acc¼2;
def acc¼2;

}

The rest of the implementation, including the efficient insertion of pipeline registers, interlock detection,

result bypassing, and generation of good code schedules are all handled automatically by the TIE compiler.

21.3.4.3 Register Files and State Registers

When adding new application-specific datapaths it is often necessary to addnew storage elements. Twomain

reasons exist for adding new storage elements. First, algorithms often require specific bit widths, whichmay

not be efficiently supported by the core register file. And second, some algorithms require higher bandwidth

than the core register file provides. In the MAC instruction described in the previous subsection, for

example, the machine would require a new state register to hold the value of the accumulator. Otherwise

it would require an additional read port in the core register file (the accumulator value would be held in a

register). Furthermore, the algorithm may require an accumulator value with more precision.

TIE states are extensions to the software visible programming model. They allow instructions to have

more sources and destinations than provided by the read and write ports of the core register file. They

can also be used as dedicated registers holding temporary values during program execution. When an

application needs a large number of such sharable TIE states, it becomes more efficient to group the state

into a register file and rely on the C compiler to assign the variables to register entries.

Describing instructions that use TIE states is simple. The designer must specify, in the iclass of the

instruction, how the state is used. The state variable is then available in the instruction’s reference
and semantic blocks. The following example is a complete description of the MAC instruction,

state acc 40 =* a 40-bit accumulator *=

opode MAC op2¼0 CUST0
iclass MAC_CLASS {MAC} {in ars, in art} {inout acc}
reference {

assign acc¼(ars * art)þacc;
}

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 30 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-30 Digital Systems and Applications

Using a register file involves one more step: describing the register operands. The following TIE code,

for example, adds a 24-bit register file:

regfile GR 24 16 =* 26 entries, 24-bits each*=
operand gr r {GR[r]}
operand gs s {GR[s]}
operand gt t {GR[t]}

The three register operands use predefined instruction fields (r, s, t) as indices to access the register

file contents. An instruction that uses these operands can be describes as,

iclass RF {AVE} {out gr, in gs, in gt}

Using TIE it is possible to very quickly develop sophisticated hardware that can significantly enhance

the application performance of the processor. Furthermore, the new hardware is easily accessible to the

C=Cþþ programmer.

21.3.4.4 Software Support

One key advantage of TIE is that it allows hardware and software to be extended together. This allows the

programmer to access the new hardware from C or Cþþ. This allows the programmer to focus on

algorithmic optimization, rather than mapping the algorithm to a fixed processor architecture. Pro-

grammers often spend more time designing how to map the algorithm’s data-types to the processor

data-types than they do on optimizing the algorithm for their application. Using TIE it is possible to

extend the hardware and software together so the mapping of the algorithm’s data-types is more natural.

In order for this extension to be useful to the programmer, however, it must be complete. The

compiler, assembler, simulator, debugger, real-time operating system, and application libraries must be

extended to use the new hardware datapaths. The TIE compiler generates dynamically loadable libraries

(DLLs) that are used to configure the software tools at runtime. Generation of the DLLs takes less than a

minute (even for large TIE descriptions). This allows designers to quickly make changes to the TIE

description and evaluate the performance of the system. TIE allows designers (or programmers) to

define new C data-types that are mapped to TIE register files. The programmer must also specify, in the

TIE description, instruction sequences to load and store these data-types from (to) memory. The

programmer can then use these new data-types in C=Cþþ as if they were built-in data-types. Oper-

ations are described via instrinsics (every TIE instruction is available as an intrinsic in C=Cþþ) but

register allocation, variable saves and restores, addressing arithmetic, and control flow generation for the

new data-types are handled automatically by the C compiler. The C compiler is also aware of any side-

effects and pipelining of TIE instructions so it can efficiently schedule the instructions.

The TIE compiler also generates libraries to save and restore processor state on a context switch. The

compiler uses the instruction sequences described by the programmer to load and store the new data-

types. The libraries are used by commercial operating systems, such a WindRiver’s VxWorksy. The

operating system is delivered as a pre-built binary with hooks to call the context switch code generated

by the TIE compiler.

The TIE compiler must also add knowledge of the new instructions and register files to the instruction

set simulator and the debugger. The TIE compiler translates the reference block of each instruction to a

C implementation that can be used by the simulator to model the execution of the instruction. The TIE

compiler also extends the debugger to allow visualization of new register files and state registers.

21.3.5 Application Examples

21.3.5.1 DES

To demonstrate the potential of TIE, we extended Xtensa to improve the performance of the Data

Encryption Standard (DES)—a popular encryption and decryption algorithm often used for secure

Internet communication.We chose DES for two reasons: its growing popularity in embedded applications

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 31 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-31

that require secure Internet transactions, and the relatively poor encryption and decryption performance

of general-purpose processors.

A simple DES modification, known as Triple-DES, extends the key to 168 bits by iterating the DES

algorithm three times with three different keys. Triple-DES has been specified as an encryption

algorithm for both the secure shell tools [11] and the Internet protocol for security [12]. Both of

these applications require high-speed encryption and decryption and are implemented as part of many

of today’s interesting embedded systems.

The DES algorithm requires extensive bit permutations, which are difficult to implement efficiently in

software. However, designers can efficiently implement these permutations in hardware, since each

corresponds to a simple renaming of the wires. The algorithm also specifies rotation on 28-bit

boundaries. Even if the processor has a rotate instruction, it often is not usable since it most likely

rotates on 32-bit boundaries. Finally, the algorithm requires bit packing, unpacking, and table lookups.

These operations are slow in software but easy to implement with hardware. We modified the Xtensa

processor to include special instructions to speed up these operations.

Based on run-time profile information, we defined four new instructions and reimplemented the

application to use these instructions. We verified the implementation of the TIE instructions by

comparing the output of the modified application, which uses the TIE-generated C description of the

instructions, with the results of a reference implementation of DES written completely in C. In addition

to four new instructions, we also added three new state registers to the processor. The registers hold

intermediate values during the encryption and decryption process. Of the four new instructions, one

performs the encryption and decryption step using values in the state registers. The other three

instructions transfer data to (and from) the processor registers from (and to) the state registers, while

concurrently permuting the data values. When compiled for the Xtensa architecture, the new application

required only 154 bytes of object code and no static or dynamic data storage. Thus, the original

implementation required 36 times more memory than this implementation.

Figure 21.11 shows the speedup of the DES-enhanced Xtensa core compared to an unmodified Xtensa

core. The X-axis shows the block size used for encryption and decryption. The original DES implemen-

tation gains much of its speed by precomputing large tables of values from a fixed key, making key

changes very expensive. Thus, small blocks can attain speedup by a greater factor than large blocks

(where key changes are less frequent). The modified Xtensa can encrypt and decrypt data at the rate of

377 MB=s. The hardware cost of the TIE instructions is roughly 4,500 equivalent (NAND2) gates

DES performance

43

50

72

0

20

40

60

80

1024 64 8

Block size (bytes)

S
pe

ed
up

FIGURE 21.11 DES speedup using TIE.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 32 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-32 Digital Systems and Applications

(measured in a 0.25-mm process technology). The reduced storage requirements of the application offset

this hardware cost. In addition, the new TIE instructions did not increase the cycle time of the machine.

DES is only one of the applications that can benefit from specialized hardware.

21.3.5.2 Consumer Multimedia

The EEMBC consumer benchmarks contain a representative sample of multimedia applications of

interest today. A baseline configuration of Xtensa contains many features suitable for these applications.

At 200 MHz operation Xtensa delivers more than 11 times the performance of the reference processor

(ST Microelectronics ST20C2y at 50 MHz). Performance is measured as the geometric mean of the

relative number of iterations per second for each algorithm compared to the reference processor;

however, when we added instructions for image filtering and color-space conversion (RGB to YIQ and

RGB to CYMB) the average performance increased by 17X (193 times faster then the reference). An

AMD K6-IIIþ at 550 MHz, for comparison, is 34.2 times faster then the reference processor. The base

configuration was optimized for 200 MHz operation in a 0.18-mm technology. The processr was

configured with 16 KB two-way set associative caches, 256 KB local data RAM, 16-entry store buffer,

and 32-bit multiplier. The total area of the processor was 57,600 NAND2-equivalent gates. The

optimized TIE code cost an additional 64,100 NAND2-equivalent gates.

21.3.5.3 DSP Telecommunications

The EEMBC ‘‘Telemark’’ benchmark suite includes many kernels representative of DSP applications.

The performance of a base Xtensa processor in this suite is comparable to that of other 32-bit

microprocessors (2.3 times faster than the reference). Performance was also measured as the geometric

mean of the relative number of iterations per second for each algorithm compared to the reference

processor (IDT 32334y – MIPS32y architecture at 100 MHz). Adding a fixed-point vector co-processor

and a few more specialized instructions, the performance of Xtensa increases by 37X, or a speedup of

85.7X compared to the reference processor. The AMD K6-IIIþ at 550 MHz has a speedup of 8.7

compared to the reference, while a TI DSP (TMS320C6203) running hand-optimized code at 300

MHz has a 68.5 speedup compared to the reference processor. The base Xtensa configuration was also

optimized for 200 MHz operation in 0.18-mm technology with 16 KB two-way set associative caches,

and 16-entry write buffer. The vector coprocessor and new TIE instructions add 180,000 thousand

NAND2-equivalent gates.

21.3.6 Conclusions

Configurable and extensible processors provide significant advantages compared to traditional hard-

wired processors. To take full advantage of extensibility, however, requires a methodology that can

extend both the hardware and the software together. We showed that TIE provides a methodology for

extension this is complete, fast, and robust.

Using TIE can also help reduce design time by simplifing the hardware verification effort and also by

allowing a more natural maping of the algorithm to the hardware implementation.

Furthermore, since the control flow is described in software it is much easier to verify and to enhance.

We also showed the extension can significantly increase application performance. We showed that for

two different set of application kernels an Xtensa procesor with application-specific extension was 20–40

times faster than a high-performance RISC processor.

Acknowledgments

The authors thank the entire engineering staff at Tensilica. This article reflects their hard work and

dedication. The authors are also grateful to Rick Rudell for the development of the DES TIE code and to

Michael Carchia who did the EEMBC benchmarking.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 33 4.10.2007 4:01pm Compositor Name: VBalamugundan

Reconfigurable Processors 21-33

References

1. A. Abd-alla and D. Kartlgaard. Heuristic synthesis of microprogrammed computer architectures.

IEEE Transactions on Computers, 23(8): 802–807, Aug. 1974.

2. P. Liu and F. Mowle. Techniques of program execution with a writable control memory. IEEE

Transactions on Computers, 27(9): 816–827, Sept. 1978.

3. F. Haney. Using a Computer to Design Computer Instruction Sets. PhD thesis, Carnegie-Mellon

University, Pittsburgh, PA, 1968.

4. B. Holmer. Automatic Design of Computer Instruction Sets. PhD thesis, University of California,

Berkeley, CA, 1993.

5. R. Razdan and M.D. Smith. A high-performance microarchitecture with hardware-programmable

functional units. In Proc. of Micro-27, Nov. 1994.

6. O. Nishii, F. Arakawa, K. Ishibashi, et al. A 200MHz 1.2W 1.4GFLOPS microprocessor with graphics

unit. In IEEE International Solid-State Circuits Conference, vol. 41, pp. 288–289, IEEE, Feb. 1998.

7. S. Santhanam, A. Baum, D. Bertucci, et al. A low-cost 300 MHz RISC CPU with attached media

processor. In IEEE International Solid-State Circuits Conference, vol. 41, pp. 298–299, IEEE, Feb.

1998.

8. http:==www.arccores.com.

9. S. Hesley, V. Andrade, R. Burd, et al. A 7th-generation x86 microprocessor. In IEEE International

Solid-State Circuits Conference, vol. 42, pp. 182–183, IEEE, Feb. 1999.

10. J.L. Hennessy and D.A. Patterson. Computer Architecture A Quantitative Approach. First edition,

Morgan Kaufmann Publishers, San Mateo, CA, 1990.

11. T. Ylonen, T. Kivinen, M Saarinen, et al. SSH protocol architecture. Internet-Draft, August 1998.

draft-ietf-secsh-architecture-02.txt.

12. S. Kent, R. Atkinson, ‘‘Security architecture for the Internet protocol,’’ RFC 2401, Nov. 1998.

13. G. Hadjiyiannis, S. Hanono, S. Devadas. IDSL: An instruction set description language for retarget-

ability. In Design Automation Conference, 1997.

14. V. Zivojnovic, et al. LISA-machine description language and generic machine model for HW=SW

co-design. In IEEE Workshop on VLSI Signal Processing, 1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C021 Final Proof page 34 4.10.2007 4:01pm Compositor Name: VBalamugundan

21-34 Digital Systems and Applications

22
Roles of Software

Technology
in Intelligent

Transportation
Systems

Shoichi Washino
Tottori University

22.1 Background of Intelligent Transportation Systems 22-1

22.2 An Overview of Japanese ITS and the Nine
Developing Fields of Japanese ITS............................... 22-3

22.3 Status of Japanese ITS Development........................... 22-4
In-Vehicle Navigation System and VICS . Electronic

Toll Collection System . Support of Safe Driving System

22.4 Issues of ITS Development and Roles
of Software Technology... 22-11
Issues of ITS Development . Roles of Software Technology

22.5 Practices of Software Development of Both
In-Vehicle Navigation System and ITS Simulator.... 22-14
In-Vehicle Navigation Systems

22.6 Conclusion ... 22-24

22.1 Background of Intelligent Transportation Systems

Today, one encounters a lot of traffic congestion and hears of people injured or killed by traffic accidents.

Moreover, there has been no remarkable improvement in air pollution due to exhaust gases from

vehicles inspite of the stringent regulation for vehicles. It is natural that frequent traffic congestion

results in lower mean vehicle speed. Figure 22.1 shows an example of mean averaged vehicle speed in

Japan. Vehicle speed in urban area like Tokyo and Osaka is very close to that of a bicycle. On the

contrary, vehicle speed in countryside is faster than urban area. Therefore, average vehicle speed of

the whole of Japan shows a little bit higher value, as shown in Fig. 22.1.

Traffic accidents are a more serious matter than vehicle speed. Figure 22.2 shows an example of the

number of people killed due to traffic accidents in Japan. About ten thousand persons are still killed by

traffic accidents. Moreover, the death rate of senior people has become higher in Japan.

A third example of traffic problems—the status of air pollution in Japan—is shown in Fig. 22.3. Both

hydrocarbon (HC) and carbon monoxide (CO) have decreased gradually. On the contrary, nitric oxide

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 1 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-1

0

10

20

30

40

80 83 85 88 90 94

Tokyo

Osaka

Japan

Nearly equal speed to
that of bicycle

Km/h

FIGURE 22.1 Average vehicle speed.

0

2000

4000

6000

8000

10000

12000

92 93 94 95 96 97 98

Persons

High death rate
of senior people

About 10,000 persons
are killed

Year

FIGURE 22.2 Numbers of persons killed by traffic accidents.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

75 80 85 90

CO (ppm)

NOx (x100)

HC (ppmC)

95

No decrease
of NOx

Gradual
decrease of both

CO & HC

FIGURE 22.3 Air pollution.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 2 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-2 Digital Systems and Applications

(NOx) has not decreased. It has remained nearly

constant in spite of the stringent Japanese exhaust

gas regulation. These three examples are related to

Japan. But the traffic situation of all countries is

very much similar.

In principle, these phenomena are eliminated by

constructing new roads because it gives smoother

traffic flow. The cost to construct them, however, has

become very expensive in every country. So such a

conventional way to solve these traffic problems is

not available. On the other hand, information tech-

nology has progressed remarkably these days. As a

result of this, many government officers have

embraced an idea to solve these traffic problems by

using information technology. Indeed the idea has

led to a system image called Intelligent Transporta-

tion Systems (ITS), as shown in Fig. 22.4.

22.2 An Overview of Japanese ITS and the Nine Developing
Fields of Japanese ITS

It was in 1995 that the second ITS World Congress was held at Yokohama. In Japan, several projects on

ITS had been carried before 1995. Table 22.1 shows those projects. The first project was called

comprehensive automobile traffic control system (CACS) proposed and lead by Ministry of Construc-

tion of the Japanese government at that time. Then the Ministry of Transport, Ministry of Post and

Telecommunication, Ministry of International Trade and Industry, National Police Agency, and Ministry

of Construction proposed several projects on ITS and they had also promoted these projects. These are

the major six projects to develop ITS in Japan, as shown in Table 22.1.

VICS means vehicle information & communication system. This mainly provides traffic information

such as congestion, road construction, road restriction, traffic accidents, and parking information. VICS

supposes an in-vehicle navigation system is loaded in a vehicle; this is already widespread in Japan as

shown later.

ETC means electronic toll collection system. One often sees congestion in front of a tollgate due to

‘‘stop’’ and ‘‘go’’ at the tollgate. The aim of this project is to reduce such congestion using communi-

cation technologies between vehicle and road infrastructure.

AHS means advanced cruise-assist highway system ori-

ginally from automated highway system. This system sup-

poses advanced safety vehicle to enhance traffic safety and

reduce accidents. This system is a kind of driving support

system with collaborating road infrastructure and vehicle.

ASV is advanced safety vehicle to enhance traffic safety

and reduce accidents. It has originally aimed to do so

without any aid of road infrastructure. But now both

ASV and AHS projects are collaborating because the col-

laboration is more effective from the point of view of both

system performance and its cost.

SSVS means super smart vehicle system. Now, its

main activity is related to the development of inter-vehicle

communication technologies.

Enhancement of traffic
safety, efficiency, & comfort

Driver

Road Vehicle

Information
&

communication

FIGURE 22.4 Concept of ITS.

TABLE 22.1 ITS Projects in Japan

. VICS (MOC, NPA, MPT)

Vehicle Information & Communication System
. ETC (MOC, MPT)

Electronic Toll collection System
. AHS (MOC)

Advanced cruise-assist Highway System
. ASV (MOT)

Advanced Safety Vehicle
. SSVS (MITI)

Super Smart Vehicle System
. UTMS (NPA)

Universal Traffic Management System

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 3 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-3

UTMS is an abbreviation of universal traffic

management system. This project has an aim to

develop ITS using two-way communication

between road and vehicle, particularly using infra-

red light communication.

In 1995, the Japanese government set nine

development fields to promote Japanese ITS.

Both Fig. 22.5 and Table 22.2 show the nine

development fields. In Fig. 22.5, those fields are

expressed dividing the two categories of road

infrastructure side and vehicle side.

Vehicle side includes only two fields. One is advances in navigation system (ANS) and the other is

assistance for safe driving (ASD). For example, VICS is included in the field of ANS. Five of the nine

fields belong to infrastructure side. For example, road maintenance by special cars like removal of snow

on roads using snow shoveling car is in these five fields.

ETC and SFP, which means support for pedestrians, locate between infrastructure and vehicle because

these systems are very effective only when both infrastructure and vehicle are collaborating.

22.3 Status of Japanese ITS Development

It is apparent that setting these developing fields shown in the above accelerates ITS development. As a

result of this VICS has started its service to provide vehicles with real-time traffic information such as

congestion, road construction, and accidents since 1996. Though this system assumes that in-vehicle

navigation systems are loaded in a vehicle, VICS is the first system to be put into practical use all over the

world. In 2001 ETC is also to be started at the several tollgates of highways in Tokyo and Osaka area.

As one can easily see, VICS is not likely to reduce traffic congestion and accidents in a direct way. But

according to some statistics it is said that VICS also provides people with a kind of comfort when they

drive. So VICS is very useful to reduce traffic problems.

At the time the VICS service started, Tokyo, Aichi, and Kansai were the only three available areas to

receive the information provided by VICS service. But now the service areas have spread to almost all

over Japan. Figure 22.6 shows how rapidly both in-vehicle navigation system and VICS terminals grow

in Japan. White bars in Fig. 22.6 show the accumulated number of in-vehicle navigation units in

Japan. At the end of the last year, the number reached to about 6 million units. Getting along the

Infrastructure

ETC SFP

OTM

SEVO

IERM
IECVOSPT

Vehicle
ANS ASD

FIGURE 22.5 Nine fields of Japanese ITS.

TABLE 22.2 Nine Developing Fields of Japanese ITS

1. Advances in navigation systems (ANS)

2. Electronic toll collection systems (ETC)

3. Assistance for safe driving (ASD)

4. Optimization of traffic management (OTM)

5. Increasing efficiency of road management (IERM)

6. Support for public transport (SPT)

7. Increasing efficiency in commercial vehicle operation

(IECVO)

8. Support for pedestrians (SFP)

9. Support for emergency vehicle operation (SEVO)

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 4 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-4 Digital Systems and Applications

growth of in-vehicle navigation systems VICS terminals also have grown very rapidly, as shown by the

grey bars in Fig. 22.6 since 1996.

Besides VICS, five private companies shown in Table 22.3, Benz, Toyota, Nissan, Honda, and Sony, are

also providing traffic information and other information such as parking area, weather forecast,

sightseeing spots, and so on. Using the Internet, as Sony is doing, means no charge or fee to get

information, except the media fee, to receive traffic information. In my opinion, it will be interesting to

see which of the companies survive—the automakers or Sony.

22.3.1 In-Vehicle Navigation System and VICS

First of all, the Japanese in-vehicle navigation system will be explained more minutely. Figure 22.7 shows

the four main functions an in-vehicle navigation system can provide.

K Units

0

1000

2000

3000

4000

5000

6000

7000

, 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99

3/
20

00

Enlargement of
vehicle navigation

Enlargement of
VICS terminal

FIGURE 22.6 Accumulated numbers of units.

TABLE 22.3 Private Services of Information Provision

Name Information Provided & Function Media Start Application Fee Annual Fee

Intelligent traffic

guidance system

1. Optimum route to destination,

travelling time

Cellular April ’97 ¥5,000 ¥36,000

2. News, weather forecast

3. Leasure information

Moneh 1. Conjesion, construction,

traffic control

Cellular April ’98 ¥2,500 ¥6,000

2. Parking, gas station, restaurant

guide

3. News, weather forecast

Inter-navi system 1. Setting of destination & course Cellular July ’98 ¥2,500 ¥6,000

2. Connecting to internet Free 99=6 Free 99=6

3. Parking, gas station, restaurant

guide

Compass link 1. Parking, gas station, restaurant

guide

Cellular Sept. ’98 ¥3,500 ¥30,000

2. News, weather forecast

3. Response by operators

Mobile link 1. Hotel, restrant, movies, news,

TV guide

Cellular Nov. ’97 Free Free

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 5 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-5

The first function is positioning of present vehicle location. Normally, global positioning system

(GPS) and map matching technologies have been used to determine the present location of a car. The

second function is route search between a present location of a vehicle and a driver’s destination. One

can easily get an optimum route between the present location and the destination when only the

destination is input into an in-vehicle navigation system. The third function is route guidance to

guide you to your destination along with the determined way by the route calculation function.

Normally, this guidance is performed by both voice and display for driver’s safety. The last important

function is to display vehicle position, results of route search, and guidance so that drivers can

understand them easily at a glance.

A real configuration of a typical in-vehicle navigation system is shown in Fig. 22.8. It normally

consists of the six components shown in this picture. A color monitor for a navigation system is also

used to display moving pictures from a TV set and a DVD player, as shown at the lower right of Fig. 22.9.

An important issue is that VICS supposes an in-vehicle navigation system to be loaded in a vehicle. So, a

TV tuner also includes a receiver for VICS, in general. As shown later, VICS uses three major media such

as FM multiplex, electromagnetic beacon, and infrared light beacon.

Figure 22.10 is an example of a map display that often appears on a color display monitor of Japanese

in-vehicle navigation system. It shows the three major basic results in the minute map: the display of the

4. Display3. Route guidance

2. Route search 1. Location

FIGURE 22.7 Major four functions of car navigation.

Color monitor

Remote control
unit

Navigation unit

DVD-ROM

TV tuner including
VICS receiver

Antenna

FIGURE 22.8 Real configuration of in-vehicle navigation system.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 6 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-6 Digital Systems and Applications

present vehicle position, the optimum route for the destination, and vehicle guidance. A simplified map

in Fig. 22.10 helps drivers to understand the direction they have to follow at the next intersection. The

large (red) triangle at the lower left of this figure shows the present vehicle position determined by the

location identification technology. A row of small (yellow) triangles shows the optimum route calculated

by a navigation system. The right simplified map in this picture enables a driver easily understand which

way he or she should take at the next intersection.

Figure 22.11 is another example of map display of in-vehicle navigation system. The left map in this

figure shows a real map showing the present vehicle position and the calculated optimum route to the

destination. The right picture shows a 3-D, simplified map with several landmarks such as McDonald’s,

road messages, and a traffic signal. Normally, it is said that a 3-D representation is easily understandable

for drivers regarding which way they have to go.

Video images

3D intersection
display

FIGURE 22.9 Examples of information display.

Simplified map

Present location

Calculated
route

FIGURE 22.10 One example of a map display.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 7 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-7

The situation is a bit different between Japan and other countries because of people’s preferences

for navigation displays are a bit different. For example, Japanese people like a map display as shown in

Fig. 22.10, but people of other countries like only displays of the directions drivers have to take.

A block diagram of an in-vehicle navigation system is shown in Fig. 22.12. One can easily understand

that essential configuration of an in-vehicle navigation system is the same as that of a personal computer

excluding both the VICS unit and the sensors to be used to determine the vehicle location. In the

CD-ROM, a map database is stored and accessed when a map is displayed, an optimum route is

searched, and route guidance is performed. The software in the ROM in Fig. 22.12 provides the four

functions—vehicle location, route search, route guidance, and display. For example, vehicle location is

determined with processing signals from GPS, a vehicle speed sensor, and a gyro sensor. After vehicle

location is fixed, a map database in the CD-ROM is accessed. Then, both the present vehicle location and

3D intersection
display

FIGURE 22.11 Another example of a map display.

CPU
RAM
ROM

I/O

CD-ROM

GPS

Vehicle
speed

Gyro

VICS unit

Display

Same configuration
 as personal computer

Functions

1. Vehicle location

2. Route search
3. Route guidance

4. Display

FIGURE 22.12 Vehicle navigation and VICS.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 8 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-8 Digital Systems and Applications

a map near to the present vehicle location are displayed simultaneously on a color display moniter. If a

driver inputs his or her destination to the navigation unit through the color monitor, the optimum route

calculation is initiated and then the result is displayed. Along with the optimum route, the navigation

unit guides the route to the driver in response to the vehicle movement. In addition to this, information

such as the locations of restaurants, convenience stores, and gas stations near the vehicle’s present

location are also displayed.

The four basic functions of an in-vehicle navigation system, including the required function by VICS,

are performed by software implemented in a navigation system as previously mentioned. So the scale of

the software of an in-vehicle navigation system has become very large, it needs about 10 MB memory.

This means it is 100 times as much as that of the software scale of engine control system that can cope

with emission regulation of the passenger cars by Japanese government. Therefore, the software

development of an in-vehicle navigation system cannot be developed with a conventional way in a

short time at low expense.

The whole system of VICS can be explained using Fig. 22.13. Traffic information is collected and

edited in VICS center, then it transmitted with the three media—electromagnetic beacon, infrared

light beacon, and FM multiplex. One can get information, such as traffic congestion, through display of

in-vehicle navigation system with the VICS terminal. VICS is supported by three ministries of Japanese

government: the Ministry of Construction, the Ministry of Post & Telecommunication, and the National

Police Agency. Figure 22.14 shows an example of a display that shows several pieces of information

such as traffic information sent by VICS service. The map display is performed using a map database of

an in-vehicle navigation system in Fig. 22.12. A road next to one red line in the left part of Fig. 22.14

shows conjestion in only one direction. In this case up direction of this road is congested. Two red lines

along a road shown at the right part in Fig. 22.14 means that the road is congested in two directions (up

and down). One can easily detour these congested roads if with such real-time traffic information. VICS

provides other information about road construction, road restrictions, and even about parking lots.

VICS can also provide real-time information regarding traffic information and other useful information,

and it gives a kind of comfort to drivers as a result.

22.3.2 Electronic Toll Collection System

The electronic toll collection system (ETC) is an electronic fare collection system. This system was

introduced in foreign countries earlier than in Japan. In Japan, the service of ETC starts this year. One of

the aims of this system in Japan is to reduce the congestion at highway tollgates thereby resulting in less

Information gathering

Police agency in
each preseclure
and metropolitan

area

Road
administrator

Japan Road Traffic
Information Center

Driver

VICS center

Others
(parking lot
availability

information)

Information
provision

Information processing
and editing

FIGURE 22.13 Configuration of VICS.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 9 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-9

emission of exhaust. Figure 22.15 shows the whole system of Japanese ETC. Three major technologies

are used: network in the infrastructure, automotive terminals for ETC, and road-to-vehicle communi-

cation. The infrastructure is composed of a huge network system into which personal information

such as credit card numbers are flowing. Therefore, the information flowing into this network is

written in code to ensure the security. Information from the automotive terminals for the ETC

system is transmitted to the network through road-to-vehicle communication known as dedicated

short range communication (DSRC). Of course, it is also written in code to ensure the security.

Specification of DSRC is shown in Table 22.4. In the same manner, information about road infrastruc-

ture, such as the location of the tollgate, is also transmitted to a vehicle from the infrastructure and

through DSRC.

Parking lot
(empty)

Lane restriction
Under

construction

Congestion
(up)

Congestion
(up & down)

FIGURE 22.14 Examples of displayed information (VICS).

Vehicle transceiver

Roadside system

Toll plaza

Credit card company

Headquarter office

ETC processing center

Operating management center ETC Network

FIGURE 22.15 Network system for ETC.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 10 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-10 Digital Systems and Applications

22.3.3 Support of Safe Driving System

The support of safe driving system that appears in Fig. 22.5 is defined as the third development field of

Japanese ITS has also been developed in Japan. In the early stages of the safe driving system, automatic

driving was considered an ultimate support system. But many technical demonstrations on auto-

matic driving from 1996 to 2000 gave people an impression that there were still many issues to be

deployed from the point of view of both drivers and legal aspects. The author will demonstrate this more

specifically later. So, recently it appears to the author that the idea of automatic driving is disappearing

gradually. Instead of this, various warning systems and assistance systems have been considered.

Demo2000 held at Japan last year shows effectiveness of those assistance systems such as AHS-I and

ASV. ‘‘I’’ in the term of AHS-I means ‘‘information provision.’’ AHS-I is a kind of concept to assure safe

driving of vehicle by using information provision of both traffic information and road configuration

through road-to-vehicle communication. Not only road-to-vehicle communication but inter-vehicle

communication is also useful to ensure traffic safety. A demonstration showing the effectiveness of this

technology was also shown in Demo2000 at Tsukuba, Japan. For example, it was shown to form

platooning composed of running vehicles using inter-vehicle communication technology.

22.4 Issues of ITS Development and Roles
of Software Technology

22.4.1 Issues of ITS Development

The readers can easily think of technological issues to put into practical with the use of ITS, particularly

an assist system of safe driving. Actually, the more important issues to deploy ITS are related to social,

legal, and human issues, including responsibility, which are recognized with technical demonstration

from 1996 to 2000 of the support system for safe driving. Table 22.5 shows the technical issues for

deploying ITS. The importance of these technical issues will be easily understood. Figure 22.16 shows

social, legal, and driver’s issues summarized by Becker and the author.

TABLE 22.4 Specification of DSRC

Item Description

Frequencies Two pairs in the 5.8 GHz band

Bandwidth 8 MHz max.

Transmitter output 10 mW

Communication system Active type with slotted Aloha

Maximum vehicle speed 80 kph

Data transmission rate 1.024 Mbps

Modulation method Amplitude shift keying

Bit error rate Less than 10 ppm

Communication error rate Less than 1 ppm

Encoding method Manchester encoding

TABLE 22.5 Technological Issues

1. Robust sensing technology (e.g., obstacles, road conditions, traffic flow, and so on)

2. Robust control technology (e.g., vehicle control, traffic control, platoon control,

and so on)

3. Human technology (e.g., display, human I=F, drivers intention, and so on)

4. Information and processing technology

5. Communication technology

6. System integration technology

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 11 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-11

Legal and driver’s issues are composed of five terms, as shown in Fig. 22.16. The first is ‘‘product

perception and use.’’ This means how deeply users of the ITS-related system like the assist system for

safe driving, can recognize the performance and the use of the system. For example, suppose you buy

an air-bag system. You have to understand both its performance and how to use it very well. You have

to know how it works depending on magnitude of the crash. If you do not know that, you will

be overconfident about the air-bag system, and you may be injured by a traffic accident. In this

process, sufficient explanation of a system by a salesman is very important for users to operate the

system very well.

The second important issue is about ‘‘system safety and controllability’’ in Fig. 22.16. One can easily

understand the importance of this issue if one compares control systems of a car with that of an aircraft.

Pilots in an aircraft can operate the control system completely because pilots know how the control

systems work well. Moreover, they know how to override the control systems in an emergency. Pilots are

highly disciplined people, but drivers are not necessarily such people. So this issue becomes very

important in case of drivers.

The third issue is related to ‘‘responsibility and product liability.’’ Suppose a crash happens. Who has

to be responsible for the crash? Which is more responsible, a control system or a driver? Is it the biggest

issue to deploy the ITS properly?

System evaluation, the fourth issue, and traffic regulation and standard, the fifth issue, are also very

important. So you can easily understand their importance without any explanation on these issues.

Two social issues are shown in Fig. 22.16. One is the chicken-and-egg argument and the other is

persuasion of people who suspect effectiveness of ITS deployment. The chicken-and-egg argument holds

in the spread of a system that is composed of both infrastructure and automotive equipments, which rely

on infrastructure and vice versa. For example, we consider the case of ETC. There will be no incentive of

spreading automotive terminal for ETC without preparation of infrastructure for ETC. On the other

hand, there is no incentive for infrastructure to be prepared without automotive terminal of ETC. This is

a so called a problem that is first infrastructure or automotive terminals.

Now many people say that ITS is necessary to make smoother traffic flow as well as decrease air

pollution as a result. But some people are still suspicious as to the effectiveness of ITS. For example, is it

true that ITS decreases traffic congestions? Even if it is true, less congestion makes more people use cars.

As a result, less congestion cause more traffic demands. This will lead to more traffic flow. Therefore,

only more vehicles can run, thanks to ITS. As a final result, they think that more cars can run on roads

after ITS is deployed. So congestion will remain almost invariable even if ITS is introduced. It is a

conclusion of the people who are suspicious about the effects of ITS and that traffic congestion will not

decrease after ITS is introduced. In case of ETC deployment, several people do not believe the effect,

Integral
approachS

ys
te

m
 a

sp
ec

ts

Driver aspects

Legal aspects

Product perception and use

System safety and controllability

Responsibility and product liability

System evaluation

Traffic regulation and standards

1. Legal

2. Social

1) Chicken-and-egg arguments
2) Persuasion of people who suspect effectiveness of ITS

FIGURE 22.16 Legal and social issues.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 12 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-12 Digital Systems and Applications

and they say ETC will change only location of congestion. For example, suppose there is a junction in

front of a tollgate. Before ETC is introduced, the tollgate was congested. After ETC is introduced, there

will be congestion at the junction instead of the congestion in front of the tollgate. It seems that the

location of the congestion shifts from the tollgate to the junction. This is a conclusion of the people who

are suspicious as to the effect of ETC.

22.4.2 Roles of Software Technology

As discussed earlier, ITS is making full use of both information technology and communication

technology. Therefore, the importance of software technology does not need to be explained. For

example, in-vehicle navigation system has a size of the software about 10 MB. This size is about one

hundred times that of engine control software that meets the stringent exhaust gas regulation. This

software can provide important performance, as shown in Fig. 22.7. Besides, this software technology

has a great potential to solve these issues mentioned previously.

In advance, to explain the potential of software technology for solving the social and driver’s issues, as

shown in the preceding section, let us explain the concept to solve these issues. The first issue of

‘‘product perception and use’’ in Fig. 22.16 would be solved by showing both the performance of the

product or system to be introduced into the market and how to use it. For this purpose, a simulation

program that can simulate the performance is very effective and makes users understand it. For example,

a simulation program of the performance of the air-bag system can show both its performance and how

it works well. So users can easily understand the performance of an air-bag system or, in some cases, even

the limitation of that system. In other words, the issue of product perception and use is realized by

software technology.

In a similar way, the second issue of ‘‘system safety and controllability’’ is also solved by software

technology. For example, you can very easily learn system safety and controllability if you have a

simulation program. For a new aircraft, pilots can learn its control system and can be trained very

well with a flight simulator.

As for the third issue of ‘‘responsibility and product liability,’’ a simulation program is very helpful in

solving this issue. Product liability (PL) is originally set for protecting users of product, but it sometimes

makes manufacturers conservative about developing a new product. The solution for this issue, however,

is obtained by assuring the safety of a product from the viewpoint of users. This can be done by showing

users the safety of the product in every area where the product is supposed to be used. Only a simulation

program of the performance of the product can perform this. For the third issue, software technology is

also very effective.

The forth issue of ‘‘system evaluation’’ can also be

supported with the use of a simulation program. It

would not need to explain. The fifth issue of ‘‘traffic

regulation and standards’’ is a little bit different com-

pared with the four issues mentioned previously.

Social issues, including both the ‘‘chicken-and-egg

argument’’ and persuasion of people who suspect

effectiveness of ITS, are also solved by simulation. For

example, people can learn about the effectiveness of

ETC by a simulation program of ETC. Figure 22.17 is

an example of a simulation of the effect of ETC with

the ITS simulator that is under development. You can

easily understand that the introduction of ETC

decreases the congestion in front of a tollgate, as

shown in the upper portion of Fig. 22.17. Even conser-

vative people would agree to build ETC in order to see

this result.

ETC simulation result

With ETC

Without ETC

FIGURE 22.17 Simulation results with ITS

simulator.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 13 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-13

22.5 Practices of Software Development of Both In-Vehicle
Navigation System and ITS Simulator

Software scales of both the in-vehicle navigation system and the ITS simulator are relatively large, but

there is a difference in both properties between the navigation system and the ITS simulator. In the case

of the navigation system it is embedded software that meets the needs of users. On the other hand, the

ITS simulator is not embedded. In this section, both the software of the in-vehicle navigation system and

the ITS simulator are explained briefly.

22.5.1 In-Vehicle Navigation Systems

22.5.1.1 Status of the Development of In-Vehicle Navigation System

One of the most severe issues in the development of the software for in-vehicle navigation is the short

development time for the software, which meets customer requirements with low expense.

So some people say that only people who can develop in-vehicle navigation system software very

quickly, at very low cost, would control the in-vehicle navigation system market.

As discussed earlier, in-vehicle navigation system software size is relatively large compared with other

consumer products like a refrigerator, a washing machine, and an air conditioner. The size has reached

nearly 10 MB. Cellular phones have almost the same software size. In general, this means that the cost to

build the software has become very high and it needs a long time for development.

As you can easily understand, the market of the in-vehicle navigation system has two aspects. One is

the aspect of consumer electronic products mainly sold at after-markets. The other aspect is that of the

OEM market where the in-vehicle navigation system is sold and delivered directly to automakers from

suppliers such as manufacturers of electric equipments. Table 22.6 shows three important issues to be

maintained or met by OEM suppliers of in-vehicle navigation system.

The first issue is customer satisfaction. Here, customer means automakers, not drivers themselves.

That is, automakers decide which supplier’s navigation system to buy. So, it is necessary for suppliers to

meet the various needs of automakers.

The second important issue is keeping the delivery time set by automakers. Automakers have

strategies to sell their cars. So the delivery time of navigation systems is set by automakers. The

only thing that suppliers can do is to keep the delivery time very strictly. So the lead-time to develop

an in-vehicle navigation system is normally very limited for suppliers.

The last important issue to keep in mind is reliability of an in-vehicle navigation system. Of

course, reliability is also very important in the case of consumer electronic products; but in the OEM

market, reliability is a more important issue because a sold car might have been returned due to the

unreliability of the in-vehicle navigation system.

Summarizing the three important issues, we can see a quick development of navigation software, with

high reliability is a key point. Currently, many difficulties are present in navigation software develop-

ment based on conventional methodology; however, as large as the software scale becomes, it does not

have any problem if we can reuse the software in response to the needs of each automaker. But each

auto-maker has many different needs, for example, different functions of a navigation system, man

TABLE 22.6 Features of OEM Market as Customers

1. Customer satisfaction

We have to meet the various needs of each automaker.

2. The date of delivery

We have to keep it very strictly.

3. High reliability

It may happen that a sold car is returned to automakers due to unreliability of car navigation

system.

Note: Quick development of navigation software with high reliability.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 14 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-14 Digital Systems and Applications

machine interfaces, desired price, and so on. On the other hand, normally the rate of reused software is

relatively low, about 40%. Of the software, 60% has to be developed or modified profoundly in response

to the needs of each automaker. Figure 22.18 shows the software volume ratio in developing the new

navigation systems. About 60% of the software must be renewed for them, and the human-interface

related software occupies a large part of all the renewed software. In addition to this, we have often

encountered that software specification of each automaker has not been fixed until the end of develop-

ment of the software.

To reduce both S=W bugs and lead-time to develop the navigation software, adoption of both

middleware architecture and auto code generation is desirable. These techniques originate from the

so-called object oriented development of software.

To promote determination of software specification of automakers, particularly man machine inter-

face (MMI) portion of in-vehicle navigation system, it is suitable to introduce man machine builder tool

that has already developed in another field, such as public infrastructure. The next subsection explains

these two technologies realizing the issues stated earlier.

22.5.1.2 New Methodology to Develop In-Vehicle Navigation Software

The first technology originated from object-oriented software development. Figure 22.19 shows the basic

development flow along with the object-oriented software development. In the beginning, that is, the

design stage of the object-oriented development model, customer requirements and system functions are

decomposed of the object components that represent the basic or initial system. In this stage, various

supplemental functions of automakers are decomposed of both each child component and the basic

components that will incorporate features as additional components. Because all decomposed compon-

ents including basic and child components are developed individually, their implementation and tests

can be easily performed. For example, both the basic component and child components are implemen-

ted and tested separately, and then both implementation and test as a whole system, such as system

function, can be performed.

Child components and additional components are also given the same process to assemble the

complete system, which meets the customers requirement. In object-oriented development we can easily

Renewal
or

modified

Diversion Others

AV/Air
 Cond.

Route
guide GIS

menu
Traffic
info.

Highway
guide

Menu

Driver
for

H/W

To meet customer’s
satisfactions

To keep the date of delivery

To assure high reliability

Reduction of lead time to
develop the softwares

Reduction of S/W bugs

Early fix of S/W sepc. for MMI

Factors to be considered Issues to be resolved

Amount of software module for new model

Reuse with minor
modifications

¥ ¥

¥

¥

¥

¥

FIGURE 22.18 Issues of navigation software development.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 15 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-15

modify with the addition of additional components. So this modification costs relatively less compared

with the conventional waterfall software development. From the point of view of both easy debug and

implementation to a target machine, we need another means besides adoption of object oriented

development model. Moreover, we need a means to make automakers decide their specifications earlier.

Figure 22.20 shows the hierarchical software architecture models to make us debug easily and

implement. The architecture has two distinct points. One is this middleware and the other, man

machine builder tools serving to build MMI of in-vehicle navigation system. The middleware acts as a

Basic component

Child
component

Child
component

Additional
component

Basic component

Implement

Test

Child
component

Test

Framework

Implement

Test
Child

component

Implement

Test

Additional
component

Implement

Test

Child
component

Implement

Test

Design

Implement

Child
component

FIGURE 22.19 Object-oriented development model.

Application
Software for
navigation

Target environment
navigation system

Embedded operating system
for target H/W

Device drivers for target H/W

Middle ware for target H/W

Application
software for
navigation

User interface
objects

Development environment
personal computer

OS for development environment
- Windows NT -

Device drivers for PC

Middle ware for PC

Man machine
builder tool

Auto code generation

FIGURE 22.20 Hierarchical software architecture model.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 16 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-16 Digital Systems and Applications

kind of separator between application software for navigation and hardware like personal computer

(PC), and target machine. A detail of man machine builder tools will be shown later.

Generally speaking, it is desirable to use a PC as a software development environment because of its

lighter weight, portability, and low price. The operating system (OS) for this environment is Windows

NT. This OS includes device drivers for the hardware in the left picture of Fig. 22.20. Now let us explain

the flow of navigation software development. In the beginning, application software of navigation

system, composed of both child and basic components, is built with man machine builder on PCs

as software development tools. Then the software is tested and debugged on the PCs. After that, the

software is rewritten in terms of a target machine by using auto code generation and implemented. Then

the application software is transferred to the target environment. This software definitely works well on

the target machine because all necessary tests are already done by using PC and confirmed that the

application software works well without any problem. So the remaining development that has to be done

is to develop the device drivers for target hardware, which harmonizes the embedded OS with the

hardware, as shown in the right picture of Fig. 22.20.

Also, it is necessary to modify the middleware for target hardware. After the modification of the

middleware for target machine, the developed application software, excluding user interface objects, is

tested to check how well it works. Thus, the application software for navigation can be easily applied

onto the target environment by using this middleware.

The man machine builder tool automatically generates the software code for user interface object, and

this software code is included into the application software. When one develops navigation software

along with the above processes, one can indeed develop both software and hardware concurrently. This

reduces the lead-time of developing new navigation system dramatically and enhances reliability of the

software. Because the application software of the navigation system is developed on Windows OS, one

can easily confirm its operation, in the early phase of development, even if the target hardware is still

under development. CRT display in Fig. 22.21 shows an example of the software test in development

phase. In this display, one can confirm how the functions of the navigation software work well, instead of

the real display device; that is, these functions of application software can operate and confirm with

virtual operation panel with dummy signal dialog, and voice guide dialog.

The man machine builder tool is also used to make automakers decide the specification of the man

machine interface in the early stage of the software development because man machine builder tool can

give them virtual MMI and show how it works. For example, using the virtual display, drivers can input

Voice guide
dialogue

FIGURE 22.21 Confirmation of operation using PC.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 17 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-17

their destinations and their requests to search optimum routes or restaurants near their present

locations. MMI serves drivers to do these interactively using several icons in Fig. 22.21. Generally

speaking, the specification of man machine interface is often not determined until the end of develop-

ment because the determination needs ergonomic studies. So it is desirable for providers to make a

virtual environment to simulate the operation of man machine interface to be developed.

The man machine builder tool consists of both user interface design tool and state chart CASE tool.

The missions of the user interface design tool are graphical object design, operation confirmation, and

code generation.

On the other hand, the mission of the state chart CASE tool are production of operative transition,

graphical confirmation of transition, and code generation of state transition.

Before explaining the function of the man machine builder tool briefly, we will explain about the

conventional way to build MMI using Fig. 22.22. In the conventional method, the man machine module

including graphical object design for user interface and state transition is designed from requirement

analysis in the beginning. After both graphical object design and state transition are proceeded, software

code of man machine module are coded separately by manual operation (hand coding).

Then the software code is combined with other application software. Finally, its operational test is

performed on a display of target hardware. If some unexpected behavior or shape occurs in the user

interface, its correction of design and coding are reprocessed. And, though this is a more important

issue, additional requests by customers are often added to the specification to MMI. In order to cope

with this, a new environment to build MMI differently from the conventional method is indispensable.

By using the new development environment of building MMI, one can generate the man machine

module throughout from design to software code. With this tool, a graphical object is designed with the

menu object editor, as shown in Fig. 22.23. This means both the graphic objects for MMI and

the animation of their graphic objects are defined simultaneously with production of objects.

State transition is defined in the state chart editor in the right part of Fig. 22.23. In the state chart

editor, both the animation parameters of graphic objects and navigation function behavior are defined

following the state transition. After the graphical confirmation of both these graphic behaviors and state

transition, these tools can generate the software code for man machine module automatically. Thus, you

can show automakers how the user interface under development works well, using the virtual display.

And you can get necessary suggestions including the additional needs from them. Thus, one can easily

understand that this tool can accept various requests from customers interactively. So the specification

of MMI is easily determined, unlike the conventional method, by using this tool.

The menu object editor in Fig. 22.23 has two main functions. One is the production of the graphical

object of the user interface of the navigation system using the basic and special components. The other is

the production of animation in the user interface. In Fig. 22.24 basic components, such as polygonal

line, polygon and ellipse are shown in the upper dotted box of the left picture in Fig. 22.24. Special

Software code
for man machine module

State transition
design

Graphical object
design

Operational test on
target hardware

Correction

Coding by
manual operation

FIGURE 22.22 Conventional method for man machine module.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 18 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-18 Digital Systems and Applications

components are only needed for the navigation object, such as character strings, bitmaps representing

the specified functions of the system, and the button object for the menu interface are generated. In

addition to the object design, animation of the object can also create its transition, and this animation

can be simulated on this tool, as shown in Fig. 22.25. This menu object editor also has a function of

automation code generation for designed object and animation.

Use of state chart CASE tool to state transition design has these major points. The first major point is

the easy description of graphical menu transition. Designed transition can be visually confirmed with

the visible state chart, which is the second major point. The third point is easy customizing of the state

transition. It can be modified in the visual tool by moving the transition line in the design window in the

right picture of Fig. 22.25. So one can introduce it to advanced environment for navigation software

development. This CASE tool can also output the software code of the state transition with an automatic

code generation function.

Here, we show the operation flow of making the entire software using the MMI builder tool. In Fig.

22.26, the man machine module provides the navigation software code. When the graphical object

Man machine builder tools

State transition design
(state chart editor)

Graphical object design
(menu object editor)

Graphic
object

production

Graphical
animation

installation

Graphical animation operation

Navigation function access

Automatic code generation

Software code for man machine module

FIGURE 22.23 Development with man machine builder tool.

“Operation” setting in diagram (production of animation)

– Transform each diagram in relation to its variable.

Graphical object production by basic/special components

– Design navigation menu objects by polygonal line, polygon, ellipse,

•

•

character string, bitmap, etc.

FIGURE 22.24 Function of menu object editor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 19 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-19

design is finished, the software code of the menu objects is generated automatically. The software code of

the state transition is also generated in the same manner. Both the codes are included in man machine

module, then the binary code of the navigation software is built to confirm its function on the PC. This

sequence is continued until achievement of all requirements, and it builds for the target hardware to

release the actual sample.

22.5.1.3 ITS Simulator and Its Functions

ITS simulator is a kind of driving simulator. So real configuration of the ITS simulator is very similar to

that of the driving simulator. Figure 22.27 shows the configuration that is composed of computer,

screen, projector, and a half actual vehicle. Although the configuration of the ITS simulator is similar to

a driving simulator, the functions are very different from those of a driving simulator. The ITS simulator

can simulate both several effects and effectiveness of ITS deployment as a result of simulating the

Easy description of graphical menu transition

Confirmation with visible operation

Easy customizing

Operation design with
state transition editor

Software code for system transition

Automatic
code

generation

FIGURE 22.25 State transition design.

C
or

re
ct

io
n

Graphical object design State transition design

Wait_Cursor_Key

D

CmapScrollStop()
!

Up_Scroll

CmapScrollStart(0,-1,1)

!
Upleft_Scroll

CmapScrollStart(-1,-1,1)
!

Left_Scroll

CmapScrollStart(-1,0,1)

!

Upright_Scroll

CmapScrollStart(1,-1,1)
!

Right_Scroll

CmapScrollStart(1,0,1)

!

Downleft_Scroll

CmapScrollStart(-1, 1, 1)

!

Down_Scroll

CmapScrollStart(0, 1, 1)

!

Downright_Scroll

CmapScrollStart(1, 1, 1)

!

Disp_Current_Position@P5

Rmtctl_UP() Rmtctl_KEYUP() Rmtctl_UPRIGHT()

Rmtctl_KEYUP()

Rmtctl_RIGHT()

Rmtctl_KEYUP()

Rmtctl_DOWNRIGH
T()

Rmtctl_KEYUP()

Rmtctl_DOWN()Rmtctl_KEYUP()Rmtctl_DOWNLEFT(
)

Rmtctl_KEYUP()

Rmtctl_LEFT()

Rmtctl_KEYUP()

Rmtctl_UPLEFT()

Rmtctl_KEYUP()

Rmtctl_POS()

Man machine module

PC binary

Software code
for state transition

Software code
for menu objects

Code generation Code generation

Actual sample binary

Build (Target H/W) Build (Develop PC)

Navigation code

FIGURE 22.26 Operation flow with man machine builder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 20 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-20 Digital Systems and Applications

interaction between road infrastructure and vehicles. This is one of the greatest different points between

a driving simulator and ITS simulator.

Figure 22.28 shows the architecture of ITS simulator. It consists of four major modules, vehicle

dynamics simulator module, micro traffic simulator module, 3D road environmental simulator module,

and system control module.

The first module of vehicle dynamics simulator provides the movement of the half driving vehicle

dynamics in real-time. This vehicle dynamics model has nine degrees of freedom of movements.

Therefore, you can feel as if you were in a real car in the half vehicle of ITS simulator in the same

manner of a driving simulator.

3 Projectors

Driver

Screen

4 Computers

FIGURE 22.27 Physical configuration of ITS simulator.

System
control

VP
VP

VP

3D
Road environment

simulator

Micro
traffic

simulator

(MELROSE)Vehicle
dynamics
simulator

Image on the screen

FIGURE 22.28 Modules of ITS simulator.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 21 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-21

The second module of microscopic road traffic simulator, which is called MELROSE, generates a

virtual road traffic environment based on an autonomous driving model. Every vehicle provided by this

module acts as surrounded vehicles of the simulated vehicle of the vehicle dynamics simulator, and also

every vehicle can run with its own origin and destination. So these vehicles can act as surrounded

vehicles.

This third module is a 3D-computer graphics road environment simulator. This simulator creates

actual geographical conditions and road configurations in response to the vehicle location of the

simulated vehicle. For these, various road data like width, gradient, numbers of lane, road shape, and

so on are stored in the memories of this module. In response to the vehicle movement the stored road

data are accessed to form virtual road environment with 3D graphics based on real road data.

The final module is to control the operation of the above three module and to make the total modules

operate as the ITS simulator. A representative action is to synchronize other three modules because all

time units to compute are different in each module.

Figure 22.29 shows an architecture and data flow among all four modules. The land database means

the stored data as shown before. The upper right computer in Fig. 22.29 means system control module

and 3D graphic processing of road environment simulator.

A simulation result on how congestion is formed by a blocking vehicle is shown in Fig. 22.30. The

reader can easily understand a process of congestion due to a blocking vehicle in a circle. A driving

Other
vehicle

data

Manipulate values

Land data
base

Shape
Network

Structure
Vehicle

dynamics
Micro traffic
simulator

Screen

Computer

Static &
dynamic

data

Road
data

Vehicle
data

Projector

Road
network
vehicle
location

Road background
visibility, location

FIGURE 22.29 Physical architecture of ITS simulator.

A blocking vehicle

FIGURE 22.30 Generation of congestion due to accident.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 22 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-22 Digital Systems and Applications

simulator cannot simulate such a situation. The next simulation result is shown in Fig. 22.31. It

simulates a kind of the interaction effects between provisions of traffic information and vehicles or

drivers, that is, it simulates the differences of traffic flow rate with and without traffic information with a

message board to drivers. For example, a roadside message board in the circle in Fig. 22.31 says that there

is an icy road surface ahead, so please slow down. This message is also sent through road to vehicle

communication to vehicle and shown in the in-vehicle display like in-vehicle navigation system in

Fig. 22.31. Now a smart driver follows this advice to get smooth traffic flow. Some driver might not

follow. As a result of this, congestion would occur to cause bad traffic flow. Therefore, traffic flow rates

between these two cases are very different. ITS simulator can simulate such a situation and show the

effectiveness of the provisions of traffic information.

Figure 22.32 shows another example of the simulation with ITS simulator. A foggy situation with bad

visibility is simulated. For example, a vehicle with an automatic driving system can run safely in spite of

such a foggy condition. Though several modifications are needed, ITS simulator can simulate both every

considerable traffic situation and considerable situation of use of control systems like automatic driving.

Provision of road condition with variable
message board

Road surface is slippery.

In-vehicle display

Other vehicles generated by
MELROSE

Variable message board

•

•

FIGURE 22.31 Simulation of effectiveness of AHS-i.

In-vehicle display

Simulation of automatic driving

Bad visibility

Common Language

•

•

FIGURE 22.32 Simulation of effectiveness of AHS-a.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 23 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

Roles of Software Technology in Intelligent Transportation Systems 22-23

As I mentioned earlier, this means that ITS simulator has a great advantage to show both the effects and

the effectiveness of ITS deployment.

The microscopic traffic simulator, that is a part of the ITS simulator, alone can simulate several

situations. For example, Fig. 22.17 shows the effects on congestion in front of a tollgate of a highway

between with and without ETC. The upper case in Fig. 22.17 shows congestion in front of a tollgate with

ETC. The lower shows the case without ETC. Each colored rectangle shows each vehicle. So the length of

congestion is given by that of the row of the rectangles on each lane. You can easily see the difference

between with and without ETC. Even people who suspect the effect of introducing ETC can understand

the effect and would agree to the introduction of ETC.

22.6 Conclusion

We have the following conclusions:

1. In Japan in-vehicle navigation system are widespread and the VICS service to provide real-time

traffic information is also widely spread. As for ETC, its service is about to start.

2. In the development of navigation software, adoption of both an hierarchical architecture and

man machine builder into the development environment of navigation software is powerful

enough to develop the software very quickly with high reliability.

3. ITS simulator is a powerful tool to solve the issues of ITS deployment.

Acknowledgments

The author expresses his great thanks to Dr. Yukio Goto, Mr. Yoshihiko Utsui, Mr. Masahiko Ikawa,

Mr. Akio Uekawa, Dr. Hiroyuki Kumazawa, Mr. Mitsuo Shimotani, Mr. Minoru Ozaki, Mr. Akira

Sugimoto, and other many researchers and engineers at the Industrial Electronics and Systems Labora-

tory of Mitsubishi Electric Corporation, for their great assistance and encouragement.

To Probe Further

In this field, there has been much rapid progress. So we cannot find comprehensive literature on

Japanese ITS. Therefore, below is some literature about specific fields.

Japanese ITS in general:

‘‘ITS Handbook’’ edited by 2000

and the following several website are available for your further study:

http==:www.vics.or.jp=;www.moc.go.jp=;www.mpt.go.jp=;www.npa.go.jp=;www.miti.go.jp=;www.mot.

go.jp=

In-vehicle navigation system:

For example, ‘‘Car-Navigation Systems’’ K. Yokouchi, H. Ideno, and M. Ota, Mitsubishi Electric

Advance Vol. 91=Sep. 2000, 2000.

ITS deployment and ITS simulator:

1. ‘‘Driver Assistance Systems—industrial, psychological, and legal aspects’’ S. Becker, D. Randow,

and J. Feldges, In Proceeding of the Intelligent Vehicle Symposium, 1998.

2. ‘‘Simulation environment for ITS—a real-time 3D simulator’’ M. Ikawa, H. Kumazawa, Y. Goto,

H. Furusawa, and Y. Akemi, In Proceeding of the 5th ITS World Congress, 1998.

3. ‘‘A prototype of smart ways in ITS simulator’’ Y. Goto, M. Ikawa, and H. Kumazawa, In

Proceeding of the 6th ITS World Congress, 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C022 Final Proof page 24 4.10.2007 3:59pm Compositor Name: VAmoudavally Compositor Name: VBalamugundan

22-24 Digital Systems and Applications

23
Media Signal

Processing

Ruby Lee
Princeton University

Gerald G. Pechanek
BOPS, Inc.

Thomas C. Savell
Creative Advanced Technology Center

Sadiq M. Sait
Habib Youssef
Mohammad Faheemuddin
King Fahd University of Petroleum

& Minerals

23.1 Instruction Set Architecture for Multimedia
Signal Processing ... 23-1
Introduction . Subword Parallelism . Packed Add and

Packed Subtract Instructions . Packed Multiply Instructions .

Packed Shift and Rotate Operations . Subword Permutation

Instructions . Subword Permutation Instructions .

Floating-Point MicroSIMD Instructions . Conclusions

23.2 DSP Platform Architecture for SoC Products 23-35
Introduction . The ManArray Thread Coprocessor

Architecture . The ManArray Thread Coprocessor Platform .

Performance Evaluation . Conclusions and Future Extensions

23.3 Digital Audio Processors for Personal Computer
Systems ... 23-45
Introduction . Brief History and Evolution . Today’s System

Requirements . Hardware Architecture . Conclusion

23.4 Modern Approximation Iterative Algorithms and
Their Applications in Computer Engineering 23-62
Introduction . Simulated Annealing . Genetic Algorithms .

Tabu Search . Simulated Evolution (SimE) . Convergence

Aspects . Parallelization=Acceleration . Applications . Conclusion

23.5 Parallelization of Iterative Heuristics......................... 23-82
Introduction . Parallelization Issues . Simulated

Annealing . Genetic Algorithms . Tabu Search . Simulated

Evolution . Conclusion

23.1 Instruction Set Architecture for Multimedia
Signal Processing

Ruby Lee

23.1.1 Introduction

Multimedia signal processing, or media processing [1], is the processing of digital multimedia infor-

mation in a programmable processor. Digital multimedia information includes visual information like

images, video, graphics, and animation, audio information like voice and music, and textual informa-

tion like keyboard text and handwriting. With general-purpose computers processing more multimedia

information, multimedia instructions for efficient media processing have been defined for the instruc-

tion set architectures (ISAs) of microprocessors. Meanwhile, digital processing of video and audio data

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 1 4.10.2007 3:53pm Compositor Name: VBalamugundan

23-1

in consumer products has also resulted in more sophisticated media processors. Traditional digital signal

processors (DSPs) in music players and recorders and mobile telephones are becoming increasingly

sophisticated as they process multiple forms of multimedia data, rather than just audio signals. Video

processors for televisions and video recorders have become more versatile as they have to take into

account high-fidelity audio processing and real-time three-dimensional (3-D) graphics animations. This

has led to the design of more versatile media processors, which combine the capabilities of DSPs for

efficient audio and signal processing, video processors for efficient video processing, graphics processors

for efficient 2-D and 3-D graphics processing, and general-purpose processors for efficient and flexible

programming. The functions performed by microprocessors and media processors may eventually

converge. In this chapter, some of the key innovations in multimedia instructions added to micropro-

cessor ISAs are described, which have allowed high-fidelity multimedia to be processed in real-time on

ubiquitous desktop and notebook computers. Many of these features have also been adopted in modern

media processors and DSPs.

23.1.2 Subword Parallelism

Workload characterization studies on multimedia applications show that media applications have huge

amounts of data parallelism and operate on lower-precision data types. A pixel-oriented application, for

example, rarely needs to process data that is wider than 16 bits. This translates into low computational

efficiency on general-purpose processors where the register and datapath sizes are typically 32 or 64 bits,

called the width of a word. Efficient processing of low-precision data types in parallel becomes a basic

requirement for improved multimedia performance. This is achieved by partitioning a word into

multiple subwords, each subword representing a lower-precision datum. A packed data type will be

defined as data that consists of multiple subwords packed together. These subwords can be processed in

parallel using a single instruction, called a subword-parallel instruction, a packed instruction, or a

microSIMD instruction. SIMD stands for ‘‘single instruction multiple data,’’ a term coined by Flynn

[2] for describing very large parallel machines with many data processors, where the same instruction

issued from a single control processor operates in parallel on data elements in the parallel data

processors. Lee [3] coined the term microSIMD architecture to describe an ISA—where a single

instruction operates in parallel on multiple subwords within a single processor.

Figure 23.1 shows a 32-bit integer register that is made up of four 8-bit subwords. The subwords in the

register can be pixel values from a grayscale image. In this case, the register is holding four pixels with

values 0xFF, 0x0F, 0xF0, and 0x00. The same 32-bit register can also be interpreted as two 16-bit

subwords, in which case, these subwords would be 0xFF0F and 0xF000. The subword boundaries do

not correspond to a physical boundary in the register file; they are merely how the bits in the word are

interpreted by the program. If we have 64-bit registers, the most useful subword sizes will be 8-, 16-, or

32-bit words. A single register can then accommodate 8, 4, or 2 of these different sized subwords,

respectively.

To exploit subword parallelism, packed parallelism, or microSIMD parallelism in a typical word-

oriented microprocessor, new subword-parallel or packed instructions are added. (The terms ‘‘subword-

parallel,’’ ‘‘packed,’’ and ‘‘microSIMD’’ are used interchangeably to describe operations, instructions and

architectures.) The parallel processing of the packed data types typically requires only minor modifica-

tions to the word-oriented functional units, with the register file and the pipeline structure remaining

unchanged. This results in very significant performance improvements for multimedia processing, at a

very low cost (see Fig. 23.2).

Typically, packed arithmetic instructions such

as packed add and packed subtract are

first introduced. To support subword parallelism

efficiently, other classes of new instructions such

as subword permutation instructions are also

needed. Typical subword-parallel instructions

11111111Ra: 11110000 0000000000001111

FIGURE 23.1 32-bit integer register made up of four

8-bit subwords.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 2 4.10.2007 3:53pm Compositor Name: VBalamugundan

23-2 Digital Systems and Applications

are described in the rest of this chapter, pointing out interesting arithmetic or architectural features that

have been added to support this style of microSIMD parallelism. In Section 23.1.3, packed add and

packed subtract instructions described are, as well as several variants of these. These instructions

can all be implemented on the basic Arithmetic Logical Units (ALUs) found in programmable proces-

sors, with minor modifications. Such partitionable ALUs are described in Section 23.1.3.1, Saturation

arithmetic—one of the most interesting outcomes of subword-parallel additions—for efficiently hand-

ling overflows and performing in-line conditional operations is also described. A variant of packed

addition is the packed average instruction, where unbiased rounding is an interesting associated

feature. Another class of packed instructions that can use the ALU is the parallel compare

instruction where the results are the outcomes of the subword comparisons.

Section 23.1.4 describes how packed integer multiplication is handled. Also described are different

approaches to solving the problem of the products being twice as large as the subword operands that are

multiplied in parallel. Although subword-parallel multiplication instructions generally require the

introduction of new integer multiplication functional units to a microprocessor, the special case of

multiplication by constants, which can be achieved very efficiently with packed shift and add

instructions that can be implemented on an ALU with a small preshifter, is described.

Section 23.1.5 describes packed shift and packed rotate instructions, which perform a

superset of the functions of a typical shifter found in microprocessors, in parallel, on packed subwords.

Section 23.1.6 describes a new class of instructions, not previously found in programmable processors

that do not support subword parallelism. These are subword permutation instructions, which rearrange

the order of the subwords packed in one or more registers. These permutation instructions can be

implemented using a modified shifter, or as a separate permutation function unit (see Fig. 23.3).

General register file

Partitionable
ALU

FIGURE 23.2 MicroSIMD parallelism uses packed data types and a partitionable ALU.

n

n

n

ALU Shifter Multiplier
Permutation

function
unit

Register
file

FIGURE 23.3 Typical datapaths and functional units in a programmable processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 3 4.10.2007 3:53pm Compositor Name: VBalamugundan

Media Signal Processing 23-3

To provide examples and illustrations, the following first and second generation multimedia instruc-

tions in microprocessor ISAs are used:

. IA-64 [4,5], MMX [6,7], and SSE-2 [8] from Intel

. MAX-2 [9,10] from Hewlett-Packard

. 3DNow!* 1 [11,12] from AMD

. AltiVec [13] from Motorola

23.1.2.1 Historical Overview

The first generation multimedia instructions focused on subword parallelism in the integer domain.

These are described and compared in [14]. The first set of multimedia extensions targeted at

general-purpose multimedia acceleration, rather than just graphics acceleration, was MAX-1, introduced

with the PA-7100LC processor in January 1994 [15,16] by Hewlett-Packard. MAX-1, an acronym for

‘‘multimedia acceleration extensions,’’ is a minimalist set of multimedia instructions for the 32-bit

PA-RISC processor [17]. An application that clearly illustrated the superior performance of MAX-1 was

MPEG-1 video and audio decoding with software, at real-time rates of 30 frames per second [18]. For

the first time, this performance was made possible using software on a general-purpose processor in a

low-end desktop computer. Until then, such high-fidelity, real-time video decompression performance

was not achievable without using specialized hardware. MAX-1 also accelerated pixel processing in

graphics rendering and image processing, and 16-bit audio processing.

Next, Sun introduced VIS [19], which was an extension for the UltraSparc processors. VIS was a much

larger set of multimedia instructions. In addition to packed arithmetic operations, VIS provided very

specialized instructions for accessing visual data, stored in predetermined ways in memory.

Intel introduced MMX [6,7] multimedia extensions in the dominant Pentium microprocessors in

January 1997, which immediately legitimized the valuable contribution of multimedia instructions for

ubiquitous multimedia applications.

MAX-2 [9] was Hewlett-Packard’s multimedia extension for its 64-bit PA-RISC 2.0 processors [10].

Although designed simultaneously with MAX-1, it was only introduced in 1996, with the PA-RISC 2.0

architecture. The subword permutation instructions introduced with MAX-2 were useful only with the

increased subword parallelism in 64-bit registers. Like MAX-1, MAX-2 was also a minimalist set of

general-purpose media acceleration primitives.

MIPS also described MDMX multimedia extensions and Alpha described a very small set of MVI

multimedia instructions for video compression.

The second generationmultimedia instructions initially focusedon subwordparallelismon the floating-

point (FP)side foracceleratinggraphicsgeometrycomputationsandhigh-fidelity audioprocessing.Bothof

thesemultimedia applications use single-precision, floating-point numbers for increased range and accur-

acy, rather than 8-bit or 16-bit integers. These multimedia ISAs include SSE and SSE-2 [8] from Intel and

3DNow! [11,12] from AMD. Finally, the PowerPC’s AltiVec [13] and the Intel-HP IA-64 [4,5] multimedia

instruction sets are comprehensive integer and floating-point multimedia instructions. Today, every

microprocessor ISA andmost media and DSP ISAs include subword-parallel multimedia instructions.

23.1.3 Packed Add and Packed Subtract Instructions

Packed add and packed subtract instructions are similar to ordinary add and subtract

instructions, except that the operations are performed in parallel on the subwords of two source

registers. Add (nonpacked) and packed add operations are shown in Figs. 23.4 and 23.5, respectively.

The packed add in Fig. 23.5 uses source registers with four subwords each. The corresponding

subwords from the two source registers are summed up, and the four sums are written to the target

register. A packed subtract operation operates similarly.

*3DNow! may be considered as having two versions. In June 2000, 25 new instructions were added to the original

3DNow! specification. In this text, this extended 3DNow! architecture will be considered.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 4 4.10.2007 3:53pm Compositor Name: VBalamugundan

23-4 Digital Systems and Applications

23.1.3.1 Partitionable ALUs

Very minor modifications to the underlying functional units are needed to implement packed add

and packed subtract instructions. Assume that we have an ALU with 32-bit integer registers, and

we want to extend this ALU to perform a packed add that will operate on four 8-bit subwords in

parallel. To achieve this, the carry propagation across the subword boundaries has to be blocked. Because

each subword is interpreted as being independent of the neighboring subwords, by stopping the carry

bits from affecting the neighboring subwords, the packed add operation can be realized.

In Fig. 23.6, the packed integer register Ra¼ [0xFFj0x0Fj0xF0j0x00] is being added to another packed

register Rb¼ [0x00j0xFFj0xFFj0x0F]. The result is written to the target register Rc. In an ordinary add

instruction, the overflows generated by the addition of the second and third subwords will propagate

into the first two sums. The correct sums, however, can be achieved easily by blocking the carry bit

propagation across the subword boundaries, which are spaced 8-bits apart from one another.

As shown in Fig. 23.7, a 2-to-1 multiplexer placed at the subword boundaries of the adder can be used

to control the propagation or the blocking of the

carry bits. If the instruction is a packed add,

the multiplexer control is set such that a zero is

propagated into the next subword. If the instruc-

tion is an ordinary add, the multiplexer control

is set such that the carry from the previous stage

is propagated. By placing such a multiplexer at

each subword boundary and adding the control

logic, partitionable ALUs are achieved at insig-

nificant cost.

By using 3-to-1 multiplexers instead of 2-to-1

multiplexers, we can also implement packed

subtract instructions. The multiplexer control

is set such that:

. For packed add instructions, zero is

propagated into the next stage.

. For packed subtract instructions,

one is propagated into the next stage.

. For ordinary add=subtract instruc-

tions, the carry=borrow bit from the previ-

ous stage is propagated into the next stage.

Operand #1

Operand #2

Result

Ra:

Rb:

Rc:

FIGURE 23.4 ADD Rc, Ra, Rb: Ordinary add

instruction.

Ra:

Rb:

Rc:

FIGURE 23.5 PADD Rc, Ra, Rb: Packed add

instruction.

Ra:

Rb:

Rc:

Subword 1

11111111

11111111

11111111

00001111

00001111

11110000

00000000

00000000

11111111 00001110 11101111 00001111

Subword 2 Subword 3 Subword 4

FIGURE 23.6 In the packed add instruction, the

carry bits are not propagated.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 5 4.10.2007 3:53pm Compositor Name: VBalamugundan

Media Signal Processing 23-5

When a zero is propagated through the boundary into the next subword in the packed add

instructions, we are essentially ignoring any overflow that might have been generated. Similarly, when

a one is propagated through the boundary into the next subword in the packed subtract

instructions, we are essentially ignoring any borrow that might have been generated. Ignoring overflows

is equivalent to using modular arithmetic in add operations. Although modular arithmetic can be

necessary or useful, other occasions arise when the carry bits should not be ignored and have to be

handled differently.

23.1.3.2 Handling Parallel Overflows

Overflows in packed add=subtract instructions can be handled in the following ways:

. The overflow may be ignored (modular arithmetic).

. A flag bit may be set if at least one overflow is generated.

. Multiple flag bits (i.e., one flag bit for each addition operation on the subwords) may be set.

. A software overflow trap can be taken.

. Saturation arithmetic: the results are limited to a certain range. If the outcome of the operation

falls outside this range, the corresponding limiting value will be the result.

Most nonpacked integer add=subtract instructions choose to ignore overflows and perform

modular arithmetic. In modular arithmetic, the numbers wrap around from the largest representable

number to the smallest representable number. For example, in 8-bit modular arithmetic, the operation

254þ 2 will give a result of 0. The expected result, 256, is larger than the largest representable number,

which is 255, and therefore is wrapped around to the smallest representable number, which is 0.

In multimedia applications, modular arithmetic frequently gives undesirable results. If the numbers in

the previous example were pixel values in a grayscale image, by wrapping the values from 255 down to 0,

white pixels would have converted into black ones. One solution to this problem is to use overflow traps,

which are implemented in software.

A flag bit is an indicator bit that is set or cleared depending on the outcome of a particular operation.

In the context of this discussion, an overflow flag bit is an indicator that is set when an add instruction

generates an overflow. Occasions arise where the use of the flag bits are desirable. Consider a loop that

Ra:

Rb:

Carry-out Carry-in

Rc:

Subword 1

11111111

11111111

11111111

00001111

00001111

11110000

00000000

00000000

11111111 00001110 11101111 00001111

Subword 2 Subword 3 Subword 4

0 0 0

FIGURE 23.7 Partitionable ALU: In packed add instructions, the multiplexers propagate zero; in ordinary add

instructions, the multiplexers propagate carry-out from the previous stage into the carry-in of the next stage.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 6 4.10.2007 3:54pm Compositor Name: VBalamugundan

23-6 Digital Systems and Applications

iterates many times and in each iteration, executes many add instructions. In this case, it is not desirable

to handle overflows (by taking overflow trap routines) as soon as they occur, because this would

negatively impact the performance by interrupting the execution of the loop body. Instead, the overflow

flag can be set when the overflow occurs, and the program flow continues as if the overflow did not

occur. At the end of each iteration, however, this overflow flag can be checked and the overflow trap can

be executed if the flag turns out to be set. This way, the program flow would not be interrupted while the

loop body executes.

An overflow trap can be used to saturate the results so that the aforementioned problems would not

occur. A result that is greater than the largest representable value is replaced by that largest value. Similarly,

a result that is less than the smallest representable value is replaced by that smallest value. One problem

with this solution will be its negative effects to performance. An overflow trap is handled in software and

may take many clock cycles to resolve. This can be acceptable only if the overflows are infrequent. For

nonpacked add=subtract instructions, generation of an overflow on a 64-bit register by adding 8-bit

quantities will be rare, so a software overflow trap will work well. This is not the case for packed arithmetic

operations. Causing an overflow in an 8-bit subword is much more likely than in a 64-bit register. Also,

since a 64-bit register may hold eight 8-bit subwords, multiple overflows can occur in a single execution

cycle. In this case, handling the overflows by software traps could easily negate any performance gains from

executing packed operations. The use of saturation arithmetic solves this problem.

23.1.3.3 Saturation Arithmetic

Saturation arithmetic implements in hardware the work done by the overflow trap described above. The

results falling outside the allowed numeric ranges are saturated to the upper and lower limits by

hardware. This can handle multiple parallel overflows efficiently, without operating system intervention.

Two types of overflows for arithmetic operations are:

. A positive overflow occurs when the result is larger than the largest value in the defined range for

that result

. A negative overflow occurs when the result is smaller than the smallest value in the defined range

for that result

If saturation arithmetic is used in an operation, the result is clipped to the maximum value in its

defined range if a positive overflow occurs, and to the minimum value in its defined range if a negative

overflow occurs.

For a given instruction, multiple saturation options may exist, depending on whether the operands

and the result are treated as signed or unsigned integers. For an instruction that uses three registers (two

for source operands and one for the result), there can be eight different saturation options. Each one of

the three registers can be treated as containing either a signed or an unsigned integer, which gives 23

possible combinations. Not all of the eight possible saturation options are equally useful. Only three of

the eight possible saturation options are used in any of the multimedia ISAs surveyed:

a) sss (signed result–signed first operand–signed second operand): In this saturation option, the

result and the two operands are all treated as signed integers. The most significant bit is

considered the sign bit. Considering n-bit subwords, the result and operands are defined in the

range [�2n�1, 2n�1� 1]. If a positive overflow occurs, the result is saturated to 2n� 1. If a

negative overflow occurs, the result is saturated to �2n�1. In an addition operation that uses the

sss saturation option, since the operands are signed numbers, a positive overflow is possible only

when both operands are positive. Similarly, a negative overflow is possible only when both

operands are negative.

b) uuu (unsigned result–unsigned first operand–unsigned second operand): In this saturation

option, the result and the two operands are all treated as unsigned integers. Considering n-bit

integer subwords, the result and the operands are defined in the range [0,2n�1]. If a positive

overflow occurs, the result is saturated to 2n�1. If a negative overflow occurs, the result is

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 7 4.10.2007 3:54pm Compositor Name: VBalamugundan

Media Signal Processing 23-7

saturated to zero. In an addition operation that uses the uuu saturation option, since the

operands are unsigned numbers, negative overflow is not a possibility; however, for a subtraction

operation using the uuu saturation, negative overflow is possible, and any negative result will be

clamped to zero as the smallest value.

c) uus (unsigned result–unsigned first operand–signed second operand): In this saturation option,

the result and the first operand are treated as unsigned numbers, and the second operand is

treated as a signed number. Although this may seem like an unusual option, it is very useful

because it allows the addition of a signed increment to an unsigned pixel. It also allows negative

numbers to be clipped to zero. Its implementation also has logical symmetry to the sss case.

In addition to the efficient handling of overflows, saturation arithmetic also facilitates several other

useful computations. For instance, saturation arithmetic can also be used to clip results to arbitrary

maximum or minimum values. Without saturation arithmetic, these operations could normally take up

to five instructions for each pair of subwords. That would include instructions to check for upper and

lower bounds and then to perform the clipping. Using saturation arithmetic, however, this effect can be

achieved in as few as two instructions for all the pairs of packed subwords.

Saturation arithmetic can also be used for in-line conditional execution, reducing the need for condi-

tional branches that can cause significant performance degradations in pipelined processors. Some examples

are the packed maximum and packed absolute difference operations shown in Figs. 23.8a, b.

Table 23.1 contains examples of operations that can be performed using saturation arithmetic [15].

All of the instructions in the table use three registers. The first register is the target register. The second

and the third registers hold the first and the second operands respectively. PADD and PSUB denote

packed add and packed subtract instructions. The three-letter field after the instruction

mnemonic specifies which saturation option is to be used. If this field is empty, modular arithmetic is

assumed. All the examples in the table operate on 16-bit integer subwords.

Table 23.2 contains a summary of the register and subword sizes and the saturation options found in

different multimedia ISAs. Table 23.3 is a summary of the packed add=subtract instructions in

58Ra: 14 12 77

22

a) ci = max(ai, bi)

Rb: 192 118 36

36Rc: 0 0 41 PSUB,uuu Rc, Ra, Rb

PADD Rc, Rc, Rb58Rc: 192 118 77

b) ci = ⏐ai −bi⏐

36Re: 0 0 41 PSUB, uuu Re, Ra, Rb

PSUB, uuu Rf, Rb, Ra0Rf: 178 106 0

PADD Rc, Re, Rf36Rc: 178 106 41

FIGURE 23.8 (a) Packed maximum operation using saturation arithmetic. (b) Packed absolute differ-

ence operation using saturation arithmetic.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 8 4.10.2007 3:54pm Compositor Name: VBalamugundan

23-8 Digital Systems and Applications

several multimedia ISAs. The first column contains descriptions of common packed instructions. The

symbols ai and bi represent the corresponding subwords from the two source registers. The symbol ci
represents the corresponding subword in the target register.

The IA-64* architecture has 64-bit integer registers. Packed add and packed subtract instruc-

tions are supported for subword sizes of 1, 2, and 4 bytes. Modular arithmetic is defined for all subword

sizes whereas the saturation options (sss, uuu, and uus) exist for only 1 and 2-byte subwords.

TABLE 23.1 Examples of Operations That Are Facilitated by Saturation Arithmetic

Operation Instruction Sequence Notes

Clip ai to an arbitrary maximum value nmax,

where nmax < 215 � 1.

PADD.sss Ra, Ra, Rb Rb contains the value (2
15 � 1 � nmax). If ai >

nmax, this operation clips ai to 2
15� 1 on the

high end.

PSUB.sss Ra, Ra, Rb ai is at most nmax.

Clip ai to an arbitrary minimum value nmin,

where nmin > �215.
PSUB.sss Ra, Ra, Rb Rb contains the value (�215 þ nmin). If ai <

nmin, this operation clips ai to �215 at the
low end.

PADD.sss Ra, Ra, Rb ai is at least nmin.

Clip ai to within the arbitrary range [nmin,

nmax], where �215 < nmin < nmax < 215 � 1.

PADD.sss Ra, Ra, Rb Rb contains the value (2
15 � 1 � nmax). This

operation clips ai to 2
15� 1 on the high end.

PSUB.sss Ra, Ra, Rd Rd contains the value (2
15 � 1 � nmax þ 215

� nmin). This operation clips ai to �215 at
the low end.

PADD.sss Ra, Ra, Re Re contains the value (�215 þ nmin). This

operation clips ai to nmax at the high end

and to nmin at the low end.

Clip the signed integer ai to an unsigned

integer within the range [0, nmax],

where 0 < nmax < 215 � 1.

PADD.sss Ra, Ra, Rb Rb contains the value (2
15 � 1 � nmax). This

operation clips ai to 215 � 1 at the high end.

PSUB.uus Ra, Ra, Rb This operation clips ai to nmax at the high end

and to zero at the low end.

Clip the signed integer ai to an unsigned

integer within the range [0, 216].

PADD.uus Ra, 0, Ra If ai < 0, then ai ¼ 0 else ai ¼ ai.

If ai was negative, it gets clipped to zero, else

remains same.

ci ¼ max(ai, bi) PSUB.uuu Rc, Ra, Rb If ai > bi, then ci ¼ (ai � bi) else ci ¼ 0.

Packed maximum operation PADD Rc, Rb, Rc If ai > bi, then ci ¼ ai else ci ¼ bi.

ci ¼ jai � bij PSUB.uuu Re, Ra, Rb If ai > bi, then ei ¼ (ai � bi) else ei ¼ 0.

Packed absolute difference

operation

PSUB.uuu Rf, Rb, Ra If ai <¼ then fi ¼ (bi – ai) else fi ¼ 0.

PADD Rc, Re, Rf If ai > bi, then ci ¼ j ai – bij, else ci ¼ jbi – aij.
Note: ai and bi are the subwords in the registers Ra and Rb, respectively, where i ¼ 1, 2, . . . , k, and k denotes the number of

subwords in a register. Subword size n, is assumed to be two bytes (i.e., n ¼ 16) for this table.

TABLE 23.2 Summary of the Integer Register, Subword Sizes, and Subtraction Options

Supported by the Different Architectures

Architectural Feature IA-64 MAX-2 MMX SSE-2 AltiVec

Size of integer registers (bits) 64 64 64 128 128

Supported subword sizes (bytes) 1, 2, 4 2 1, 2, 4 1, 2, 4, 8 1, 2, 4

Modular arithmetic Y Y Y Y Y

Supported saturation options sss, uuu, uus sss, uus sss, uuu sss, uuu uuu, sss

for 1, 2 byte for 2 byte for 1, 2 byte for 1, 2 byte for 1, 2, 4 byte

*All the discussions in this chapter consider Intel’s IA-64 as the base architecture. Evaluations of the other

architectures are generally carried out by comparisons to IA-64.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 9 4.10.2007 3:54pm Compositor Name: VBalamugundan

Media Signal Processing 23-9

The PA-RISC MAX-2 architecture also has 64-bit integer registers. Packed add and packed

substract instructions operate on only 2-byte subwords. MAX-2 instructions support modular

arithmetic, and the sss and uus saturation options.

The IA-32 MMX architecture defines eight 64-bit registers for use by the multimedia instructions.

Although these registers are referred to as separate registers, they are aliased to the registers in the FP

data register stack. Supported subword sizes are 1, 2, and 4 bytes. Modular arithmetic is defined for all

subword sizes whereas the saturation options (sss and uus) exist for only 1- and 2-byte subwords.

The IA-32 SSE-2 technology introduces a new set of eight 128-bit FP registers to the IA-32 architec-

ture. Each of the 128-bit registers can accommodate four single-precision (SP) or two double-precision

(DP) numbers. Moreover, these registers can also be used to accommodate packed integer data types.

Integer subword sizes can be 1, 2, 4, or 8 bytes. Modular arithmetic is defined for all subword sizes

whereas the saturation options (sss and uus) exist for only 1- and 2-byte subwords.

The PowerPCAltiVec architecture has thiry-two 128-bit registers formultimedia instructions.Packed

add=subtract instructions are supported for 1-, 2-, and 4-byte subwords. Modular or saturation

arithmetic (uuu or sss) can be used, although sss saturation is only supported for packed add.

23.1.3.4 Packed Average

Packed average instructions are very common in media applications such as pixel averaging in

MPEG-2 encoding, motion compensation, and video scaling. In a packed average, the pairs of

corresponding subwords in the two source registers are added to generate intermediate sums. Then, the

intermediate sums are shifted right by one bit, so that any overflow bit is shifted in on the left as the most

significant bit. The beauty of the average operation is that no overflow can occur, and two operations

(add followed by a one bit right shift) are performed in one operation. In a packed average

instruction, 2n operations are performed in a single cycle, where n is the number of subwords. In fact,

even more operations are performed in a packed average instruction, if the rounding applied to the

least significant end of the result is considered. Here, two different rounding options have been used:

. Round away from zero: A one is added to the intermediate sums, before they are shifted to the

right by one bit position. If carry bits were generated during the addition operation, they are

inserted into the most significant bit position during the shift right operation (see Fig. 23.9).

. Round to odd: Instead of adding one to the intermediate sums, a much simpler OR operation is

used. The intermediate sums are directly shifted right by one bit position, and the last two bits of

each of the subwords of the intermediate sums are ORed to give the least significant bit of the final

result. This makes sure that the least significant bit of the final results are set to 1 (odd) if at least

one of the two least-significant bits of the intermediate sums are 1 (see Fig. 23.10).

TABLE 23.3 Summary of the packed add and packed subtract Instructions and Variants

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

ci ¼ ai þ bi
p p p p p

ci ¼ ai þ bi (with saturation)
p p p p

ci ¼ ai � bi
p p p p p

ci ¼ ai � bi (with saturation)
p p p p

ci ¼ average (ai , bi)
p p p p p

ci ¼ average (ai , – bi)
p

[c2i, c2iþ1] ¼ [a2i þ a2iþ1, b2i þ b2iþ1]
p

lsbit(ci) ¼ carryout(aiþbi)
p

lsbit(ci) ¼ carryout(ai � bi)
p

ci ¼ compare(ai , bi)
p p p

Move mask
p p

ci ¼ max(ai , bi)
p pa p p p

ci ¼ min(ai , bi)
p pa p p p

c ¼ Sjai � bij
p pa p p

a This operation is realized by using saturation arithmetic.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 10 4.10.2007 3:54pm Compositor Name: VBalamugundan

23-10 Digital Systems and Applications

Ra:

Rb:

Rc:

Sum plus
carry

1 1 1 1

S
hift right
1 bit S

hift right
1 bit

S
hift right
1 bit S

hift right
1 bit

FIGURE 23.9 PAVG Rc, Ra, Rb: Packed average instruction using the round away from zero option.

Ra:

Rb:

Rc:

Sum plus
carry

S
hift right
1 bit S

hift right
1 bit

S
hift right
1 bit

S
hift right
1 bit

Carry
bit Sum bits

OR

FIGURE 23.10 PAVG Rc, Ra, Rb: Packed average instruction using the round to odd option. (From Intel,

IA-Architecture Software Developer’s Manual, Vol. 3, Instruction Set Reference, Rev. 1.1, July 2000. With permission.)

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 11 4.10.2007 3:54pm Compositor Name: VBalamugundan

Media Signal Processing 23-11

This rounding mode also performs unbiased

rounding under the following assumptions. If

the intermediate result is uniformly distributed

over the range of possible values, then half of the

time the bit shifted out is zero, and the result

remains unchanged with rounding. The other

half of the time the bit shifted out is one: if the

next least significant bit is one, then the result

loses �0.5, but if the next least significant bit is a
zero, then the result gains þ0.5. Because these

cases are equally likely with a uniform distribu-

tion of the result, the round to odd option tends to cancel out the cumulative averaging errors that may

be generated with repeated use of the averaging instruction.

23.1.3.5 Accumulate Integer

Sometimes, it is useful to add adjacent subwords in the same register. This can, for example, facilitate the

accumulation of streaming data. An accumulate integer instruction performs an addition of the

subwords in the same register and places the sum in the upper half of the target register, while repeating

the same process for the second source register and using the lower half of the target register (Fig. 23.11).

23.1.3.6 Save Carry Bits

This instruction saves the carry bits from a packed add operation, rather than the sums. Figure 23.12

shows such a save carry bits instruction in AltiVec: a packed add is performed and the carry bits

are written to the least significant bit of each result subword in the target register. A similar instruction

saves the borrow bits generated when performing packed subtract instead of packed add.

23.1.3.7 Packed Compare Instructions

Sometimes, it is necessary to compare pairs of subwords. In a packed compare instruction, pairs of

subwords are compared according to the relation specified by the instruction. If the condition is true for

a subword pair, the corresponding field in the target register is written with a 1-mask. If the condition is

false, the corresponding field in the target register is written with a 0-mask. Alternatively, a true or false

Ra: Rb:

Rc:

FIGURE 23.11 ACC Rc, Ra, Rb: Accumulate

integer working on registers with two subwords.

Ra:

Rb:

Rc: 0...0 0...0 0...0 0...0

S
um C

arry

S
um C

arry

S
um C

arry

S
um C

arry

FIGURE 23.12 Save carry bits instruction.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 12 4.10.2007 3:54pm Compositor Name: VBalamugundan

23-12 Digital Systems and Applications

bit is generated for each subword, and this set of bits is written into the least significant bits of the result

register. Some of the architectures have compare instructions that allow comparison of two numbers for

all of the 10 possible relations,* whereas others only support a subset of the most frequent relations. A

typical packed compare instruction is shown in Fig. 23.13 for the case of four subwords.

When a mask of bits is generated as in Fig. 23.13, often a move mask instruction is also provided. In

a move mask instruction, the most significant bits of each of the subwords are picked, and these bits

are placed into the target register, in a right aligned field (see Fig. 23.14). In different algorithms, either the

subwordmask format generated in Fig. 23.13 or the bit mask format generated in Fig. 23.14 is more useful.

Two common comparisons used are finding the larger of a pair of numbers, or the smaller of a pair of

numbers. In the packed maximum instruction, the greater of the subwords in the compared pair gets

written to the corresponding subword in the target register (see Fig. 23.15). Similarly, in the packed

Ra:

Rb:

Rc: 1...1 0...0 1...1 1...1

T
rue

Compare

F
alse

Compare

T
rue

Compare

T
rue

Compare

FIGURE 23.13 Packed compare instruction. Bit masks are generated as a result of the comparisons made.

Ra:

Rb: 0...0 0...0 0...0 0...0

FIGURE 23.14 Move mask Rb , Ra.

*Two numbers a and b can be compared for one of the following 10 possible relations: equal, less-than, less-than-

or-equal, greater-than, greater-than-or-equal, not-equal, not-less-than, not-less-than-or-equal, not-greater-than,

not-greater-than-or-equal. Typical notation for these relations are as follows respectively: ¼ , <, <¼ , >, >¼ ,

!¼ , !<, !<¼ , !>, !>¼ .

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 13 4.10.2007 3:54pm Compositor Name: VBalamugundan

Media Signal Processing 23-13

minimum instruction, the smaller of the sub-

words in the compared pair gets written to the

corresponding subword in the target register.

As described in the earlier section on saturation

arithmetic, instead of special instructions for

packed maximum and packed minimum,

MAX-2 performs packed maximum and

packed minimum operations by using

packed add and packed subtract

instructions with saturation arithmetic (see

Fig. 23.8). An ALU can be used to implement

comparisons, maximum and minimum

instructions with a subtraction operation;

comparisons for equality or inequality is usu-

ally done with an exclusive-or operation, also

available in most ALUs.

23.1.3.8 Sum of Absolute Differences

A more complex, multi-cycle instruction is the sum of absolute differences (SAD) instruc-

tion (see Fig. 23.16). This is used for motion estimation in MPEG-1 and MPEG-2 video encoding, for

example. In a SAD instruction, the two packed operands are subtracted from one another. Absolute

values of the resulting differences are then summed up.

Although useful, the SAD instruction is a multi-cycle instruction with a typical latency of three cycles.

This can complicate the pipeline control of otherwise single cycle integer pipelines. Hence, minimalist

multimedia instruction sets like MAX-2 do not

have SAD instructions. Instead, MAX-2 uses

generic packed add and packed subtract

instructions with saturation arithmetic to per-

form the SAD operation (see Fig. 23.8b and

Table 23.1).

23.1.4 Packed Multiply
Instructions

23.1.4.1 Multiplication of Two Packed
Integer Registers

The main difficulty with packed multiplication

of two n-bit integers is that the product is twice

as long as each operand. Consider the case where

the register size is 64 bits and the subwords are

16 bits. The result of the packed multiplication

will be four 32-bit products, which cannot be

accommodated in a single 64-bit target register.

One solution is to use two packed multi-

ply instructions. Figure 23.17 shows a packed

multiply high instruction, which places

only the more significant upper halves of the

products into the target register. Figure 23.18

shows a packed multiply low instruction,

which places only the less significant lower halves

of the products into the target register.

Ra:

Rb:

Rc:

max(aibi) max(aibi) max(aibi) max(aibi)

FIGURE 23.15 Packed maximum instruction.

Ra:

Rb:

Rc:

Absolute
value

0...0 0...0

Absolute
value

Absolute
value

Absolute
value

FIGURE 23.16 SAD Rc, Ra, Rb: Sum of absolute

differences instruction.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 14 4.10.2007 3:54pm Compositor Name: VBalamugundan

23-14 Digital Systems and Applications

IA-64 generalizes this with its packed multiply and shift right instruction (see Fig. 23.19),

which does a parallel multiplication followed by a right shift. Instead of being able to choose either

the upper or the lower half of the products to be put into the target register, it allows multiple* different

Ra:

Rb:

Rc: H H H H

H L

H L H L

H L

Source registers
with 16-bit subwords

Four 32-bit
products

Target register holding
the high-order 16-bits of

the intermediate products

FIGURE 23.17 Packed multiply high instruction.

Ra:

Rb:

Rc: L L L L

H L

H L H L

H L

Source registers
with 16-bit subwords

Four 32-bit
products

Target register holding
the low-order 16-bits of

the intermediate products

FIGURE 23.18 Packed multiply low instruction.

*In IA-64 the right-shift amounts are limited to 0, 7, 15, or 16 bits, so that only 2 bits in the packed multiply

and shift right instruction are needed to encode the four shift amounts.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 15 4.10.2007 3:54pm Compositor Name: VBalamugundan

Media Signal Processing 23-15

16-bit fields from each of the 32-bit products to be chosen and placed in the target register. Ideally,

saturation arithmetic is applied to the shifted products, to guard for the loss of significant ‘‘1’’ bits in

selecting the 16-bit results.

IA-64 also allows the full product to be saved, but for only half of the pairs of source subwords. Either

the odd or the even indexed subwords are multiplied. This makes sure that only as many full products as

can be accommodated in one target register are generated. These two variants, the packed multiply

left and packed multiply right instructions, are depicted in Figs. 23.20 and 23.21.

Another variant is the packed multiply and accumulate instruction. Normally, a multi-

ply and accumulate operation requires three source registers. The PMADDWD instruction in MMX

requires only two source registers by performing a packed multiply followed by an addition of two

adjacent subwords (see Fig. 23.22).

Instructions in the AltiVec architecture may have up to three source registers. Hence, AltiVec’s

packed multiply and accumulate uses three source registers. In Fig. 23.23, the instruction

packed multiply high and accumulate starts just like a packed multiply instruction, selects the

more significant halves of the products, then performs a packed add of these halves and the values

from a third register. The instruction packed multiply low and accumulate is the same, except

that only the less significant halves of the products are added to the subwords from the third register.

Ra:

Rb:

Rc: L L L L

H L

H L H L

H L

Source registers
with 16-bit subwords

Four 32-bit
products

Shift right
n bits

Target register holding
the low-order 16-bits of
the right-shifted 32-bit
intermediate products

>>n >>n >>n >>n

FIGURE 23.19 The generalized packed multiply and shift right instruction.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 16 4.10.2007 3:54pm Compositor Name: VBalamugundan

23-16 Digital Systems and Applications

23.1.4.2 Multiplication of a Packed Integer Register by an Integer Constant

Many multiplications in multimedia applications are with constants, instead of variables. For example,

in the inverse discrete cosine transform (IDCT) used in the compression and decompression of JPEG

images and MPEG-1 and MPEG-2 video, all the multiplications are by constants. This type of

multiplication can be further optimized for simpler hardware, lower power, and higher performance

simultaneously by using packed shift and add instructions [14,15,20]. Shifting a register left by n

bits is equivalent to multiplying it by 2n. Since a constant number can be represented as a binary

sequence of ones and zeros, using this number as a multiplier is equivalent to a left shift of the

multiplicand of n bits for each nth position where there is a 1 in the multiplier and an add of each

shifted value to the result register.

Ra:

Rb:

Rc:

H L

1 2 3 4

1 2 3 4

H L

H L H L

Source registers
with 16-bit subwords

Two 32-bit
products

FIGURE 23.20 Packed multiply left instruction where only the odd indexed subwords of the two source

registers are multiplied.

Ra:

Rb:

Rc:

H L

1 2 3 4

1 2 3 4

H L

H L H L

Source registers
with 16-bit subwords

Two 32-bit
products

FIGURE 23.21 Packed multiply right instruction where only the even indexed subwords of the two source

registers are multiplied.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 17 4.10.2007 3:54pm Compositor Name: VBalamugundan

Media Signal Processing 23-17

Ra:

Rb:

Rc:

Source registers
with 16-bit subwords

Four 32-bit
products

32-bit sum 32-bit sum

FIGURE 23.22 Packed multiply and accumulate instruction in MMX.

Ra:

Rb:

Rc:

Rd:

H L

H L H L

H L

Source registers
with 16-bit subwords

Four 32-bit
products

Target register holding
the 16-bits sums

FIGURE 23.23 In the packed multiply high and accumulate instruction in AltiVec, only the high-order

bits of the intermediate products are used in the addition.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 18 4.10.2007 3:54pm Compositor Name: VBalamugundan

23-18 Digital Systems and Applications

As an example, consider multiplying the integer register Ra with the constant C¼ 11. The following

instruction sequence performs this multiplication. Assume Ra initially contains the value 6.

Initial values: C ¼ 11 ¼ 10112 and Ra ¼ 6 ¼ 01102

Instruction Operation Result

Shift left 1 bit Rb, Ra Rb ¼ Ra� 1 Rb ¼ 11002 ¼ 12

Add Rb, Rb, Ra Rb ¼ Rb þ Ra Rb ¼ 11002 þ 01102 ¼ 0100102 ¼ 18

Shift left 3 bit Rc, Ra Rc ¼ Ra� 3 Rc ¼ 01102 * 8 ¼ 1100002 ¼ 48

Add Rb, Rb, Rc Rb ¼ Rb þ Rc Rb ¼ 0100102 þ 1100002 ¼ 10000102 ¼ 66

This sequence can be shortened by combining the shift left and the add instructions into one

new shift left and add instruction. The following new sequence performs the same multiplication

in half as many instructions and uses one less register.

Initial values: C ¼ 11 ¼ 10112 and Ra ¼ 6 ¼ 01102

Instruction Operation Result

Shift left 1 bit and add Rb, Ra, Ra Rb ¼ Ra� 1 þ Ra Rb ¼ 18

Shift left 3 bit and add Rb, Ra, Rb Rb ¼ Ra� 3 þ Rb Rb ¼ 66

Multiplication of packed integer registers by integer constants uses the same idea. The shift left

and add instruction becomes a packed shift left and add instruction to support the packed

data types. As an example consider multiplying the subwords of the packed integer register

Ra¼ [1j2j3j4] by the constant C¼ 11. The instructions to perform this operation are:

Initial values: C ¼ 11 ¼ 10112 and Ra ¼ [1j2j3j4] ¼ [0001j0010j0011j0100]2
Instruction Operation Result

Shift left 1 bit and add Rb, Ra, Ra Rb ¼ Ra� 1 þ Ra Rb ¼ [3j6j9j12]
Shift left 3 bit and add Rb, Ra, Rb Rb ¼ Ra� 3 þ Rb Rb ¼ [11j22j33j44]

The same reasoning used for multiplication by integer constants applies to multiplication by frac-

tional constants. Arithmetic right shift of a register by n bits is equivalent to dividing it by 2n. Using a

fractional constant as a multiplier is equivalent to an arithmetic right shift of the multiplicand by n bits

for each nth position where there is a 1 in the multiplier and an add of each shifted value to the result

register. By using a packed arithmetic shift right and add instruction, the shift and the

add instructions can be combined into one to further speed such computations. For instance, multi-

plication of a packed register by the fractional constant 0.0112 (¼ 0.375) can be performed by using just

two packed arithmetic shift right and add instructions.

Initial values: C ¼ 0.375 ¼ 0.0112 and Ra ¼ [1j2j3j4] ¼ [0001j0010j0011j0100]2
Instruction Operation Result

Arithmetic shift right 3 bit and add

Rb, Ra, 0

Rb ¼ Ra� 3 þ 0 Rb ¼ [0.125j0.25j0.375j0.5]

Arithmetic shift right 2 bit and add

Rb, Ra, Rb

Rb ¼ Ra� 2 þ Rb Rb ¼ [0.375j0.75j1.125j1.5]

Only two single-cycle instructions are required to perform the multiplication of four subwords by a

constant, in this example. This is equivalent to an effective rate of two multiplications per cycle. Without

subword parallelism, the same operations would take at least four integer multiply instructions.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 19 4.10.2007 3:54pm Compositor Name: VBalamugundan

Media Signal Processing 23-19

Furthermore, the packed shift and add instructions use a simple ALU with a small preshifter,

whereas the integer multiply instructions need a more complex multiplier functional unit. In

addition, each multiplication operation takes at least three cycles of latency compared to one cycle of

latency for a preshift and add operation. Hence, for this example, the speedup for multiplying four

subwords by a constant is six times faster (43 3=2), comparing implementations with one (non-

pipelined) subword multiplier versus one partitionable ALU with preshifter.

MAX-2 in PA-RISC and IA-64 are the only multimedia ISAs surveyed that have these efficient

packed shift left and add instructions and packed shift right and add instructions.

The preshift amounts allowed are by one, two, or three bits, and the arithmetic is performed with signed

saturation, for 16-bit subwords.

23.1.4.3 Vector Multiplication

So far, this chapter has examined relatively simple packed multiply instructions. These instructions

all take about the same latency as a single multiply instruction, which is typically 3–4 cycles

compared to an add instruction normalized to one cycle latency. For better or worse, some multimedia

ISAs have included very complex, multiple-cycle operations. For example, AltiVec has a packed

vector multiply and accumulate instruction, using three 128-bit packed source operands

and a 128-bit target register (see Fig. 23.24). First, all the pairs of bytes within a 32-bit subword in

two of the source registers are multiplied in parallel and 16-bit products are generated. Then, four 16-bit

products are added to each other to generate a ‘‘sum of products’’ for every 32 bits. A 32-bit subword

from the third source register is added to this ‘‘sum of products.’’ The resulting sum is placed in

the corresponding 32-bit subword field of the target register. This process is repeated for each of the four

Ra:

Rb:

Rc:

Rd:

H L

H L H L

H L

Source registers
with 8-bit subwords.

Source registers
with 32-bit subwords.

Four 16-bit
products

32-bit target subword holding
the sum of the four 16-bit

products and the 32-bit subword

FIGURE 23.24 AltiVec’s VSUMMBM instruction: only one-fourth of the instruction is shown. Each box represents

a byte. This process is carried out for each 32-bit word in the 128-bit source registers.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 20 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-20 Digital Systems and Applications

32-bit subwords. This is a total of sixteen 8-bit integer multiplies, twelve 16-bit additions, and four

32-bit additions, using four 128-bit registers, in a single VSUMMBM instruction. This can perform a 43 4

matrix times a 43 1 vector multiplication, where each element is a byte, in a single instruction, but this

single complex instruction takes many cycles of latency. While a multiplication of a 43 4 matrix with a

43 1 vector is a very frequent operation in graphics geometry processing, the precision required is

usually that of 32-bit single-precision floating-point numbers, not 8-bit integers. Whether the complex-

ity of such a compound VSUMMBM instruction is justified depends on the frequency of such 43 4

matrix-vector multiplications of bytes. Table 23.4 summarizes the packed integer multiplication instruc-

tions described.

23.1.5 Packed Shift and Rotate Operations

Most microprocessors have one or more shifters in addition to one or more ALUs (see Fig. 23.3). Just as

the ALU is partitionable, so is the shifter, for subword-parallel operation. A packed shift instruction

performs blocking shifts of the subwords packed in a register. Any bits shifted to the left are blocked

from affecting the adjacent subword on the left; any bits shifted to the right are blocked from affecting

the adjacent subword on the right.

For the packed shift instruction, the shift can be logical (zeros substituted for vacated bits)

or arithmetic (zeros substituted for vacated bits on the right and sign-bit replicated for vacated bits on

the left). The shift amount can be given by an immediate operand or by a register operand. When the

shift amount is given by a register, each subword is usually shifted by the same amount, given by

the least significant log2 n bits of a second source register, for shifting the n bits of a first source register

(see Fig. 23.25). In a more complicated, but more versatile form, each subword in a packed register can

be shifted by a different amount (see Fig. 23.26).

Similarly, the packed rotate instruction performs rotations on each subword in parallel. The

amount to be rotated can be specified by an immediate in an instruction, by a single rotate amount in a

TABLE 23.4 Packed Integer Multiplication Instructions

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

ci ¼ lower_half (ai * bi)
p p p p p

ci ¼ upper_half (ai * bi)
p p p p p

ci ¼ lower_half [(ai * bi)� n]
p a

Packed multiply left [c2i, c2iþ1] ¼ a2i * b2i
p

Packed multiply right [c2i, c2iþ1] ¼ a2iþ1 * b2iþ1
p

Packed multiply and accumulate

[c2i, c2iþ1] ¼ a2i * b2i þ a2iþ1 * b2iþ1
p

di ¼ upper_half (ai * bi) þ ci
p

di ¼ lower_half (ai * bi) þ ci
p

Packed shift left and addb p p
ci ¼ (ai� n) þ bi, for n ¼ 1, 2 or 3 bits.

Packed shift right and addc p p
ci ¼ (ai� n) þ bi, for n ¼ 1, 2 or 3 bits.

Packed vector multiply and

accumulate (VSUMMBM)

p

[d4i , d4iþ1, d4iþ2, d4iþ3] ¼
[c4i , c4iþ1, c4iþ2, c4iþ3]þ S

4
j¼1a4iþj * b4iþj

VMSUMxxx instructions of AltiVec (general form)

[d2i, d2iþ1] ¼ a2i * b2i þ a2iþ1 * b2iþ1 þ [c2i, c2iþ1]
p

a Shift amounts are limited to 0,7,15, or 16 bits.
b For use in multiplication of a packed register by an integer constant.
c For use in multiplication of a packed register by a fractional constant.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 21 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-21

register, or by different rotate amounts for each subword (see Fig. 23.27). Data-dependent rotations,

where the single rotate amount is given in a register, have been proposed for symmetric cryptography

algorithms like RC5.

Packed shift instructions may also be used to multiply or divide subwords by a constant that is a

power of two. When used in this way, it may be necessary to apply saturation arithmetic with parallel left

shifts used for multiplication. It may also be desirable to apply rounding with parallel arithmetic right

shifts. Such saturation and rounding complicate the circuitry for the shifter functional unit, and is not

implemented by any of the current multimedia ISAs. Hence, packed shift instructions should be

used for multiplication or division only when no overflow can occur on left shifts, and sufficient

precision can be preserved on right shifts. For multiplication by an integer or fractional constant,

packed shift and add instructions, described in Section 23.1.4.2 are preferable. These can better

control accuracy in the multiplication.

Ra:

Rb:

Rc:

Shifts can be left or right,
logical or arithmetic

Shift unit

Shift unit

Shift unit

Shift unit

Shift amount

FIGURE 23.25 Packed shift instruction. Shift amount is given in the second operand. Each subword is shifted

by the same amount.

Ra:

Rb:

Rc:

Shifts can be left or right,
logical or arithmetic

Shift unit

Shift unit

Shift unit

Shift unit

Shift
amount

Shift
amount

Shift
amount

Shift
amount

FIGURE 23.26 Packed shift instruction. Shift amount is given in the second operand. Each subword can be

shifted by a different amount.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 22 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-22 Digital Systems and Applications

Table 23.5 summarizes the multimedia instructions involving packed shift and packed rotate

operations. In the table, n is used to represent a shift or rotate amount that is specified in the immediate

field of an instruction. For example, in the operation denoted as ci¼ ai� n, each subword of c is shifted to

the left by the amount given in the immediate field of the corresponding instruction. Similarly, in the

operation ci¼ ai� b, each subword of c is shifted to the left by the amount specified in the source register

b. In ci¼ ai � bi, each subword of c is shifted to the left by the amount specified in the corresponding

subword of the source register b. Shift left is represented by�, shift right by�, and rotate by <�.

23.1.6 Subword Permutation Instructions

Initially, the rearrangement of subwords in registers manifested only as packing and unpacking oper-

ations. MAX-2 first introduced general-purpose subword permutation instructions for more versatile

reordering of subwords packed into one or more registers [9].

23.1.6.1 Pack Instructions

Pack instructions convert from larger subwords to smaller subwords. If the value in the larger subword

is greater than the maximum value that can be represented by the smaller subword, saturation arithmetic

is performed, and the resulting subword is set to the maximum value of the smaller subword.

Figure 23.28 shows how a register with smaller packed subwords can be created from two registers

Ra:

Rb:

Rc:

Rotates can be
left or right

Rotate unit

Rotate unit

Rotate unit

Rotate unit

Rotate
amount

Rotate
amount

Rotate
amount

Rotate
amount

FIGURE 23.27 Packed rotate instruction. Rotate amount is given in the second operand. Each subword can

be rotated by a different amount.

TABLE 23.5 Summary of packed shift and packed rotate Instructions

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

ci ¼ ai � n
p p p

ci ¼ ai � b
p p

ci ¼ ai � bi
p

ci ¼ ai � n
p p p

ci ¼ ai � b
p p

ci ¼ ai � bi
p

ci ¼ ai <� n

ci ¼ ai <� b

ci ¼ ai <� bi
p

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 23 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-23

with subwords that are twice as large. Pack

instructions differ in the size of the supported

subwords and in the saturation options used.

23.1.6.2 Unpack Instructions

Unpack instructions are used to convert

smaller packed data types to larger ones. The

subwords in the two source operands are writ-

ten sequentially to the target register in alternat-

ing order. Because, only one-half of each of

the source registers can be used, the unpack

instructions come with two variants unpack

highorunpacklow (Figs. 23.29 and 23.30).

The unpack high=low instructions select

and unpack the high or low order subwords

of a source register, when used with register zero

as the second source register.*

23.1.7 Subword Permutation
Instructions

Ideally, it is desirable to be able to perform all

possible permutations on packed data. This is

only possible for small numbers of subwords.

When the number of subwords increases, the

number of control bits required to specify arbi-

trary permutations becomes too large to be

encoded in an instruction. For the case of n

subwords, the number of control bits used to

specify a particular permutation of these n sub-

words is n log2(n). Table 23.6 shows how many

control bits are required to specify any arbitrary

permutation for different numbers of sub-

words. When the number of subwords is 16 or

greater, the number of control bits exceeds the

number of the bits available in the instruction,

which is typically 32 bits. Therefore, it becomes

necessary to use a second registery to contain

the control bits used to specify the permuta-

tion. By using this second register, it is possible

to get any arbitrary permutation of up to 16

subwords in one instruction.

Because AltiVec instructions have three 128-

bit source registers, a subword permutation can

use two registers to hold data, and the third

register to hold the control bits. This allows

Ra:

Rb:

Rc:

FIGURE 23.28 Pack instruction converts larger sub-

words to smaller ones.

*Register zero gives a constant value of ‘‘zero’’ when used as a source register.
yThis second register needs to be at least 64-bits wide to fully accommodate the 64 control bits needed for 16

subwords.

Ra:

Rb:

Rc:

FIGURE 23.29 Unpack high instruction.

Ra:

Rb:

Rc:

FIGURE 23.30 Unpack low instruction.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 24 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-24 Digital Systems and Applications

any arbitrary selection and re-ordering of 16 of the 32 bytes in the two source registers in a vperm

instruction.

23.1.7.1 Mux, Permute, and Mix Instructions

Only a small subset of all the possible permutations is achievable with one subword permutation instruction,

so it is desirable to select permutations that can be used as primitives to realize other permutations.

A subword permutation instruction can have one or two source registers as operands. In the latter case,

only half of the subwords in the two source operands may actually appear in the target register. Examples of

these two cases are the mux and mix instructions respectively, in both IA-64 and MAX-2.

Mux in IA-64 operates on one source register. It allows all possible permutations of four packed 16-bit

subwords, with andwithout repetitions (see Fig. 23.31). An 8-bit immediate field in the instruction is used to

select one of the 256 possible permutations. This is the same operationperformedby the permute instruction

in the earlierMAX-2.

In IA-64, the mux instruction can also permute eight packed 8-bit subwords. For the 8-bit subwords,

mux has five variants, and only the following permutations are implemented in hardware (see Fig. 23.32):

. Mux. rev (reverse): Reverses the order of bytes.

. Mux. mix (mix): Performs the Mix operation (see below) on the bytes in the upper and lower

32-bit halves of the 64-bit source register.

. Mux. shuf (shuffle): Performs a perfect shuffle on the bytes in the upper and lower halves of the

register.

. Mux.alt (alternate): Selects first the even* indexed bytes, placing them in the upper half of the

result register, then selects the odd indexed bytes, placing them in the right half of the result register.

Ra:

Rb:

Any permutation of
the subwords

FIGURE 23.31 Mux instruction in IA-64 or Permute instruction in Max-2.

*The bytes indexed from 0 to 7.0 corresponds to the most significant byte, which is on the left end of the registers.

TABLE 23.6 Number of Control Bits Required to Specify

an Arbitrary Permutation

Number of Subwords

in a Packed

iData Type

Number of Control Bits Required

to Specify an Arbitrary Permutation for

a Given Number of Subwords

2 2

4 8

8 24

16 64

32 160

64 384

128 896

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 25 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-25

. Mux. brcst (broadcast): Replicates the least significant byte into all the byte locations of the

result register.

Mix is a very useful permutation operation on two source registers. A mix left instruction picks

even subwords alternately from the two source registers and places them into the target register (see Fig.

23.33). A mix right instruction picks odd subwords alternately from the two source registers and

places them into the target register (see Fig. 23.34).

Ra:

Rb:

 (a)

Ra:

Rb:

 (b)

Ra:

Rb:

 (c)

Ra:

Rb:

 (d)

Ra:

Rb:

 (e)

 rev mix

 alt shuf

brcst

FIGURE 23.32 Mux instruction in IA-64 has five permutation options for 8-bit subwords. (From Intel,

IA-Architecture Software Developer’s Manual, Vol. 3, Instruction Set Reference, Rev. 1.1, July 2000. With

permission.)

Ra:

Rb:

FIGURE 23.33 Mix Left instruction.

Ra:

Rb:

Rc:

FIGURE 23.34 Mix Right instruction.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 26 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-26 Digital Systems and Applications

The versatility of Mix is demonstrated [9,14], for example, in performing a matrix transpose. Mix

can also be used to perform an unpacking function similar to that done by Unpack High and Unpack

Low. The usefulness of Mix and Mux (or Permute) has also been validated in [21] as general-purpose

subword permutation primitives for processing of two-dimensional data in microSIMD architectures.

23.1.7.2 Extract, Deposit, and Shift Pair Instructions

A more sophisticated shifter can also perform extract and deposit bit-field operations, as in

PA-RISC [17,10]. An extract instruction picks an arbitrary contiguous bit-field from the source

operand and places it right aligned into the result register (Fig. 23.35). Extract instructions may be

limited to work on subwords instead of bit-fields (Fig. 23.36). Extract instructions clear the upper

bits of the target register.

A deposit instruction picks a right-aligned contiguous bit-field from the source register and

patches it into an arbitrary location in the target register (Fig. 23.37). The unpatched bits of the target

register remain unchanged. Alternatively, they are cleared to zeros in a zero and deposit instruc-

tion [17]. Deposit instructions may be limited to work on subwords instead of arbitrarily long

bit-fields and arbitrary patch locations (Fig. 23.38).

A very useful instruction for rearranging subwords from two registers is the shift pair instruction

in IA-64 (see Fig. 23.39). This instruction, which was first introduced in the PA-RISC ISA [10,17], is

essentially a shift instruction for bit-strings that span more than one register. Shift pair

concatenates the two source registers to form a 128-bit intermediate value, which is shifted to the

right by n bits. The least significant 64 bits of the shifted value is written to the result register. If the

same register is specified for both operands, the result is a rotate operation. Rotates can be realized

this way, so IA-64 does not have a separate rotate instruction. This shift pair instruction is

more general than a rotate, allowing flexible combination of two bit-fields from separate registers.

Table 23.7 summarizes the subword permutation instructions on packed data types.

23.1.8 Floating-Point MicroSIMD Instructions

High-fidelity audio and graphics geometry processing require the higher precision and range of floating-

point numbers. Usually, single-precision (32-bit) floating-point (FP) numbers are sufficient, but 16-bit

Ra:

Rb:

FIGURE 23.35 Extract bit-field instruction.

Ra:

Rb:

FIGURE 23.36 Extract subword instruction.

Ra:

Rb:

FIGURE 23.37 Deposit bit-field instruction.

Ra:

Rb:

FIGURE 23.38 Deposit subword instruction.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 27 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-27

integers or fixed-point numbers are not.

Double-precision (64-bit) floating-point

numbers are not really needed for such

multimedia computations.

Because floating-point registers are at

least 64-bits wide in microprocessors to

support double-precision (DP) FP num-

bers, it is possible to pack two single-pre-

cision (SP) FP numbers in a 64-bit

register, to support subword parallelism,

or packed parallelism, or microSIMD par-

allelism on the FP functional units and registers. The precision levels supported by different ISAs are

shown in Table 23.8. SP and DP numbers are 32 and 64 bits long, respectively, as defined by the IEEE-

754 FP number standard. Only SSE-2 supports packed DP FP numbers. MAX-2 and MMX do not

support packed FP instructions.

23.1.8.1 Packed Floating-Point Arithmetic Instructions

23.1.8.1.1 Packed FP Add

Figure 23.40 shows a packed FP add, where four pairs of single-precision FP numbers in two 128-bit

registers are added using floating-point addition. Packed FP subtract instructions are similar.

While the packed FP instruction looks very similar to the packed integer equivalents (see Fig. 23.5),

implementation of packed FP add is not as simple as blocking carries at the subword boundary as in

packed integer addition (see Fig. 23.7). It is much more difficult to partition a FP functional unit for

subword parallelism because of the nature of FP arithmetic acting on FP numbers represented in sign,

Ra: :Rb

:Rc

FIGURE 23.39 Shift pair instruction in IA-64.

TABLE 23.7 Subword Permutation Instructions

Integer Operations IA-64 MAX-2 MMX SSE-2 3DNow! AltiVec

Pack
p p p

Unpack low
p p p p

Unpack high
p p p

Permute n subwords
p

(n ¼ 4)
p

(n ¼ 4)
p

(n ¼ 4)
p

(n ¼ 4)
p

(n ¼ 16,32)a

Mux.rev
p

Mux.mix
p

Mux.shuffle
p

Mux.alt
p

Mux.brcst
p

Mix left
p p p

Mix right
p p p

Extract bit-field
p p

Extract subword
p

Deposit bit-field
p p

Deposit subword
p

Shift pair Rc, Ra, Rb

p p

a This is the vperm instruction, and it has some limitations for n ¼ 32. See text for more details on this instruction.

Subword size for this instruction is 8 bits regardless of whether n is 16 or 32.

TABLE 23.8 Supported Precision Levels for the Packed FP Operations

Architecture IA-64 SSE-2 3DNow! AltiVec

FP register size 82 bits 128 bits 128 bits 128 bits

Allowed packed FP data types 2 SP 4 SP or 2 DP 4 SP 4 SP

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 28 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-28 Digital Systems and Applications

mantissa, and exponent format. Another difference is that in floating-point number representation,

considerations like modular arithmetic or saturation arithmetic are not applicable.

23.1.8.1.2 Packed FP Multiplication

Multiplication of two packed FP registers involves multiplication of corresponding FP subwords from the

source registers, where the products are written to the corresponding subword in the target register (see

Fig. 23.41). In multiplication of two single-precision numbers, the product is also single-precision, and

hence the same width. Therefore, packed FP multiply does not have the problem associated with

packed integer multiply instructions, where the product is twice the width of the operands.

23.1.8.1.3 Packed FP Multiply and Add

The most important FP operation in audio, graphics, and digital signal processing is the FP multiply

and accumulate operation. Recognizing this, many ISAs have implemented this as the basic FP

operation, needing three source registers. For example, IA-64 implements packed FP multiply

and add (FPMA), packed FP multiply and subtract (FPMS), and packed FP nega-

tive multiply and add (FPNMA). It then realizes packed FP add, packed FP subtract,

and packed FP multiply operations by using FPMA and FPMS instructions. IA-64 architecture

specifies 128 FP registers, which are numbered FR0 through FR127. Of these registers, FR0 and FR1 are

special. FR0 always returns the value þ0.0 when sourced as an operand, and FR1 always reads þ1.0.
When FR0 or FR1 are used as source operands, the FPMA and FPMS instructions can be used to

realize packed FP add or packed FP subtract operations and packed FP multiply

operations (see Table 23.9).

Ra :

Rb :

Rc :

FIGURE 23.40 PFPADD Rc, Ra, Rb: Packed FP

add instruction.

Ra :

Rb :

Rc :

SP SP SP SP

SP SP SP SP

SP SP SP SP

FIGURE 23.41 PFPMUL Rc, Ra, Rb: Packed FP

multiply instruction.

TABLE 23.9 IA-64 uses FPMA and FPMS Instructions for packed FP add, packed FP

subtract, and packed FP multiply

IA-64 Instruction Operation Equivalent Instruction

FPMA Rd, FR1, Rb, Rc

(packed FP multiply and add)

Rd ¼ FR1 * Rb þ Rc

¼ 1.0 * Rb þ Rc

¼ Rb þ Rc

Packed FP add

FPMS Rd, FR1, Rb, Rc

(packed FP multiply and subtract)

Rd ¼ FR1 * Rb � Rc

¼ 1.0 * Rb – Rc

¼ Rb – Rc

Packed FP subtract

FPMA Rd, Ra, Rb, FR0

(packed FP multiply and add)

Rd ¼ Ra * Rb þ FR0

¼ Ra * Rb þ 0.0

¼ Ra * Rb

Packed FP multiply

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 29 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-29

The format of the FPMA (Fig. 23.42) instruc-

tion is FPMA Rd, Ra, Rb, Rc and the operation

it performs is Rd¼Ra * RbþRc. If FR1 is used as

the first or the second source operand, a packed

FP add operation is realized. Similarly, a FPMS

instruction can be used to realize a packed FP

subtract operation. Using FR0 as the third

source operand in FPMA or FPMS results in a

packed FP multiply operation.

Table 23.10 is a summary of the packed FP

instructions supported by multimedia ISAs. Several

packed FP instructions operate like their packed

integer equivalents, except that they operate on

packed FP subwords rather than packed integer

(or fixed-point) subwords. These include packed

FP add, packed FP subtract, packed FP

multiply, packed FP negate, packed FP

absolute value, packed FP compare,

packed FP maximum, and packed FP min-

imum. IA-64 also has the packed FP maximum

absolute value and the packed FP min-

imum absolute value. These put the larger

or smaller of the absolute values of the pairs of FP subwords into the result subwords in the target

register, respectively.

23.1.8.1.4 Packed FP Compare

The packed FP compare instruction compares pairs of FP subwords according to the relation

specified by the instruction. If the condition is true for a subword pair, the corresponding field in the

target register is written with a 1-mask. If the condition is false, the corresponding field in the target

register is written with a 0-mask. The only difference is that two additional relations, ordered and

unordered, are possible for floating-point numbers in addition to the 10 relations already specified for

comparing integers (see Section 23.1.3.7). Some ISAs have packed FP compare instructions that

allow all the 12 possible relations,* whereas others support a more limited subset of relations.

23.1.8.1.5 Packed FP Compare Bounds

An interesting comparison instruction is the packed FP compare bounds (VCMPBFP) instruction

of AltiVec. This instruction compares corresponding FP subwords from the two source registers, and

depending on the relation between the compared numbers, it generates a two-bit result, which is written

to the target register. The resulting two-bit field indicates the relation between the two compared FP

numbers. For instance, in VCMPBFP Rc,Ra,Rb, the FP number pairs (ai , bi) are compared, and a two-

bit field is written into ci such that:

. Bit 0 of the two-bit field is cleared if ai <¼ bi, and is set otherwise.

. Bit 1 of the two-bit field is cleared if ai >¼ (�bi), and is set otherwise.

. Both bits are set if any of the compared FP numbers is a NaN.

The two-bit result field is written to the high-order two bits of ci; the remaining bits of ci are cleared

to 0. Table 23.11 gives examples of input pairs that result in each of the four different possible outputs

for this instruction.

Ra :

Rb :

Rc :

Rd :

Source registers
two SP FP subwords

FIGURE 23.42 Packed FP multiply and add

instruction in IA-64.

*Two floating-point numbers a and b can be compared for one of the following 12 possible relations: equal, less-

than, less-than-or-equal, greater-than, greater-than-or-equal, unordered, not-equal, not-less-than, not-less-than-or-

equal, not-greater-than, not-greater-than-or-equal, ordered. Typical notation for these relations are as follows

respectively: ¼ , <, <¼ , >, >¼ , ?, !¼ , !<, !<¼ , !>, !>¼ , !?.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 30 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-30 Digital Systems and Applications

The SSE-2 architecture also includes a packed FP square root instruction. This instruction

operates on packed single-precision or double-precision numbers and computes the square roots to SP

or DP accuracy. IA-64 has the packed FP reciprocal square root instruction and the packed

FP reciprocal instruction. Both are very useful for graphics computations.

23.1.8.2 FP Subword Permutation Instructions

23.1.8.2.1 FP Permutation Instructions

SSE-2 has an FP permute (see Fig. 23.43) instruction that allows any arbitrary permutation of the four

32-bit SP subwords in one of its 128-bit multimedia registers. This operates just like the permute

instruction in MAX-2 and the mux instruction (2-byte subword version) in IA-64 (see Fig. 23.31).

TABLE 23.10 Summary of FP microSIMD Instructions

Packed FP Instructions IA-64 SSE-2 3DNow! AltiVec

ci ¼ ai þ bi
pa p p p

ci ¼ ai � bi
pb p p p

ci ¼ ai * bi
pc p p

di ¼ �ai * bi
p

di ¼ ai * bi þ ci (FPMA)
p p

di ¼ ai * bi � ci (FPMS)
p

di ¼ �ai * bi þ ci (FPNMA)
p p

ci ¼ �ai
p

ci ¼ jaij
p

ci ¼ �jaij
p

ci ¼ compare(ai, bi)
p p p p

ci ¼ max(ai, bi)
p p p p

ci ¼ min(ai, bi)
p p p p

ci ¼ max(jaij, jbij)
p

ci ¼ min(jaij, jbij)
p

ci ¼ VCMPBFB(ai, bi)
e p

ci ¼ ffiffiffiffi
ai
p p

ci ¼ 1=
ffiffiffiffi
ai
p p p p

ci ¼ 1=ai
p p p

ci ¼ log2 ai
p

ci ¼ 2ai
p

Permute n FP subwords
p

(n ¼ 2,4)

Swap FP subwords (optionally negate left

or right subword)

p

Mix_Left, Mix_Right, Mix_Left_Right
p

Unpack_high, Unpack_low
p

Pack
p p

a This operation is realized by using the FPMA instruction.
b This operation is realized by using the FPMS instruction.
c This operation is realized by using the FPMA or FPMS instruction.
d This operation is realized by using the FPNMA instruction.
e This is the packed FP compare bounds instruction, which is explained in the text.

TABLE 23.11 Result of the VCMPBFP Instruction

for Different Input Pairs

Input Output

ai bi Bit 0 Bit 1

3.0 5.0 0 0

�8.0 5.0 0 1

8.0 5.0 1 0

3.0 �5.0 1 1

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 31 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-31

IA-64 only has two single-precision subwords in its

packed format, so all possible permutations of two sub-

words can be achieved with a much simpler operation,

FP swap. This instruction just exchanges the two sub-

words. IA-64 also allows two variants of this: after swap-

ping the subwords, the sign of either the left or the right

FP value is negated.

FP mix is a useful operation that performs a permutation on two packed FP registers. A FP mix

instruction picks alternating subwords from two source registers and places them into the target register.

FP mix in IA-64 appears in three variants. The first one (Fig. 23.44) is called the FP mix left and uses

the odd indexed FP subwords of the source registers in the permutation, starting from the leftmost

subword. The second variant, FP mix right (Fig. 23.45) uses the even indexed FP subwords of

the source registers, ending with the rightmost subword. The third variant, FP mix left right

(Fig. 23.46) uses the odd indexed FP subword of the first source register, and the even indexed subword

of the second source register. These three FP mix instructions, together with the Shift Pair

instruction described earlier, allow any one of the four combinations of the SP subwords packed into

two IA-64 registers to be achieved with only one instruction.

Ra:

Rb:

Any permutation of
the subwords

FIGURE 23.43 FP permute Rb,Ra: FP permute

instruction.

Ra:

Rb:

Rc:

FIGURE 23.44 FP mix left Rc, Rb, Ra:

FP mix left instruction in IA-64.

Ra:

Rb:

Rc:

FIGURE 23.45 FP mix right Rc, Rb, Ra:

FP mix right instruction in IA-64.

Ra:

Rb:

Rc:

FIGURE 23.46 FP mix left right Rc, Rb,

Ra: FP mix left right instruction in IA-64.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 32 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-32 Digital Systems and Applications

23.1.8.2.2 FP Unpack

Packing and unpacking subwords has a different interpretation for FP numbers than for integers.

In general, there is sufficient precision in single-precision numbers, and there is no need to unpack

it to a double-precision number; however, the FP unpack can be regarded as a useful subword

permutation instruction like FP mix. It performs a shuffle by interleaving the subwords from two

registers. The FP unpack instructions operate just like the equivalent integer unpack instructions

(see Figs. 23.29 and 23.30). They come in two ‘‘flavors’’: FP unpack high and FP unpack low. Note

that the SSE-2 employs FP unpack, after unpack in MMX, and IA-64 employs FP mix, after mix,

in MAX-2.

23.1.8.2.3 FP Pack

In the integer domain, pack instructions are used to create smaller packed data types from larger data

types. The FP pack instruction in IA-64 creates two packed SP numbers from two 82-bit source

registers. All IA-64 FP registers are 82-bit extended precision FP format with two extra guard bits for

computational accuracy. First, the two 82-bit numbers are converted to standard 32-bit SP representa-

tion. These two SP numbers are then concatenated and the result is stored in the significand field (which

is 64 bits) of the 82-bit target FP register. The exponent field of the target register is set to the biased

exponent for 2.063, which indicates a packed FP format, and the sign bit is set to zero, indicating a

positive number.

23.1.9 Conclusions

Section 23.1 described multimedia instructions for programmable processors by broad classes according

to the functional units used, first in the integer domain then in the floating-point domain. For integer

subwords, packed add and packed subtract instructions, and different variants of these, use the

ALU. Packed multiply instructions use the multiplier functional unit, although very efficient

multiplication by constants can be implemented with packed shift and add instructions, which

only need an ALU with a preshifter. Packed shift and packed rotate instructions use the shifter.

Packed subword permutation instructions can either be implemented on a modified shifter or in a new

permutation unit. For packed floating-point instructions, less leverage of hardware seems possible. The

basic functional units are a floating-point adder, multiplier, and FP subword permutation unit. IA-64

combines the FP adder and multiplier into an FP multiply-add unit. For each of these instruction classes,

interesting multimedia instructions introduced in current microprocessors were described, for example,

in the IA-64, MMX, and SSE-2 from Intel; MAX-2 from Hewlett-Packard; 3DNow! from AMD; and

AltiVec from Motorola.

The key feature in these multimedia instructions is the concept of subword parallelism, also called

packed parallelism or microSIMD parallelism. This is implemented for packed integers or fixed-point

numbers in the integer datapaths, and for packed floating-point numbers in the floating-point data-

paths. Visual multimedia data like images, video, graphics rendering and animation involve pixel

processing, which can fully exploit subword parallelism on the integer datapath. Higher-fidelity audio

processing and graphics geometry processing require single-precision floating-point computations,

which exploit subword parallelism on the floating-point datapath. Typical DSP operations such as

multiply and accumulate have also been added to the multimedia repertoire of general-purpose

microprocessors. These multimedia instructions have embedded DSP and visual processing capabilities

into general-purpose microprocessors, providing native signal processing (sometimes referred to as

NSP) for multimedia data. In fact, most DSPs and media processors have also adopted subword

parallelism in their architectures, as well as other features often first introduced in microprocessors

for multimedia signal processing.

More unusual computer arithmetic issues arising from subword-parallel multimedia instructions in

microprocessors are saturation arithmetic, integer rounding alternatives, integer multiplication prob-

lems and solutions, and subword permutation instructions.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 33 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-33

Some of the multimedia ISAs introduced in microprocessors adhere to the ‘‘less is more’’ minimalist

architecture approach, defining as few instructions as necessary for high-performance, with each

instruction executable in a single pipeline cycle. Others embody the ‘‘more is better’’ approach, where

complex sequences of operations are represented by a single multimedia instruction, with such an

instruction taking many cycles for execution. An example is the packed vector multiply and

accumulate instruction in AltiVec (Fig. 23.24). These two trends represent different stylistic prefer-

ences, akin to reduced instruction set computer (RISC) and complex instruction set computer (CISC)

architectural preferences. In fact, sometimes, RISC-like multimedia instructions have been added to

CISC processor ISAs, and CISC-like multimedia instructions to RISC processor ISAs. The remarkable

fact is that subword-parallel multimedia instructions have achieved such rapid and pervasive adoption

in both RISC and CISC microprocessors, DSPs and media processors, attesting to their undisputed cost-

effectiveness in accelerating multimedia processing in software.

To simplify software compatibility and interoperability of multimedia software across different

processors, it is highly desirable to refine the best ideas from the different multimedia ISAs into a

coherent set of subword-parallel instructions. If this is a small yet powerful set, it is more likely to be

implemented in all future microprocessors and media processors, allowing algorithm and compiler

optimizations to exploit microSIMD parallelism with confidence that benefits would be realized across

almost all processors. While slight differences in multimedia instructions across processors may not

affect the potential performance provided by each ISA, they make it difficult to design an optimal

algorithm and a set of compiler optimizations that achieve the best multimedia performance for every

processor. The challenge for the next phase of multimedia ISA design is to understand which ISA

features are truly effective for multimedia signal processing, and encapsulate these insights into the

design of third-generation multimedia ISA for both microprocessors and media processors.

Acknowledgments

The author thanks her student, A. Murat Fiskiran, for surveying SSE-2, 3DNow! and AltiVec, and for his

invaluable help in preparing the figures and tables.

References

1. Ruby Lee and Michael Smith, ‘‘Media processing: a new design target,’’ IEEE Micro, Vol. 16, No. 4,

pp. 6–9, Aug. 1996.

2. Michael Flynn, ‘‘Very high-speed computing systems,’’ Proceedings of the IEEE, No. 54, Dec. 1966.

3. Ruby Lee, ‘‘Efficiency of MicroSIMD architectures and index-mapped data for media processors,’’

Proceedings of IS&T=SPIE Symposium on Electric Imaging: Media Processors 99, pp. 34–46,

Jan. 1999.

4. Intel, ‘‘IA-64 architecture software developer’s manual, volume 3: instruction set reference,’’ Revision

1.1, July 2000, Order Code 245319-002.

5. Ruby Lee, Murat Fiskiran, and Abdulla Bubshait, ‘‘Multimedia instructions in IA-64,’’ Invited paper.

Proceedings of the 2001 IEEE International Conference on Multimedia and Exposition, Aug. 22–24,

2001.

6. Alex Peleg and Uri Weiser, ‘‘MMX technology extension to the intel architecture,’’ IEEE Micro, Vol.

16, No. 4, pp. 10–20, Aug. 1996.

7. Intel, ‘‘Intel architecture software developer’s manual, volume 2: instruction set reference,’’ 1999,

Order Code 243191.

8. Intel, ‘‘IA-32 intel architecture software developer’s manual with preliminary willamette architecture

information, volume 2: instruction set reference,’’ 2000.

9. Ruby Lee, ‘‘Subword parallelism with MAX-2,’’ IEEE Micro, Vol. 16, No. 4, pp. 51–59, Aug. 1996.

10. G. Kane, PA-RISC 2.0 Architecture, 1996, Prentice-Hall, Englewood Cliffs, NJ.

11. AMD, ‘‘3DNow! technology manual,’’ March 2000, Order Code 21928G=0.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 34 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-34 Digital Systems and Applications

12. AMD, ‘‘AMD extensions to the 3DNow! and MMX Instruction Sets Manual,’’ March 2000, Order

Code 22466D=0.

13. Motorola, ‘‘AltiVec technology programming environments manual,’’ Revision 0.1, November 1998,

Order Code ALTIVECPEM=D.

14. Ruby Lee, ‘‘Multimedia extensions for general-purpose processors,’’ Invited paper. Proceedings of the

IEEE Signal Processing Systems: Design and Implementation, pp. 9–23. Nov. 1997.

15. Ruby Lee, ‘‘Accelerating multimedia with enhanced microprocessors,’’ IEEE Micro, Vol. 15, No. 2,

pp. 22–32, April 1995.

16. Ruby Lee, John Beck, Joel Lamb, and Ken Severson, ‘‘Real-time software MPEG video decoder on

multimedia-enhanced PA7100LC processors,’’ Hewlett-Packard Journal, Vol. 46, No. 2, pp. 60–68,

April 1995.

17. Ruby Lee, ‘‘Precision architecture,’’ IEEE Computer, Vol. 22, No. 1, pp. 78–91, Jan. 1989.

18. Vasudev Bhaskaran, Konstantine Konstantinides, Ruby Lee and John Beck, ‘‘Algorithmic and

architectural enhancements for real-time MPEG-1 decoding on a general purpose RISC worksta-

tion,’’ IEEE Transactions on Circuits and Systems for Video Technology, Vol. 5, No. 5, pp. 380–386,

Oct. 1995.

19. Mark Tremblay, J.M. O’Connor, V. Narayanan, and H. Liang, ‘‘VIS speeds new media processing,’’

IEEE Micro, Vol. 16, No. 4, pp. 10–20, Aug. 1996.

20. Zhen Luo and Ruby Lee, ‘‘Cost-effective multiplication with enhanced adders for multimedia

applications,’’ Proceedings of ISCAS 2000, IEEE International Symposium on Circuits and Systems,

Vol. I, pp. 651–654, May 2000.

21. Ruby Lee, ‘‘Subword permutation instructions for two-dimensional multimedia processing in

Micro-SIMD architectures,’’ Proceedings of the IEEE International Conference on Application-specific

Systems, Architectures and Processors, pp. 3–14, July 2000.

23.2 DSP Platform Architecture for SoC Products

Gerald G. Pechanek

23.2.1 Introduction

The development of wireless, networking, communications, video, and consumer products has shifted

toward low-power high-functionality systems-on-chip (SoC) semiconductors [1]. Driving this develop-

ment is the availability of deep sub-micron technology allowing more complete system designs to be

embedded in silicon. Some of these improvements include increasing on-chip memory capacity, the use

of more fully programmable solutions using DSPs, and the inclusion of specialized interfaces and

functions.

To make these high-value SoC products widely available at low cost requires the use of standard

design practices that allow them to be fabricated at multiple semiconductor suppliers. This means that

custom designed SoCs, optimized to a particular manufacturing process, cannot be used. Consequently,

as the complexity and functionality of SoC products continues to increase with stringent power

requirements, the standard approach of increasing clock speed on an existing design to meet higher

performance requirements is infeasible.

The need to support multiple standards, and to quickly adapt to changing standards, has become a

product requirement [2]. To satisfy this need, programmable DSPs and control processors are being

increasingly used as the central SoC design component. These processors form the basis of the SoC

product platform and permeate the overall system design including the on-chip memory, DMA, internal

busses, etc. Consequently, choosing a flexible and efficient processor, which can be manufactured by

multiple semiconductor suppliers, is arguably the most important intellectual property (IP) decision

that needs to be made in the creation of an SoC product.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 35 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-35

In recent years, a class of high-performance programmable processor IP has emerged that is appropriate

for use in high-volume embedded applications such as digital cellular, networking, communications, and

console gaming [3,4]. Section 23.2 briefly describes theManArray thread coprocessor as an example of the

architectural features needed for demanding SoC requirements. The next subsection provides a brief

description of the ManArray thread coprocessor architecture. Section 23.2.3 describes how the ManArray

architecture fulfills SoC application requirements, with focus on the implementation, compiler, and tools.

Section 23.2.4 presents performance results, and Section 23.2.5 concludes the section.

23.2.2 The ManArray Thread Coprocessor Architecture

In numerous application environments there is a need to significantly augment the signal processing

capabilities of a MIPS, ARM, or other host processor. In addition, many applications require low power

consumption at very high performance levels to accomplish the tasks of emerging applications, such as

wireless LAN (i.e., 802.11a) for battery-powered Internet devices. The BOPS SoC cores provide

streamlined coprocessor attachment to MIPS, ARM, or other hosts for this purpose. Through selectable

parallelism, the ManArray SoC cores achieve high performance at low clock rates, which minimizes

power requirements. The compiler or programmer can select from packed data, indirect VLIW, PE array

SIMD, and multiple threaded forms of parallelism to provide the best product solution. Further, BOPS

provides a complete solution by providing a comprehensive top-down design methodology for deliver-

ing the SoC solutions.

The ManArray processor is an array processor using a sequence processor (SP) array controller and an

array of distributed indirect VLIW processing elements (PEs) (see Fig. 23.47). By varying the number of

PEs on a core, an embedded scalable design is achieved with each core using a single architecture. This

embedded scalability makes it possible to develop multiple products that provide a linear increase in

performance and maintain the same programming model by merely adding array processor elements as

needed by the application. As the processing capability is increased, the memory-to-PE bandwidth is

increased, and the system DMA bandwidth may be increased as well. Embedded scalability drastically

reduces development costs for future products because it allows for a single BOPS software development

kit (SDK) to support a wide range of products.

In addition to the embedded scalability, ManArray cores are configurable in the number and type of

cores included on a chip, instruction subsetting for application optimization, the sizes of each SP’s

instruction memory, the distributed iVLIWmemories, the PE=SP data memories, and the I=O buffers,

selectable clock speed, choice of on-chip peripherals, and DMA bus bandwidth. The ManArray cores

provide a lower cost, more optimized signal processing solution than reconfigurable processors designed

using FPGA technology [5]. Multiple ManArray cores provide optimized scalable multiprocessing by

including multiple BOPS cores on an SoC product. These multiple ManArray cores can be organized to

Scalable DMA &
host I/O

MIPS, ARM, X86

iVLIW

PE1

SP

iVLIW

PE0

iVLIW

PEn

CS

CS = Cluster switch

Memory

FIGURE 23.47 ManArray architectural elements.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 36 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-36 Digital Systems and Applications

provide data pipeline processing between SP=PE-array cores and the parallelization of sub-application

tasks (thread parallelism) with a centralized host-based control to be described later in this section.

Generally speaking, the ManArray processor combines PEs in clusters that also contain a SP, uniquely

merged into the PE array, and a cluster-switch, Fig. 23.47. The SP provides program control, contains

the instruction and data address generation units, and dispatches instructions to the processor array. In

this manner, the ManArray processor is designed for scalability with a single architecture definition and

a common tool set. The processor and supporting tools are designed to optimize the needs of a SoC

platform by allowing a designer to balance an application’s sequential control requirements with the

application’s inherent data parallelism. This is accomplished by having a scalable architecture that begins

with a simple uniprocessor model and continues through multi-array processor implementations. In the

design flow we ensured that the ManArray architecture supported a reasonably large array processor as

well as a simple stand-alone uniprocessor that could act as an array controller. In more detail, a SP

merged with PE0 (SP=PE0) and an additional PE (PE1), referenced as a 13 2, are shown in Fig. 23.48.

The ManArray architecture uses a distributed register file model where the SP and each PE contain

their own independent register space, up to eight execution units (five shown), a distributed very long

instruction word memory (VIM), local SP instruction memory, local data memories, and an applica-

tion-optimized DMA and bus I=O control unit. In the Mantay core, an available 23 2 implementation

of the ManArray architecture, and its 13 1 and 13 2 subsets (available by software masking of selected

PEs), a 64-entry register file space is used in the SP and each PE. The register space consists of a recon-

figurable compute register file (CRF), which can act as a 323 32-bit or 163 64-bit register file for the

execution units on a cycle-by-cycle basis, totally integrated into the instruction set architecture, an

83 32-bit address register file (ARF), and a 243 32-bit miscellaneous register file (MRF).

In the ManArray architecture, the address registers are separated from the compute register file. This

approach maximizes the number of registers for compute operations and guarantees a minimum

number of dedicated address registers. This approach does not require any additional ports from the

compute register file to support the load and store address generation functions, and it still allows

independent PE memory addressing for such functions as local data dependent table lookups.

SP data memory

SP instruction memory

DMA & bus I/O controls

M
em

ory
interface units

MAU

DSU

ALU

Load

Store

VIM

ManArray data bus

ManArray control bus

24x32 MRF

8x32 ARF

24x32 MRF

8x32 ARF

Cluster switch

MAU

DSU

ALU

Load

Store

VIM

MIU

Instr. reg. & VCU PE 1

PE registers
32x32/16x64 CRF

24x32 MRF

8x32 ARF

PE data
memory

PE data
memory

SP/PE 0
Instruction
fetch unit

& VCU

PE registers
32x32/16x64 CRF

SP registers
32x32/16x64 CRF

FIGURE 23.48 ManArray 1 3 2 core elements.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 37 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-37

The Manta chip supports both 32-bit data types including quad byte, dual halfword, and word; and

64-bit data types including octal byte, quad halfword, dual word, and double word. The balanced

architectural approach taken for the compute register file provides the high performance features needed

by many applications. It supports octal byte and quad halfword operations in a logical 163 64-bit

register file space without sacrificing the 32-bit data type support in the logical 323 32-bit register file.

Providing both allows optimum usage of the register file space and minimum overhead in manipulating

packed data items. By adding PEs, the packed data support grows such that a 13 2 effectively provides

128-bit packed data support, a 23 2 provides 256-bit packed data support, etc., growing the level of

parallelism needed by appropriate choice of the selected core.

The ManArray instruction set is partitioned into four groups using the high two bits of the instruction

format—a control group, an arithmetic group, a load=store group, and a reserved proprietary instruction

group. Figure 23.49 shows 32-bit simplex instructions in groupings that represent the five execution unit

slots of theManta chip, the firstManArray implementation, plus a control group (01). The execution units

include store and load units, an arithmetic logic unit (ALU), a multiply accumulate unit (MAU), and a

data select unit (DSU). The load and store instructions support base plus displacement, direct, indirect,

circular, and table addressing modes. The ALU,MAU, and DSU support basic add=subtract, multiply, and

data type manipulations such as shift, rotate, and permute, respectively. In addition, many application

specific instructions are used for improved signal processing efficiency. An example of this are themultiply

complex instructions for improved FFT performance described in reference [6].

The control and branch instructions are executed by the SP. It is also capable of indirectly executing

VLIWs that are local to the SP and in each PE. To minimize the effects of branch latencies, a short variable

pipeline is used consisting of Fetch, Decode, Execute, and ConditionReturn for non-iVLIWs and Fetch,

PreDecode, Decode, Execute, and ConditionReturn for iVLIWs. The PreDecode pipeline stage is used to

indirectly fetch VLIWs from their local VIMs. Note that VLIWs are stored locally in VIMs in each PE and

in the SP and are fetched by a 32-bit execute VLIW (XV) instruction. In addition, an extensive scalable

conditional execution approach is used in each PE and the SP to minimize the use of branches.

All loads=stores and arithmetic instructions execute in one or two cycles with no hardware interlocks.

Further, all arithmetic and load=store instructions can be combined into VLIWs, stored locally in the

SP and in each PE, and can be indirectly selected for execution from the small distributed VLIWmemories

(VIMs). Using the load iVLIW (LV) instruction, the programmer or compiler loads individual instruction

slots with the 32-bit simplex instructions optimized for the algorithm being programmed. These VLIWs

are used for algorithm performance optimization, are re-loadable, and require only the use of a 32-bit

execute VLIW (XV) instructions in the program stored in the SP instruction memory.

A dedicated bit in all instruction formats controls whether an instruction is executed in parallel across

the array of PEs or sequentially in the SP. To more optimally support a multiple PE array containing the

distributed register files, the ManArray network is integrated into the architecture providing single-cycle

data transfers within PE clusters and between orthogonal clusters of PEs. The DSU communications

instructions can also be included into VLIWs, thereby overlapping communications with computation

operations, which in effect reduces the communication latency to zero. The ManArray network

Control Store Load ALU MAU DSU

Group 01 Group 10 Group 10 Group 11 Group 11 Group 11
Call Base+Disp. Base+Disp. ADD/SUB ADD/SUB Copy

Jump Direct Direct Butterfly Butterfly Shift /rotate
EventPoint loops Indirect Indirect Compare MPY/MPYA Permute

Return Circular Circular AbsoluteDiff MPYCmplx Bit operations
Load VLIW Table Table Min/Max MPYCmplxA Divide

Execute VLIW ARF group ARF group Logicals SUM2P/SUM2PA Communications
PEeXchange

Immediate
Broadcast

FIGURE 23.49 32-bit simplex instructions.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 38 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-38 Digital Systems and Applications

operation is independent of background DMA operations, which provide a data streaming path to

peripherals, such as a global memory.

The inherent scalability of the ManArray processor is obtained in part through the advanced

ManArray network which interconnects the PEs. Consider by way of example, a two-dimensional

(2D) 43 4 torus and the corresponding embedded 4D hypercube, written as a 43 4 table with both

row, column, and hypercube node labels. (See Fig. 23.50a.)

In Fig. 23.50a, the PEi,j cluster nodes are labeled in gray-code as follows: PEG(i),G(j) whereG(x) is the gray

code of x. First, columns 2, 3, and 4 are rotated one position down. Next, the same rotation is repeatedwith

columns 3 and 4, and then with column 4. The resulting 4D ManArray table is shown in Fig. 23.50b.

Notice that the row elements in Fig. 23.50b, for example {(1,0), (0,1), (3,2), (2,3)}, contain the

transpose PE elements. By grouping the row elements in clusters of four PEs each, and completely

interconnecting the four PEs, connectivity among the transpose elements can be obtained. Notice also

that, in the new matrix of PEs, the east and south wires, as well as the north and west wires, are

connected between adjacent clusters. For example, using Fig. 23.50a note that node (2,3) connects to the

east node (2,0) with wraparound wires in a torus arrangement. Node (2,3) also connects to the south

node (3,3). Now, using Fig. 23.50b, note that nodes (2,0) and (3,3) are both in the same cluster adjacent

to the cluster containing node (2,3). This same pattern occurs for all nodes in the new matrix. This

means that the east and south wires can be shared and, in a similar manner, the west and north wires can

be shared between all clusters. This effectively cuts the wiring in half as compared to a standard torus,

and without affecting the performance of any SIMD array algorithm.

The rotating algorithm maintains the connectivity between the PEs, so the normal hypercube

connections still remain as shown in one example in Fig. 23.50b as PE (1,0=0100) can communicate

to its nearest hypercube nodes {(0000), (0101), (0110), (1100)} in a single step. Note also that the longest

paths in a hypercube, where each bit in the node address changes between two nodes, are all contained in

the completely connected clusters of processors nodes. For example, the circled cluster contains node

pairs {(0100), (1011)} and {(0001), (1110)}, which would take four steps to communicate between each

pair in previous hypercube processors, takes only one step to communicate in the new ManArray

network. These properties are maintained in higher dimensional ManArray networks containing higher

dimensional tori, and thus hypercubes, as subsets of the ManArray connectivity matrix. We have also

shown that the complexity of the ManArray network is small and that the diameter, the largest distance

between any pair of nodes, is 2 for all d where d is the dimension of the subset hypercube [7].

Application-specific instructions are included in the various execution units, such as multiply

complex [6] and other video, graphics, and communications unique instructions. Any of the four

groups of instructions can be mixed on a cycle-by-cycle basis. The single ManArray instruction set

architecture supports the entire ManArray family of cores from the single merged SP=PE0 13 1 to any

of the highly parallel multi-processor arrays (13 2, 23 2, 23 4, 43 4, etc.), for more details see

references [8] and [9].

-

(a) (b)

N

S

W E

PE-0,0
0000

PE-1,0
0100

PE-2,0
1100

PE-3,0
1000

PE-0,1
0001

PE-1,1
0101

PE-2,1
1101

PE-3,1
1001

PE-0,2
0011

PE-1,2
0111

PE-2,2
1111

PE-3,2
1011

PE-0,3
0010

PE-1,3
0110

PE-2,3
1110

PE-3,3
1010

PE-0,0
0000

PE 1,0
0100

PE-2,0
1100

PE-3,0
1000

PE-0,3
0010

P -3,3
1010

PE-2,3
1110

PE-1,3
0110

PE-1,2
0111

PE-0,2
0011

PE-3,2
1011

PE-2,2
1111

PE-2,1
1101

PE-1,1
0101

PE-0,1
0001

PE-3,1
1001

FIGURE 23.50 Hypercube interconnection scheme.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 39 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-39

23.2.3 The ManArray Thread Coprocessor Platform

The ManArray thread coprocessors are designed to act as independent coprocessors to ARM, MIPS, or

other hosts. The programmer’s view is a shared memory sequentially coherent model where multiple

processors operate on independent processes. With this model, an SoC developer can quickly utilize the

signal processing capabilities of the ManArray core subsystem since the operating system already runs on

the host processors. In its role as a digital signal coprocessor, the ManArray core is subservient to the

host processor. A core driver running on the host operating system manages all the DSP resources on the

core. The ManArray system interface allows multiple BOPS cores to be attached to a single host

processor as shown, for example, in Fig. 23.51. For wireless and media processing applications the

13 1 MOCARay-I mobile communications accelerator and the 13 2 MICORay-I imaging communi-

cations engine are designed to work separately or jointly, as shown in Fig. 23.51, to provide ultra low-

power baseband and media DSP services for 3G mobile products. Figure 23.51 shows a multimode Smart

Phone or PDA with MOCARay-I providing the GPRS=EDGE and=or UMTS mode while MICORay-I

provides support for video MPEG-4, JPEG 2000 photo imaging, speech decode=encode, sprite-based

rendering in a gaming mode, audio processing MP3, etc.

Another example of the use of BOPS cores as thread coprocessors is in voice-over-Internet protocol

(VoIP) products. For this application, an integrated dual 13 2 arrangement with a common DMA

controller is used as the basic platform unit. One, two, or four of these dual 13 2 units are provided as

an SoC DSP ‘‘farm’’ with an on-board host engine, e.g. MIPS.

Figure 23.52 illustrates the configuration with eight 13 2 cores. This system arrangement allows the

workload to be partitioned appropriately allowing extant applications to run on existing host OSs in

the MIPS controller. This lowers the risk of migrating an existing code base, and no new OS ports are

RF
RCV

RF
XMT

3G
Layer 1
Logic MOCARay-I

MICORay-I

ARM7

BB SoC

AHB

AHB

Power
MNGMT

I/O
DMA Bridge

LCD
Controller

Mem
I/F

USB CIF ARM7

App SoC

Video use profile

MPEG4
decode

MPEG4
encode

Speech
decode

Speech
encode

Gaming use profile

Audio use profile

Photo use profile

Sprite
rendering

MP3
AAC

decode

JPEG
2000

BOPS IP

HW Partners IP

SW Partners & BOPS IP

FIGURE 23.51 Application of multiple BOPS cores to 3G wireless.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 40 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-40 Digital Systems and Applications

required to support the ManArray cores. To complement the configurable hardware, there is a BOPS

library of both DSP and control software routines to perform the desired VoIP gateway functions. In

addition, existing host optimized compilers are used for the sequential code that remains resident on the

host allowing the parallel code to be optimized for the ManArray cores.

A driver API allows host applications to initialize, control, and communicate with multiple ManArray

coprocessors attached to the host. A standard message interface exists for all coprocessors to=from the

host. Specifically, the ManArray core DSPs are described as thread coprocessors because the host

processor dispatches entire threads of execution to the cores. The host driver loads programs, schedules

context switches, and manages data streams into and out of the various coprocessors. The high-

performance DMA engine, scaled appropriately for the application, autonomously transfers data

streams to and from the host. In addition, data streams can be ‘‘pushed=pulled’’ from one coprocessor

to another, or to=from peripherals (such as an H.100 interface) and coprocessors, without host

intervention, using the ManArray DMA-to-DMA interconnection protocol.

The DMA subsystem consists of the DMA controller, a ManArray control bus (MCB), and a ManArray

data bus (MDB). The MDB provides the high-bandwidth data interface between the cores and other

system peripherals including systemmemory. TheMDB consists of multiple identical lanes and is scalable

by increasing the number of lanes and=or increasing the width of the lanes. Specifically, theMDB uses time

division multiplexing of multiple independent buses or lanes to transfer data. The MCB is a low latency

coprocessor-to-coprocessor=peripheral messaging bus, which runs independently and in parallel with the

MDB. This system of multiple independent application task-optimized cores is designed to have each core

run an independent thread supported by the programmable DMA engines [10].

Figure 23.53 illustrates the host-DSP software layers. The multiple ManArray cores support the

multiple independent program threads that are managed by the host OS through remote procedure

Utopia II
(option
for 100
Base T)

100
Base T
MAC

DMA

DMA

1x2 Core 1x2 Core

1x2 Core 1x2 Core

DMA

DMA

1x2 Core 1x2 Core

1x2 Core 1x2 CoreH.110
I/F

PCI
I/F

Packets Packets/PCM

PCI Bus TDM I/O

VoiceRay-CGW

MIPS® RISC controllerRISC
 peripherals

& I/F

Bus controllers
SDRAM
controller

SDRAM memories

ManArray Control and ManArray Data Buses

FIGURE 23.52 Application of multiple BOPS cores to VoIP.

Call manager

Channel scheduler
DSP manager

Host RTOS

PCM
driver

Packet
driver

BOPS
channel API

Channel thread

DMA driver RPC driver

BOPS DSP nano-kernel

FIGURE 23.53 Host DSP software layers.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 41 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-41

calls (RPC) scheduled by the RTOS driver running in the host. The BOPS channel processing API

provides a standard interface for allocating voice channel processing to the multiple 13 2 cores. On the

ManArray core side, a thin DSP nano-kernel supports thread load=unload with DMA transfers over-

lapping computation. The RPC and DMA drivers provide standard host-DSP communication and data

transfer support.

Supporting this scalable platform for VoIP solutions is BOPS SoC design flow as shown in Fig. 23.54.

Four parallel processes are shown supporting both hardware and software design efforts for the thread

coprocessors, peripherals, host software, and DSP software developments.

Once the SoC functional specification and a basic system design is determined the next development

steps can be done in parallel. The ManArray core RTL and other peripheral RTL are done in parallel,

being designed to the ManArray interface specifications. At the same time, due to the use of a cycle

accurate system simulator and other supporting tools, the host CPU software and DSP software

development are done in parallel.

To streamline development, verification and debug, BOPS provides a range of modeling and proto-

typing platforms to support systemmodeling, and software and hardware system development including:

. A cycle-accurate C-simulator, which can be used to develop ManArray DSP and system software.

This can be used directly with other C simulations, or with control processor tools and bus

models to provide a software simulation model of an entire system.

. A software development toolkit (SDK) including the BOPS ANSI-C Haloy parallelizing C

compiler.

. The Jordany=Mantay PCI card, which can be used to model and test DSP software at 100 MHz

processor speeds and under actual DMA I=O conditions.

Peripheral
RTL design

SOC

Physical design

Integration

Verification

Host CPU SW
development

DSP SW
development

Verification
and debug

Verification
and debug

Regression
and test

Integration

BOPS
core RTL

Module
verification

Module
verification

System
validation

Models

Scripts

Guidelines

IDE &
docs

Debugger

Dev. boards

Dev. boards

System design

Functional

specification

Compilers
& assem.

ISS, System
simulator

Test
benches

FIGURE 23.54 BOPS SoC design flow.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 42 4.10.2007 3:55pm Compositor Name: VBalamugundan

23-42 Digital Systems and Applications

. The Travisy=Mantaxy prototyping board, which can be used to prototype entire SoC systems at

actual speeds.

. The Xemulatory emulation board, which can be used to model RTL emulations of an entire SoC

system.

The same DSP debugging GUI is shared by the C-simulator, Jordan, Travis, and Xemulator boards.

The Jordan development and Travis prototyping boards are provided using a 23 2 Manta core that

contains features needed in many applications. The Travis system prototyping board uses the standard

configurations available on Manta cores 13 1, 13 2, and 23 2. All of the normal fixed resources such as

host microcontroller, oscillators, memories, power supplies, configuration controls, debug, peripheral

and PCI interfaces are also on board. In addition, a large FPGA accommodates all unique logic circuits

allowing for rapid design, testing, and debug. The Jordan board with the Manta chip provides real time

operation of standard cores in a MIPS host system with off board system prototyping. Also included on

the Jordan board is a MIPS microcontroller with interrupts and boot ROM. With these development

boards the software can be integrated and tested. BOPS also provides verification tools and supporting

scripts and guidelines for the physical design.

The SoC emulator board, the Xemulator, allows MHz speed emulation in FPGAs of the many possible

RTL hardware and software configurations of the scalable ManArray architecture. This is useful when

bus sizes, bus protocols, and external interfaces are changed from the standard core configurations.

Likewise, I=O and DMA controllers may need to be altered for certain applications. Additions, subset-

ting, and other changes to the instruction set can be explored on the Xemulator by modifying the

downloaded core’s FPGA description.

23.2.4 Performance Evaluation

To illustrate the power of the highly parallel ManArray architecture, a simple example is presented: Two

vectors are to be added and the result stored in a third vector.

for (i ¼ 0; i < 256; iþþ)
A[i] ¼ B[i]þ C[i]

In a sequential-only implementation there would be required a loop of four instructions, two loads to

move a B and a C element to registers, an add of the elements, and a store of the result to register A. The

sequential implementation takes (4 * 256) iterations¼ 1024 cycles, assuming single cycle load, add, and

store instructions.

Assuming the data type is 16-bits and quad 16-bit packed data instructions are available, the vector

sum would require (4 * 64) iterations¼ 256 cycles.

Further assuming an array processor of four PEs where each PE is capable of the packed data

operations, then the function can be partitioned between the four PEs and run in parallel requiring

(4 * 16) iterations¼ 64 cycles.

Finally, assuming a VLIW processor such as the ManArray processor, a software pipeline technique can

be used with the VLIWs tominimize the instructions issued per iteration such that (2 * 16) iterations¼ 32

cycles are required. This represents a 32x improvement over the sequential implementation.

ManArray architecture allows a programmeror compiler to select the level of parallelism appropriate for

the task at hand. This selectable parallelism includes packed data operations (43 16-bits and 83 8-bits in

one64-bit operationon theManta core), parallel arrayPEs (performance scales linearlywith the additionof

PEs), and instruction level parallelism (iVLIW concurrent store=load, ALU,MAU, andDSU instructions).

By use of the three levels of parallelism available on each core, including the use of single-cycle PE

communications, scalable conditional execution, and background data streaming DMA, the following

benchmarks, Fig. 23.55, can be obtained on the Manta 23 2 thread coprocessor, which can also function

as subset array 13 1 and 13 2 array processors.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 43 4.10.2007 3:55pm Compositor Name: VBalamugundan

Media Signal Processing 23-43

23.2.5 Conclusions and Future Extensions

The pervasive use of processor IP in embedded SoC products for consumer applications requires a

stable design point based on a scalable processor architecture to support future needs with a complete set

of hardware and software development tools. The ManArray cores are highly scalable, using a single

architecturedefinition thatprovides lowpower andhighperformance.Target SoCdesigns canbeoptimized

to aproduct by choiceof core type, 13 1, 13 2, 23 2, . . . andbynumberof cores. TheBOPS tools andSoC

development process provides a fast path to delivering verified SoC products. Future plans include

architectural extensions, representing a superset of the present design, which greatly improve performance

in the intended applications.

Acknowledgments

The author thanks Dr. Steve Walsh, Dr. Dave Strube, Dr. Sergei Larin, and Carl Lewis for their comments

in preparing this paper. The author also thanks the BOPS, Inc. development team for their drive,

excitement, and creative technical skills in developing the ManArray processor, tools, and their support-

ing functions, as well as for making BOPS, Inc. a fun place to work.

Trademark Information

BOPS and ManArray are registered trademarks of BOPS, Inc. Manta, MoCARay, MICoRay, Jordan,

Travis, Xemulator, and Halo are trademarks of BOPS, Inc. All other brands or product names are the

property of their respective holders.

References

1. The Design and Implementation of Signal-Processing Systems Technical Committee, edited by Jan

M. Rabaey, with contributions from W. Gass, R. Brodersen, and T. Nishitani, ‘‘VLSI design and

implementation fuels the signal-processing revolution,’’ IEEE Signal Processing Magazine, pp. 22–37,

Jan., 1998.

2. Alan Gatherer, Trudy Stetzler, Mike McMahan, and Edgar Auslander, ‘‘DSP-based architectures for

mobile communications: past, present, and future,’’ IEEE Communications Magazine, pp. 84–90,

Jan., 2000.

3. Krishna Yarlagadda, ‘‘The expanding world of DSPs,’’ Computer Design, pp. 77–89, March, 1998.

4. Ichiro Kuroda and Takao Nishitani, ‘‘Multimedia processors,’’ Proceedings of the IEEE, Vol. 86, No. 6,

pp. 1203–1227, June, 1998.

Benchmark Data type Performance
256 pt. Complex FFT (2x2) 16-bit real & imaginary 383 cycles
256 pt. Complex FFT (1x1) 16-bit real & imaginary 1115 cycles
1024 pt. Complex FFT (2x2) 16-bit real & imaginary 1513 cycles
1024 pt. Complex FFT (1x1) 16-bit real & imaginary 5221 cycles
2048 pt. Complex FFT (2x2) 16-bit real & imaginary 3182 cycles
2D 8x8 IEEE IDCT [11] (2x2) 8-bit 34 cycles

2D 8x8 IEEE IDCT (1x1) 8-bit 176 cycles
256 tap Real FIR filter, M samples (2x2) 16-bit 16∗M + 81 cycles
256 tap Real FIR filter, M samples (1x1) 16-bit 64∗M + 78 cycles

4x4 Matrix∗4x1 vector (2x2) IEEE 754 Floating Point 2 cycles / output vector
3x3 Correlation (720col) (2x2) 8-bit 271 cycles

3x3 Median Filter (720col) (2x2) 8-bit 926 cycles
8x8 Block Motion Est. (H=64, V=32) (2x2) 8-bit 4611 cycles
Horizontal Wavelet (N Rows = 512) (2x2) 16-bit 1029 cycles

FIGURE 23.55 Manta 2 3 2 thread coprocessor benchmarks.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 44 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-44 Digital Systems and Applications

5. Bruce Schulman and Gerald G. Pechanek, ‘‘A 90k gate ‘‘CLB’’ for Parallel Distributed Computing,’’

in Proceedings of EHPC. IPDPS Workshops 2000, pp. 831–838.

6. Nikos P. Pitsianis and Gerald G. Pechanek, ‘‘High-performance FFT implementation on the

BOPS ManArray parallel DSP,’’ Advanced Signal Processing Algorithms, Architectures and Imple-

mentations IX, Volume 3807, pp. 164–171, SPIE International Symposium, Denver, CO, USA,

July, 1999.

7. Gerald G. Pechanek, Stamatis Vassiliadis, and Nikos P. Pitsianis, ‘‘ManArray interconnection

network: an introduction,’’ in Proceedings of EuroPar ‘99 Parallel Processing, Lecture Notes in

Computer Science, Vol. 1685, pp. 761–765, Toulouse, France, Aug. 31–Sept. 3, 1999.

8. Gerald G. Pechanek and Stamatis Vassiliadis, ‘‘The ManArray embedded processor architecture,’’ in

Proceedings of the 26th Euromicro Conference: ‘‘Informatics: inventing the future,’’ Maastricht, The

Netherlands, September 5–7, 2000, Vol. I, pp. 348–355.

9. BOPS, Inc. corporate Web site (www.bops.com).

10. David Baker, ‘‘BOPS DSPs as co-processors,’’ BOPS Internal Technical Report, April 4, 2001.

11. Gerald G. Pechanek, Charles Kurak, and Bruce Schulman, ‘‘Design of MPEG-2 function with

embedded ManArray cores,’’ in Proceedings of DesignCon 2000, Jan. 31–Feb. 3, 2000.

23.3 Digital Audio Processors for Personal Computer Systems

Thomas C. Savell

23.3.1 Introduction

The audio subsystem of the personal computer (PC), once an almost unnecessary component, has

become an integral part of the operating systems and applications software that run on them. The

evolution of the PC itself has led to a complex audio system, requiring simultaneous playback and

recording while applying advanced signal processing. The best PC audio systems employ one or more

specialized digital audio processors to off-load the main processor and guarantee artifact-free audio.

23.3.2 Brief History and Evolution

The early PCs could only generate simple tones and beeps. In the early 1980s, the system designers of the

original IBM-PC used the Intel 8253 digital timer to generate a series of pulses at a regular rate, usually a

square wave within the audio range of less than 20 kHz. The output of this chip drove the base of a

transistor to switch on and off a small speaker as shown in the schematic representation of Fig. 23.56.

This simple, cost-effective solution effectively off-loaded the 4.77 MHz Intel 8088 main processor from

the task of generating a tone. The 8253 timer had

three independent channels, and the system

designers used channel 0 to keep track of the

time of day and channel 1 to generate DRAM

refresh cycles. Thus, the otherwise unused timer

channel 2 provided an essentially cost-free audio

processor.

Although the most common use of this primi-

tive audio system was to alert the user to an event,

clever programmers were able to play simple mel-

odies using it. Eventually, they discovered how to

use pulse-width modulation coupled with the

reactance of the circuit to create a low-quality

digital-to-analog converter (DAC), enabling the

playback of digitally sampled waveforms. Audio

+5 V

Intel
8253
digital
timer

FIGURE 23.56 Simplified schematic of IBM-PC

speaker circuit.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 45 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-45

created using this method, however, was very noisy and presented a significant load on the main

processor.

Later in the 1980s, add-in cards appeared with an integrated music synthesizer capable of playing back

polyphonic music. One such early card, the AdLib sound card, used a form of music synthesis known as

frequency modulation (FM) synthesis. As described by John Chowning in 1973, FM synthesis creates

complex sounds using simple sine waves to modulate the frequency of other sine waves [1]. The AdLib

sound card used the simple Yamaha OPL2 FM synthesis chip, which used only two sine waves per voice

to synthesize complex waveforms. It could create satisfactory, yet unrealistic synthesis of natural musical

instruments, as well as a limited spectrum of special sound effects.

The immensely popular AdLib-compatible SoundBlaster (Creative Technology, Ltd.) was introduced

in 1989 by Creative Labs. In addition to AdLib’s FM synthesis capabilities, it added a simple method of

playing and recording digital audio encoded as a pulse-code modulated (PCM) stream. Perhaps as

important to its success, Creative Labs provided software development support to computer game

developers free of charge, resulting in widespread software support for the SoundBlaster. The new PCM

audio capabilities added the possibility of using any sound as an effect in a game. This important

enhancement led to the requirement for PCM audio on all future sound cards.

PCM audio was transferred to and from the sound card using the Intel 8237 direct memory access

(DMA) controller on the main system motherboard, as shown in Fig. 23.57. The early SoundBlaster

cards could only transfer 8-bit PCM audio, resulting in a dynamic range of only about 48 dB. Later, the

SoundBlaster 16 card added support for 16-bit PCM audio with a much better 96 dB dynamic range,

using the 16-bit DMA controller of the newer computers.

As time progressed, wavetable synthesis replaced FM synthesis. Wavetable synthesis is capable

of synthesizing musical instrument sounds that are nearly indistinguishable from real instruments

except to the trained ear. It works by triggering digital recordings of notes played on actual instru-

ments in response to keys played on a keyboard. To synthesize the sound of a piano, the wavetable

synthesizer stores a series of digital recordings of a real piano, and plays them back on command.

Although the sound quality is far superior to that produced by the earlier FM sound cards, the high price

of the early wavetable implementations was prohibitive to widespread market acceptance. The normal

market forces eventually drove the price down, and sound cards that could only produce FM became

obsolete.

An important force in the evolution of both graphics and audio in PCs is the computer game. The

continually increasing realism of game graphics, with players able to navigate through virtual three-

dimensional (3-D) environments, created demand for more realistic game audio. This demand led to the

advent of 3-D positional audio, allowing accurate placement of sound sources within a virtual 3-D

environment rendered on stereo speaker systems. It ultimately led to full environmental simulation, with

the ability to simulate a sound in various environments such as a carpeted room, a large hall, and even

under water.

A 3-D audio experience is difficult to achieve using two speakers. The smallest head movement of the

listener can often destroy the effect. Movie theaters overcame this problem using multi-speaker sound

Sound card

Intel 8237
DMA controller

Main memory BUS

Address and control

FIGURE 23.57 Slave DMA using the Intel 8237 DMA controller.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 46 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-46 Digital Systems and Applications

systems that placed speakers to the sides and rear of the listener. This eventually migrated to home

theater systems and finally to computer gaming systems.

The best systems now have a 7.1 channel audio system supporting high channel-count content, such

as Dolby Digital Plus (Dolby Laboratories) coupled to a 3-D rendering sound card with environmental

simulation capabilities. These systems provide an audio experience that immerses the listener in the

environment, helping to create the illusion of realism.

23.3.3 Today’s System Requirements

Today’s systems use a layered approach, with applications able to produce audio with little or no

knowledge of the underlying hardware. Layers of software hide most of the hardware-specific features.

Applications use a query mechanism to determine the features present, enabling considerable freedom in

hardware implementation. Many features of the audio system can also be rendered in software,

guaranteeing the application developer a minimum feature set and performance level, nearly independ-

ent of the installed hardware. Thus, today’s architecture is scalable, allowing the user to choose hardware

acceleration for better performance, or software emulation for lowest cost.

Audio on a PC can be divided into several general categories, including operating system interaction,

music, gaming, and voice applications. Each of these categories has unique properties, but with proper

architecture, a single solution can apply to all of them.

Operating system interaction is generally limited to alerting the user to various events, such as starting

up the system, selecting an invalid choice, or receiving new e-mail messages. In the early days of PCs,

simple beeps communicated all of these items. Now, these events can be associated with any sound

recording, and each association can be unique. Whenever an event occurs, the operating system instructs

the sound card to play back the associated sound recording.

Music applications are much more complex. The sound card is required to provide a wavetable

synthesizer responsive to musical instrument digital interface (MIDI) commands [2]. In addition, it

must be able to play back streaming audio in various formats, including PCM, MP3 (MPEG-1 Layer 3

Audio), and Dolby Digital (5.1-channel home theater audio). Finally, it must be capable of recording in

CD quality, or 16-bit stereo PCM at a sample rate of 44.1 kHz. And the most advanced systems support

multichannel recording at sample rates up to 192 kHz and resolution up to 24-bits. Each of these major

features must be independent and operate simultaneously.

Gaming applications often require a very sophisticated audio system. Many games place sound sources

in a virtual 3-D space. The user expects the system to render this 3-D space on any number of speaker

systems, ranging from headphones to stereo speakers to 7.1-channel home theater systems. The virtual

3-D space includes not only positional cues, but environmental cues as well. A game player must be able

to move a character from an open outdoor space into a small wooden room and seamlessly hear

the environmental cues, such as the short reverberation of a small room. Objects in motion produce the

well-known Doppler effect, increasing the apparent frequencies of the sounds emitted by objects moving

toward the listener and decreasing those of objectsmoving away [3]. Themost sophisticated audio systems

can reproduce the Doppler effect on both the objects in motion and their reflections.

Voice applications, although not new, have yet to gain the widespread availability of operating system,

music, and gaming applications. Because of the large memory requirements, voice recognition algo-

rithms are better suited to the main processor and use limited, if any, preprocessing by the sound card in

the record path. Moreover, automatic voice recognition is still unreliable, except when restricted to

isolated words from a limited vocabulary. Another class of voice applications is voice communication.

The emergence of the Internet has brought with it the promise of low-cost worldwide telephony. The

implementation of Internet telephony requires sophisticated noise-cancellation and echo-cancellation

algorithms that are often best suited to run on the sound card. In a related application, many multiplayer

games, such as those played over the Internet provide players the ability to talk to each other within the

game. The games record a voice microphone and compress it for transmission across the network to

the other players in the game. Upon receipt of transmitted voice from another player, the game

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 47 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-47

decompresses the stream and places it in 3-D space at the same coordinates as the visual representation

of the other player, providing a compelling gaming experience. This requires that the audio system

provide simultaneous recording capability while rendering 3-D audio.

23.3.4 Hardware Architecture

The hardware of the PC audio system satisfies these system requirements with a simple model. Much like

the entire computer system, it consists of three major subsystems: storage, processing, and input=output

(I=O). The storage subsystem can include local memory, system memory, and disk storage, such as hard

drives and compact discs, but the audio processor does not usually interface directly with a disk storage

device. The processing subsystem includes both the main processor and a processor located on the

sound card to provide hardware acceleration. The I=O subsystem may consist of an analog interface,

such as the Audio CODEC’97 (AC97) standardized DAC and ADC, or a newer standard such as an

HD-Audio CODEC. Higher quality systems use expensive high resolution converters to provide signal-

to-noise ratios (SNR) in excess of 110 dB. In addition, digital interfaces, such as the Sony=Philips digital

interface (S=PDIF) are often included. By dividing the audio system into three logical blocks, the system

designer faces the simplified task of creating each block while optimizing the interfaces between them.

The audio processor designer is concerned with the processing capabilities of the chip as well as the I=O

system interface and the memory bus interface.

23.3.4.1 Memory

Local memory connects directly to the audio processor. This includes both ROM and RAM of various

types located on the sound card, generally used to store wavetables for wavetable synthesis and digital

delay lines for environmental simulation algorithms. Local memory provides the highest system

performance for wavetable synthesis and environmental simulation since it need not share bandwidth

with the main processor and other hardware, such as disk, video, and networking interfaces; however,

local memory costs money, and cost is often a major consideration in market-driven engineering. The

emergence of the RAM-less sound card, which stores audio in system memory rather than local

memory, is primarily due to the need to decrease costs.

Creation of a RAM-less sound card requires that the system memory stores most audio data. A

relatively small amount of RAM is still required on the audio processor chip for algorithms that require

high-bandwidth access to memory. System memory connects to the main processor of the PC through

bus bridging logic, and stores the programs and data that make up the operating system and application

programs. When the audio processor requires access to system memory, it generates a memory access

request on the add-in card bus. If the main processor or any other device is currently accessing system

memory, the audio processor must wait.

The early PCs used a relatively low-performance add-in card bus known as ISA (Industry Standard

Architecture). The sound cards that plugged into the ISA bus accessed system memory through the Intel

8237 DMA controller. The 8237 DMA controller contains auto-incrementing address registers and uses a

request=acknowledge handshake protocol to communicate with requesting devices. Because it generates

the memory address and controls the direction of the transfer, it is the bus master.

The sound card operates as a slave to the 8237 DMA controller, which is limited to a single address per

requesting device and only performs single-word transfers. In addition, certain channels of the DMA

controller are limited to 8-bit transfers, and others can perform 16-bit transfers. The sound cards that

could support 16-bit samples had to allocate two DMA channels: one for 8-bit audio and the other for

16-bit audio. These limitations were acceptable for sound cards that did not require system memory to

store wavetables or digital delay lines. These sound cards either had local memory or supported only FM

synthesis. They used this slave DMA system for streaming audio, which is generally a recording of music

or other sounds.

Applications such as games that create virtual environments generate a continuous stream of audio;

however, it is not as simple as playing a static recording. The content of the stream changes based on the

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 48 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-48 Digital Systems and Applications

actions of the user. As the user interacts with the virtual environment, virtual objects move in relation to

the listener, and the sounds they produce may change over time. Each sound an object can make is

usually stored as a short recording. The process of creating the continuous audio stream that represents

the virtual environment entails summing all the sound sources within the listener’s range. The use of

slave DMA for these types of applications requires software to create the continuous audio stream. The

software for positioning objects in a virtual 3-D space is nontrivial, so the applications generally simplify

the problem when using an ISA bus sound card.

A better solution is to place a powerful DMA controller directly on the sound card. When the sound

card contains a DMA controller, it becomes the bus master, and can overcome the limitations of the

8237A DMA controller. For example, it can have a large number of independent address generators,

enabling both wavetable synthesis and 3-D hardware acceleration for audio stored in system memory.

A sound card that supports wavetable synthesis or environmental simulation using system memory

must have a bus-mastering DMA controller.

The audio processor designer must consider the memory bandwidth requirements, bus bandwidth

availability, and bus transfer latency to determine whether bus-mastering DMA is a viable design choice.

Given the number of simultaneous audio channels, the sample rate of each channel and the number of

bytes in each sample, the designer can easily calculate the memory bandwidth requirements. For

example, a processor supporting 64 audio channels with a sample rate of 48 kHz and 2 bytes (16-bit)

per sample requires 6,144,000 bytes=s. The available bus bandwidth must be greater than that for it to be

a viable design choice.

Calculating available bus bandwidth is much more difficult. It depends on the bus bandwidth

capability, the reserved bandwidth for other transactions on the bus, and any transaction overhead

not accounted for in the bus bandwidth capability. The bus bandwidth capability is straightforward to

calculate. The simplest method is to use the data transfer rate times the bus width.

For example, a single-lane 2.5 GHz PCI Express [4] bus has a raw bandwidth of 250 MB=s, since it

uses 10-bits per byte. This, however, ignores the per-transaction overhead inherent in the bus protocol.

For example, the overhead for a memory read transaction is 24 bytes. Thus, a minimum data transfer of

4 bytes consumes 28 bytes of bus bandwidth. If all transactions are minimum 4-byte data transfers, the

available bus bandwidth is only about 36 MB=s, ignoring latency and control. Burst data transfers reduce

the effect of the per-transaction overhead. Transferring 64 bytes in a burst transaction increases the

theoretical bus bandwidth to about 181 MB=s. Computers represent a waveform as an array of numeric

values in memory, so audio is well suited to burst transactions. But larger burst sizes increase the audio

latency, which becomes unacceptable beyond a few milliseconds, especially for interactive applications.

And owing to other factors in both the system and protocol, actual bus bandwidth may be significantly

less, perhaps 100 MB=s.

The least quantified of all the factors is the reserved bandwidth for other transactions in the system.

Other devices such as the CPU and graphics adapters compete with the audio system for access to main

memory, delaying transactions initiated by the audio system. Even the bandwidth needed to program

the audio processor can reduce available bandwidth for memory access. The reduction in bandwidth

because of other devices is unknown, since it depends on the configuration of each user’s individual

system. Even the bandwidth needed to program the audio processor is difficult to quantify, since it

depends on the peculiarities of the software device driver, the operating system, and the application

programs that ultimately generate the audio. Any method of determining the amount to reserve seems

entirely arbitrary, since variable quantities determine the optimal amount.

Instead of relying on an arbitrary decision based on a guess, one could make measurements of the bus

bandwidth available on the bus in a typical system. This may require building a prototype card to

emulate the performance of the audio system. Although measurements are by no means a guarantee that

any particular system will provide enough bandwidth, one can assume that a similarly equipped typical

system will provide a similar amount of bandwidth. The designer can also estimate the bandwidth

needed to program the audio processor. Clearly, there is a known overhead to start up a single channel of

audio. The bandwidth needed to program the processor includes at least this overhead multiplied by the

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 49 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-49

number of channels. There is additional bandwidth required to maintain a channel of audio. For

example, if an object in a virtual 3-D environment moves, the processor must reprogram the portion

of the audio processor that positions the object. Numerous other facets are part of this problem, and the

audio processor designer should consult with the software engineers to obtain a reasonable estimate of

the true bandwidth needed to program the processor.

Often the available bus bandwidth exceeds the requirements of the audio system, yet audio defects still

occur. This happens when the system exceeds the latency tolerance of the audio device. To implement

burst data transfers and gain the associated efficiency boost, the audio system pre-fetches some number

of audio samples. If it plays through all of the pre-fetched samples before the next memory transaction

completes, an audio defect will occur. For example, if an audio system pre-fetches 16 samples and then

requests another 16 samples, it will tolerate a transaction latency of 16 sample periods without any

defects. This example system has a latency tolerance of 16 sample periods, or 0.333 ms given a 48 kHz

sample rate.

With high performance buses such as PCI Express, latency can be more of a problem than bandwidth.

And latency has a cumulative effect on a high channel-count application such as positional 3-D audio. The

problem here is that a single long latency transaction could cause many other streams to grow near the

starvation point, since their transactions must wait as well. For example, with 32 simultaneous streams, a

single transactionwith 15 sample periods of latency could cause the other 31 streams to require immediate

service within a single sample period, assuming all streams have a 16 sample period latency tolerance.

Given estimates of the memory bandwidth required for audio data transfer, the available bus

bandwidth, and the expected average and maximum transaction latencies, the designer can determine

the limits at which the system will fail. On the basis of this information, the processor implementation or

the target system requirements may need to change.

23.3.4.2 Mixing Multiple Sources

The basic system requirements and user expectations require that the sound system sum together multiple

audio sources with an independent level control for each source. The audio term for this summation

process is mixing. The operating system usually provides software for a simple audio mixer that enables

the user to control the relative levels of the compact disc, line in, microphone, and various internally

generated sound sources. The system often uses a small digitally programmable analog mixer for the

analog sources, such as line in and microphone; however, the wavetable synthesizer and 3-D gaming

applications require mixing a relatively large number of channels under real-time software control, as

shown in Fig. 23.58. These applications use an all-digital mixer due to the large number of channels.

On the surface, a digital audio mixer sounds like a trivial exercise in multiply–accumulate operations;

however, in order to sum together sampled waveforms, they must all have the exact same sample rate.

Consider two sampled waveforms, each 1 s in length. The first has a sample rate of 48 kHz and the

second has a sample rate of 24 kHz. Although they both represent 1 s of time, the first waveform consists

Source 0
Volume 0

Source 1
Volume 1

Source N
Volume N

Application
with
large

number
of

sound
sources

+

FIGURE 23.58 Mixing a large number of sound sources under software control.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 50 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-50 Digital Systems and Applications

of 48,000 points and the second waveform consists of 24,000 points. In order to mix them, they must

have the same number of points representing the same amount of time.

The solution is to use a sample rate converter before the mixer. The sample rate converter has a fixed

output sampling-rate and a variable input sampling-rate. This allows the digital mixer to operate on

multiple waveforms of different sample rates. The software programs the sample rate converter with the

ratio of input to output, also known as the pitch. Pitch is a musical term that relates to the frequency of a

note. A higher pitch corresponds to a higher frequency. The sample rate converter performs a double

duty as a pitch shifter, enabling a single-recorded note to reproduce many notes on the instrument. This

provides effective data compression by reducing the number of recordings required to reproduce the

sound of an instrument. In addition, it enables a variety of musical effects, such as vibrato, pitch bend,

and portamento. Finally, the pitch shifting effect of the sample rate converter emulates the Doppler effect

needed by 3-D environmental audio. Thus, the sample rate converter is a fundamental building block

used by nearly all facets of the digital audio system in the PC.

23.3.4.2.1 Sample Rate Converters

Sample rate converters come in several varieties, offering different levels of conversion quality. Higher

quality conversion requires more computation, and comes at a correspondingly higher cost. Drop-

sample converters require almost no computation to implement and offer the lowest quality. Linear

interpolation converters require more computation and offer reasonably good quality, especially for

downward pitch shift. Multipoint interpolation converters require the most computation and memory

bandwidth, but provide the highest quality; however, there can be considerable variation in the quality

of multipoint interpolation converters.

To understand sample rate conversion, it is necessary to understand discrete-time sampling theory as

described by Nyquist and Shannon [5,6]. To sample a signal properly, the sample rate must be at least

twice the highest frequency component in the signal. The Nyquist frequency is one-half the sample rate,

and indicates the highest frequency component that a particular sample rate can represent. Sampling of

frequency components above the Nyquist frequency results in aliases in the sampled waveform that are

not present in the original signal. Sampling systems such as digital recorders typically use a low-pass

filter at the input of the analog-to-digital converter to avoid aliasing.

The relationship between the frequencies of the aliases and those of the original out-of-band signal is

simple. A sine wave at a frequency F between the Nyquist, N, and the sample rate, 2N, will alias to a

frequency of 2N� F. Consider a signal consisting of two sine waves, one at 28,000 Hz and another at

45,000 Hz. Using a sample rate of 48,000 Hz, the resulting sampled waveform would consist of an alias of

the 28,000 Hz sine wave at 20,000 Hz, and an alias of the 45,000 Hz sine wave at 3,000 Hz. The sampling

process has lost the original signal and created a new signal. Figure 23.59 illustrates the frequency

domain spectrum of the original signal and the aliases created by sampling at too low of a rate.

48

45

24

2820

3

Original signal
Alias signal

caused by sampling
at 48 kHz

Freq (kHz)

FIGURE 23.59 Aliasing caused by sampling at too low a rate.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 51 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-51

In-band signals also create a type of alias, known as an image. Images and aliases are the converse of

one another. A properly sampled sine wave at frequency F has an image at 2N� F. It also has images at

2Nþ F, 4N� F, 4Nþ F, and so on up to infinity. Consider a signal consisting of two sine waves, one at

20,000 Hz, and the other at 3,000 Hz. The spectrum of this signal is identical to the one generated by

sampling sine waves at 28,000 Hz and 45,000 Hz, as shown in Fig. 23.60. One cannot determine by

inspection whether the sampled waveform represents true in-band signals, aliases of out-of-band signals,

or some combination of the two.

The images are quite important when performing sample rate conversion. At the original sample

rate, the images fold back into the passband at exactly the same frequencies of the in-band signal;

however, changing the sample rate causes the images to fold back onto different frequencies in the

passband, creating aliasing distortion. Figure 23.61 illustrates the effect of changing the sample rate

on the images of the in-band signal. The sample rate converter must remove these images to obtain

high-quality conversion.

It is easy to deceive a naı̈ve observer by a sampled waveform. Consider the following time series:

0.707 0.707 �0.707 �0.707 0.707 0.707 �0.707 �0.707

As shown in Fig. 23.62, the waveform might appear to represent a square wave of peak magnitude

0.707 at exactly one-half the Nyquist frequency. This is incorrect. A true square wave consists of an

infinite series of frequencies at F, 3F, 5F, 7F, . . . , (2nþ 1)F, where n reaches infinity. However, the first

partial, 3F, is above the Nyquist frequency. Therefore, this must represent a sine wave. However, its peak

magnitude is not 0.707, but is instead equal to 1.0, as shown in Fig. 23.63.

48

45

24

2820

3

Freq (kHz)

Original signal
Image signal caused

by sampling at 48 kHz

FIGURE 23.60 Images above the Nyquist frequency.

52

45 49

26

28 3220 24

3 7

Freq (kHz)

Original signal

Alias signal and image caused
by sample rate conversion to

52 kHz without filter

Image of original
signal

FIGURE 23.61 Aliases and images from sample rate conversion.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 52 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-52 Digital Systems and Applications

The ultimate goal of sample rate conversion is to create a new time series at a new sample rate that

correctly represents the true original signal. An ideal sample rate converter creates a time series that is

indistinguishable from that derived by resampling the original signal. Because it requires an infinite-

length time series, no real sample rate converter achieves this ideal; however, it is possible to come

arbitrarily close, given enough computation.

To create a new time series at a new sample rate, it is necessary to interpolate values between the input

samples. To do this, the sample rate converter maintains an output phase that represents the time index

of the output samples relative to the input samples. It maintains the phase by accumulating the pitch. To

double the number of output samples, use a pitch of 0.5. On each output sample period, the sample rate

converter adds the pitch to the phase accumulator. If the initial value for the phase accumulator is 0.0,

the resulting phase over time will be the following:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 . . .

0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 23.62 Simple time series that deceptively appears to represent a square wave.

0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 23.63 True signal represented by simple time series.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 53 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-53

The integer portion of the phase accumulator is the address of the input samples to convert, and the

fractional portion is the interpolation factor that indicates how far between input samples to generate an

output sample. In the previous example phase accumulator, the fraction alternates between 0.0 and 0.5. A

fraction of 0.5 indicates that the output sample should be halfway between two input samples. This

definition is somewhat imprecisewhen usingmultipoint interpolation, but in a logical sense, it still applies.

Usually, a hardware implementation of a sample rate converter uses a fixed-point representation for

both the pitch and the phase accumulator. The fixed-point representation enables very simple extraction

of both the integer and fractional portions, and minimizes the size of the adder used to maintain the

phase accumulator. The number of integer bits in the phase accumulator limits the amount of memory

addressable by the sample rate converter. Integer widths of at least 24-bit are common.

The number of integer bits required for the pitch is much smaller than the number required for the

phase accumulator. Upward pitch shifting, which is equivalent to conversion to a lower sample rate,

requires filtering to a lower cutoff frequency than downward pitch shifting. Often, much more distortion

occurs when performing upward pitch shifting. The additional filtering and distortion of upward pitch

shifting place limits on its usefulness. Upward pitch shifts of more than three octaves extend into the

realm of special effects. When viewed as pure sample rate conversion, a three-octave upward shift is

equivalent to converting from a 48 to a 6 kHz sample rate. The lowest sample rate commonly used for

audio is 8 kHz. Thus, it is usually acceptable to limit the number of integer bits in the pitch to two or

three, providing a two- to three-octave upward shift capability.

The magnitude of the least-significant bit (LSB) of the pitch fraction, indicated by the number of

fractional bits, determines the frequency ratio resolution. For example, the LSB of a 12-bit fraction is equal

to 1=4096. The perceptual unit of measurement for pitch is cents, or 1=100 of a semitone. This is equal to a

ratio of 21=1200 or 1.00058. The just-noticeable-difference (JND) for pitch is around 8 cents, or 1.0046,

indicating the acceptable frequency error [3]. Given this, it would seem that a 12-bit fraction is sufficient

and even generous, since the ratio 4097=4096 is equal to 1.00024, much better than the JND of 1.0046;

however, an effective method of data compression for sampled waveforms is to lower the sample rate such

that the highest frequency of interest in the signal is near the Nyquist frequency of the lower sample rate.

Consider a sine wave consisting of only four points. When played back at unity pitch on a systemwith a 48

kHz output rate, the frequency of the sine wave is 12 kHz. A more useful frequency in the human hearing

range is 125 Hz. To generate this, the pitch must be 0.0104. The closest available ratio with 12-bits of

fraction is 0.0105, generating a frequency ratio error of 1.0078, more than the JND. In practice, a

minimum of 14-bits of fraction is required for acceptable results across a wide range of input rates and

pitches. Ideally, the number of fractional bits in both the phase accumulator and the pitch should match.

23.3.4.2.2 Drop-Sample Interpolation

Drop-sample interpolation, sometimes called nearest-neighbor interpolation, is the simplest type of

sample rate converter. The drop-sample interpolator simply rounds the phase accumulator to the

nearest integer and chooses the input sample at the resulting integer address to be the output sample.

This requires very little hardware as illustrated in Fig. 23.64. It also requires access to only a single input

Phase accumulator

Memory address

Increment address of fraction >0.5

FractionInteger

M
S

B
M

SB o
f f

ra
cti

on

FIGURE 23.64 Address generator for drop-sample interpolator.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 54 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-54 Digital Systems and Applications

sample to create an output sample, whereas all other forms of sample rate conversion require access to

more than one input sample to create a single output sample, but the result can be of very poor quality.

23.3.4.2.3 Linear Interpolation

Linear interpolation may be the most common type of sample rate converter. The quality is good, and the

cost is relatively low. It requires access to two input samples to create a single output sample. The

computational cost is one multiply, one add, and one subtract. It is possible to implement the entire linear

interpolator with a single adder, using a shift and add approach to themultiply. This is feasible as long as the

clock rate is high enough to support the desired channel count and fractional accuracy. The following

equation describes the linear interpolation process, where x is the inputwaveform, y is the output sample, n

is the integer part of the phase accumulator, and f is the fractional part of the phase accumulator:

y ¼ xn þ f � (xnþ1 � xn)

One can clearly see that when the fraction is zero, the output sample is equal to the input sample at

the address indicated by the phase accumulator. As the fraction approaches 1.0, the output follows a

straight line drawn between adjacent input samples. Figure 23.65 illustrates the result of linearly

interpolating a sine wave. The quality is quite good if the frequency of the sine wave is low relative to

the Nyquist, but the quality deteriorates significantly as the frequency approaches the Nyquist. The linear

interpolator has a low-pass filtering effect that becomes noticeable above one-half the Nyquist frequency.

In addition, the alias rejection is not very good for the images of signals above one-half the Nyquist

frequency. Thus, linear interpolation affects the quality in both the frequency response and aliasing

distortion for high frequencies.

23.3.4.2.4 Multipoint Interpolation

Multipoint interpolation can produce much better quality than linear interpolation in both frequency

response and aliasing distortion. The ideal interpolator has a frequency response that is perfectly flat

within the passband and attenuates all other frequencies to zero. Convolving the input waveform with a

sinc function that runs from negative to positive infinite time produces such a frequency response.

Unfortunately, we must work within the limits of finite time to build a real interpolator. In 1984, Gossett

and Smith [7] showed an efficient way to use a finite-length, windowed sinc function as a finite-impulse

response (FIR) filter for sample rate conversion over a wide range of pitches. The definition of the sinc

function is sint=t.

0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 23.65 Linear interpolation of simple time series.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 55 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-55

The convolution equation is
PN�1

n¼0 anxT�n, where x is the input waveform and a is a selected set of

coefficients, possibly a windowed sinc function.

The hardware implementation of a Gossett–Smith sample rate converter consists of a read only

memory (ROM) containing the filter coefficients, a linear interpolator to increase the resolution of the

filter coefficient set, and a multiply–accumulate unit to perform the convolution. Figure 23.66 shows a

block diagram of a typical Gossett–Smith interpolation system. Because the sinc function and other low-

pass FIR filters are symmetric about their centers, it is only necessary to store half of the points in the

ROM. Simple address mirroring makes the ROM appear to contain all the points.

Perceived quality is often more important than a measured quality. That is, it is more important to

sound good to humans than to measure low distortion on laboratory instruments. Using a perceptual

approach, one can design sample rate conversion filters that sound better [8]. For example, humans

cannot hear above 20 kHz, yet a 48 kHz sample rate can represent frequencies up to 24 kHz. A filter that

allows distortion within this guardband of 20 and 24 kHz can achieve better quality within the audible

range of 20 Hz–20 kHz.

23.3.4.2.5 Address Looping

The phase accumulator of the sample rate converter must have some provision for looping back to a

lower address. Clearly, it cannot continue to increment to infinity. The finite number of bits used to

represent the integer part of the phase precludes that possibility. In addition, it is not useful simply to

rely on binary wraparound of the address from its maximum value back to zero. This would imply all

channels of sample rate conversion are reading from the same input waveform. At a minimum, the phase

accumulator contains a loop address and loop size for each channel. When the value of the phase

accumulator crosses the loop address, it loops back by the loop size and continues from the beginning of

the loop. This enables both streaming audio and wavetable synthesis.

Many natural musical instrument sounds can be characterized by an attack phase, sustain phase, and

release phase. The attack phase is often a primary cue to the listener as to the identity of the instrument.

Usually, it consists of a rapidly changing and nonrepeating waveform. Conversely, the sustain phase

is often a steady state that can be easily described by a repeating waveform. This is also true of the

Coefficient
ROM

Sample
memory O

ut
pu

t
ac

cu
m

ul
at

or

P
ha

se
 a

cc
um

ul
at

or

Pitch

Output
F

ra
ct

io
n

In
te

ge
r

Linear
interpolator

kn+1

xT−n

kn

an

Index
counter

n

+

+

FIGURE 23.66 Gossett–Smith interpolator block diagram.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 56 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-56 Digital Systems and Applications

release phase. During sustain and release phases, the phase accumulator can loop to create the repeating

waveform, saving considerable memory. Besides, the length of the sustain phase is usually unknown

because it is controlled by the length of time the musician presses the key.

When streaming audio, the software fills a circular buffer with a continuous waveform to play. The

phase accumulator loops at the boundaries of the circular buffer and plays the stream. The software

must be careful not to overwrite audio that the sample rate converter has not yet played.

23.3.4.3 Envelopes and Modulation

It is often necessary to control various aspects of a sound, such as pitch, amplitude, and filter cutoff

frequency with time-varying signals called envelopes. The audio system may use these envelopes to

simulate the changes in sound that occur when a 3-D sound source moves, or as an integral part of the

music synthesis process.

A typical music synthesizer envelope generator has four segments designated: attack, decay, sustain,

and release (ADSR) as shown in Fig. 23.67. These four segments are a reasonable approximation of the

amplitude envelopes of real musical instruments.

The first two segments are attack and decay, and are usually of a fixed duration. During these

segments, the sound is changing rapidly, often containing transients and wideband noise corresponding

to the initial strike of a drum or pluck of a string. The decay segment leads to the sustain segment, a

variable duration, steady state corresponding to the portion of a note that is held for a length of time.

The final segment, release, occurs after the musician releases the note.

Envelopes used for 3-D sound positioning do not have such a clearly defined set of segments. Instead,

the 3-D positional audio is often interactive. It is not possible to predict the movements of the user in

advance. For these applications, a fixed segment envelope generator may not be useful. A more useful

method is to set a target value to which the hardware will smoothly ramp from the current value,

enabling the software to be event driven.

In addition to the ADSR envelopes used for music synthesis and ramp-to-target envelopes used for

3-D positioning, a complete system requires a low-frequency oscillator (LFO). The system uses the LFO

to create slowly modulating effects such as vibrato and tremolo.

The final control signal is usually a weighted sum of one or more ADSR envelopes and one or more

LFOs. The scaling applied to the envelopes and LFOs are often time-varying signals as well. This enables,

for example, vibrato to slowly increase during the sustain segment of a synthesized violin sound. It is

important to note that the scaling and summation occurs in perceptual units, such as decibels and pitch

cents, not physical units, such as voltage and hertz. This means that the result of the summation goes

through a perceptual to physical units transform function before it is useful to the destination process.

Example transform functions are 10x=20 for decibels and 2x=1200 for pitch cents.

23.3.4.4 Filters

Themost commonfilters inmusic synthesis are low-pass resonators. The frequency response of these filters

is generally flat from 0 Hz up, with a characteristic resonance just below the low-pass cutoff frequency,

Time

Attack Decay Sustain Release

FIGURE 23.67 ADSR envelope.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 57 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-57

as shown in Fig. 23.68. It is most common to build these filters with an infinite impulse response (IIR)

structure, such as that illustrated in Fig. 23.69. The software specifies the cutoff frequency and resonant

gain of the filter. It is possible to sweep these parameters in real time, so it is important to ensure filter

stability under time-varying conditions. Stability criteria are outside the scope of this discussion, but it is

not difficult to drive IIR filters to instability when varying coefficients in the presence of an input signal.

Three-dimensional positional audio and environmental simulation also demands the use of filters;

however, low-pass resonators are not the ideal choice. The head-related transfer function (HRTF)

describes the filtering performed by the shape of the human head, earlobes, and ear canal [9]. In

addition to loudness and interaural time delay, the brain uses cues provided by this filtering to

determine the position of sound-emitting objects. The most common implementation of an HRTF

uses a FIR structure such as the Gossett–Smith inter-

polator filters; however, both the impulse response

and the usage of HRTF filters are much different

from that of Gossett–Smith interpolator filters.

Obstruction and occlusion are other filtering effects

that occur when sound sources move in relation to

other objects. For example, obstruction is the effect

caused by an obstacle between the listener and a

sound source in the same room. This applies a low-

pass filtering effect on the direct sound, but not on the

reverberation. In contrast, occlusion is the effect caused

by a sound source located outside the same room as the

listener. This applies a low-pass filtering effect on both

the direct sound and the reverberation. Low-pass IIR

filters are appropriate for these applications, although

resonance is neither needed nordesired. The systemcan

simulate these effects with the low-pass resonators used

for music synthesis, but the typical �12 dB per octave

attenuation slope is generally too steep. A gentle �3
or�6 dB per octave slope is more appropriate.

101 102 103 104 105
− 25

− 20

− 15

− 10

− 5

0

5

10

Freq (Hz)

dB

FIGURE 23.68 Frequency response of low-pass resonant filter.

B0

A1

A2

Z
−1

Z
−1

FIGURE 23.69 Two-pole IIR filter block diagram.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 58 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-58 Digital Systems and Applications

The audio system of the PC also performs the role of a typical component stereo system, playing

prerecorded music from CD or other sources. Thus, the software distributed with sound cards often

includes equalization, such as tone controls and graphic equalizers. Simple tone controls, such as bass

and treble, often use shelving filters as shown in Fig. 23.70. Graphic equalizers can use a bank of either

bandpass filters or parametric equalizers into a summation matrix.

It is the designer’s choice whether to implement the filter types required by the digital audio system of

the PC in hardware or software. The system often includes a programmable digital signal processor

(DSP), enabling a software implementation. As the required filter count increases, it often becomes more

efficient to implement them in hardware, especially if multiple filter types can use the same filter

structure. Moreover, while FIR and IIR filter structures are quite different, a clever designer may find

opportunities to reuse the same basic arithmetic hardware for both. For example, both structures can

use a multiply–accumulate arithmetic unit. If each structure requires only one-half the available

bandwidth, they can share the same math unit by time-division multiplexing the inputs. Because

arithmetic units are generally costly, techniques such as this can significantly reduce the system cost.

23.3.4.5 Effects

Music synthesis applications use effects, such as reverb, delay, and chorus as sweeteners. They are not

required, but tend to make the music sound more pleasing. In contrast, 3-D positional and environ-

mental simulation applications require delay and reverb to achieve realistic results. The fundamental

unit of many digital audio effects is the digital delay line. A simple echo effect may use only one delay

line, whereas a reverb effect may use 20 or more delay lines. Even modulation effects such as chorus and

flange use delay lines. Digital delay lines require one memory location per sample period of delay, an

address generator, and arithmetic units to scale the inputs and outputs of the delay line. Figure 23.71

illustrates a typical delay line implementing a repeating echo through the use of feedback.

Freq

Freq

N

N

Low shelving
filter (bass)

High shelving
filter (treble)

FIGURE 23.70 Bass and treble tone control filter shapes.

Delay memory

Feedback amount

Input

Output

+

FIGURE 23.71 Delay line with feedback implementing a repeating echo.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 59 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-59

An obvious method of implementing a set of delay lines is to allocate memory buffers for each delay

line and maintain circular address counters for each indicating the read and write locations. The delay

time is equal to the difference between the read and write pointers, modulo buffer size. Maintaining

circular address counters can easily use a large percentage of the total instruction bandwidth of a DSP.

Many DSP implementations provide special instructions or self-maintaining address registers to reduce

the load on the DSP.

To provide maximum flexibility in implementation of effects, most PC audio systems include a

programmable DSP. The designer may choose to purchase an off-the-shelf DSP, either as a separate chip

or as a core to integrate onto the same silicon as the rest of the solution. An alternative is to design a

custom DSP to fit the particular needs of the system. The advantages of a custom design are the freedom

to add or reduce features, easier integration, and often a lower cost. The disadvantages include possible

increased time-to-market and the lack of standard development tools such as compilers.

23.3.4.6 Digital Audio I=O

Eventually, the system must present the processed audio to the listener. A DAC outputs an analog voltage

proportional to the value of a word of digital data written to it. The analog output voltage drives the

input to an amplifier, and eventually the sound comes from a speaker. A DAC generally accepts serial

digital data rather than parallel, so the processor must first perform a parallel to serial conversion.

A DAC is usually stereo, so it accepts a time-multiplexed serial stream alternating between left and right

channels. The serial protocols are usually synchronous, and come in a few varieties. The most common

in use today are AC97, HD-Audio, and I2S, all of which are easily available and inexpensive.

In addition to audio output, the system must be capable of recording audio from microphones and

external line-level devices, such as CD players and tape decks. An ADC outputs digital data propor-

tional to the magnitude of an analog voltage presented to its input. As in the case of a DAC, an ADC

usually generates serial digital data consisting of time-multiplexed left and right channel data. The AC97

standard developed by Intel specifies a monolithic CODEC containing both a stereo DAC and a stereo

ADC [10]. An AC97 implementation can sometimes be the most cost effective. The HD-Audio

standard, also developed by Intel [11], provides more flexibility in the CODEC implementation.

Generally, devices that use the I2S protocol are of a higher quality but do not include both a stereo

ADC and a stereo DAC.

For digital transmission of audio between the computer and an external device, the S=PDIF protocol

as specified in IEC-958 [12] is the connection of choice. It is a robust protocol intended for transmission

over a 75 V coaxial cable. It uses Manchester encoding for the data, thus embedding a clock and making

it insensitive to logical inversion. The ground is isolated, preventing hum and noise due to ground loops.

Many consumer stereo components now have S=PDIF or its optical counterpart TOS-Link as integral

connections.

23.3.4.7 Emerging Applications

The basic digital audio system of a PC operates in stereo at 44.1 or 48 kHz sample rate with 16-bits of

resolution. The current trend of audiophile systems is moving to a multichannel 96 kHz sample rate with

24-bits of resolution. Often, these audiophile trends trickle down to the mainstream systems as the cost

comes down and demand rises. From a strict psychoacoustical viewpoint, there is little value in increasing

the sample rate to 96 kHz, since the range of human hearing is generally restricted to 20 Hz–20 kHz. In

addition, a 96 kHz waveform requires twice the storage and twice the computation of the equivalent

waveform at 48 kHz; however, there is some benefit to processing audio at 96 kHz, primarily in the

response of filters over the human hearing range. It is easy to trade channel count for the higher

sample rate. A system that can process 128 channels at 48 kHz can only process 64 channels at 96 kHz.

The designer should weigh the cost versus the benefit, but often the market drives the decision. If the

market demands 96 kHz, the designer must deliver it.

There is, however, a very real benefit to using 24-bits of resolution. The maximum dynamic range of

human hearing is around 130–140 dB. The 96 dB dynamic range of 16-bit resolution is insufficient to

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 60 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-60 Digital Systems and Applications

cover this range. A 24-bit waveform has a dynamic range of 144 dB, more than sufficient to cover the

range of human hearing. The design impact of 24-bits versus 16-bits is additional storage and larger

arithmetic units, resulting in higher cost.

Likewise, there is a real benefit to multichannel audio beyond stereo. A real environment produces

sounds from all directions instead of only two points as in a stereo speaker system. But the processor

should still support stereo as a minimum baseline system, because the majority of audio systems

are stereo. To achieve this, the processor must have more than two separate outputs and be capable of

sending different audio to the multiple outputs.

Data rate reduction is another important trend in digital audio processing. The majority of the

popular techniques in use, including Dolby Digital and MP3, process the signal in the frequency

domain. They employ a perceptual model that attempts to determine the frequency components that

are not perceivable by the human hearing system. By removing those components, the encoding process

can reduce the amount of data required to represent the signal. For example, the MP3-encoding

process achieves about a 10:1 compression ratio while maintaining a quality level, high enough to

satisfy most people.

23.3.5 Conclusion

A digital audio processor for PCs consists of only a few components: a memory and host interface

coupled to sample rate converters, filters, envelope generators, a mixer, and a programmable DSP.

These components, as illustrated in Fig. 23.72, interact in various ways to become a variable-rate

playback engine, a wavetable synthesizer, a 3-D positional audio processor, and an environmental

audio simulator.

However, a digital audio system consists of both hardware and software. Given the wide range of

possibilities, the designer has considerable freedom in choosing an implementation to meet particular

market needs and price points. To meet the lowest price point, the designer chooses software imple-

mentations whenever possible. To achieve the highest performance, the designer chooses hardware;

however, a hardware implementation may limit the flexibility of the end system. The task of partitioning

the system into hardware and software components is one of the greatest hurdles to overcome. It

requires a coordinated effort of strategic marketing with hardware and software engineering early in the

design process. A proprietary chip is expensive to design and can take a long time from concept to

production. The early involvement of strategic marketing and software engineering helps ensure the

success of any new hardware design.

The customer purchases an audio system, not a chip. Thus, the designer must be aware of, yet look

beyond the technical aspects of digital audio processors to create a system that provides the proper

functionality at the right price.

Sample rate
converter

Sample
memory
controller

Delay
memory

Local
sample
memory

Playback
DMA

Record
DMA

From ADC

To DAC
Filter DCA

DSP
and

mixer

Envelope and LFO generator

FIGURE 23.72 Audio processor block diagram.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 61 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-61

References

1. Chowning, J., The synthesis of complex audio spectra by means of frequency modulation, Journal of

the Audio Engineering Society, 21, 526, 1973.

2. The Complete MIDI 1.0 Detailed Specification, MIDI Manufacturers Association, Los Angeles, CA,

1996.

3. Rossing, T.D., The Science of Sound, Addison-Wesley, Reading, MA, 40, 1983.

4. PCI Express Base Specification Revision 1.1, PCI-SIG, Beaverton, OR, 2005.

5. Nyquist, H., Certain factors affecting telegraph speed, Bell Systems Technical Journal, 3, 324, 1924.

6. Shannon,C.E.,Amathematical theoryof communication,Bell SystemsTechnical Journal,27, 379, 1948.

7. Smith, J.O. and Gossett, P., A flexible sampling-rate conversion method, IEEE International

Conference on Acoustics, Speech, and Signal Processing, San Deigo, New York, 19.4.1, March 1984.

8. Rossum, D., Constraint based audio interpolators, IEEE ASSP Workshop on Applications of Signal

Processing to Audio and Acoustics, Mohonk Mountain House, New Paltz, New York, 1993.

9. Zhang, M., Tan, K.C., and Er, M.H., Three-dimensional synthesis based on head-related transfer

functions, Journal of the Audio Engineering Society, 46, 836, 1998.

10. Audio Codec’97 Revision 2.2, Intel Corporation, San Jose, CA, 2000.

11. High Definition Audio Specification Revision 1.0, Intel Corporation, San Jose, CA, 2004.

12. IEC-958 Digital Audio Interface, International Electrotechnical Commission, Geneva, Switzerland,

1989.

23.4 Modern Approximation Iterative Algorithms
and Their Applications in Computer Engineering

Sadiq M. Sait and Habib Youssef

23.4.1 Introduction

This section discusses one class of combinatorial optimization algorithms: approximation iterative

algorithms. We shall limit ourselves to four of these algorithms, which are, in order of their popularity

among the engineering community: (1) simulated annealing (SA), (2) genetic algorithm (GA), (3) tabu

search (TS), and (4) simulated evolution (SimE).

GA and SimE are evolutionary algorithms, a term used to refer to any probabilistic algorithm whose

design is inspired by evolutionary mechanisms found in biological species. Evolutionary algorithms, SA

and TS have been found very effective and robust in solving numerous problems from a wide range of

application domains. Furthermore, they are even suitable for ill-posed problems where some of the

parameters are not known beforehand. These properties are lacking in all traditional optimization

techniques. The four algorithms share the following properties:

1. They are approximation algorithms, i.e., they do not guarantee finding an optimal solution.

Actually, they are blind, in that they do not know when they reached an optimal solution.

Therefore, they must be told when to stop.

2. They are neighborhood search algorithms, which start from one suboptimal solution (or a

population of solutions) and perform a partial search of the solution space for better solutions.

3. They are all ‘‘general.’’ They are not problem-specific and, practically, they can be tailored to solve

any combinatorial optimization problem.

4. They all strive to exploit domain specific heuristic knowledge to bias the search toward ‘‘good’’

solution subspace. The quality of subspace searched depends to a large extent on the amount of

heuristic knowledge used.

5. They are easy to implement. All that is required is to have a suitable solution representation, a

cost function, and a mechanism to traverse the search space.

6. They have hill climbing property, i.e., they occasionally accept uphill (bad) moves.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 62 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-62 Digital Systems and Applications

The goal in this section is to briefly introduce these four powerful algorithms. It is organized into nine

sections. In the next four subsections, an intuitive discussion of each of the four iterative algorithms is

provided. The remaining sections briefly address convergence aspects of the heuristics, their parallel

implementation, and examples of applications. The final subsection concludes the section with a

comparison among the heuristics and a glimpse at the notion of hybrids. This section does not provide

a full account of any of this important class of heuristics. For more details, readers should consult the

numerous references cited in the body of this work.

23.4.2 Simulated Annealing

Simulated annealing (SA) is one of the most well-developed and widely used iterative techniques for

solving optimization problems. It is a general adaptive heuristic and belongs to the class of nondeter-

ministic algorithms [1]. It has been applied to several combinatorial optimization problems from

various fields of science and engineering. The term annealing refers to heating a solid to a very high

temperature (whereby the atoms gain enough energy to break the chemical bonds and become free to

move), and then slowly cooling the molten material in a controlled manner until it crystallizes. By

cooling the metal at a proper rate, atoms will have an increased chance to regain proper crystal structure

with perfect lattices. During this annealing procedure, the free energy of the solid is minimized.

In the early 1980s, a correspondence between annealing and combinatorial optimization was estab-

lished, first by Kirkpatrick, Gelatt and Vecchi [2] in 1983, and independently by Černy [3] in 1985. These

scientists observed that a solution in combinatorial optimization is equivalent to a state in the physical

system and the cost of the solution is analogous to the energy of that state. As a result of this analogy,

they introduced a solution method in the field of combinatorial optimization. This method is thus based

on the simulation of the physical annealing process, and hence the name simulated annealing [2,3].

Every combinatorial optimization problem may be discussed in terms of a state space. A state is simply

a configuration of the combinatorial objects involved. For example, consider the problem of partitioning

a graph of 2n nodes into two equal sized subgraphs such that the number of edges with vertices in both

subgraphs is minimized. In this problem, any division of 2n nodes into two equal sized blocks is a

configuration. A large number of such configurations exists. Only some of these correspond to global

optima, i.e., states with optimum cost.

An iterative improvement scheme starts with some given state, and examines a local neighborhood of

the state for better solutions. A local neighborhood of a state S, denoted by N(S), is the set of all states

which can be reached from S by making a small change to S. For instance, if S represents a two-way

partition of a graph, the set of all partitions which are generated by swapping two nodes across the

partition represents a local neighborhood. The iterative improvement algorithm moves from the current

state to a state in the local neighborhood if the latter has a better cost. If all the local neighbors have

larger costs, the algorithm is said to have converged to a local optimum. This is illustrated in Fig. 23.73.

Here, the states are shown along the x-axis, and it is assumed that two consecutive states are local

neighbors. It is further assumed that we are discussing a

minimization problem. The cost curve is nonconvex, i.e., it

has multiple minima. A greedy iterative improvement

algorithm may start off with an initial solution such as S

in Fig. 23.73, then slide along the curve and find a local

minimum such as L. There is no way such an algorithm

can find the global minimum G of Fig. 23.73, unless it

‘‘climbs the hill’’ at the local minimum L. In other words,

an algorithm that occasionally accepts inferior solutions

can escape from getting trapped in a local optimum. SA is

such a hill-climbing algorithm.

During annealing, a metal is maintained at a certain

temperature T for a pre-computed amount of time, before

C
os

t

States

S

L
G

FIGURE 23.73 Local vs. global optima.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 63 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-63

reducing the temperature in a controlled manner. The atoms have a greater degree of freedom to move at

higher temperatures than at lower temperatures. The movement of atoms is analogous to the generation of

new neighborhood states in an optimization process. In order to simulate the annealing process, much

flexibility is allowed in neighborhood generation at higher ‘‘temperature,’’ i.e., many ‘‘uphill’’ moves are

permitted at higher temperatures. The temperature parameter is lowered gradually as the algorithm

proceeds. As the temperature is lowered, fewer and fewer uphill moves are permitted. In fact, at absolute

zero, the SA algorithm turns greedy, allowing only downhill moves.

The SA algorithm is shown in Fig. 23.74. The core of the algorithm is theMetropolis procedure, which

simulates the annealing process at a given temperature T (Fig. 23.75) [4]. The Metropolis procedure

Algorithm Simulated_annealing(S0.T0.a.b.M. Maxtime):

(*S0 is the initial solution *)

(*BestS is the best solution *)

(*T0 is the initial temperature *)

(*a is the cooling rate *)

(*b a constant *)

(*Maxtime is the total allowed time for the annealing process *)

(*M represents the time until the next parameter update *)

Begin

T¼T0:

CurS¼ S0:

Best S¼CurS:=* Best S is the best solution seen so far *=

CurCost¼Cost(CurS):

BestCost¼Cost(BestS):

Time¼ 0:

Repeat

Call Metropolis(CurS. CurCost. BestS, BestCost. T. M):

Time¼Time þ M:

T¼aT:

M¼bM

Until (Time � MaxTime):

Return (BestS)

End. (* of Simulated_annealing*)

FIGURE 23.74 Procedure for simulated annealing algorithm.

Algorithm Metropolis (CurS. CurCost. BestS. BestCost. T. M):

Begin

Repeat

NewS¼Neighbor(CurS): =* Return a neighbor from aleph(CurS) *=

NewCost¼Cost(NewS):

DCost¼ (NewCost–CurCost):

If (D Cost < 0) Then

CurS¼NewS;

If NewCost < BestCost Then

BestS¼ NewS

EndIf

Else

If (RANDOM < e�DCost=T) Then
CurS¼NewS:

EndIf

EndIf

M¼M � 1

Until (M¼ 0)

End. (* of Metropolis*)

FIGURE 23.75 The Metropolis procedure.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 64 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-64 Digital Systems and Applications

receives as input the current temperature T, and the current solution CurS, which it improves through

local search. Finally,Metropolismust also be provided with the valueM, which is the amount of time for

which annealing must be applied at temperature T. The procedure Simulated_annealing simply invokes

Metropolis at decreasing temperatures. Temperature is initialized to a value T0 at the beginning of the

procedure and is reduced in a controlled manner (typically in a geometric progression); the parameter a

is used to achieve this cooling. The amount of time spent in annealing at a temperature is gradually

increased as temperature is lowered. This is done using the parameter b> 1. The variable Time keeps

track of the time being expended in each call to the Metropolis. The annealing procedure halts when

Time exceeds the allowed time.

The Metropolis procedure is shown in Fig. 23.75. It uses the procedure Neighbor to generate a local

neighbor NewS of any given solution S. The function Cost returns the cost of a given solution S. If the

cost of the new solution NewS is better than the cost of the current solution CurS, then the new solution

is accepted, and we do so by setting CurS¼NewS. If the cost of the new solution is better than the best

solution (BestS) seen thus far, then BestSmust be replaced by NewS. If the new solution has a higher cost

in comparison to the original solution CurS, Metropolis will accept the new solution on a probabilistic

basis. A random number is generated in the range 0 to 1. If this random number is smaller than

e�DCost=T, where DCost is the change in costs, (DCost¼Cost(NewS)�Cost(CurS)), and T is the current

temperature, the uphill solution is accepted. This criterion for accepting the new solution is known as

the Metropolis criterion. The Metropolis procedure generates and examines M solutions.

The probability that an inferior solution is accepted by the Metropolis is given by P(RANDOM<

e�DCost=T). The random number generation is assumed to follow a uniform distribution. Remember that

DCost> 0 because it is assumed that NewS is uphill from CurS. At very high temperatures (when T !
1), e�DCost=T� 1, and, hence, the above probability approaches 1. When T ! 0, the probability

e�DCost=T falls to 0.

In order to implement SA, a suitable cost function needs to be formulated for the problem being

solved. In addition, as in the case of local search techniques, the existence of a neighborhood structure is

assumed, and the perturb operation or Neighbor function needs to generate new states (neighborhood

states) from current states. And finally, a control parameter is needed to play the role of temperature and

a random number generator. The actions of SA are best illustrated with the help of an example. For the

solution of the two-way partitioning problem using SA, please refer to [5].

A quality SA implementation requires the careful setting of a set of parameters that govern the

convergence of the algorithm, namely (a) the initial value of temperature, (b) the number of iterations of

the inner loop, (c) the rate of temperature decrease, and (d) the number of global iterations (the

stopping criterion or the final value of temperature). This set of parameters is commonly referred as the

‘‘cooling schedule’’ [2,6,7]. It is customary to determine the cooling schedule by trial and error.

However, some researchers have proposed cooling schedules that rely on some mathematical rigor.

For a discussion on cooling schedule, and SA requirements the reader is referred to [8].

23.4.3 Genetic Algorithms

Genetic algorithm (GA), is a powerful, domain-independent search technique that was inspired by

Darwinian theory. It emulates the natural process of evolution to perform an efficient and systematic

search of the solution space to progress toward the optimum. It is an adaptive learning heuristic that is

based on the theory of natural selection that assumes that individuals with certain characteristics are

more able to survive, and hence pass their characteristics to their offspring. Several variations of the basic

algorithm (modified to adapt to the problem at hand) exist. Subsequently, this set will be referred to as

genetic algorithms (in plural).

GAs were invented by John Holland and his colleagues [9] in the early 1970s. Holland incorporated

features of natural evolution to propose a robust, computationally simple, and yet powerful technique for

solving difficult optimization problems. The structure that encodes how the organism is to be constructed

is called a chromosome. One or more chromosomes may be associated with each member of the

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 65 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-65

population. The complete set of chromosomes is called a genotype and the resulting organism is called a

phenotype. Similarly, the representation of a solution to the optimization problem in the form of an

encoded string is termed as a chromosome. In most combinatorial optimization problems a single

chromosome is generally sufficient to represent a solution, i.e., the genotype and the chromosome are

the same. The symbols that make up a chromosome are known as genes. The different values a gene can

take are called alleles.

The fitness value of an individual (genotype or a chromosome) is a positive number that is a measure

of its goodness. When the chromosome represents a solution to the combinatorial optimization

problem, the fitness value indicates the cost of the solution. In the case of a minimization problem,

solutions with lower cost correspond to individuals that are more fit.

GAs operate on a population (or set) of individuals (or solutions) encoded as strings. These strings

represent points in the search space. In each iteration, referred to as a generation, a new set of strings that

represent solutions (called offspring) is created by crossing some of the strings of the current generation

[10]. Occasionally, new characteristics are injected to add diversity. GAs combine information exchange

along with survival of the fittest among individuals to conduct the search.

When employing GAs to solve a combinatorial optimization problem one has to find an efficient

representation of the solution in the form of a chromosome. Associated with each chromosome is its

fitness value. If we simulate the process of natural reproduction, combined with the biological principle

of survival of the fittest, then, as each generation progresses, better and better individuals (solutions)

with higher fitness values are expected to be produced.

Because GAs work on a population of solutions, an initial population constructor is required to

generate a certain predefined number of solutions. The quality of the final solution produced by a

genetic algorithm depends on the size of the population and how the initial population is constructed.

The initial population generally comprises random solutions.

The population of chromosomes evolves from generation to the next through the use of two types of

genetic operators: (1) unary operators such as mutation and inversion, which alter the genetic structure

of a single chromosome, and (2) higher order operator, referred to as crossover, which consists of

obtaining new individual by combining genetic material from two selected parent chromosomes. The

resulting individuals produced when genetic operators are applied on the parents are termed as

offspring. Then the new population is selected out of the individuals of the current population and

its offspring.

The choice of parents for crossover from the set of individuals that comprise the population is

probabilistic. In keeping with the ideas of natural selection, we assume that stronger individuals, i.e.,

those with higher fitness values, are more likely to mate than the weaker ones. One way to simulate this

is to select parents with a probability that is directly proportional to their fitness values. Larger the

fitness, the greater is chance of an individual being selected as one of the parents for crossover [10].

Several crossover operators have been proposed in the literature. Depending on the combinatorial

optimization problem being solved some are more effective than others. One popular crossover that will

also help illustrate the concept is the simple crossover. It performs the ‘‘cut-catenate’’ operation. It

consists of choosing a random cut point and dividing each of the two chromosomes into two parts.

The offspring is then generated by catenating the segment of one parent to the left of the cut point with

the segment of the second parent to the right of the cut point.

Mutation (m) produces incremental random changes in the offspring by randomly changing allele

values of some genes. In case of binary chromosomes it corresponds to changing single bit positions. It is

not applied to all members of the population, but is applied probabilistically only to some. Mutation has

the effect of perturbing a certain chromosome in order to introduce new characteristics not present in

any element of the parent population. For example, in case of binary chromosomes, toggling some

selected bits produces the desired effect.

Inversion is the third operator of GA and like mutation it also operates on a single chromosome. Its

basic function is to laterally invert the order of alleles between two randomly chosen points on a

chromosome.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 66 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-66 Digital Systems and Applications

A generation is an iteration of GA where individuals in the current population are selected for

crossover and offspring are created. Due to the addition of offspring, the size of population increases.

In order to keep the number of members in a population fixed, a constant number of individuals are

selected from this set that consists of both the individuals of the initial population, and the generated

offspring. If M is the size of the initial population and N0 is the number of offspring created in each

generation, then, before the beginning of next generation, M new parents from MþN0 individuals are

selected. A greedy selection mechanism is to choose the bestM individuals from the total ofMþN0. The

complete pseudo code of a simple GA is given in Fig. 23.76.

23.4.4 Tabu Search

The previous subsection discussed simulated annealing, which was inspired by the cooling of metals, and

genetic algorithms, which imitate the biological phenomena of evolutionary reproduction. In this

section, we present a more recent optimization method called tabu search (TS), which is based on

selected concepts of artificial intelligence (AI).

Tabu search was introduced by Fred Glover [11–14] as a general iterative heuristic for solving

combinatorial optimization problems. Initial ideas of the technique were also proposed by Hansen

[15] in his steepest ascent mildest descent heuristic. TS is conceptually simple and elegant. It is a form of

local neighborhood search. Each solution S 2V has an associated set of neighbors N (S)�V. A solution

S0 2 N(S) can be reached from S by an operation called a move to S0. Normally, the neighborhood

relation is assumed symmetric. That is, if S0 is a neighbor of S then S is a neighbor of S0. At each step, the

local neighborhood of the current solution is explored and the best solution in that neighborhood is

selected as the new current solution. Unlike local search that stops when no improved new solution is

found in the current neighborhood, tabu search continues the search from the best solution in the

neighborhood even if it is worse than the current solution. To prevent cycling, information pertaining to

the most recently visited solutions are inserted in a list called tabu list. Moves to tabu solutions are not

allowed. The tabu status of a solution is overridden when certain criteria (aspiration criteria) are

satisfied. One example of an aspiration criterion is when the cost of the selected solution is better

Procedure (Genetic_Algorithm)

M¼Population size. (*# Of possible solutions at any instance.*)

N0¼Number of generations. (*# Of iterations.*)

N0¼Number of offsprings. (*To be generated by crossover.*)

Pp¼Mutation probability. (*Also called mutation rate Mx*)

P J(M) (*Construct initial population P.

J is population constructor.*)

For j¼ 1 to M (*Evaluate fitnesses of all individuals.*)

Evaluate f(P[j]) (*Evaluate fitnesses of P.*)

EndFor

For i¼ 1 to N0

For j¼ 1 to N0

(x,y) f(P) (*Select two parents x and y from current population.*)

offspring[j]) x (x,y) (*Generate offsprings by crossover of parents x and y.*)

Evaluate f(offspring[j]) (*Evaluate fitness of each offsprings.*)

EndFor

For j¼ 1 to N0 (*With probability Pp apply mutation.*)

mutated[j] m(y)

Evaluate f(mutated[j])

EndFor

P Select(P, offsprings) (*Select best M solutions from parents & offsprings.*)

EndFor

Return highest scoring configuration in P.

End

FIGURE 23.76 Structure of a simple genetic algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 67 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-67

than the best seen so far, which is an indication that the search is actually not cycling back, but rather

moving to a new solution not encountered before.

Tabu search is a metaheuristic, which can be used not only to guide the search in complex solution

spaces, but also to direct the operations of other heuristic procedures. It can be superimposed on any

heuristic whose operations are characterized as performing a sequence of moves that lead the procedure

from one trial solution to another. In addition to several other characteristics, the attractiveness of tabu

search comes from its ability to escape local optima.

Tabu search differs from SA or GA, which are memoryless, and also from branch-and-bound, A*

search, etc., which are rigid memory approaches. One of its features is its systematic use of adaptive

(flexible) memory. It is based on very simple ideas with a clever combination of components, namely

[16,17]:

1. A short-term memory component; this component is the core of the tabu search algorithm.

2. An intermediate-term memory component; this component is used for regionally intensifying

the search.

3. A long-term memory component; this component is used for globally diversifying the search.

The central idea underlying tabu search is the exploitation of the above three memory components.

Using the short-term memory, a selective history H of the states encountered is maintained to guide the

search process. Neighborhood N(S) is replaced by a modified neighborhood, which is a function of the

history H, and is denoted by N(H, S). History determines which solutions may be reached by a move

from S, since the next state S0 is selected from N(H, S). The short-term memory component is

implemented through a set of tabu conditions and the associated aspiration criterion.

The major idea of the short-term memory component is to classify certain search directions as tabu

(or forbidden). By doing so we avoid returning to previously visited solutions. Search is therefore forced

away from recently visited solutions, with the help of a short-term memory (tabu list T). This memory

contains attributes of some k most recent moves. The size of the tabu list denoted by k is the number of

iterations for which a move containing that attribute is forbidden after it has been made. The tabu list

can be visualized as a window on accepted moves as shown in Fig. 23.77. Moves that tend to undo

previous moves within this window are forbidden. A flow chart illustrating the basic short-term memory

tabu search algorithm is given in Fig. 23.78. An algorithmic description of a simple implementation of

the tabu search is given in Fig. 23.79.

Intermediate-term and long-term memory processes are used to intensify and diversify the search,

respectively, and have been found to be very effective in increasing both quality and efficiency [18,19].

The basic tabu search algorithm based on the short-term memory component is discussed first.

Following this is a discussion on uses of intermediate and long-term memories.

Referring to Fig. 23.79, initially the current solution is the best solution. Copies of the current solution

are perturbed with moves to get a set of new solutions. The best among these is selected and if it is not

tabu then it becomes the current solution. If the move is tabu, its aspiration criterion is checked. If it

passes the aspiration criterion, it becomes the current solution. If the move to the next solution is

accepted, the move or some of its attributes are stored in the tabu list. Otherwise, moves are regenerated

to get another set of new solutions. If the current solution is better than the best seen thus far, the best

solution is updated. Whenever a move is accepted the iteration number is incremented. The procedure

continues for a fixed number of iterations, or until some pre-specified stopping criterion is satisfied.

Previously accepted moves
no longer in Tabu list

Recently accepted moves in Tabu list

FIGURE 23.77 The tabu list can be visualized as a window over accepted moves.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 68 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-68 Digital Systems and Applications

Best
solution

New
solution

New
solution

Current
solution

Current
solution

Regenerate
moves

Current
solution

TABU
?

“Best”

Aspiration
criterion
passed?

Move n

Move 1

NO

YES

YES

NO

FIGURE 23.78 Flow chart of the tabu search algorithm.

V : Set of feasible solutions.

S : Current solution.

S* : Best admissible solution.

Cost : Objective function.

Q(S) : Neighborhood of S 2 V.

V*: Sample of neighborhood solutions.

T : Tabu list.

AL: Aspiration Level.

Begin

1. Start with an initial feasible solution S 2 V.

2. Initialize tabu lists and aspiration level.

3. For fixed number of iterations Do

4. Generate neighbor solutions V* � Q(S).
5. Find best S* 2 V*.

6. If move S to S* is not in T Then

7. Accept move and update best solution.

8. Update tabu list and aspiration level.

9. Increment iteration number.

10. Else

11. If Cost(S*) < AL Then

12. Accept move and update best solution.

13. Update tabu list and aspiration level.

14. Increment iteration number.

15. EndIf

16. EndIf

17. EndFor

End.

FIGURE 23.79 Algorithmic description of short-term tabu search (TS).

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 69 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-69

Tabu restrictions and aspiration criterion have a symmetric role. The order of checking for tabu status

and aspiration criterion may be reversed, though most applications check if a move is tabu before

checking for aspiration criterion. For more discussion on move attributes, types of tabu lists and the

various tabu restrictions, the data structure to handle tabu-lists, and other aspiration criteria, the reader

is referred to [8].

In many applications, the short-term memory component by itself has produced solutions superior to

those found by alternative procedures, and usually the use of intermediate-term and long-term memory

is bypassed; however, several studies have shown that intermediate and long-term memory components

can improve solution quality and=or performance [19–22].

The basic role of the intermediate-term memory component is to intensify the search. By its

incorporation, the search becomes more aggressive. As the name suggests, memory is used to intensify

the search. Intermediate-term memory component operates as follows. A selected number m �jTj
(recall that jTj is the size of tabu list) of best trial solutions generated during a particular period of search

are chosen and their features are recorded and compared. These solutions may be m consecutive best

ones, or m local optimal solutions reached during the search. Features common to most of these are then

taken and new solutions that contain these features are sought. One way to accomplish this is to

restrict=penalize moves that remove such attributes. For example, in the TSP problem with moderately

dense graphs, the number of different edges that can be included into any tour is generally a fraction of

the total available edges (Why?). After some number of initial iterations, the method can discard all

edges not yet incorporated into some tour. The size of the problem and the time per iteration now

become smaller. The search therefore can focus on possibilities that are likely to be attractive, and can

also examine many more alternatives in a given span of time.

The goal of long-term memory component is to diversify the search. The principles involved here are

just the opposite of those used by the intermediate-term memory function. Instead of more intensively

focusing the search with regions that contain previously found good solutions, the function of this

component is to drive the search process into new regions that are different from those examined thus far.

Diversification using long-term memory in tabu search can be accomplished by creating an evaluator

whose task is to take the search to new starting points [11]. For example, in the traveling salesman

problem (TSP), a simple form of long-term memory is to keep a count of the number of times each edge

has appeared in the tours previously generated. Then, an evaluator can be used to penalize each edge on

the basis of this count; thereby favoring the generation of other, hopefully good starting tours that tend to

avoid those edges most commonly used in the past. This sort of approach is viewed as a frequency-based

tabu criterion in contrast to the recency-based (tabu list) discussed earlier. Such a long-term strategy can

be employed by means of a long-term tabu list (or any other appropriate data structure) that is

periodically activated to employ tabu conditions of increased stringency, thereby forcing the search

process into new territory [23].

It is easy to create and test the short-term memory component first, and then incorporate the

intermediate=long components for additional refinements.

Let a matrix entry Freq(i,j) (i and j be movable or swappable elements) store the number of times

swap (i,j) was made to take the solution from current state S to a new state S*. We can then use this

information to define a move evaluator «(H, S), which is a function of both the cost of the solution, and

the frequency of the swaps stored. Our objective is to diversify the search by giving more consideration

to those swaps that have not been made yet, and to penalize those that frequently occurred, that is giving

them less consideration [24]. Taking the above into consideration, the evaluation of the move can be

expressed as follows:

«(H ,S*) ¼ Cost(S*) Cost(S*) 	 Cost(S)

Cost(S*)þ a� Freq(i,j) Cost(S*) > Cost(S)

�

a is a constant which depends on the range of the objective function values, the number of iterations, the

span of history considered, etc. Its value (a0s) is such that cost and frequency are appropriately balanced.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 70 4.10.2007 3:56pm Compositor Name: VBalamugundan

23-70 Digital Systems and Applications

23.4.5 Simulated Evolution (SimE)

The simulated evolution algorithm (SimE) is a general search strategy for solving a variety of combina-

torial optimization problems. The first paper describing SimE appeared in 1987 [25]. Other papers by

the same authors followed [26–28].

SimE assumes that there exists a population P of a setM of n (movable) elements. In addition, there is

a cost function Cost that is used to associate with each assignment of movable element m a cost Cm. The

cost Cm is used to compute the goodness (fitness) gm of element m, for each m 2 M. Furthermore,

Usually additional constraints must be satisfied by the population as a whole or by particular elements.

A general outline of the SimE algorithm is given in Fig. 23.80.

SimE algorithm proceeds as follows. Initially, a population* is created at random from all populations

satisfying the environmental constraints of the problem. The algorithm has one main loop consisting of

three basic steps, evaluation, selection, and allocation. The three steps are executed in sequence until the

population average goodness reaches a maximum value, or no noticeable improvement to the population

goodness is observed after a number of iterations. Another possible stopping criterion could be to run the

algorithm for a prefixed number of iterations (see Fig. 23.80). Some details of the steps of the SimE

algorithm are presented in the next subsection.

23.4.5.1 Evaluation

The evaluation step consists of evaluating the goodness of each individual i of the population P. The

goodness measure must be a single number expressible in the range [0,1]. Goodness is defined as follows:

gi ¼ Oi

Ci

(23:1)

where

Oi is an estimate of the optimal cost of individual i

Ci is the actual cost of i in its current location

*In SimE terminology, a population refers to a single solution. Individuals of the population are components of

the solution; they are the movable elements.

ALGORITHM Simulated_Evolution(M, L):

=* M: Set of movable elements; *=

=* L: Set of locations: *=

=* B: Selection bias: *=

=* Stopping criteria and selection bias can be automatically adjusted; *=

INITIALIZATION:

Repeat

EVALUATION:

ForEach m 2 M Do gm ¼ Om

Cm
EndForEach:

SELECTION:

ForEach m 2 M Do

If Selection (m, B) Then Ps¼ Ps [{m}

Else Pr¼ Pr [{m}

EndIf;

EndForEach;

Sort the elements of Ps;

ALLOCATION:

ForEach m 2 Ps Do Allocation(m) EndForEach:

Until Stopping-criteria are met;

Return (Best Solution);

End Simulated_Evolution.

FIGURE 23.80 Simulated evolution algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 71 4.10.2007 3:56pm Compositor Name: VBalamugundan

Media Signal Processing 23-71

Equation 23.1 assumes a minimization problem

(maximization of goodness). Notice that,

according to the previous definition, the Oi’s

do not change from generation to generation,

and, therefore, are computed only once during

the initialization step. Hence, only the Ci’s have

to be recomputed at each call to the Evaluation

function. Empirical evidence [29] shows that the

accuracy of the estimation of Oi is not very crucial to the successful application of SimE; however, the

goodness measure must be strongly related to the target objective of the given problem.

23.4.5.2 Selection

The second step of the SimE algorithm is selection. Selection takes as input the population P together

with the estimated goodness of each individual and partitions P into two disjoint sets, a selection set Ps
and a set Pr of the remaining members of the population (see Fig. 23.81). Each member of the

population is considered separately from all other individuals. The decision whether to assign individual

i to the set Ps or set Pr is based solely on its goodness gi. The operator uses a selection function Selection,

which takes as input gi and a parameter B, which is a selection bias. Values of B are recommended to be in

the range [�0.2, 0.2]. In many cases a value of B¼ 0 would be a reasonable choice.

The selection function returns true or false. The higher the goodness value of the element, the higher is

its chance of staying in its current location, i.e., unaltered in the next generation. On the other hand, the

lower the goodness value, the more likely the corresponding element will be selected for alteration

(mutation) in the next generation (will be assigned to the selection set Ps). An individual with a high

fitness (goodness close to one) still has a nonzero probability of being assigned to the selected set Ps. It is

this element of nondeterminism that gives SimE the capability of escaping local minima.

For most problems, it is always beneficial to alter the elements of the population according to a

deterministic order that is correlated with the objective function being optimized. Hence, in SimE, prior

to the allocation step, the elements in the selection set Ps are sorted. The sorting criterion is problem

specific. Usually there are several criteria to choose from [8].

23.4.5.3 Allocation

Allocation is the SimE operator that has most impact on the quality of solution. Allocation takes as input the

two sets Ps and Pr and generates a new population P0 that contains all the members of the previous

population P, with the elements of Ps mutated according to an Allocation function (see Fig. 23.82).

The choice of a suitable allocation function is problem specific. The decision of the Allocation strategy

usually requires more ingenuity on the part of the designer than the selection scheme. The allocation

function may be a nondeterministic function, which involves a choice among a number of possible

mutations (moves) for each element of Ps. Usually, a number of trial-mutations are performed and rated

with respect to their goodnesses. Based on the resulting goodnesses, a final configuration of the

population P 0 is decided. The goal of allocation is to favor improvements over the previous generation,

without being too greedy.

The allocation operation is a complex form of genetic mutation that is one of the genetic operations

thought to be responsible for the evolution of the

various species in biological environments; how-

ever, there is no need for a crossover operation as

in GA since only one parent is maintained in all

generations; however, because mutation is the

only mechanism used by SimE for inheritance

and evolution, it must be more sophisticated

than the one used in GA.

{i,gi} Selection

Pr

Ps

FIGURE 23.81 Selection.

Ps

Pr

Allocation P ′= {i}

FIGURE 23.82 Allocation.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 72 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-72 Digital Systems and Applications

Allocation alters (mutates) all the elements in the selected set Ps one after the other in a predeter-

mined order. For each individual ei of the selected set Ps, W distinct trial alterations are attempted. The

trial that leads to the best configuration (population) with respect to the objective being optimized is

accepted and made permanent. The goodness of each individual element is also tightly coupled with the

target objective, so the superior alterations are supposed to gradually improve the individual goodnesses

as well. Hence, allocation allows the search to progressively evolve toward an optimal configuration

where each individual is optimally located.

23.4.5.4 Initialization Phase

This step precedes the iterative phase. In this step, the various parameters of the algorithm are set to their

desired values, namely, the maximum number of iterations required to run the main loop, the selection

bias B, and the number of trial alterations W per individual. Furthermore, similar to any iterative

algorithm, SimE requires that an initial solution be given. The convergence aspects of SimE are not

affected by the quality of the initial solution; however, starting from a randomly generated solution

usually increases the number of iterations required to converge to a near-optimal solution.

23.4.6 Convergence Aspects

One of the desirable properties that a stochastic iterative algorithm should possess is the convergence

property, i.e., the guarantee of converging to one of the global optima if given enough time. The

convergence aspects of the simulated annealing algorithm have been the subject of extensive studies. For

a thorough discussion of simulated annealing convergence we refer the reader to [6,7,30].

For convergence properties of the GA heuristic based on Markovian analysis, the reader is referred to

[31–37]. Fogel [38] provides a concise treatment of the main GA convergence results.

The tabu search algorithm as described in this article is known as ordinary or deterministic tabu search.

Because of its deterministic nature, ordinary tabu search may never converge to a global optimum state.

The incorporation of a nondeterministic element within tabu search allows the algorithm to lend itself

to mathematical analysis similar to that developed for simulated annealing, making it possible to

establish corresponding convergence properties. Tabu search with nondeterministic elements is called

probabilistic tabu search [11,39]. Probabilistic tabu search has been shown to converge in the limit to a

global optimum state. The proof is analogous to that of SA.

Proof of convergence of SimE can be found in [28,40]. For complete convergence analysis, the reader

may refer to [8].

23.4.7 Parallelization=Acceleration

Due to their iterative and blind nature, the heuristics discussed in this section require large runtime,

especially on large problems, and CPU-intensive cost functions. Substantial amount of work has been

done to parallelize or design accelerators to run these time consuming heuristics. With respect to

simulated annealing, which is inherently sequential, some ingenuity is required on the part of the

designer to cleverly parallelize the annealing process. Several parallel implementations of SA have been

reported in [6,41–47]. Hardware acceleration that consists of implementing time consuming parts

in hardware is described in [48]. Parallel acceleration, where execution of the algorithm is partitioned

on several concurrently running processors, is reported in [49–51]. Other approaches that have

been applied to parallelize SA are found in [6,49,52,53]. The parallel accelerations follow two general

strategies: (1) move acceleration, also called single-trial parallelism, and (2) parallel moves or multiple-

trial parallelism.

The GA is highly parallel. The reported GA parallelization strategies fall into three general categories:

the island model [54,55], the stepping stone model [56–59], and the neighborhood model, also called the

cellular model [60,61].

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 73 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-73

Work on parallelization of the tabu search heuristic can be found in [8,62–66]. The heuristic has also

been parallelized and executed on a network of workstations using PVM [67]. Techniques to accelerate

the execution of SimE by implementing it on vector-processors [29] or on a network of workstations

[68] are described in [8].

23.4.8 Applications

The first applications of SAwere on placement [2]. Furthermore, the largest number of applications of SA

was on digital design automation problems [5]. A popular package that uses SA for VLSI standard-cell

placement and routing is the TimberWolf3.2 package [46]. In addition to placement, SA has been applied

successfully to several other problems. These include classical problems such as the TSP [2], graph

partitioning, matching problem, Steiner problems [69], linear arrangement [1], clustering problem

[70], quadratic assignment [71], various scheduling problems [72,73], graph coloring [74], etc. In the

area of engineering SA has been applied extensively to solve various hard VLSI physical design automation

problems [5]. In addition, it has been applied with success in other areas such as topology design of

computer networks [75], image processing [76], test pattern generation, code design, etc. A comprehen-

sive list of bibliography of some of the above applications and some details of their implementation such as

cost function formulation, move set design, parameters, etc., is available in [6,8,77–79].

In addition to their application to classical optimization problems such as the knapsack problem [80],

TSP [81,82], Steiner tree problem [83], set covering problem [84], N-queens problem [85], clustering

problem [86], graph partitioning [87], etc., GAs have also been applied to several engineering problems.

Some examples of these applications include job shop and multiprocessor scheduling [81,88,89],

discovery of maximal distance codes for data communications [90], bin-packing [91], design of

telecommunication (mesh) networks [92], test sequence generation for digital system testing [93],

VLSI design (cell placement [5,94–96], floorplanning [97], routing [98]), pattern matching [99],

technology mapping [100], PCB assembly planning [101], and high-level synthesis of digital systems

[102,103]. The books by Goldberg (1989) [10], Davis (1991) [104], recent conference proceedings on

evolutionary computation, and on applications of genetic algorithms discuss in detail the various

applications of GAs in science and engineering. These range from optimization of pipeline systems

and medical imaging to applications such as robot trajectory generation and parametric design of

aircraft [10,104].

TS has also been applied to solve combinatorial optimization problems appearing in various fields

of science, engineering, and business. Results reported indicate superior performance to other previous

techniques. Examples of some hard problems to which tabu search has been applied with success include

graph partitioning [105], clustering [106], TSP [107], maximum independent set problem [108],

graph coloring [109,110], maximum clique problem [111], and quadratic assignment problem

[62,112] to name a few. In the area of engineering, tabu search has been applied to machine sequencing

[113], scheduling [22,114–118], fuzzy clustering [119], multiprocessor scheduling [120], vehicle

routing [121–123], general fixed charge problem [17], bin-packing [124], bandwidth packing [24],

VLSI placement [125], circuit partitioning [126], global routing [127], high-level synthesis of digital

systems [128,129], etc. A good summary of most recent applications of tabu search can be found in

[8,18,130].

The SimE algorithm has also been used to solve a wide range of combinatorial optimization problems.

Kling and Banerjee published their results with respect to SimE in design automation conferences

[25,27] and journals [26,28]. This explains the fact that most published work on SimE has been

originated by researchers in the area of design automation of VLSI circuits [40,131–134]. The first

problem on which SimE was first applied is standard cell placement [25,28]. A number of papers

describe SimE-based heuristics as applied to the routing of VLSI circuits [131,135–140]. SimE was also

successfully applied in high-level synthesis [141–143]. Other reported SimE applications are in micro-

code compaction [144], automatic synthesis of gate matrix [134], and the synthesis of cellular archi-

tecture field programmable gate arrays (FPGAs) [145].

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 74 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-74 Digital Systems and Applications

23.4.9 Conclusion

This section has introduced the reader to four effective heuristics that belong to the class of general

approximation iterative algorithms, namely SA, GA, tabu search, and SimE. From the immense literature

that is available it is evident that for a large variety of applications, in certain settings, these heuristics

produce excellent results. All five algorithms are general iterative metaheuristics. A value of the objective

function is used to compare results of consecutive iterations and a solution is selected based on its value.

All algorithms incorporate domain specific knowledge to dictate the search strategy. They also

tolerate some element of nondeterminism that helps the search escape out of local minima. They all

rely on the use of a suitable cost function, which provides feedback to the algorithm as the search

progresses. The principle difference among these heuristics is how and where domain specific knowledge

is used. For example, in SA such knowledge is mainly included in the cost function. Elements involved in

a perturbation are selected randomly, and perturbations are accepted or rejected according to the

Metropolis criterion, which is a function of the cost. The cooling schedule has also a major impact on

the algorithm performance and must be carefully crafted to the problem domain as well as the particular

problem instance.

For the two evolutionary algorithms discussed in the chapter, GA and SimE, domain specific

knowledge is exploited in all phases. In the case of GA, the fitness of individual solutions incorporates

domain specific knowledge. Selection for reproduction, the genetic operations, as well as generation of

the new population also incorporate a great deal of heuristic knowledge about the problem domain. In

SimE, each individual element of a solution is characterized by a goodness measure that is highly

correlated with the objective function. The perturbation step (selection followed by allocation) affects

mostly low goodness elements. Therefore, domain specific knowledge is included in every step of the

SimE algorithm.

Tabu search is different from the above heuristics in that it has an explicit memory component. At

each iteration the neighborhood of the current solution is partially explored, and a move is made to the

best nontabu solution in that neighborhood. The neighborhood function as well as tabu list size and

content are problem specific. The direction of the search is also influenced by the memory structures

(whether intensification or diversification is used).

A classification of meta-heuristics proposed by Glover and Laguna [130] is based on three basic

features: (1) the use of adaptive memory, where the letter A is used if the meta-heuristic employs

adaptive memory, and the letterM is used if it is memoryless; (2) the kind of neighborhood exploration,

where the letter N is used if the meta-heuristic performs a systematic neighborhood search, and the letter

S is used if stochastic sampling is followed; and (3) the number of current solutions carried from one

iteration to the next, where the digit 1 is used if the meta-heuristic maintains a single solution, and the

letter P is used if a parallel search is performed with a population of solutions of cardinality P. For

example, according to this classification, GA is M=S=P, tabu search is A=N=1, SA is M=S=1, and SimE is

also M=S=1.

It is also possible to make hybrids of these algorithms. The basic idea of hybridization is to enhance

the strengths and compensate for the weaknesses of two or more complementary approaches. For the

details about the hybridization the readers are referred to [8].

In this section, it has not been the authors’ intention to demonstrate the superiority of one algorithm

over the other. Actually it would be unwise to rank such algorithms. Each one of them has its own

merits. Recently, an interesting theoretical study has been reported by Wolpert and Macready in which

they proved a number of theorems stating that the average performance of any pair of iterative

(deterministic or nondeterministic) algorithms across all problems is identical. That is, if an algorithm

performs well on a certain class of problems then it necessarily pays for that with degraded performance

on the remaining set of problems [146]; however, it should be noted that the reported theorems assume

that the algorithms do not include domain specific knowledge of the problems being solved. Obviously,

it would be expected that a well-engineered algorithm would exhibit superior performance to that of a

poorly engineered one.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 75 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-75

Acknowledgment

The authors acknowledge King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for all

support. This work is carried out under university-funded project number COE=ITERATE=221. Special

thanks to Junaid Asim Khan and Salman Khan for their tremendous assistance and help in the

preparation of this manuscript.

References

1. S. Nahar, S. Sahni, and E. Shragowitz. Simulated annealing and combinatorial optimization.

International Journal of Computer Aided VLSI Design, 1(1):1–23, 1989.

2. S. Kirkpatrick, Jr., C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220

(4598): 498–516, May 1983.

3. V. Černy. Thermodynamical approach to the traveling salesman problem: An efficient simulation

algorithm. Journal of Optimization Theory and Application, 45(1):41–51, January 1985.

4. N. Metropolis et al. Equation of state calculations by fast computing machines. Journal of Chem.

Physics, 21:1087–1092, 1953.

5. Sadiq M. Sait and Habib Youssef. VLSI Design Automation: Theory and Practice. McGraw-Hill,

Europe (also co-published by IEEE Press), 1995.

6. Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to

Combinatorial Optimization and Neural Computing. John Wiley & Sons, New York, 1989.

7. R.H.J.M. Otten and L.P.P.P. van Ginneken. The Annealing Algorithm. Kluwer Academic Publishers,

Boston, MA, 1989.

8. Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms with Applications in Engineering:

Solving Combinatorial Optimization Problems. IEEE Computer Society Press, 1999.

9. J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann

Arbor, Michigan, 1975.

10. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,

Reading, MA, 1989.

11. F. Glover. Tabu search—Part I. ORSA Journal on Computing, 1(3):190–206, 1989.

12. F. Glover. Tabu search—Part II. ORSA Journal on Computing, 2(1):4–32, 1990.

13. F. Glover, E. Taillard, and D. de Werra. A user’s guide to Tabu search. Annals of Operations Research,

41:3–28, 1993.

14. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, MA, 1997.

15. P. Hansen. The steepest ascent mildest descent heuristic for combinatorial programming. Congress

on Numerical Methods in Combinatorial Optimization, 1986.

16. F. Glover. Artificial intelligence, heuristic frameworks and Tabu search. Managerial and Decision

Economics, 11:365–375, 1990.

17. Minghe Sun and P.G. McKeown. Tabu search applied to the general fixed charge problem. Annals of

Operations Research, 41:405–420, 1993.

18. F. Glover. Tabu search and adaptive memory programming-advances, applications and challenges.

Technical Report, College of Business, University of Colorado at Boulder, 1996.

19. F. Dammeyer and Stefan VoB. Dynamic Tabu list management using the reverse elimination

method. Annals of Operations Research, 41:31–46, 1993.

20. M. Malek, M. Guruswamy, M. Pandya, and H. Owens. Serial and parallel Simulated Annealing and

Tabu search algorithms for the traveling salesman problem. Annals of Operations Research,

21:59–84, 1989.

21. J. Ryan, editor. Heuristics for Combinatorial Optimization, June 1989.

22. O. Icmeil and S. Selcuk Erenguc. A Tabu search procedure for the resource constrained project

scheduling problem with discounted cash flows. Computers & Operations Research, 21(8):841–853,

1994.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 76 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-76 Digital Systems and Applications

23. J.P. Kelly, M. Laguna, and F. Glover. A study of diversification strategies for the quadratic

assignment problem. Computers & Operations Research, 21(8):885–893, 1994.

24. M. Laguna and F. Glover. Bandwidth Packing; A Tabu search approach. Management Science,

39(4):492–500, 1993.

25. Ralph Michael Kling and Prithviraj Banerjee. ESP: A new standard cell placement package using

Simulated Evolution. Proceedings of 24th Design Automation Conference, pp. 60–66, 1987.

26. R.M. Kling and P. Banerjee. ESP: Placement by Simulated Evolution. IEEE Transactions on

Computer-Aided Design, 8(3):245–255, March 1989.

27. R.M. Kling and P. Banerjee. Optimization by Simulated Evolution with applications to standard-

cell placement. Proceedings of 27th Design Automation Conference, pp. 20–25, 1990.

28. R.M. Kling and P. Banerjee. Empirical and theoretical studies of the Simulated Evolution method

applied to standard-cell placement. IEEE Transactions on Computer-Aided Design, 10(10):

1303–1315, October 1991.

29. R.M. Kling. Optimization by Simulated Evolution and its Application to cell placement. Ph.D. Thesis,

University of Illinois, Urbana, 1990.

30. E.H.L. Aarts and P.J.N. Van Laarhoven. Statistical cooling: a general approach to combinatorial

optimization problem. Philips Journal of Research, 40(4):193–226, January 1985.

31. D.E. Goldberg and P. Segrest. Finite Markov chain analysis of Genetic algorithms.Genetic Algorithms

and Their Applications: Proceedings of 2nd International Conference on GAs, pp. 1–8, 1987.

32. A.E. Nix and M.D. Vose. Modeling Genetic algorithms with Markov chains. Annals of Mathematics

and Artificial Intelligence, pp. 79–88, 1993.

33. A.H. Eiben, E.H.L. Aarts, and K.M. Van Hee. Global convergence of Genetic algorithms: A

Markov chain analysis. In H.P. Schwefel and Männer, editors, Parallel Problem Solving from Nature,

pp. 4–12. Springer-Verlag, Berlin, 1990.

34. T.E. Davis and J.C. Principe. A Simulated Annealing like convergence theory for the simple

Genetic algorithm. Proceedings of the 4th International Conference on Genetic Algorithm,

pp. 174–181, 1991.

35. T.E. Davis and J.C. Principe. A Markov chain framework for the simple Genetic algorithm.

Proceedings of the 4th International Conference on Genetic Algorithm, 13:269–288, 1993.

36. S.W. Mahfoud. Finite Markov chain models of an alternative selection strategy for the Genetic

algorithm. Complex systems, 7:155–170, 1993.

37. G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural

Networks, 5:1:96–101, 1994.

38. D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press,

1995.

39. U. Faigle and W. Kern. Some convergence results for probabilistic Tabu search. ORSA Journal on

Computing, 4(1):32–37, Winter 1992.

40. C.Y. Mao and Y.H. Hu. Analysis of convergence properties of Stochastic Evolution algorithm. IEEE

Transactions on Computer Aided Design, 15(7):826–831, July 1996.

41. M.D. Huang, F. Romeo, and A.L. Sangiovanni-Vincentelli. An efficient general cooling schedule for

Simulated Annealing. In IEEE International Conference on Computer-Aided Design, pp. 381–384,

1986.

42. H. Szu and R. Hartley. Fast Simulated Annealing. Physics Letters, A, 122:157–162, 1987.

43. J.W. Greene and K.J. Supowit. Simulated Annealing without rejected moves. IEEE Tansactions on

Computer-Aided Design, 5:221–228, 1986.

44. P.J.M. Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applications. Reidel,

Dordrecht, 1987.

45. F. Catthoor, H. DeMan, and J. Vandewalle. Samurai: A general and efficient Simulated-Annealing

schedule with fully adaptive annealing parameters. Integration, 6:147–178, 1988.

46. C. Sechen and A.L. Sangiovanni-Vincentelli. Timberwolf3.2: A new standard-cell placement and

global routing package. Proceedings of 23rd Design Automation Conference, pp. 432–439, 1986.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 77 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-77

47. L.K. Grover. A new Simulated Annealing algorithm for standard-cell placement. In IEEE Inter-

national Conference of Computer Aided Design, pp. 378–380, 1986.

48. A. Iosupovici, C. King, and M. Breuer. A module interchange placement machine. Proceedings of

20th Design Automation Conference, pp. 171–174, 1983.

49. Saul A. Kravitz and Rob A. Rutenbar. Placement by Simulated Annealing on a multiprocessor. IEEE

Transactions on Computer Aided Design, CAD-6(4):534–549, July 1987.

50. F. Darema-Rogers, S. Kirkpatrick, and V.A. Norton. Parallel algorithms for chip placement by

simulated annealing. IBM Journal of Research and Development, 31:391–402, May 1987.

51. F. Darema, S. Kirkpatrick, and V.A. Norton. Parallel techniques for chip placement by Simulated

Annealing on shared memory systems. Proceedings of International Conference on Computer Design:

VLSI in Computers & Processors, ICCD-87, pp. 87–90, 1987.

52. M.D. Durand. Accuracy vs. Speed in placement. IEEE Design & Test of Computers, pp. 8–34, June

1989.

53. Xin Yao. Global optimization by evolutionary algorithms. In Proceedings of IEEE International

Symposium on parallel algorithms architecture synthesis, pp. 282–291, 1997.

54. T. Starkweather, D. Whitley, and K. Mathias. Optimization using distributed Genetic algorithm. In

Parallel problem solving from nature, 1991.

55. M. Tanese. Distributed Genetic Algorithms. In J.D. Schaffer, editor, Proceedings of the 3rd Inter-

national Conference on Genetic Algorithms, pp. 434–439. Morgan-Kaufmann, San Maeto, CA, 1989.

56. M. Gorges-Schleuter. Explicit parallelism of Genetic algorithms through population structures. In

H.P. Schwefel and R. Männer, editors, Problem Solving from Nature, pp. 150–159. Springer-Verlag,

New York, 1991.

57. N. Eldredge and S.J. Gould. Punctuated Equilibrea: An alternative to phyletic gradualism. Models of

Paleobiology, T.J.M. Schopf, Ed. San Fransisco: CA, Freeman. Cooper and Co., 1972.

58. N. Eldredge. Time Frames. New York: Simon and Schuster, 1985.

59. J.P. Cohoon, S.U. Hegde, W.N. Martin, and D.S. Richards. Distributed Genetic algorithms for the

floorplan design problem. IEEE Transactions on Computer-Aided Design, CAD-10:483–492, April

1991.

60. V. Scott Gordon and Darrell Whitley. A machine-independent analysis of parallel Genetic algo-

rithms. Complex Systems, 8:181–214, 1994.

61. M. Gorges-Schleuter. ASPARAGOS-An asynchronous parallel Genetic optimization strategy. In

J.D. Schaffer, editor, Proceedings of the 3rd International Conference on Genetic Algorithms and their

Applications, pp. 422–427. Morgan-Kaufmann, San Maeto, CA, 1989.

62. E. Taillard. Robust Tabu search for the quadratic assignment problem. Parallel Computing,

17:443–455, 1991.

63. E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. European

Journal of Operational Research, 417:65–74, 1990.

64. Bruno-Laurent Garica, Jean-Yves Potvin, and Jean-Marc Rousseau. A parallel implementation of

the Tabu search heuristic for vehicle routing problems with time window constraints. Computers &

Operations Research, 21(9):1025–1033, November 1994.

65. I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro. Improving search by incorporating

evolution principles in parallel Tabu search. In Proc. of the first IEEE Conference on Evolutionary

Computation-ICEC ’94, pp. 823–828, June 1994.

66. E. Taillard. Parallel iterative search methods for the vehicle routing problem. Networks, 23:661–673,

1993.

67. Sadiq M. Sait, Habib Youssef, H. Barada, and Ahmed Al-Yamani. A parallel Tabu search algorithm

for VLSI standard-cell placement. Proceedings of IEEE International Symposium on Circuits and

Systems, May 2000.

68. Ralph Michael Kling and Prithviraj Banerjee. Concurrent ESP: A placement algorithm for execu-

tion on distributed processors. Proceedings of the IEEE International Conference on Computer-Aided

Design, pp. 354–357, 1987.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 78 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-78 Digital Systems and Applications

69. K.A. Dowsland. Hill climbing, Simulated Annealing, and the Steiner problem in graphs. Eng. Opt.,

17:91–107, 1991.

70. S. Selim and K.S. Al-Sultan. A Simulated Annealing algorithm for the clustering problem. Pattern

Recognition, 24(10):1003–1008, 1991.

71. D.T. Connolly. An improved annealing scheme for the QAP. European Journal of Operational

Research, 46:93–100, 1990.

72. I.H. Osman and C.N. Potts. Simulated Annealing for permutation flow-shop annealing. OMEGA,

17:551–557, 1989.

73. F.A. Ogbu and D.K. Smith. The application of the Simulated Annealing algorithm to the solution

of the n=m=cmax flowshop problem. Computers & Operations Research, 17:243–253, 1990.

74. M. Chams, A. Hertz, and D. de Werra. Some experiments with Simulated Annealing for coloring

graphs. European Journal of Operational Research, 32:260–266, 1987.

75. C. Ersoy and S.S. Panwar. Topological design of interconnected LAN=MAN networks. IEEE Journal

on Selected Areas in Communications, 11(8):1172–1182, 1993.

76. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration

of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6:721–741, 1984.

77. K.A. Dowsland. Simulated Annealing. In C.R. Reeves, editor, Modern Heuristic Techniques for

Combinatorial Optimization Problems. McGraw-Hill, Europe, 1995.

78. N.E. Collins, R.W. Eglese, and B.L. Golden. Simulated annealing: An annotated bibliography.

AJMMS, 8:209–307, 1988.

79. R.W. Eglese. Simulated Annealing: A tool for operational research. European Journal of Operational

Research, 46:271–281, 1990.

80. R. Spillman. Solving large Knapsack problems with a Genetic algorithm. In International Conference

on Systems, Man and Cybernetics, pp. 632–637, 1995.

81. D. Whitley, T. Starkweather, and D’Ann Fuquay. Scheduling problems and traveling salesmen: the

genetic edge recombination operator. In Proceedings of the 3rd International Conference on Genetic

Algorithms and their Applications, pp. 133–140, 1989.

82. H. Tamaki et al. A comparison study of Genetic codings for the traveling salesman problem. In

Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp. 1–6, 1994.

83. J. Hesser, R. Manner, and O. Stucky. Optimization of Steiner trees using Genetic algorithms. In

ICGA ’89, pp. 231–236, 1989.

84. K.S. Al-Sultan, M.F. Hussain, and J.S. Nizami. A Genetic algorithm for the set covering problem.

Journal of the Operational Research Society, 47:702–709, 1996.

85. A. Homaifar, J. Turner, and Samia Ali. The N-queens problem and Genetic algorithms. In IEEE

Proceedings of Southeastcon ’92, pp. 262–267, April 1992.

86. K.S. Al-Sultan and M. Maroof Khan. Computational experience on four algorithms for the hard

clustering problem. Pattern Recognition Letters, 17:295–308, 1996.

87. H. Pirkul and E. Rolland. New heuristic solution procedures for uniform graph partition-

ing problem: Extensions and evaluation. Computers & Operations Research, 21(8):895–907,

October 1994.

88. E.S.H. Hou, N. Ansari, and R. Hong. Genetic algorithm for multiprocessor scheduling. IEEE

Transactions on Parallel and Distributed Systems, 5(2):113–120, February 1994.

89. M.S.T. Benten and Sadiq M. Sait. Genetic scheduling of task graphs. International Journal of

Electronics, 77(4):401–415, 1994.

90. K. Dontas and K. De Jong. Discovery of maximal distance codes using Genetic algorithms.

Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, pp.

805–811, 1990.

91. E. Falkenauer and A. Delchambre. A genetic algorithm for bin packing and line balancing.

Proceedings of International Conference on Robotics and Automation, pp. 1186–1192, May 1992.

92. King-Tim Ko et al. Using genetic algorithms to design mesh networks. Computer, pp. 56–60,

1997.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 79 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-79

93. E.M. Rudnick, J.H. Patel, G.S. Greenstein, and T.M. Niermann. Sequential circuit test generation

in a Genetic algorithm framework. In Proceedings of the 31st Design Automation Conference,

pp. 698–704, 1994.

94. J.P. Cohoon and W.D. Paris. Genetic placement. IEEE Transactions on Computer-Aided Design,

CAD-6:956–964, November 1987.

95. K. Shahookar and P. Mazumder. VLSI cell placement techniques. ACM Computing Surveys,

23(2):143–220, June 1991.

96. K. Shahookar and P. Mazumder. A genetic approach to standard cell placement using meta-genetic

parameter optimization. IEEE Transactions on Computer-Aided Design, 9(5):500–511, May 1990.

97. Sadiq M. Sait et al. Timing influenced general-cell genetic foorplanner. In ASP-DAC ’95: Asia and

South-Pacific Design Automation Conference, pp. 135–140, 1995.

98. H.I. Han et al. GenRouter: A genetic algorithm for channel routing problems. In Proceeding of

TENCON 95, IEEE Region 10 International Conference on Microelectronics and VLSI, pp. 151–154,

November 1995.

99. N. Ansari, M.-H. Chen, and E.S.H. Hou. Point pattern matching by genetic algorithm. In 16th

Annual Conference on IEEE Industrial electronics, pp. 1233–1238, 1990.

100. V. Kommu and I. Pomeranz. GAFPGA: Genetic algorithms for FPGA technology mapping.

In Proceeding of EURO-DAC ’93: IEEE European Design Automation Conference, pp. 300–305,

September 1993.

101. M.C. Leu, H. Wong, and Z. Ji. Genetic algorithm for solving printed circuit board assembly

planning problems. Proceedings of Japan-USA Symposium on Flexible Automation, pp. 1579–1586,

July 1992.

102. S. Ali, Sadiq M. Sait, and M.S.T. Benten. GSA: Scheduling and allocation using Genetic algorithms.

In Proceedings of EURODAC ’94: IEEE European Design Automation Conference, pp. 84–89,

September 1994.

103. C.P. Ravikumar and V. Saxena. TOGAPS: A testability oriented genetic algorithm for pipeline

synthesis. VLSI Design, 5(1):77–87, 1996.

104. L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, NY, 1991.

105. A. Lim and Yeow-Meng Chee. Graph partitioning using Tabu search. In 1991 IEEE International

Symposium on Circuits and Systems, pp. 1164–1167, 1991.

106. K.S. Al-Sultan. A Tabu search approach to the clustering problem. Pattern Recognition, 28(9):

1443–1451, 1995.

107. M. Malek, M. Heap, R. Kapur, and A. Mourad. A fault tolerant implementation of the traveling

salesman problem. Research Report, Department of EE and Computer Engineering, The University of

Texas-Austin, May 1989.

108. C. Friden, A. Hertz, and D. de Werra. TABARIS: An exact algorithm based on Tabu search for

finding a maximum independent set in a graph. Computers & Operations Research, 19(1–4):81–91,

1990.

109. N. Dubois and D. de Werra. EPCOT: An efficient procedure for coloring optimally with Tabu

search. Computers Math Application, 25(10=11):35–45, 1993.

110. A. Hertz and D. de Werra. Using Tabu search techniques for graph coloring. Computing,

39:345–351, 1987.

111. M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique problem using a Tabu search

approach. Annals of Operations Research, 41:385–404, 1993.

112. J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem. ORSA Journal on

Computing, 2(1):33–45, 1990.

113. C.R. Reeves. Improving the efficiency of Tabu search for machine sequencing problems. Journal of

Operational Research Society, 44:375–382, 1993.

114. E.L. Mooney and R.L. Rardin. Tabu search for a class of scheduling problems. Annals of Operations

Research, 41:253–278, 1993.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 80 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-80 Digital Systems and Applications

115. M. Dell’Amico and M. Trubian. Applying Tabu search to the job-shop scheduling problem. Annals

of Operations Research, 41:231–252, 1993.

116. M. Widmer and A. Hertz. A new heuristic method for the flow shop sequencing problem. European

Journal of Operational Research, 41:186–193, 1989.

117. J.W. Barnes and J.B. Chambers. Solving the job shop scheduling problem with Tabu search. IIE

Transactions, 27:257–263, 1995.

118. M. Widmer. Job shop scheduling with tooling constraints: A Tabu search approach. Journal of

Operational Research Society, 42(1):75–82, 1991.

119. K.S. Al-Sultan and C.A. Fedjki. A Tabu search based algorithm for the fuzzy clustering problem.

Pattern Recognition, 1998.

120. R. Hubscher and F. Glover. Applying Tabu search with influential diversification to multiprocessor

scheduling. Computers & Operations Research, 21(8):877–884, 1994.

121. I.H. Osman. Metastrategy Simulated Annealing and Tabu search algorithms for the vehicle routing

problem. Annals of Operations Research, 41:421–451, 1993.

122. F. Semet and E. Taillard. Solving real-life vehicle routing problems efficiently using Tabu search.

Annals of Operations Research, 41:469–488, 1993.

123. J. Renaud, G. Laporte, and F.F. Boctor. A Tabu search heuristic for the multi-depot vehicle routing

problem. Computers Ops Research, 23:229–235, 1996.

124. F. Glover and R. Hubscher. Binpacking with a Tabu search. Technical Report, Graduate School of

Business Administration, University of Colorado at Boulder, 1991.

125. L. Song and A. Vannelli. VLSI placement using Tabu search. Microelectronics Journal, 17(5):

437–445, 1992.

126. S. Areibi and A. Vannelli. Circuit partitioning using a Tabu search approach. In 1993 IEEE

International Symposium on Circuits and Systems, pp. 1643–1646, 1993.

127. Habib Youssef and Sadiq M. Sait. Timing driven global router for standard cell design. Inter-

national Journal of Computer Systems Science and Engineering, 1998.

128. Sadiq M. Sait, S. Ali, and M.S.T. Benten. Scheduling and allocation in high-level synthesis using

stochastic techniques. Microelectronics Journal, 27(8):693–712, October 1996.

129. S. Amellal and B. Kaminska. Functional synthesis of digital systems with TASS. IEEE Transactions

on Computer-Aided Design, 13(5):537–552, May 1994.

130. F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic Techniques for

Combinatorial Problems. McGraw-Hill, Europe, 1995.

131. Y.L. Lin, Y.C. Hsu, and F.H.S. Tsai. SILK: A Simulated Evolution router. IEEE Transactions on

Computer-Aided Design, 8(10):1108–1114, October 1989.

132. A. Ly and Jack T. Mowchenko. Applying Simulated Evolution to high level-synthesis. IEEE

Transactions on Computer-Aided Design, 12(3):389–409, March 1993.

133. C.Y. Mao and Y.H. Hu. SEGMA: A Simulated Evolution gate matrix layout algorithm. VLSI Design,

2(3):241–257, 1994.

134. C.Y. Mao. Simulated Evolution Algorithms for Gate Matrix layouts. Ph.D. Thesis, University of

Wisconsin, Madison, 1994.

135. Ching-Dong Chen, Yuh-Sheng Lee, A.C.-H. Wu, and Youn-Long Lin. Tracer-FPGA: A router for

RAM-based FPGA’s. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 14(3):371–374, March 1995.

136. T. Koide, S. Wakabayashi, and N. Yoshida an integrated approach to pin assignment and global

routing for VLSI building-block layout. In 1993 European Conference on Design Automation with

the European Event in ASIC Design, pp. 24–28, Loss Alamitos, CA, USA, Feb 1993. IEEE Computer

Society Press.

137. Yirng-An Chen, Youn-Long Lin, and Yu-Chin Hsu. A new global router for ASIC design based on

Simulated Evolution. In Proceedings of the 33rd IEEE Midwest Symposium on Circuits and Systems,

pp. 261–265, New York, NY, USA, May 1989.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 81 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-81

138. Youn-Long Lin, Yu-Chin Hsu, and Fur-Shing Tsai. A detailed router based on Simulated Evolution.

In Proceedings of the 33rd Midwest Symposium on Circuits and Systems, pp. 38–41, New York, NY,

USA, Nov 1988. IEEE Computer Soc. Press.

139. Yuh-Sheng Lee and A.C.-H Wu. A performance and routability driven router for FPGAS consider-

ing path delays. ANSI=IEEE Std 802.lb-1995, pp. 557–561, March 1995.

140. Yung-Ching Hsich, Chi-Yi Hwang, Youn-Long, and Yu-Chin Hsu. LIB: A CMOS cell compiler.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(8):994–1005,

Aug 1991.

141. T.A. Ly. and J.T. Mowchenko. Applying Simulated Evolution to scheduling in high level synthesis.

In Proceedings of the 33rd Midwest Symposium on Circuits and Systems, vol. 1, pp. 172–175,

New York, NY, USA, Aug. 1990, IEEE Computer Soc. Press.

142. Yau-Hwang Kuo and Shaw-Pyng Lo. Automated synthesis of asynchronous pipelines. In Custom

Integrated Circuits Conference, Proceedings of the IEEE 1992, vol. 2, pp. 685–688, New York, NY,

USA, May 1992.

143. Yau-Hwang Kuo and Shaw-Pyng Lo. Partitioning and scheduling of asynchronous pipelines. In

Computer Systems and Software Engineering, CompEuro 1992 Proceedings, pp. 574–579, Loss

Alamitos, CA, USA, May 1992. IEEE Computer Soc. Press.

144. I. Ahmad, M.K. Dhodhi, and K.A Saleh. An evolutionary-based technique for local microcode

compaction. In Proceedings of ASP DAC ’95=CHDL ’95=VLSI with EDA Technofair, pp. 729–734,

Tokyo, Japan, Sept. 1995. Nihon Gakkai Jimu Senta.

145. A.K. Dasari, N. Song, and M. Chrzanowska-Jeske. Layout-driven factorization and fitting for

cellular-architecture FPGAS. In Proceedings of IEEE, NORTHCON ’93 Electrical and Electronics

Convention, pp. 106–111, New York, NY, USA, October 1993.

146. D.H. Wolpert and W.G. Macready. No Free Lunch theorems for optimization. IEEE Transactions on

Evolutionary Computation, 1(1):67–82, April 1997.

23.5 Parallelization of Iterative Heuristics

Sadiq M. Sait, Habib Youssef, and Mohammad Faheemuddin

23.5.1 Introduction

Iterative heuristics such as simulated annealing (SA), genetic algorithms (GAs), and tabu search (TS) are

stochastic optimization algorithms that have found applications in a myriad of complex problems in

science and engineering. The Section 23.4 discussed these algorithms in detail, and elaborated on their

various characteristics. However, with increasing domain complexity and sizes, in spite of their robust

nature and capability, these algorithms can have very high runtimes. Although there are acceleration

strategies for these heuristics, these are often just parameter tweaks and are at best problem-specific and

often nonscalable.

Parallelization of these algorithms to achieve reduced runtime as well as possibly find better

solutions has increasingly attracted attention over the years. With the ever-decreasing cost–performance

ratio of generic computer systems, cluster environments have become a norm in both academia and

industry. Also as network technology keeps chipping away at the latency constraint, these adistributed

computing environments offer very promising and competing alternatives to expensive multiprocessor

machines.

In this chapter, we document parallelization strategies for different popular iterative heuristics,

namely SA, GAs, TS, and simulated evolution (SimE). A detailed description of these heuristics

is available in the book by Sait and Youssef [1]. A broad classification is presented for the different

parallel models followed by an enumeration and description of relevant strategies. The focus is

on parallel approaches for cluster environments. This chapter concludes with further directions in

contemporary research.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 82 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-82 Digital Systems and Applications

23.5.2 Parallelization Issues

Distributed computing today offers extensive opportunities in collectively utilizing computing power for

performance gains. The concept behind parallelization is often to allocate fairly independent sections of

the algorithm to individual processors, collect the results, do the needful, and continue onward with the

next iteration. However, this approach, though simple and straightforward does not scale well—

Amdahl’s law is soon to set in—the speedup achievable is limited to the nonparallelizable, serial fraction

of the algorithm. This is especially aggravated by the inherently sequential nature of various heuristics,

such as SA, TS, and SimE.

Parallelization strategies can be broadly classified into the following three approaches:

1. Low-level parallelization (type 1): This is also known as move acceleration, in this approach the

computation-intensive operations within a single iteration are distributed among nodes. Such

approaches seek to divide the workload for each iteration across multiple processors, and as a

consequence, leave the algorithm characteristics unaffected.

2. Domain decomposition (type 2): In this approach, the problem state space is divided and

assigned to different processors. Also known as multiple-trials parallelism, this strategy can

involve either partitioning the single solution across available processors or distributing the

search space by assigning processors sets of moves or perturbations. In both these cases, all

nodes work with the same single copy of the solution. This usually implies a conspicuous

departure from the functionality and characteristics of the serial algorithm.

3. Multithreaded or parallel search (type 3): Parallelism here is implemented as multiple concurrent

exploration of the solution space using search threads with various degrees of synchronization or

information exchange. Often modeled as multiple-Markov chains (MMC), these methods allow for

increasing the variety of the search threads particularly by having different types of searches—same

methodwithdifferentparameter settingsorevendifferentmeta-heuristics—proceedingconcurrently.

The distinguishing feature of this approach is that the independent processors work on their own

individual solutions and can periodically communicate to cooperatively navigate the search space.

Of these various approaches, move acceleration is suitable only to tightly coupled, multiprocessor

environments, rather than cluster computing. Even on the former, Amdahl’s law restricts achievable

scalability. As such, the discussion here is restricted to domain decomposition strategies and parallel

search models. Such cooperative parallel models are generally applicable with minor variations to almost

all heuristics in general, providing impressive performance gains.

23.5.3 Simulated Annealing

Simulated annealing is arguably the pioneering success story of iterative heuristics and their application in

combinatorial optimization problems. Proposed in the early 1980s, SA simulates the effect of a heat bath on

the structure of metals [2,3]. In the metallurgical annealing process, heated metals are cooled at a con-

trolled rate, thereby transitioning from a higher energy state to a lower one over a period. A proper,

controlled cooling schedule allows the metal atoms to achieve perfect crystal lattices. This process was

first mathematically studied byMetropolis et al. in 1953 who established criteria to simulate how thermo-

dynamic systems change from one energy level to another. Lower energy states are assumed to be always

accepted, whereas acceptance of higher energy states is probabilistic. In simulation parlance, this is referred

to as the Metropolis acceptance criterion which defines this probability given by the following expression:

Prob(accept) ¼ e
�
�

DE

KB
T

�
(23:2)

where

KB is the Boltzman constant

T indicates the temperature

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 83 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-83

In SA, every iteration at a certain temperature, within the Metropolis loop comprises the following steps:

1. Perturb the current solution to create a new solution

2. Compute the difference in the cost between the current and new solutions

3. Decide whether to accept or reject the new solution

23.5.3.1 Domain Decomposition Strategies

This multiple-trials parallelization approach of SA is very general and can be tailored to any particular

problem instance. In this strategy, several trials (moves) are generated and evaluated in parallel, where

each trial is executed by a single processor. The processors are forced to concurrently search for an

acceptable solution in the neighborhood of the same current solution. To ensure that all processors are

always working with the same current solution configuration, one has to force them to communicate

and synchronize their actions whenever at least one of the trials is successful (accepted move).

Figure 23.83 is a possible parallel SA algorithm following this multiple-trials parallelization approach.

Here, it is assumed that one master processor is ordering the concurrent execution and evaluation of

p trials, where p is the number of processors. These new solutions are returned to the master, which

arbitrates between them. In case of no success, the master then orders the parallel evaluation of p new

trials; otherwise, it selects the best new current solution, and updates the state of all processors. This

process repeats until the defined termination criterion is reached. Also at the end of each p new trials,

the master processor checks to see whether equilibrium has been reached at current temperature. If

so, the algorithm parameters are updated.

An examination of the algorithm in Fig. 23.83 reveals an evident overhead in communication, where

the synchronous nature forces communication after each trial. However, since the current solution will

get updated only when a processor makes a successful trial, the various nodes should be allowed to

proceed asynchronously till one of them achieves an acceptable move. Therefore, one can markedly

improve the parallel algorithm of Fig. 23.83 by making the following change. Synchronization is forced

only when one of the processors performs a successful trial. In this new variation, communication is

minimal. Furthermore, it is a more efficient parallelization since no processor is forced to remain idle

waiting for other processors with more elaborate trials to finish.

Algorithm Parallel_SA;

(*S0 is the initial solution *)

Begin

Initialize parameters;

Best S¼ S0;

Cur S¼ S0;

Repeat

Repeat

Communicate CurS to all processors;

ParFor each processor i

Perturb(CurS, NewSi);

Ai¼Accept (CurS, NewSi) (* Ai is true if NewSi is accepted *)

EndParFor

If Success Then

(* Success¼ (_pi¼1 Ai¼True) *)

Select(NewS);

If Cost(NewS) < Cost(BestS) Then BestS¼NewS;

EndIf

Until Time to update parameters;

Until Time to stop;

Output Best solution found

End. (*Parallel_SA*)

FIGURE 23.83 General parallel simulated annealing (SA) algorithm where synchronization is forced after

each trial.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 84 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-84 Digital Systems and Applications

Both variations of this parallel algorithm can be implemented to run on a multicomputer or a

multiprocessor machine. The assumed parallel model is a multiple instruction and single data

(MISD) or a multiple instruction and multiple data (MIMD) machine. For both algorithms, it is

assumed that each processor must be able to set a common variable to true whenever it accepts a

move; then the solution accepted by the processor is communicated to a master processor, which will

force all other processors to halt and to properly update the current solution. Here, there are two

possibilities. If the processors do not halt immediately but rather are allowed to complete the trials that

were in progress when the request to stop was received then there could be more than one solution

accepted, and therefore, the master processor has to arbitrate between them, select the best, and pass a

copy to each processor. The other possibility is when a processor is supposed to abort whatever activity

is in progress, as soon as it receives a request to stop. In that case, the first solution accepted by any of the

processors would be the new solution of all the processors.

A valid concern here is the behavior of this parallel model with respect to the SA temperature

parameter. In the early regime (high temperature), SA behaves close to a random search algorithm,

where almost every move is accepted. This means that for the multiple-trials approach, the speedup will

be low (almost 1) at high temperatures because the processors will be forced to communicate after each

trial. On the other hand, as the temperature is lowered, less and less moves are accepted, reducing by the

same token the need for communication, thus allowing the p processors to concurrently be working

most of the time. Therefore, in the cold regime, the speedup will be approaching the number of

processors.

23.5.3.2 Multithreaded Parallel Search Strategies

In this class of strategies, each processor runs its own self-contained, independent annealing algorithm

on its own solutions, with periodic exchange of information to collectively guide the search process.

Each of these search threads can either be synchronous or asynchronous. In the former, all processors

periodically stop work at a defined time, and communicate information at once. In the asynchronous

approach, there are no such process barriers, and all nodes are free to communicate at their own

discretion. We document a recently reported adaptive variation of such an asynchronous multiple

Markov chains (AMMC) method here.

The basic AMMC approach is shown in the Fig. 23.84, where each slave process runs its own

annealing algorithm. The assigned master processor is excluded from the main computational workload

and instead manages information exchange between the slaves. After each Metropolis loop, the slave

returns its best-achieved cost to the master, which then compares this value against the global best

reached so far. If the former is better, the slave is instructed to send the entire solution, and the

associated global values are updated. Otherwise, the master sends its copy of the global best solution

and associated cost to the slave, which replaces its current relevant values and continues with the next

iteration.

The adaptivity mechanism deals with a dynamic value of M—the number of perturbations within a

single-Metropolis routine, i.e., the number of moves allowed before a temperature update. Initially,

during the high temperature region, where annealing approaches a randomwalk,M is kept very low, and

is incrementally increased allowing more thorough exploration of the neighboring search space at lower,

stable temperatures. This strategy was empirically found to give significantly improved results over static

AMMC approaches.

23.5.4 Genetic Algorithms

Genetic algorithms are a powerful domain-independent, robust search technique inspired by the

Darwinian theory of evolution. Invented in the early 1970s by John Holland and his colleagues [4],

GAs emulate the process of natural evolution whereby high fitness individuals survive and mate thus

passing on their characteristics to offsprings. This adaptive algorithm works with a population of

solutions called chromosomes, which are encoded as strings. Each of these solutions represent a point

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 85 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-85

in the solution space, and in each iteration, referred to as a generation, a new set of strings that represent

solutions (called offsprings) is created by crossing some of the strings of the current generation [5].

Occasionally, new characteristics are injected to add diversity. In this manner, GAs combine information

exchange along with survival of the fittest among individuals to conduct their search for the optimum

solution.

In GAs, a number of initial solutions are generated as string-based chromosomes. An equal number of

offsprings are generated by selecting parent chromosomes, two at a time, and implementing a crossover

Algorithm Parallel_Simulated_Annealing(S0, T0, a, b, M, Maxtime, my_rank, p)

Notation

(* S0 is the initial solution. *)

(* BestS is the best solution. *)

(* T0 is the initial temperature. *)

(* a is the cooling rate. *)

(* M is the time until next parameter update. *)

(* Maxtime is the total allowed time for the annealing process. *)

(* my_rank of current process; 0 for master, !0 for slaves. *)

(* p is the total number of running processes. *)

Begin

T¼TO;

CurS¼ SO; == only master has the initial Solution

BestS¼CurS;

CurCost¼Cost(CurS);

BestCost¼Cost(BestS);

Time¼ 0;

If (my_rank ¼ ¼ 0) == i.e. Master process

Broadcast(CurS);

Endif

If (my_rank !¼ 0) == i.e. Slave process

Repeat

Call Metropolis(CurS, CurCost, BestS, BestCost, T, M);

Time¼Time þ M;

T¼a T;

M¼b M;

Send_to_Master(BestCost);

Receive_frm-Master(verdict);

If (verdict ¼ ¼ 1)

Send_to_Master (BestS);

Else

Receive_frm_Master(BestS);

EndIf

Until (Time � Maxtime);

EndIf

If (my_rank ¼ ¼ 0) == i.e. Master process

Repeat

Receive_frm_Slave(BestCost);

Send_to_Slave(verdict);

If (verdict ¼ ¼ 1)

Receive_frm_Slave(BestS);

Else

Send_to_Slave (BestS);

EndIf

Until (All Slaves are done);

Return(BestS);

EndIf

End. (*Parallel_Simulated_Annealing*)

FIGURE 23.84 Procedure for parallel simulated annealing (SA) using asynchronous MMC.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 86 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-86 Digital Systems and Applications

mechanism that copies substrings of solutions from both parents into the offspring. The generated

solutions are evaluated and a selection operator decides the solutions that are passed on to the next

generation as parents.

23.5.4.1 Domain Decomposition Strategies

As GAs work with a population of solutions, they lend themselves to straightforward workload division

strategies. Such move-acceleration strategies distribute the population among processors in every

generation for fitness calculation and possibly even recombination.* The calculated fitness values are

then collected at the assigned master, which then applies the GA operators and moves to the next

generation. In such approaches, also referred to as global parallel models, the algorithm characteristics

are left undisturbed as the decision processes such as population selection and mutation are done by a

single processor. However, such strategies have predictable and limited scalability [6]. A more popular

approach is the multi-deme parallel model, where subpopulations on independent nodes communicate

and collectively navigate the search space. These come under the type-3 or multithreaded parallelization

strategies.

23.5.4.2 Multithreaded Parallel Search Strategies

Multiple-population GAs provide a more sophisticated parallelization strategy wherein several sub-

populations evolve independently on individual processors and exchange individuals periodically. This

exchange of solutions is called migration and is a core aspect of this parallel model. Multi-population

GAs are known with different names. They are referred to as multi-deme parallel GAs (drawing on the

analogy of natural evolution), distributed GAs (as they are often implemented on distributed parallel

architectures), and coarse-grained GAs (since the computation to communication ratio is usually high).

This model of parallel GAs is very popular, but also the most difficult to understand because of the effect

of migration and a large number of influential parameters.

The first systematic study of parallel GAs with multiple populations was Grosso’s work in the 1980s

[7]. The objective was to simulate the interaction of several parallel subcomponents of an evolving

population. The population was divided into five demes, each of exchanging individuals with the other

after a fixed interval. The effect of migration on the search process and population convergence was

documented, and the findings were later on bolstered by the further work of Grefenstette et al. [8]. From

these studies, it was seen that favorable traits spread faster when the population is divided into smaller

demes. However, when the demes were isolated, the rapid rise in fitness stops at a lower fitness value

than with the complete population; i.e., the quality of the solution found after convergence was worse.

This is expected as the quality of solution is heavily dependent on the initial population size. However,

the controlled movement of solutions between these subpopulations called migration can significantly

alter this behavior. The migration policy associated with a multi-deme GA can be a function of the

following parameters:

1. Migration frequency (MF): This is defined as the timescale between the movement of individual

solutions between demes. MF is also referred to as epoch length, and the interval between

migrations is called an epoch.

2. Migration rate (MR): This is the number of individual solutions that will migrate from one deme

to another per epoch. MF and rate are closely related, and can be either static; i.e., a fixed number

of solutions moving between populations after a fixed number of generations or dynamic,

wherein both parameters are controlled by the rate of convergence in individual subpopulations.

3. Migrant absorption: This parameter defines how migrants are absorbed into destination demes.

Although the usual policy for identifying migrant solutions in the source demes is to select from

*Genetic operators such as crossover, selection, and mutation are often trivial in terms of runtime compared to

the more computation intensive fitness calculations. As such, the runtime gain by distributing these operators may

not be justifiable with the associated communication latencies.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 87 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-87

the best, the absorption policy within the destination deme can vary. Common models advocate

replacing worst solutions, replacing random solutions or roulette wheel-based probabilistic

replacement.

4. Communication topology: This defines the connectivity between individual demes. Again, this

can be static, wherein movement of solutions is predefined by the network topology or dynamic,

wherein movement of migrants to and from demes depends on their population diversity, average

fitness, and convergence.

The tuning of these parameters has often been on an intuitive basis, with different values reported for

distinct problems. In the case of MR and MF, most models adopt a synchronous approach, triggering

movement of solutions at periodic intervals. However, an alternative policy is to be asynchronous,

wherein demes communicate only when near convergence [9,10]. The purpose of this model is most

often to prevent premature convergence by restoring diversity into the demes. It is found that there is a

certain critical MR and MF that allows the communicating subpopulations to achieve solutions of

almost the same quality as panmictic populations. Lower values of these parameters would not allow

proper mixing of solutions, thus achieving the same as isolated demes. Higher values of migration and

frequency may show no improvement, thus wasting time and resources or worse, may actually hinder

population diversity among processors.

Communication topology is an important factor controlling the spread of good solutions among

different demes. It defines the direction of movement of migrant solutions from one deme to another.

Although a dense topology would encourage rapid spread of good solutions throughout all demes, it

might also prevent each subpopulation from following a separate evolutionary path. A more sparse

connectivity will achieve certain amount of isolation between demes, thus allowing different solutions to

be found and exploring different areas of the search space. Another possible classification of topologies

distinguishes them into static, where the communication is already defined, and dynamic, wherein

migrant destination is decided by factors such as average fitness or population diversity of candidate

destination demes [10].

An extensive study of the effect of these parameters, especially of the influence of migration and

population sizes was done by Cantú Paz. In spite of its complexities, this multi-deme approach shown in

Fig. 23.85 has often been favored over simplistic data distribution as in the earlier model. The initial

population constructor on the master (root) processor creates the initial population, which is then

distributed to all nonroot processors. Following this, all nodes, including the root execute the serial GA

on their allocated population for a predefined number of iterations called the MF. Then each node sends

a certain number of its best solutions to the root. The number of solutions sent is controlled by the MR

parameter. The root determines the MR best solutions from the collective MR * (N) solutions and

broadcasts it to all processors. These migrants if not already present on the processors, are then absorbed

into the existing population by weeding out and replacing the weakest solutions. Each processor then

continues with the serial GA for another MF number of generations. Every interval between migrations,

i.e., the length of time defined by MF number of generations is called an epoch. The stopping criterion is

a predefined number of epochs.

It is important to note that the migrant absorption policy dictates the replacement of worst solutions

with incoming migrants only if the migrants already do not exist within the population. Also, logically

this model could represent a fully connected topology of nonhierarchical processing elements, which

cooperate to determine the best MR solutions among themselves and absorb these into their existing

populations.

23.5.5 Tabu Search

Conceptually, TS is an elegant combinatorial optimization method, which belongs to the class of local

search techniques. It enhances the performance of a local search method by using memory structures, to

control navigation of the search space. It uses a local or neighborhood search procedure to iteratively

move from a solution x to a solution x 0 in the neighborhood of x, until some stopping criterion has been

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 88 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-88 Digital Systems and Applications

ALGORITHM Multi – Deme_Parallel_GA

NOTATION

RANK: ROOT¼Root Processor designated by Rank¼ 0

RANK: NON – ROOT¼All other Processors designated by rank> 0

RANK: ANY¼All processors, including Root

MF¼Migration Frequency

MR¼Migration Rate

N¼Number of Processors

Epoch¼ Instances of Migration

EPOCH_MAX¼Maximum Number of Migrations Stopping Criteria

Begin

(Multi – Deme_Parallel_GA)

FOR RANK:ROOT

Initial Population Constructor

Distribute Initial Population

ENDFOR RANK:ROOT

FOR RANK:ANY

Receive Allocated Population

ENDFOR RANK:ANY

LOOP-A

FOR RANK:ANY

LOOP-B

Serial GA on Allocated Population:

Choice of Parents

Crossover and Offspring Generation

Fitness Calculation

New Population Selection

END LOOP-B IF [Num_Iterations >¼MF]

Send MR Best Solutions and Costs to ROOT

ENDFOR RANK:ANY

FOR RANK:ROOT

Collect the best MR*N solutions

Determine best MR distinct solutions

Broadcast MR solutions

ENDFOR RANK:0

FOR RANK:ANY

Receive MR Best Solutions

IF [Received Migrants not present in existing Population]

Replace Worst Solutions with Received Solutions

ENDIF

ENDFOR RANK:ANY

END LOOP-A IF [Epoch >¼ EPOCH_MAX]

FOR RANK:0

Return Best solution.

ENDFOR RANK:0

End (Multi – Deme_Parallel_GA)

FIGURE 23.85 Structure of the multi-deme parallel GA.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 89 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-89

satisfied. To explore regions of the search space that would be left uncovered by the local search

procedure and—by doing this—escape local optimality, TS modifies the neighborhood structure of

each solution as the search progresses. The solutions admitted to N*(x), i.e., the new neighborhood, are

determined through the use of special memory structures. The search now progresses by iteratively

moving from one solution to another in N*(x).

One of the common types of short-term memory structures to determine which solutions comprise

the neighborhood is the use of a tabu list. In its simplest form, a tabu list contains solutions that have

been visited in the recent past (less than nmoves ago, where n is the tabu tenure). Therefore, solutions in

the tabu list are excluded from N*(x). However, tabu lists containing attributes are much more effective,

although they raise a new problem. With forbidding an attribute, probabilistically more than one

solution might be matched and declared tabu. Some of these solutions that must now be avoided

might be of excellent quality and may not yet have been visited. To overcome this problem, aspiration

criteria are introduced that allow the overriding of the tabu state of a solution and thus including it in

the allowed set. A commonly used aspiration criterion is to allow solutions that are better than the

currently best known solution.

23.5.5.1 Parallel Tabu Search Taxonomy

Of the various heuristics covered, TS stands out uniquely being the only algorithm that employs

memory systems to control navigation of the search space. However, with increasing problem sizes TS

shows rapidly increasing runtimes, and as such can benefit from intelligent parallelization efforts.

Parallel TS has drawn the attention of many researchers, especially in comparison with similar

acceleration strategies applied to other heuristics. Unlike Gas, however, the TS algorithm with its

structure and process flow is highly sequential. The first reported studies were published in the early

1990s [11,12,13]. Crainic et al. [14] classified the different parallel TS heuristics based on taxonomy

along three dimensions as enumerated below:

. The first dimension is control cardinality, where the algorithm is either 1-control, where one

processor executes the search and distributes tasks to other processors or p-control, where

each processor is responsible for its own search and communicates with other processors.

. The second dimension is control and communication type, where the algorithm can either follow

a synchronous rigid or knowledge synchronization (KS) approach, or it can be asynchronous

collegial (C), or knowledge collegial (KC). In a synchronous operation mode, the processes are

forced to establish communication and exchange information at specific, explicitly defined points.

In an asynchronous operation mode, the processes can independently decide on communication

depending on the global characteristics of good solutions, the search strategy, and the possible

content of that communication.

. The third dimension is search differentiation where the algorithm can be SPSS (single point

single strategy), SPDS (single point different strategies), MPSS (multiple point single strategy), or

MPDS (multiple point different strategies).

In addition to this type of classification, a more general category based on processor communication

is also used. This divides various approaches as either synchronous or asynchronous. In the

former, various processors working with the same solution communicate in a synchronous manner,

where the managing processor orchestrates the activities of all others. In asynchronous strategies, each

processor communicates independently of other nodes using either the master–slave or peer-to-peer

model.

23.5.5.2 Synchronous Parallel Tabu Search

In this approach, the master is primarily in charge of controlling movement in the search process, while

the slaves are used for executing their assigned workload. Depending on the variants of this strategy,

slave processors may start with either the same or different initial solution. After searching its allocated

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 90 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-90 Digital Systems and Applications

part of the current neighborhood, each slave process reports its best move back to the master. The

master process selects the best among these, subject to tabu conditions. If the stopping criteria are met

then the search stops, otherwise the master determines a new set of moves and distributes them among

the slaves, which continue with the search.

A more detailed view of this approach, from both the perspectives of the master and slave processors,

is given in Figs. 23.86 and 23.87, respectively.

23.5.5.3 Asynchronous Parallel Tabu Search

In this approach, each processor explores a subset of the neighborhood of its current solution. Each of

these is competing with its neighbors (its adjacent processors) in finding a superior solution. When the

stopping criteria are met, every processor reports its best solution. The general outline of this paralle-

lization approach is given in Fig. 23.88. Similar asynchronous parallel TS implementations for the

traveling salesman and quadratic assignment problems have been reported in Ref. [11].

Acceleration of TS through parallelization has been proved to be an effective strategy in numerous

areas. Continuing with the literature on parallel TS, we cover its various applications and classify these

according to Crainic’s taxonomy.

Malek et al. [15] compared the performance of serial and parallel implementations of SA and TS for

traveling salesman problem (TSP). The reported experiments were performed on a 10 processor Sequent

Algorithm MasterProcess;

Begin

Initialize parameters and data structures;

S0¼ Initial solution;

BestS¼ S0;

CurS¼ S0; =* Current solution *=

Send CurS to all slave processes;

While not-time-to-stop

Begin

Wait for best moves from all slaves;

Select the best move subject to tabu restrictions;

Send the selected move to all slaves;

End

Force all slaves to stop;

Return (BestS) =* of slave running on same machine *=

End. =* MasterProcess *=

FIGURE 23.86 Synchronous parallel tabu search (TS): the master process.

Algorithm SlaveProcess;

Begin

Initialize parameters and data structures;

Wait for initial solution S0 from master process;

BestS¼ S0;

CurS¼ S0; =* Current solution *=

Repeat

Wait for selected move from the master;

Perform the move;

Update tabu_list;

Update BestS and CurS;

Try all moves in partial neighborhood;

Select best move and send it to the master;

Until stop;

End. =* SlaveProcess *=

FIGURE 23.87 Synchronous parallel tabu search: the slave process.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 91 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-91

Balance 8000 computer. The authors reported that the parallel version of TS outperforms not only its

sequential counterpart but also produced comparable or better results than the serial and parallel

version of SA. Their strategy is synchronous following a 1-control, KS, SPDS approach.

To solve the flow shop sequencing problem, Taillard [12] employed a parallel implementation of the

TS algorithm using a search space decomposition strategy. It is a 1-control, RS, SPSS algorithm. Battiti

and Tecchiolli [16] used TS to solve the quadratic assignment problem (QAP) with hashing procedures.

The scheme used is p-control, RS, MPSS. The authors report that the parallelization strategy is efficient

and the average success time decreases with an increase in the number of processors.

Taillard [17] used parallel TS for vehicle routing problem. The parallelization is based on domain

decomposition strategy, which is p-control, KS, MPSS. It was implemented on a Silicon Graphics 4D=35

workstation with four processors. Another effort by Taillard [18] to apply parallel TS to quadratic

assignment problem follows a 1-control, RS, SPSS strategy. A ring of 10 transputers were used, but no

implementation details were given. Chakrapani and Skorin-Kapov [19] also used parallel TS to solve

QAP, which is 1-control, RS, SPSS. The search is performed sequentially, while the move evaluation is

done in parallel. The implementation is specifically designed for connection machines CM-2: a massively

parallel SIMD machine. The authors report that the best known solutions were obtained in a lesser

number of iterations. Furthermore, they were able to determine good suboptimal solutions to bigger

problems in reasonable time.

Another effort to parallelize TS for TSP by Fiechter [20] used the p-control, KS, MPSS strategy.

Intensification and diversification steps were implemented in the synchronous version. The algorithm

was implemented on a network of transputers arranged in a ring structure. The authors report near-

optimal solutions to large problems and almost linear speedups. TS was also applied for the vehicle

routing problem by Garica et al. [13] also using search space decomposition strategy. It was a 1-control,

RS, SPSS algorithm. The authors reported a noticeable improvement in solution quality over one of the

best constructive algorithms for vehicle routing problem, with substantial reduction in runtime.

To improve parallel TS using evolutionary principles, the algorithm presented by De Falco et al. [11]

used multi-search thread strategy for the traveling salesman and quadratic assignment problems. It is a

p-control, C, MPSS algorithm. The results reported indicate a marked improvement in solution quality

as well as convergence speedup. Parallel TS for the 0–1 multidimensional knapsack problem was

demonstrated by Nair and Freville [21], who used a multi-search threads strategy in a p-control, RS,

MPSS algorithm. Taillard’s extensive work with TS continued where he applied a p-control, RS, MPSS

strategy to the job sequencing problem [22]. Several parallelization ideas that focused on speeding up

computations related to neighborhood evaluation did not yield good results, either because the

communication overtook computation, or the available computing platform (a ring of transputers,

and a 2-processor Cray) were not suitable.

Crainic et al. [14], the authors who put forth the taxonomy of classification of TS, presented several of

the strategies for both synchronous and asynchronous TS for multi-commodity location–allocation

problems with balancing requirements. It was implemented on a heterogenous network of 16 SUN Sparc

Algorithm AsynchronousParallelTabuSearch;

Begin

1. Construct initial solution and initialize parameters;

2. Explores own neighborhood;

3. Select best move subject to tabu restrictions;

4. Update tabu list;

5. Exchange current best solution with neighbors;

6. Update current solution based on received neighbor solutions;

7. If time-to-stop Then Return best solution;

8. Goto step 2

End

FIGURE 23.88 Pseudocode for asynchronous parallel tabu search (TS) algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 92 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-92 Digital Systems and Applications

workstations. The results show that the average gap improved in most of the cases, when the number of

processors increased. Mori and Hayashim [23] used parallel TS algorithm for voltage and reactive power

control in power systems. Of the two schemes, one of them used the domain decomposition strategy,

whereas the other scheme followed a multi-search threads strategy. The first one is 1-control, RS, SPSS

algorithm and the second one is p-control, RS, MPDS algorithm.

A more recent work by Yamani et al. [24] parallelized TS for VLSI cell placement on heterogenous

cluster of workstations, using PVM. The algorithm was parallelized on two levels simultaneously. The

higher parallelization level can be classified as p-control whereas the lower level was 1-control. The

synchronization strategy was RS, and MPSS search differentiation strategy was used for both the levels.

The authors reported obtaining proportional speedup in most of the cases.

23.5.6 Simulated Evolution

SimE is a powerful general iterative heuristic for solving combinatorial optimization problems. It starts

from an initial assignment, and then, following an evolution-based approach, it seeks to reach better

assignments from one generation to the next. It is stochastic because the selection of the components of

a solution to be changed is done according to a stochastic rule. Already well-located components have a

high probability to remain where they are. The probabilistic feature gives SimE its hill-climbing

property.

SimE assumes that there exists a population P of a set M of n (movable) elements. There is a cost

function cost that is used to associate with each assignment of movable elementm a cost Cm. The cost Cm

is used to compute the goodness gm of element m, for each m 2M. This goodness value is closely related

to the overall target fitness value of the solution.

SimE algorithm proceeds as follows. Initially, a population* is created at random from all populations

satisfying the environmental constraints of the problem. The algorithm has one main loop consisting of

three basic steps: evaluation, selection, and allocation. The three steps are executed in sequence until the

population average goodness reaches a maximum value, or no noticeable improvement to the popula-

tion goodness is observed after a number of iterations.

Parallelization of SimE has not attracted much attention from practitioners, with very few reported

schemes mostly by the inventors of the algorithm themselves [25].

23.5.6.1 Domain Decomposition

Classified under the type-II scheme, this approach in SimE involves the partitioning of a complete

solution into smaller domains to be optimized in parallel. This implies concurrent execution of all its

operators, including allocation. Hence the search behavior of this approach would differ from that of the

serial algorithm. Such a parallelization strategy was reported by Kling and Banerjee [26] for VLSI cell

placement, where alternating sets of rows are distributed among processors in every iteration. With each

processor limited to applying the SimE steps of evaluation, selection, and allocation on its assigned set of

rows, this alternating distribution scheme would allow each cell to move to any position in the

placement within two iterations. A variation of this scheme was reported much later, which proposed

random assignment of rows to processors [27].

Figures 23.89 and 23.90 give the outlines of this parallelization strategy from both the master and slave

perspectives. The slaves communicate back their assigned rows, modified by their respective allocation

scheme to the master after every iteration. The master reconstructs the complete solution, computes

overall fitness, and reassigns the rows for the next iteration.

This model is capable of achieving significant speedups for large problem sizes where such a row

distribution scheme would provide a fair work distribution. However, the overall fitness values achieved

by this method may vary from the serial values reached. In some cases, such as multi-objective VLSI

*In SimE terminology, a population refers to a single solution. Individuals of the population are components of

the solution; they are the movable elements.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 93 4.10.2007 3:57pm Compositor Name: VBalamugundan

Media Signal Processing 23-93

ALGORITHM TypeII_Parallel_SimE_Master_Process

NOTATION

(* ks: Set of row indices for each process s. *)

(* F: The complete current solution. *)

INITIALIZATIONS;

Read_User_Input_Parameters

Read_Input_Files

Construct_Initial_Placement

Begin

Repeat

ForEach s 2 m Generate_Row_Indices ks EndForEach;

(* For each slave process. *)

ParFor

Slave_ Process (F, ks)

(* Broadcast cur. placement and row-indices. *)

EndParFor

ParFor

Receive_Partial_Placement_Rows

EndParFor

Construct_Complete_Solution

Until (Stopping Criteria is Satisfied)

Return Best_Solution.

End. (*Master_Process*)

FIGURE 23.89 Outline of master process for type II parallel SimE algorithm.

ALGORITHM Typell_Parallel_SimE_Slave_Process (F, ks)

NOTATION

(* B is the bias value. *)

(* Fs are the rows assigned to slave s. *)

(* mi is module i in Fs. *)

(* gi is the goodness of mi. *)

Begin

Receive Placement_And_Indices

EVALUATION:

ForEach mi 2 Fs evaluate gi EndForEach;

SELECTION:

ForEach mi 2 Fs DO

Begin

If Random > Min (gi þ B, 1)

Then

Begin

Ss¼ Ss [mi; Remove mi from Fs

End

End

Sort the elements of Ss

ALLOCATION:

ForEach mi 2 Ss Do

Begin

Allocate(mi, F
s
i . *)

(* Allocate mi in local partial solution rows Fs
i . *)

End

Send_Partial_Placement_Rows

End. (*Slave_Process*)

FIGURE 23.90 Outline of slave process for type II parallel SimE algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 94 4.10.2007 3:57pm Compositor Name: VBalamugundan

23-94 Digital Systems and Applications

design, a loss in solution quality has been reported along with reduced runtimes with increasing number

of processors [28].

23.5.6.2 Multithreaded Parallel Search

As part of the type-III approach, this scheme implements parallel, independent search threads executed

concurrently by each processor which may communicate periodically to exchange information and

collectively navigate the search space. Such models have been reported with excellent results for other

optimization algorithms such as SA and GAs.

Figure 23.91 demonstrates an example of such a parallel model, which is very similar to the AMMC

strategy discussed earlier for SA. After a fixed number of user-defined iterations, a slave returns back its

ALGORITHM TypeIII_Parallel_SimE_Process

NOTATION

(* Count is the current retry value. *)

Begin

INITIALIZATIONS:

Read_User_Input_Parameters

Read_Input_Files

Construct_Initial_Placement

Repeat

EVALUATION:

ForEach mi 2 F evaluate gi;

SELECTION:

ForEach mi 2 F DO

Begin

If Random > Min(gi þ B, 1)

Then

Begin

S¼ S [mi; Remove mi from F

End

End

Sort the elements of S

ALLOCATION:

ForEach mi 2 S Do

Begin

(* Allocate mi in Fi. *)

Allocate(mi, Fi)

End

Calculate_Costs;

If CurCost > BestCost
Then

Begin

Inform_Master;

Count¼ 0

End

Else

Count¼Count þ 1

EndIf

If Count > Retry_Threshold

Then

Begin

If Costmaster < Costcur
Then Get_New_Placement

End

Until (Stopping Criteria is Satisfied)

End.

FIGURE 23.91 Structure of the type III parallel SimE algorithm.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 95 4.10.2007 3:58pm Compositor Name: VBalamugundan

Media Signal Processing 23-95

fitness value to the master to compare against the global best received thus far. This central processor

then either provides a better solution, or directs the slave to provide the complete solution if the latter

has higher fitness.

In spite of the success of Markov chain models with annealing and GAs, this scheme fails to perform

with SimE [28]. The reason behind this is the nature of the heuristic and its intelligence. The primary

concept behind this approach is to force each thread to explore a nonoverlapping part of the search

space near the global best solution reached so far. However, with the selection operator heavily

dependent on element goodness, and the deterministic allocation process, achieving such random

behavior on individual processors is highly unlikely.

23.5.7 Conclusion

The increasing computational power of generic PCs today represents a fantastic opportunity for cluster

systems wherein high performance computing environments can be assembled from off-the-shelf

hardware. With growing standardization of parallel communication and computation libraries, out-

of-the-box clustering solutions, and inexpensive, low latency networks, these computing platforms

provide excellent avenues for accelerating performance and devising highly efficient algorithms.

In this chapter, we focused on four popular heuristics, which have been extensively used for

optimization in numerous areas—SA, GAs, TS, and SimE. Different parallel strategies were discussed

under the context of domain partitioning and multithreaded parallel search methods.

Acknowledgment

The authors express their gratitude to the King Fahd University of Petroleum & Minerals for support

under the project code # COE=CELLPLACE=263.

References

1. Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms with Applications in Engineering:

Solving Combinatorial Optimization Problems. IEEE Computer Society Press, CA, December 1999.

2. Kirkpatrick S. Jr., Gelatt C., and Vecchi M. Optimization by simulated annealing. Science, 220

(4598):498–516, 1983.

3. Cerny V. Thermodynamical approach to the traveling salesman problem: An efficient simulated

algorithm. Journal of Optimization Theory Application, 1(1):41–45, 1985.

4. Holland J.H. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann

Harbor, MI, 1975.

5. Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,

Reading, MA, 1989.

6. Cantú-Paz E. Designing efficient master–slave parallel genetic algorithms. Genetic programming

1998: Proceedings of the Third Annual Conference, 455 pp, 1998.

7. Grosso O.B. Computer simulations of genetic adaptation: Parallel subcomponent interaction in a

multilocus model. Ph.D. Thesis, The University of Michigan, Michigan, MI, 1985.

8. Pettey C.C., Leuze M., and Grefenstette J.J. A parallel genetic algorithm. Proceedings of the Third

International Conference on Genetic Algorithms, pp. 155–161, 1987.

9. Braun H.C. On solving traveling salesman problems with genetic algorithms. H.-P. Schwefel

and R. Männer, (Eds.), Parallel Problem Solving by Nature, Berlin, Germany, Springer-Verlag,

1991, Vol. 496, Lecture Notes in Computer Science, pp. 129–133.

10. Munetomo M., Takai Y., and Sato Y. An efficient migration scheme for subpopulation-based

asynchronously parallel genetic algorithms. Proceedings of the Fifth International Conference on

Genetic Algorithms, p. 649, 1993.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 96 4.10.2007 3:58pm Compositor Name: VBalamugundan

23-96 Digital Systems and Applications

11. De Falco I., Del Balio R., Tarantino E., and Vaccaro R. Improving search by incorporating evolution

principles in parallel tabu search. Proceedings of the First IEEE Conference on Evolutionary

Computation (ICEC’94), pp. 823–828, June 1994.

12. Taillard E. Some efficient heuristic methods for the flow shop sequencing problem. European Journal

of Operational Research, 417:65–74, 1990.

13. Garica B.-L., Potvin J.-Y., and Rousseau J.-M. A parallel implementation of the tabu search heuristic

for vehicle routing problems with time window constraints. Computers and Operations Research, 21

(9):1025–1033, 1994.

14. Crainic T.G., Toulouse M., and Gendreau M. Towards a taxonomy of parallel tabu search heuristics.

INFORMS Journal of Computing, 9(1):61–72, 1997.

15. Malek M., Guruswamy M., Pandya M., and Owens H. Serial and parallel simulated annealing

and tabu search algorithm for the travelling salesman problem. Annals of Operation Research,

21:59–84, 1989.

16. Battiti R. and Tecchiolli G. Parallel biased search for combinatorial optimization: Genetic algorithms

and tabu. Microprocessors and Microsystems, 16:351–367, 1992.

17. Taillard E. Parallel iterative search methods for the vehicle routing problem. Networks, 23:661–673,

1993.

18. Taillard E. Robust tabu search for the quadratic assignment problem. Parallel Computing,

17:443–455, 1991.

19. Chakrapani J. and Skorin-Kapov J. Massively parallel tabu search for quadratic assignment problem.

Annals of Operation Research, 41:327–341, 1993.

20. Fiechter C.N.A parallel tabu search algorithm for large travelling salesman problems. Discrete

Applied Mathematics, 51:243–267, 1994.

21. Nair S. and Freville A. A parallel tabu search algorithm for the 0–1 multidimensional knapsack

problem. The Eleventh International Parallel Processing Symposium, April 1997.

22. Taillard E. Parallel tabu search techniques for the job sequencing problem. ORSA: Journal on

Computing, 6(2):108–117, 1994.

23. Mori H. and Hayashim T. New parallel tabu search for voltage and reactive power control in power

systems. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS’98),

pp. 431–434, May 1998.

24. Ahmad Al-Yamani, Sadiq M. Sait, Habib Youssef, and Hassan Barada. Parallelizing tabu search on a

cluster of heterogenous workstations. Journal of Heuristics, 8:277–304, May 2002.

25. Kling R.M. and Banerjee P. Concurrent ESP: A placement algorithm for execution on distributed

processors. Proceedings of the IEEE International Conference on Computer-Aided Design, pp. 354–357,

1987.

26. Kling R.M. and Banerjee P. ESP: Placement by simulated evolution. IEEE Transaction on Computer-

Aided Design, 3(8):245–255, 1989.

27. Sadiq M. Sait, Mustafa I. Ali, and Ali M. Zaidi. Multiobjective VLSI cell placement using distributed

simulated evolution. International Symposium on Circuits and Systems, ISCAS, 6:6226–6229, May 2005.

28. Sadiq M. Sait, Mustafa I. Ali, and Ali M. Zaidi. Evaluating parallel simulated evolution strategies for

VLSI cell placement. The Ninth International Workshop on Nature Inspired Distributed Computing

(NIDISC’06), Rhodes Island, Greece, April 2006.

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 97 4.10.2007 3:58pm Compositor Name: VBalamugundan

Media Signal Processing 23-97

Vojin Oklobdzija/Digital Systems and Applications 6195_C023 Final Proof page 98 4.10.2007 3:58pm Compositor Name: VBalamugundan

24
Internet Architectures

Borko Furht
Florida Atlantic University

24.1 Introduction... 24-1
Computing Models for Internet-Based Architectures .

Server-Based Computing Model

24.2 Evolution of Internet-Based Application
Service Architectures ... 24-2

24.3 Application Server ... 24-4
Key Technologies for Application Servers

24.4 Implementations of Internet Architectures................. 24-5
Sun’s Architecture . Netscape’s Architecture .

IBM’s Architecture . Microsoft’s Architecture

24.5 A Contemporary Architecture for Application
Service Providers ... 24-10
ASP Computing Architecture . ASP Application Architecture

24.6 Evaluation of Various Architectures 24-13

24.7 Conclusions.. 24-15

24.1 Introduction

24.1.1 Computing Models for Internet-Based Architectures

The increasingly competitive global marketplace puts pressure on companies to create and deliver their

products faster, with high quality and greater performance. To get the new products and technologies to

consumers is through a new industry called application service providers (ASPs). Similar to Internet

service providers, that linked businesses and consumers up to the Internet, ASPs lease software

applications to businesses and consumers via the Internet. These applications range from word pro-

cessing programs to payroll management software, document management systems, and many others.

The major challenge is to develop an efficient Internet-based architecture, which will efficiently provide

access to these software applications over the Internet.

Application architectures have traditionally followed software development architectures. The soft-

ware development architectures can be classified into:

. Traditional desktop computing model

. Client-server computing model

. Network computing model

. Server-based computing model

Traditional desktop computing model assumes that the whole application is on the client and the

application is executed locally. The client must be a ‘‘fat’’ client.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 1 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-1

Client-server computing model assumes that clients are powerful and processing is centered around

local execution on clients. Computer resources were split between a server and one or several clients.

This architecture allowed for larger, more scalable, applications to be brought to a larger number of

clients; however, the key for this architecture was to successfully partition the complexity of overall

application and determine correctly which part should reside on the server and which part should run

on the client. As more and more functionality migrated to the client, it became harder for applications

to be maintained and updated.

Network computing model, supported by Sun, Oracle, Netscape, IBM, and Apple, assumes that

software applications are dynamically downloaded from the network into the client for execution by

the client. This architecture requires that the clients are fat.

Server-based computing model, supported by Citrix, assumes that business applications reside on the

servers and can be accessed by users without requiring them to be downloaded to the client. The client

can be either ‘‘thin’’ or ‘‘fat.’’

24.1.2 Server-Based Computing Model

The fundamental three elements of the server-based (or host-based) computing model are [1]:

. Multi-user operating system

. Efficient computing technology

. Centralized application and client management

Multi-user operating system allows multiple concurrent users to run applications in separate, protected

sessions on a single server.

Efficient computing technology separates the application from its user interface, so only simple user’s

commands, received through keystrokes, mouse clicks, and screen updates, are sent via the network. As a

result, application performance does not depend on network bandwidth.

Centralized application and client management allows efficient solution of application management,

access, performance, and security.

A server-based computing model is very efficient for enterprise-wide application deployment, includ-

ing cross-platform computing, Web computing, remote computing, thin-client device computing, and

branch-office computing, as illustrated in Fig. 24.1 [1].

24.2 Evolution of Internet-Based Application Service
Architectures

Similar to software development architectures, applications service architectures have emerged from the

traditional client-server architectures to three-tier and multitier architectures.

The first generation of Internet-based application service architecture was based on delivery of

information via public Web sites. This technology, sometimes referred to as the ‘‘first wave’’ Internet

[2] employs the Web to present the information to the user and then allows the user to give some

relevant information back. The primary focus of this architectural model is mass distribution of public

information over the Internet. This architecture, which focuses on accessing information, consists

of three levels (or three tiers)—presentation level, content level, and data and service level, as shown

in Fig. 24.2 [2].

At the presentation level, there is the client system, which is used to view Web page information.

The client contains both presentation and application logic components. At the content level, there is

a Web server that provides interactive view of information from a relational database. Finally, at the

data and service level, there is a relational database system, which provides data for the Web server.

This architecture is also called three-tier architecture consisting of client tier, Web server tier, and

database tier.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 2 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-2 Digital Systems and Applications

With the advancements of the Internet, the Web, and related technologies (such as Java and HTML),

as well as acceptance of standard communication protocols (such as TCP=IP and HTTP), a new

architecture has emerged. In this architecture, sometimes referred as to the ‘‘second wave’’ Internet

[2] or network-based application architecture [3], focus is on highly targeted, private distribution of

software services over Intranets and Extranets. In this architecture, the Web page is not only the agent for

providing information but also offers a variety of application services to speed up business transactions

and offer additional services. This architecture consists of n-tiers and offers maximum functionality and

flexibility in a heterogeneous Web-based environment. An example of four-tier architecture is shown in

Fig. 24.3.

At the presentation level, the client views

Web pages for information as well as for a variety

of application services. At the second, content

level, the Web server provides an interactive view

of information and supports client-initiated

transactions. At the third, application level,

there is an application server, which is used to

find requested data and services, makes them

available for viewing, and carries out transac-

tions. At the fourth, data and service level,

there is a variety of data and services accessible

by the application server. This architecture, also

called multitier architecture, consists of client

tier, Web server tier, application server tier, and

database tier.

Branch
offices

Network

LAN

WAN

Terminals,
NetPCs
and NCs

TCSC
server

software

Wireless terminals and
information appliances

Remote
computing

Cross-platform
desktops

Macintosh
computers

ISDN

Dial-up

Mobile
professionals

Telecomputers

Windows
∗∗∗ terminals

Windows desktop terminals
network computers

Windows
point-of-sale

terminals

Portable
windows
∗∗∗ Wireless

LAN based
desktop PCs

Windows personal
digital assistants

Legacy
DOS PCs

UNIX
X-tensions

UNIX
workstations

Web
computing

FIGURE 24.1 Server-based computing models can be used for enterprise-wide application deployment.

Presentation
level

Content
level

Data and service
level

Clients

Web server

Relational database

FIGURE 24.2 The three-tier architecture for applica-

tion service providers (ASPs) is focused on accessing

information.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 3 4.10.2007 3:48pm Compositor Name: VBalamugundan

Internet Architectures 24-3

Two-tier Internet architecture is typically limited for systems with a small number of users, a single

database, and nonsecure network environments.

24.3 Application Server

In the second generation of Internet architectures, the focus has shifted to access to business services

rather than to information only. The main component of the system is an application server, which

searches for services and data—this is done in the background without involving the user.

The main challenges in developing the first generation of Internet architectures and application

services were related to user interfaces and cross-platform interoperability. In developing the second

generation of Internet architectures, the main challenge for service developers is to deliver their services

seamlessly via the Internet, which in turn requires innovations in many areas. The following challenges

need to be addressed in developing the second generation of Internet architectures:

. Standards. Many standards are used for developing Web pages, which causes difficulties for

developers.

. Increased programming complexity. The implementation of business services on the Internet is

a very complex programming task.

. Network performance. Business applications over Intranets and Extranets require very reliable

and high-performance networks.

. Security. Business applications on the Internet require a very high level of security.

. Web access to legacy applications. As mentioned earlier, the new Internet architectures are

focused on accessing various business applications rather than just information.

. Database connection support across Web-based requestors. Users should be able to access a

variety of databases connected to the application server.

The majority of these functions, sometimes called middleware, are implemented in application servers

that provide support for developing and deploying business applications located on the server or

partitioned across client and server.

Presentation
level

Content
level

Data and
service level

Clients

Web server

Relational
databases

Application server

Billing
system

Inventory
system

Other
systems

Application
level

FIGURE 24.3 The multitier Internet-based architecture for ASPs is focused on accessing application services.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 4 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-4 Digital Systems and Applications

Application server offers support for developing and deploying business logic that may be located on

the server or, more often, partitioned across client and server. Running business applications on the

server provides many benefits [4].

24.3.1 Key Technologies for Application Servers

Key technologies for developing contemporary application servers include:

. Java programming language and environment

. JavaBeans—the Java-based component technology, which allows the development of new appli-

cations more rapidly and economically

. ActiveX—the competing technology to JavaBeans, which is Windows platform-dependent and

language-independent

. Java Database Connectivity (JDBC)—the Java SQL that provides cross-platform database access

for Java programs

. Java servlets—small Java routines that service HTTP requests and dynamically generate HTML

. Common object request broker architecture (CORBA)—provides a standard architecture for

distributed computing and interoperability on the Internet

Java application servers have recently emerged as an efficient solution, with many features, for the

application server tier. A Java application server:

. Makes it easy to develop and deploy distributed Java applications.

. Provides scalability, so hundreds to thousands of cooperative servers can be accessed from ten of

thousands clients. Therefore, Java must be fully multithreaded and have no architectural bottle-

necks that prevent scaling.

. Provides an integrated management environment for comprehensive view of application

resources (e.g., Java Beans, objects, events, etc.), network resources (databases), system resources

(ACLs, threads, sockets, etc.), and diagnostic information.

. Provides transaction semantics to protect the integrity of corporate data even as it is accessed by

distributed business components.

. Provides secure communications.

CORBA and JavaBeans are open standards for component software development and deployment that

allow writing small code objects that can be reused in multiple applications and updated quickly. They

also allow developers to expose legacy system data and functionality as services available over the Web,

and therefore most application servers are based on these technologies.

For example, the CORBA architecture makes it possible to find and use services over the Internet.

Similarly, Enterprise JavaBeans is a standard server component model for Java application servers that

provides services to network-enable applications, so that they may be easily deployed on Intranets,

Extranets, and the Internet [5].

CORBA provides universal connectivity in broadly distributed environments as well as cross-platform

interoperation of both infrastructures and applications. The object Web model based on CORBA and

other standards is shown in Fig. 24.4 [7].

CORBA currently provides many services including naming, security, transactions, and persistence, as

illustrated in Fig. 24.5 [7].

24.4 Implementations of Internet Architectures

In this section, four popular Internet architectures developed by Sun, Netscape, IBM, and Microsoft are

presented.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 5 4.10.2007 3:48pm Compositor Name: VBalamugundan

Internet Architectures 24-5

24.4.1 Sun’s Architecture

Initially, Sun Microsystems defined, in Fall 1996, Java-based application development architecture,

which consisted of three tiers: the client tier that provided user interface, the middle tier for business

logic and database access, and the database tier, as illustrated in Fig. 24.6 [8].

HTML and forms

HTML and Java

Internet
TCP/IP

HTTP

CORBA
IIOP

DBMS

Application
systems

Lotus
notes

Transaction
systems

Messaging
systems

Object
server

HTML
documents

Object
request

broker (ORB)

JavaBeans
applets

Business
objects

Client tier Middle tier Resource tier

Java web client Web server Backend systems

FIGURE 24.4 The object Web model based on CORBA and other standards provides universal connectivity in

distributed environments.

Application
objects

Common
facilities

CORBA object request broker (ORB)

Collections Life cycle Relationships
Concurrency Naming Security
Events Persistence Time
Externalization Properties Trader
Licensing Query Transactions

Common object services (COS)

FIGURE 24.5 CORBA provides a standard for interoperability that includes many services required by object

applications.

Database tierBusiness logic tierClient tier

RMI JDBC

Client
applets

Application
server

Database

FIGURE 24.6 Sun’s Java-based three-tier architecture for ASP.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 6 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-6 Digital Systems and Applications

Sun selected Java language for the client tier, which provided more sophisticated GUI capabilities than

HTML implementation. Client applets did not perform significant business logic functions in order to

keep clients as thin as possible. Java technology was also used for the middle tier and the middle tier

servers were implemented as stand-alone Java applications.

Because both client and middle tiers are implemented using Java, client middle tier communication

was performed using remote method invocation (RMI), where the middle tier servers created the

necessary RMI objects and made them available to clients via the RMI object registry. The middle

tier communicated with the database via the JDBC API. This architecture is based on client-server

computing model, in which client resides on the user’s desktop, and the middle and database tiers reside

on one or more of five data centers around the company.

Recently, Sun has developed an enhanced multitier architecture, which includes an additional tier—

the WebTop server tier, as shown in Fig. 24.7 [8].

In the three-tier architecture (Fig. 24.6), applets were dynamically downloaded at runtime to the

users’ locations from an application server. For remote locations and modem connections with con-

strained bandwidth, applet download time was a few minutes, which was unacceptable.

Another issue related to three-tier architecture was the access to network resources such as files and

printers. Java prohibits applets from accessing any local or network resources. In addition, Java does not

allow communications with any machine other than the one from which the applet was downloaded. As

a result of these limitations, file access occurred at the middle tier. This meant that information might be

sent from the client to the middle tier and then back to a file server near the client.

Introducing a new tier, WebTop server tier, has resolved the issues related to the three-tier architec-

ture. The WebTop server runs the Java Web server and is located near the users it serves. This server is

used as a cache for applets and static application data, so the first problem was resolved. The server also

supports services that access network resources such as user files and printers, which are typically located

near the users. Finally, the WebTop server is used to find the services that users need.

In the architecture in Fig. 24.7 the client is thin and typically includes a graphical user interface

written as an applet that runs from a Web browser. The application server tier provides access to data

and implements business logic and data validation. The application server is responsible for all database

transaction handling.

For the communication between the client and WebTop server tier and between the WebTop server

and the application server tier, HTTP and RMI are used. Communication between application servers

and databases is performed via JDBC.

Client tier Application
server tier

WebTop
server tier

Database
tier

Client
applets

Service
locator
servlet

 Applets

Local services

FileLet
PrintLet

Profile
Login

Session

Data
service

Data
service

Data
service

Database

Database

Database

Primary
application server

Auxiliary
server

Auxiliary
server

RMI

HTTP

HTTP RMI

RMI
RMI

FIGURE 24.7 Sun’s Java-based multitier architecture for ASP.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 7 4.10.2007 3:48pm Compositor Name: VBalamugundan

Internet Architectures 24-7

One of the main benefits of the multitier architecture is that it increases application scalability and

performance by enabling clients to be connected concurrently. In a client-server model clients are

directly connected to databases, while in a multitier architecture only application servers connect

directly to databases. In this way, the application server can process multiple requests from many clients

through a pool of preallocated database connections, thus reducing the database server load. Load on the

application server tier can be balanced by using multiple application servers.

Another benefit of the multitier architecture is that it supports thinner clients, because most of the

logic runs in the application server and database tiers. Thus, broad range of client platforms can run the

applications.

24.4.2 Netscape’s Architecture

Similar to Sun’s architecture, Netscape recently developed multitier architecture for application develop-

ment and distributed computing, which is based on the separation of presentation logic from applica-

tion logic, as illustrated in Fig. 24.8 [2].

In Netscape’s multitier architecture, the client tier is typically based on an open-standard browser

such as Netscape Navigator. The presentation logic and GUI is built using HTML pages that include Java

applets. At the content level, a Web server primarily uses HTTP. It provides base-level information and

content services as well as simple database information access via Java, JavaScript, and other high-level

CGI scripting languages such as Perl.

The application server uses CORBA and JavaBeans components or objects. Transaction services enable

access to relational databases and other legacy systems.

Presentation layer
Dynamic HTML
JavaScript
Java
RDF
Plug-ins

Data and
service layer

Content layer

Java, C, C++
JavaScript
CGI

Application layer
Java, C, C++
JavaBeans
CORBA
DCOM

Native languages

Web browser,
other clients Web server

Application
server

Proprietary
network services

Legacy data
and services

Unix
hosts

Relational
databases

Internet, intranets,
and extranets

Open standards
and protocols

HTTP, IIOP, LDAP

FIGURE 24.8 Netscape’s multitier architecture for ASP.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 8 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-8 Digital Systems and Applications

The first three levels in the multitier architecture in Fig. 24.8 are provided by Netscape technologies

and products, while the last levels—back-end services and other legacy systems—are accessed through

standard Internet interfaces.

24.4.3 IBM’s Architecture

IBM has developed the Component Broker, which is Internet middleware for distributed objects [7].

Component Broker is a software system that allows developers to build, run, and manage Web-enabled

business objects, components, and applications. Component Broker consists of:

. Tools for building distributed and business objects, and applications

. A runtime that provides a distributed-object infrastructure on the middle tier

. A system management functions for the distributed object runtime and its resources

Component Broker architecture, shown in Fig. 24.9, accepts inputs from any clients (Java or Cþþ)
transported via Internet InterORB Protocol, and ActiveX transported via a bridge. The object server

consists of components that provide control, services, context, and connection resources.

The Component Broker receives client requests through the CORBA-compliant object request broker

(ORB). Object services are supplied through the CORBA common object services (COS). These services

provide object transaction services, database services, system services, and object management functions,

as illustrated in Fig. 24.9.

Application adapters connect Component Broker object applications with existing software systems

and applications.

24.4.4 Microsoft’s Architecture

Microsoft Internet architecture is a component-based architecture based on Windows DNA [14]. The

heart of Windows DNA is the component object model (COM) that allows developers to build

applications from binary software components at any tier of the application architecture. These

components provide support for packaging, partitioning, and distributing application functionality

[14]. Distributed COM (DCOM) enables communications between COM components that reside on

different machines. DCOM is a competing model for distributed object computing to CORBA,

described in Section 24.3.

Client environment Object server Application
environment

IIOP
Transaction

services

System
services

Object
management

Database
services

Application
adapters

Transaction
systems

Messaging
systems

Workflow
systems

Database
systems

Application
packages

ORB COS

FIGURE 24.9 Architecture of IBM’s Component Broker at the middleware tier.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 9 4.10.2007 3:48pm Compositor Name: VBalamugundan

Internet Architectures 24-9

24.5 A Contemporary Architecture for Application
Service Providers

In this section, ASP computing architecture using server-based computing model and the related ASP

application architecture is presented.

24.5.1 ASP Computing Architecture

Our computing architecture for application service providers is based on the server-based computing

model, described in the Section 24.1.1. As we indicated earlier, in server-based computing all applica-

tions and data are managed, supported, and executed on the server. This architecture provides the

following benefits:

. Single-point management

. Predictable ownership costs

. High reliability

. Bandwidth-independent performance

. Universal application access

. Use of thousands of off-the-shelf applications

. Low-cost and fast application development

. Use of open standards

. Graphical and rich user interface

. Wide choice of client devices

The proposed server-based architecture uses two technologies developed by Citrix:

. Independent computing architecture (ICA)

. Windows-based terminal (WBT)

Independent computing architecture is a Windows presentation services protocol that turns any client

device (thin or fat) into the thin client. The ICA consists of three components: server software, client

software, and network protocol.

On the server, ICA separates applications from the user interface, while on the client users see and

work with applications’ interface. The application logic executes on the server. The ICA protocol

transports keystrokes, mouse clicks, and screen updates over standard protocols requiring less than

20 kbps of network bandwidth.

AWindows-based terminal is a thin-client hardware device that connects to Citrix server-based system

software. The WBT does not require downloading of the operating system or applications and there is

no local processing of applications at the client, as in the case of other thin clients such as network

computers or NetPCs. AWBT has the following features:

. An embedded operating system such as DOS, Windows CE, or any real-time operating system

. ICA protocol to transport keystrokes, mouse clicks, and screen updates between the client and the

server

. Absolute (100%) execution of application logic on the server

. No local execution of application at the client device

The proposed architecture also allows consumers and business to access software applications from their

Internet browsers. This is provided using Citrix’s software Charlotte. In addition, software component

Vertigo allows more interactive applications on the Web. This software allows customized Web pages

such as electronic trading accounts to be updated automatically without hitting the refresh button on

the computer.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 10 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-10 Digital Systems and Applications

The proposed architecture for ASP using server-based model and Citrix technologies is shown in

Fig. 24.10.

The proposed architecture is platform independent and allows non-Windows and specialized ICA

devises to run Windows applications residing and executing on application server farm. Application

server farm is a group of application servers that are linked together as a single system to provide

centralized administration and scalability.

The architecture in Fig. 24.10 allows ASPs to rapidly develop and deploy applications across complex

computing environments. It also provides application access to all users, regardless of the their location,

type of client device, or form of network connectivity. The architecture can be applied to any type of

client hardware, and therefore requires no change in client hardware. The system significantly reduces

requirements for network bandwidth compared to other architectures. Finally, the proposed architecture

reduces the total cost of application, as analyzed in Section 24.6.

24.5.2 ASP Application Architecture

To take maximum advantage of ASP computing architecture, a new breed of applications needs to

be developed. The key drivers of new distributed application architecture is a need for wide spectrum

of thin clients, bandwidth usage optimization, application multi-identity shared back-end

computing, reliable data flow management, security, legacy application integration, and long list of

service operation requirements. The diagram shown in Fig. 24.11 can depict a desired architecture of an

ASP application.

24.5.2.1 Client Software

ASP application client software is in general very different from types of client software provided as part

of traditional client-server applications available on the market today. To support ASP business model,

Independent computer architecture
(ICA)Thin client

Fat client

WBT
converts

fat to
thin

client

ICA
client

software

ICA
client

software

WBT

ICA server
software

ICA protocols

Application service provider

Databases
Web server

Application server

Internet

Internet
browser

Charlotte
software

User interface
server

ICA
protocols

FIGURE 24.10 The proposed architecture for ASP uses server-based model. All applications are executed at the

server or cluster of servers.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 11 4.10.2007 3:48pm Compositor Name: VBalamugundan

Internet Architectures 24-11

client software must be ‘‘thin,’’ i.e., requiring minimum computing power, installation and support

effort, minimum communication bandwidth, and minimum version upgrade. Highly distributed nature

of ASP service requires from client software ability to support versatile data inputs, highest level of user’s

security, and ability to support multiple communication protocols.

24.5.2.1.1 Data Input

ASP service architecture is in essence remote computing architecture, which requires capabilities to

generate and import application data into the remote application. Data can be generated as part of

specialized batch program or as by-product of third party software. Data input clients can be stand alone

or integrated within other clients or legacy applications. Multistep data flow requires advanced infor-

mation security, tracking, reporting, and above all ability to restore data in case that any stage system

failure results in data loss. Data input clients may or may not be thin. The footprints of these clients are

primarily defined by local functionality necessary to create the data at optimum cost.

24.5.2.1.2 Application Access

Application access clients are characterized by limited local computation capability and remote com-

mand capability to the server side application concentrated at service back end. These clients are the

ones that should be as generic and as thin as possible. The smaller and simpler the client, the lesser the

operational cost at the front end. The ideal application access client is plain Web browser. However,

browser access is limited to very low level of functionality provided by HTML protocol. Function rich

application computing requires specialized client software or plug-ins providing access to remote

application at the back end.

24.5.2.1.3 Toolbox

To bridge the existing legacy applications with ASP service, an ASP application software requires a

comprehensive set of APIs or application enabling tools providing the system integration capabilities

and customizations.

Clients

Service layer

Production layer

Data
input clients

Data flow
management

Service #1

A
pp

lic
at

io
n

ob
je

ct
 #

1

A
pp

lic
at

io
n

ob
je

ct
 #

2

App server
farm management

Mass storage
management

Information
life cycle

Disaster readiness Data output
Operations log &

tracking
Databases

Service #1 Service #2 Service #3 Service #n

App. state &
identity mgmnt Security

Business
management: Application

support:

Event log &
tracking

SW license
enforcement

App access
clients

Admin
client Toolbox

•Billing
•Sales support

•Accounting
•Channel mgmnt.

•Self care
•Help desk

•Error tracking

FIGURE 24.11 Architecture of an ASP application.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 12 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-12 Digital Systems and Applications

24.5.2.1.4 Administration

This client should provide the end user with the ability to completely control its own application.

Desired functions are: adding new users, setting up security profiles, managing application specific

variables, usage tracking and reporting, and billing presentments and reporting.

24.5.2.1.5 Security

Client software security capability must include ability to authenticate users on the front end and to

create virtual private channel of communication with the service back end.

24.5.2.2 Service Layer

Server side application is characterized by concentration of all computing and data intensive processes at

back end, application multi-identity, sophisticated data flow management, and by its ability to integrate

with business management, application support, and service production components. The ultimate goal

of such application engineering is to create the fastest computing environment, economy of scale

through all customers’ sharing of common computing and data management infrastructure, and

maximum operational readiness.

24.5.2.2.1 Application Layer

At the core of service layer is the application layer of software providing actual computing application

packaged as specific service, for example: Service #1. This service application can be either stand-alone

application or user interface into integrated solution based on several other independent third-party

applications.

24.5.2.2.2 Data Flow Management

Data generated through data input clients is managed by data flow management software. One can

consider this software component as a data switch capable of accepting data input, decompressing and

decoding data, identifying the owner of data and target data base, importing data in the target data base,

cashing and mirroring data at each stage for disaster readiness reasons, and creating logs for data input

tracking and reporting.

24.5.2.2.3 Application State and Identity Management

An ASP provider will have many different applications for many different customers simultaneously.

Also, each individual application will have many different users requiring different application setup and

profile. Application state and identity management software acts as an application switch identifying

individual users and applications and then assigning the appropriate user’s profile. Therefore, ASP

applications must support multiple identity capability. Ability to share the same computing and data

management resources between many different users and applications is essential for reliable service

delivery and economy of scale.

24.5.2.2.4 Business Management

The ASP application should also integrate into business management software enabling automatic

account creation and usage data feed into billing solution.

24.5.2.2.5 Application Support

The ASP application should also integrate with application support solution that consists from customer

self support site.

24.6 Evaluation of Various Architectures

Analysts and IT professionals have developed numerous models for estimating the total cost of IT

services, sometimes called ‘‘total cost of ownership (TCO).’’ In the past, these models had the hardware-

centric view because they analyzed the costs of owning and maintaining desktop computer hardware. In

the age of the Internet, Web-based computing, and E-commerce, applications must be accessible across a

wide variety of connectivity options, from low-speed, dial-up connections to wireless, WAN, and

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 13 4.10.2007 3:48pm Compositor Name: VBalamugundan

Internet Architectures 24-13

Internet connections. A contemporary cost analysis should consider the total cost of application

ownership (TCA), rather than the total cost associated with specific computing devices. The Tolly

Group has developed a model for comparing the TCA of different computing models, discussed earlier

[9]. We present and discuss their results in this section.

In order to determine the cost of application deployment, four computing models introduced in

Section 24.1 can be analyzed from the following points of views:

. Physical location of the application

. Execution location of the application

. Physical location of data

. Location of the user and means of connectivity

The cost of complexity of deploying and managing an application strongly depends on physical location

of the application. The cost of application distribution, installation, and managing of updates must be

considered.

The choice of where an application is executed determines the hardware, network, and connectivity

costs. An application can run on the server, on the client, or in a distributed server-client environment.

In some cases, the application must be downloaded from a server to a client, which has an impact on

performance and productivity.

The location of stored data determines the speed at which information is available. It also has an

impact on the cost related to protecting and backing up critical corporate data.

The location of the user and the means of connectivity also have an impact on the cost and complexity

of deploying an application.

Table 24.1 summarizes the application deployment characteristics for four computing models intro-

duced in Section 24.1 [9].

Tolly Group has analyzed and calculated the total cost of application ownership for a medium-size

enterprise of 2500 users, with 175 mobile users working on the road. The calculated costs were divided

into (a) Initial (first-year) cost (which includes hardware, software, network infrastructure, and user

training) and (b) annual recurring costs (which includes technical support and application mainten-

ance). The results of analysis are presented in Fig. 24.12.

Traditional desktop computing approach requires relatively high initial cost for hardware, software,

network infrastructure, and training ($14,000) as well as very high annual recurring costs for technical

support and application maintenance ($11,000 annually).

Client-server and network computing approaches require slightly higher initial investment ($16,000)

in order to replace existing client hardware; however, annual recurring costs are reduced ($9,500). This

model becomes less expensive than the traditional desktop model from the third year forward.

The server-based approach gives the best TCA both in terms of initial costs and annual recurring costs

($6,000 and $2,600, respectively). The reason for it is that this model allows any type of client to access

any application across any type of connection. This model also provides single point for the deployment

and management of applications.

TABLE 24.1 Computing Models and Application Deployment Characteristics

Application

Location

Application

Execution

Data

Location

User

Access

Network

Requirements

Traditional desktop Client Client Client Local None

Client-server Client and server Client and server Client and server Lan, WAN,

Internet

High bandwidth

Network-based Server Client and server Server or client LAN, WAN,

Internet

High bandwidth

Server-based Server Server Server LAN, WAN,

Internet

Low bandwidth

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 14 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-14 Digital Systems and Applications

In summary, the server-based model, which was applied in our architecture, is the most efficient and

cost-effective solution to application deployment and management.

24.7 Conclusions

This chapter presented and evaluated contemporary multitier Internet architectures, which are well

suited for distributed applications on the Internet including ASPs. The chapter also evaluated several

computing models for Internet-based architectures and proposed a server-based computing model,

which has a number of advantages over the other models.

References

1. Citrix Systems, ‘‘Server-based computing,’’ white paper, www.citrix.com, 1999.

2. P. Dreyfus, ‘‘The second wave: Netscape on usability in the services-based Internet,’’ IEEE Internet

Computing, Vol. 2, No. 2, March=April 1998, pp. 36–40.

3. Sun Microsystems, ‘‘Software development for the Web-enabled enterprise,’’ white paper, 1999.

4. BEAWebLogic, ‘‘What is a Java application server?’’ weblogic.beasys.com, 1999.

5. A. Thomas, ‘‘Selecting enterprise JavaBeans technology,’’ WebLogic, Inc., Boston, MA, July 1998.

6. R. Orfali, D. Harkey, and J. Edwards, Instant CORBA, John Wiley & Sons, New York, 1997.

7. C. McFall, ‘‘An object infrastructure for internet middleware: IBM on component broker,’’ IEEE

Internet Computing, Vol. 2, No. 2, March=April 1998, pp. 46–51.

8. Gupta, C. Ferris, Y. Wilson, and K. Venkatassubramanian, ‘‘Implementing Java computing: Sun on

architecture and application development,’’ IEEE Internet Computing, Vol. 2, No. 2, March=April

1998, pp. 60–64.

9. The Tolly Group, ‘‘Total cost of application ownership,’’ Manasquan, NJ, white paper No. 199503,

June 1999.

10. J.B. Eichler, R.Y. Roberts, K.W. Evans, and A.L. Carter, ‘‘The Internet: redefining traditional business

and giving rise to new ones,’’ Report, Stephens, Inc., Little Rock, AR, May 1999.

11. D. Rosenberg, ‘‘Bringing Java to the enterprise: Oracle on its Java server strategy,’’ IEEE Internet

Computing, Vol. 2, No. 2, March=April 1998, pp. 52–59.

12. M. Benda, ‘‘Internet architecture: its evolution from an industry perspective,’’ IEEE Internet Com-

puting, Vol. 2, No. 2, March=April 1998, pp. 32–35.

13. Sun Microsystems, ‘‘Enterprise JavaBeans technology: server component model for the Java plat-

form,’’ white paper, java.sun.com, 1999.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Year 1 Year 2 Year 3

Time

T
C

A
 (

$)

Traditional desktop

Client /server or
network-based

Server-based

FIGURE 24.12 Analysis of total cost of application (TCA) for various computing approaches [9].

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 15 4.10.2007 3:48pm Compositor Name: VBalamugundan

Internet Architectures 24-15

14. G.R. Voth, C. Kindel, and J. Fujioka, ‘‘Distributed application development for three-tier architec-

tures: microsoft on Windows DNA,’’ IEEE Internet Computing, Vol. 2, No. 2, March=April 1998,

pp. 41–45.

15. C.J. Woodard and S. Dietzen, ‘‘Beyond the distributed object decision: using components and Java

application servers as a platform for enterprise information systems,’’ Distributed Computing, 1998.

16. G. Pour and J. Xu, ‘‘Developing 3-tier Web-based enterprise applications: integrating CORBA with

JavaBeans and Java servlets,’’ in Proceedings of the 3rd International Conference on Internet and

Multimedia Systems and Applications, Nassau, Bahamas, October 1999.

17. L. Downes and Chunka Mui, ‘‘Unleashing the Killer App,’’ Harvard Business School Press, Boston,

MA, 1998.

Vojin Oklobdzija/Digital Systems and Applications 6195_C024 Final Proof page 16 4.10.2007 3:48pm Compositor Name: VBalamugundan

24-16 Digital Systems and Applications

25
Microelectronics for

Home Entertainment

Yoshiaki Hagiwara
Sony Corporation

25.1 Introduction... 25-1

25.2 Basic Semiconductor Device Concepts 25-2
Concept of Electron Fog . Bipolar Transistor Device

Model . MOSFET Model . Buried Channel CCD

Structure . HAD Sensor, a pnp-Substructure

25.3 LSI Chips for Home Entertainment 25-6
Digital Still Camera . AIBO, a Home Entertainment

Robot . Memory Stick . PlayStation 2

25.4 Conclusion ... 25-19

25.1 Introduction

The history of home entertainment consumer electronics begins in May 7, 1946, with the founding

of Tokyo Tsushin Kogyou (Tokyo Telecommunication Engineering) by Masaru Ibuka (36) and Akio

Morita (25) in Tokyo, Japan. Had these two bright young men not met and combined their considerable

resolve and talents, the home electronics business would not have accelerated so much as we see it

today, and our semiconductor business efforts would have been aimed only for military purposes for

a while.

In the Founding Prospectus, Ibuka eloquently stated his dreams for the company. Morita, together

with the company’s first directors headed by Kazuo Iwama, led employees to realize these goals.

Throughout their work, the young force was inspired by the free and dynamic atmosphere of the

‘‘ideal’’ factory they were striving to create. From the onset, Ibuka, Morita, and Iwama endeavoured to

develop unique and exciting products that fulfil their customers’ dream.

Iwama was 35 when he visited Western Electric to study transistors in January 1954. Iwama was the

first engineer in Japan who understood the concept of ‘‘electron fog’’ in the bipolar transistor device

physics.

He worked as the leader of the bipolar transistor development project to realize the epoch-making

portable bipolar transistor radio TR-55 introduced to the home entertainment electronics market in

August 1955.

Seven years had passed since the invention of the bipolar transistor in Bell Lab in December 1947.

I was only seven years old and had no idea about how a transistor works at that time.

I was a junior undergraduate at CalTech in Pasadena, California, in 1969 when I learned how the

bipolar transistor and MOSFETwork with the classical textbook by Grove. My class instructor was Prof.

James McCaldin who was known as the co-inventor of basic planar passivation technology in modern

MOS transistor fabrications.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 1 4.10.2007 3:47pm Compositor Name: VBalamugundan

25-1

In the summer of 1971, I visited Sony Atsugi plant right after I received a B.S. from CalTech and

worked as a reliability engineer in Bipolar IC production line for Sony’s Trinitron color TV sets.

In the fall of 1971, I returned to CalTech to pursue further my graduate work and learned how to

design MOS LSIs from Professor Carver Mead. My Ph.D. thesis was about the buried channel CCD

imagers, which can be applied to low light intensity solid state imagers. Prof. T.C. McGill was my Ph.D.

thesis advisor.

After defending my Ph.D., in February 1975, I joined Sony at the Central Research Center in

Yokohama, Japan, and engaged in further research on high-performance CCD imagers project headed

by Iwama who was the pioneer engineer in the early bipolar technology development effort in Sony.

My first patent filed in Sony in November 1975 was about a simple pnp-substructure used as the light

sensing device for imagers. The sensor structure is now called the HAD sensor in Sony’s current video

cameras and digital still cameras.

Sony put most of its engineering sources in CCD imagers and camera systems in 1970s. We engineers

had to design signal processing and camera control chips by ourselves. Those experiences were useful to

apply to other MOS LSI design applications, which made possible the current home entertainment LSI

chip sets such as digital cameras, home robots, and games.

In this chapter, some basic semiconductor device concepts are first reviewed briefly. They are about

the concept of ‘‘electron fog,’’ the bipolar and MOSFET device model, the buried channel CCD imager

structure, and the pnp-substructure which is used as the light sensing device, which is now universally

adopted in most of high performance solid state imagers. Then, some general discussions on the product

specifications and performance aspects of the home entertainment consumer LSI chip sets such as for

digital cameras, home robotics, and games are presented in detail.

25.2 Basic Semiconductor Device Concepts

In this section, some introductory comments on the basic semiconductor device concepts are explained.

They are strongly related to the microelectronics of the present home entertainment LSI chips.

25.2.1 Concept of Electron Fog

Figure 25.1 shows the electron fog in metal and semiconductor. Electrons in metal are depicted in

this picture as the moisture above the water surface in the container, while the electrons in the

Hole fog

Electron fog

?? ?

<p>

<n>
<n>

<p>

W

Metal Semiconductor

Ef

Ec

Ef

Ev

FIGURE 25.1 Electron fog model in metal and semiconductor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 2 4.10.2007 3:47pm Compositor Name: VBalamugundan

25-2 Digital Systems and Applications

semiconductor are depicted as the moisture on the top of a floating box in water. If the box is heavy, the

water surface is very close to the top of the box and there is a lot of moisture.

This corresponds to the n-type semiconductor band diagram. If the box is relatively light, only a small

bottom portion of the box is submerged into the water and the top of the box can be quite dry, and there

will a lot of bubbles (holes) under the bottom of the box. This corresponds to the p-type semiconductor.

Applying these p- and n-type semiconductor box models, a diode behavior model can be constructed

and the diode rectifying characteristics can be explained.

25.2.2 Bipolar Transistor Device Model

Figure 25.2 shows energetic boys (electron fog in the emitter region) trying to climb a hill (base region)

to catch the girls on the hill (hole fog, which is the majority carrier in the base region). Some of the boys

can luckily catch girls on the hill, recombine, become happy and disappear as light or heat energy. But

the hill width is very short and most of the boys will not have enough time to catch girls and fall down

the cliff (the base-collector depletion region). The poor boys are now collected deep down the cliff in the

collector region.

In the time interval Dt, IEDt boys are jumping to the hill to catch girls on the hill. Some boys are lucky

enough to catch girls on the hill. The number of girls caught by the energetic boys in Dt is IB Dt, which is

proportional to the number of the average boys on the hill Qn. The girls are supplied as the base current

IB. Other salient physical parameters normally used in the bipolar transistor device modeling are also

given in the figure.

25.2.3 MOSFET Model

Figure 25.3 shows a MOSFET structure. If you see how the electron fog moves from the left source

nþ region to the right nþ region through the Si�SiO2 surface under the MOS gate, one can see that it is

also considered as an electron transportation along an npn-structure. In this case, however, the potential

in the p-region is controlled by the gate voltage isolated by the thin oxide.

The figure shows the electron fog moving from the source to the region under the gate at the onset of

strong inversion at the Si�SiO2 surface. At this point the electron fog density at the channel is equal to

the density of the majority ‘‘hole fog’’ in the p-type Si substrate, and the gate voltage at this point is

defined to be the threshold voltage Vth of the MOSFET.

Figure 25.4 shows water flowing from the right source region to the left drain region through the

water gate. The depth of the channel Vch is given as (Vg�Vth), where Vg is the applied gate voltage

φ

n-type

p-type

Emitter Base

ICollector

IEmitter WB

Ln = Dnτn

IBase

φ = φi −VBE

Qn = AEWB n(0)/2

τt = WB
2/2Dn

Collector

ICollector

Io = q AE Dn {ni
2/Na}/WB

n-typeIE = Io exp(VBE/kT) = βIB

IB = Qn/τn

FIGURE 25.2 Bipolar transistor action.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 3 4.10.2007 3:47pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-3

which induces the channel depth Vch¼ (Vg�Vth). The amount of the water flow I is proportional to the

mobility m, the water amount Q under the gate and the electric field E, i.e., I¼mQE can be written in

this rough approximation.

In the first approximation, take E¼ (Vd�Vs)=L, where Vd, Vs, and L are the drain voltage, the source

voltage, and the gate channel length. The total charge can be approximated as Q¼WCoDV, whereW and

Co are the channel width and the oxide capacitance of the actual corresponding MOSFET transistor,

respectively. Now, DV corresponds to the voltage difference between the average water surface (Vdþ
Vs)=2 and the channel potential Vch¼ (Vg�Vth).

<Nd
+>

<NA> φS(inv)q ∆V

<Nd
+>?

VS
VBB′

VD

Enfog (z)

EC (z)
Enfog (z)

EC (z)

z

z

L0

n+n+

Source Drain

p-Si

Gate

Vth(VBB,VS) = VFB + {B + VS − VBB} + γ

VFB = VBB − (kT/q) In{Nc NA/ni
2} − {χsi

 − φm}/q + QSS/COX

VG = Vth (VBB, VS)

K = q εSi NA/C2
OX B = 2(kT/q) In(NA/ni)γ = 2K

kT In(Nc/Nd
+)

 {B + VS − VBB}

FIGURE 25.3 MOSFET at Onset VG ¼ Vth.

VDrain

e−

L

VSf (x)

I = (W/2L) µCo{2(VG − Vth) − (VDrain + VSource)} (VDrain − VSource)

ISat = (W/2L) µCo(VDrain − VSource)2 for VG > (VDrain + Vth)

dQ

Vch = (VGate − Vth)

I = µQE

E = (VDrain − VSource)/L

<VSf> = (VDrain + VSource)/2

Q = WCo ∆V

= WCo (Vch − VSf)

Q = WCo {Vch − <VSf>}

= WCo {VGate − Vth − (VDrain + VSource)/2}

VSource

Vch

VGate

FIGURE 25.4 MOSFET I-V characteristics.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 4 4.10.2007 3:47pm Compositor Name: VBalamugundan

25-4 Digital Systems and Applications

That is, DV¼ (VdþVs)=2�Vch. Hence, since Q¼WCoDV, the equivalent amount Q of the water (or

charge) under the gate is given asQ¼WCo[(VdþVs)=2�Vch], where Vch¼ (Vg�Vth), E¼ (Vd�Vs)=L.

Now if these relationships are put into the original equation I¼mQE, this leads, without going

through the calculations normally done in the classical gradual channel approximation, finally to the

classical MOS I-V equation:

I ¼ (W=2L)mCo[Vd þ Vs � 2Vch](Vd � Vs)

¼ (W=2L)mCo[Vd þ Vs � 2(Vg � Vth)](Vd � Vs)

25.2.4 Buried Channel CCD Structure

Figure 25.5 shows the physical structure and the potential profile of a buried channel CCD. The signal

charge is the electron fog in the lightly doped n-region at the surface. As you can see, these signal charges

are isolated from the direct contact to the Si�SiO2 interface and do not suffer the charge trapping. This

structure gives a good CCD charge transfer efficiency of more than 99.9999% along the buried channel

CCD shift register in the direction of this chapter. At very high light, excess charge can be drained into

the substrate by lowering the well voltage Vwell or making the substrate voltage very deep and inducing

the punch-through mode in the n-p-n(sub) structure.

High-density and high-performance, solid-state imagers became available applying this structure as

the scanning system. The surface n-layer is completely depleted when there is no signal charge. It is

dynamically operated.

It is considered as one extended application of dynamic MOS device operations. The most well-

known dynamic operation of a MOS device application is the DRAM data storage operation.

25.2.5 HAD Sensor, a pnp-Substructure

The floating diode structure for image sensing unit was well known in early 1970s. The author simply

proposed to use a pnp-substructure instead for the imaging element. Figure 25.6 shows the proposed

structure.

It is a simple pnp bipolar transistor structure itself with a very lightly doped base region, operated in

the strong cut-off mode with the base majority charge completely depleted.

It is the first practical application of the bipolar transistor in dynamic operation mode, which turned

out to be the best structure and way to convert photons to electrons for imaging including the current

n n-sub

VG

VG

VSub

VSub

VWell

Signal charge (electron fog)

VWell

SiO2

SiO2

p

FIGURE 25.5 Buried channel CCD structure.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 5 4.10.2007 3:47pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-5

MOS imagers applications. The sensor structure is now called the HAD sensor in Sony’s current video

cameras and digital still cameras.

25.3 LSI Chips for Home Entertainment

25.3.1 Digital Still Camera

The picture in the Fig. 25.7 shows a 2=3 in. 190 K pixel IT CCD imager, ICX016=XC-37, which the

author designed when he was still a young CCD design engineer in early 1981. This model became the

model of the world’s first consumer CCD video camera for mass production in 1983.

The goal now is to become ‘‘Imaging Device No. 1!’’ Many applications of CCD and LCD are used, as

seen in Fig. 25.8.

SiO2
n n-sub

VWell
P+

VHAD VWell

VSub

VSub

n
p

n-sub

VSub

VE VB VC

p

VHAD

SiO2

SiO2 SiO2 SiO2 SiO2

p

FIGURE 25.6 A typical PNP bip Tr structure in the early 1970s, and a proposed application as an image-sensing

element in 1975.

2/3 In. 190 K Pixel IT CCD
Imager <ICX016>/XC-37

VGA 640 × 480
QVGA 320 × 240
SVGA 800 × 600

XGA 1024 × 768
SXGA 1280 × 1024

HD 1280 × 720

DSC-P1

2048 × 1536

2048(3:2)
1600 × 1200
1280 × 960
640 × 480

CCD-G5 1983

FIGURE 25.7 The world’s first consumer CCD video camera for mass production 1983.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 6 4.10.2007 3:48pm Compositor Name: VBalamugundan

25-6 Digital Systems and Applications

25.3.2 AIBO, a Home Entertainment Robot

This subsection reviews the most popular product, the entertainment robot AIBO shown in Fig. 25.9.

When you buy a brand new AIBO, it is like a baby, so it does not have any knowledge. It has a certain

intelligence level that is preprogrammed. You can play with the AIBO and gradually your AIBO will

recognize your gestures and voices. AIBO will remember the wonderful time you spent together with it.

CCD
Scanner

DSC
Survey

Probe

Projector
in jets

Camcorder

Glastron

Rear projector

Front projector

HT poly-si-LCD

FIGURE 25.8 Applications of CCD and LCD.

CCD color
camera

(180 K pixel)

Stereo microphone

64 bit RISC processor
16 MB memory

aperios OS

Weight: 1.6 Kg
Size: 156 × 266 × 274 mm (without tail)

Li-ion battery
(7.2 V ` 2900 mAh)18 DOF

Speaker

Tactile sensor

Acceleration sensor,
 gyrometer, etc

Memory stick

FIGURE 25.9 AIBO model ERS-110.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 7 4.10.2007 3:48pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-7

Actually the experience and knowledge AIBO accumulates during these memorable moments are stored

in a chewing gum size NVRAM called a memory stick shown in Fig. 25.9.

This memory stick can be also used in other products such as PCs, digital audios, and DSCs.

Unfortunately it is not used in PS and PS2 for generation compatibility as of now. But in one form or

another, there is a definite need NVRAMs in PS, DSC, digital audio, PC, and the future home

entertainment robots.

The twenty-first century will become an era of autonomous robots, which are partners of human

beings. Autonomous robot will help and support people in the future. AIBO is designed to be the first

product model of robot entertainment systems. The main application of this robot is a pet-style robot,

which must be lifelike in appearance.

Although AIBO is not a nursing robot, the development of AIBO is the first step of the era of

autonomous robots in the twenty-first century.

The following are some works done in the Digital Creation Laboratory at Sony. Most of the works

were actually done by the pioneering engineers, Mr. Fujita, Mr. Kageyama, Mr. Kitano, and Mr. Sabe.

The epoch-making debut of AIBO, model ERS-110 in 1999, had the following features:

First of all, it has a CCD color camera with 180 K pixels. Of course, it does not have a mechanical

shutter. It does not have any eyelid. It has an audio sensor called microphones, a pair of them for stereo

audio pick-up. It also has an acceleration sensor, gyrometer, and also a tactile sensor. So, if you pat it on

the head gently, it will show some happy gesture. If you strike it on the head, it will interpret it as your

sermon. The moving joints have 18 degrees-of-freedom in total.

Before introducing this first AIBO model, ERS-110, the basic research period lasted about five years.

Now we have the second generation AIBO model, ERS-210 and also another type of robot, Sony Dream

Robot, SDR-3, as seen in Fig. 25.10.

The second generation AIBO model, ERS-210, has the following features:

Joint DOF: neck: 3, mouth: 1, ear: 2, legs: 33 4, tail: 2, total: 20

Sensors: color CMOS image

sensor (1100 K pixel)

Microphone3 2

Infrared sensor

Acceleration sensor3 3

AIBO 2nd generation, ERS-210 Sony dream robot, SDR-3

FIGURE 25.10 New AIBO models: ERS-210 and SDR-3.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 8 4.10.2007 3:48pm Compositor Name: VBalamugundan

25-8 Digital Systems and Applications

Tactile sensor3 7

CPU: 64 bit RISC processor (192 MHz)

Memory: 32 MB DRAM

OS, Architecture: Aperios, OPEN-R1.1

IF: PCMCIA, memory stick

The model SDR-3 has the following features:

Joint DOF: neck: 2, body: 2, arms: 43 2, legs: 63 2, total: 24

Sensors: color CCD camera

1800 K pixel, microphone3 2

Infrared sensor, acceleration sensor3 2 gyrometer3 2, tactile sensor3 8

CPU: 64 bit RISC processor3 2

Memory: 32 MB DRAM3 2

OS, Architecture: Aperios, OPEN-R

It weighs 5.0 kg and its size is 5003 2203 140 mm.

It has an OPEN-R architecture. It is made of configurable physical components (CPCs). The CPU in

the head recognizes the robot configuration automatically. The components are built for plug & play or

hot plug-in use. The relevant information in each segment is memorized in each CPC.

Each CPS may have a different function such as behavior planning, motion detection, color detection,

walking, and camera module. Each CPS is also provided the corresponding object oriented program-

ming and software component.

With this OPEN-R architecture, the body can be decomposed or assembled anyway for plug & play or

hot plug-in use. The diagram in Fig. 25.11 shows the details of the logical hardware block diagrams,

which contain DMAC : FBK: CDT: IPE and HUB

Remoter computer
for development

CCD cameraRISC CPU

SDRAM

OPEN-R Bus

Battery manager

Internal bus
Image
data

Serial port
Parallel port

HUB

AD DA

SpeakerMic

HUB

AD DA

OPEN-R bus
host controller

Flash ROM

Memory stick

DMAC

FBK/CDT

DSP/IPE

PC card

Peripheral interface

HUB

AD DA

HUB

AD DA

actuatorPotentio-
meter

actuatorPotentio-
meter

actuatorPotentio-
meter

Tactile
sensor

HUB

AD DA

FIGURE 25.11 Logical hardware block diagram.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 9 4.10.2007 3:48pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-9

In the following two figures, Figs. 25.12 and 25.13, the topology of model ERS-110 and Model SDR-3x

are shown, respectively.

At the same time, it is very important to have a powerful software platform that covers the top

semantic layer to the deep bottom of the device driver objects codings. Careful design considerations are

very important to make the middleware software components.

25.3.3 Memory Stick

AIBO, VAIO PC, and other audio and video products now use memory sticks as digital data recording

media.

In July 1997, Sony had a technical announcement. The following year, in January 1998, the VAIO center

was inaugurated. On July 1998, Sony had a product announcement. The 4 Mbyte and 8 Mbyte memory

sticks were on sale in September 1998. In February 1999, Sony announced Magic Gate, that is,

memory sticks with copyright protection feature. Figure 25.14 shows the form comparison. The memory

stick is unique in its chewing gum-like shape and it is much taller in length than other media. The

difference in appearance of memory stick from other media is clear in size and features.

Figure 25.15 shows the internal structure. It is fool proof. It features a simple 10-pin connection and it

is impossible to touch the terminals directly.

The shape was designed intentionally to make exchanging of media easy, without having to actually see

them, and to guide the direction for easy and correct insertion. Much contrivance is made in the design.

In order to decrease the number of connector pins for ensuring reliability of the connectors, serial

interface was adopted instead of parallel interface used in conventional memory cards. As a result,

connector pins were reduced to 10. And as the structure is such that these pins do not touch the terminal

directly, extremely high reliability is ensured. The length is same as AA size battery of 50 mm for further

deployment to portable appliances. The width is 21.5 mm and the thickness is 2.8 mm.

AGR-L

CPU
AGR-S

AGR-S

AGR-S AGR-S

AGR-S AGR-S

Motor

x2

Motor

Motor

Motor

Motor

AGR-SAGR-S

Motor

Mic

Speaker

CCD

Switch

Switch Switch

Switch
Switch

Gravity sensor

Gyro meter

x3x3

x3x3

x3

OPEN-R Bus

FIGURE 25.12 Topology of ERS-110.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 10 4.10.2007 3:48pm Compositor Name: VBalamugundan

25-10 Digital Systems and Applications

The memory stick consists of Flash EEPROM and a controller, controlling multiple Flash EEPROM,

flexible to their variations, and capable of correcting errors unique to different Flash EEPROMs used.

The memory stick converts parallel to=from serial data with the controller designed in compliance with

the serial interface protocol; any kind of existing or future Flash EEPROM can be used for the memory

stick. The function load on the controller chip is not excessive, and its cost can be kept to a minimum.

It is light and the shape makes it easy to carry around and to handle. Also, the write-protection switch

enables easy protection of variable data.

AGR-L

CPU

AGR-SAGR-S

AGR-S

AGR-S AGR-S

x2

AGR-S
AGR-S

Mic

Speaker

CCD

switch switch

Gyro meter

x3

x3

x3

x3

AGR-L

CPU AGR-S

AGR-S

Motor

Motor

Motor

Motor

Motor

Motor

x3
x3

x3

x2

x2

OPEN-R Bus

Motor

Gravity sensor

Motor

Motor

AGR-S

FIGURE 25.13 Topology of SDR-3x.

21.5 mm

50
 m

m

43 mm

36
 m

m

37 mm

45
 m

m

2.8 mm t 3.3 mm t 0.8 mm

Memory stick Compact flash Smart media

FIGURE 25.14 Form comparison.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 11 4.10.2007 3:48pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-11

For still-image format, DCF standardized by JEIDA is applied. DCF stands for design rule for camera

file system and JEIDA stands for Japan Electronic Industry Development Association. For voice format,

ITU-T Recommendation G.726 ADPCM is adopted. The format is regulated for applications that

convert voice data to text data by inserting a memory stick to a PC.

The memory stick can handle multiple applications such as still image, moving image, voice, and

music on the same media. In order to do this, formats of respective application and directory manage-

ment must be stipulated to realize compatibility among appliances. Thus, simply by specifying the

‘‘control information’’ format, one can have a new form of enjoyment through connecting AVappliances

and the PC. This format, which links data handed in AV appliances, enables relating multiple AV

applications. For example, voice recorded on IC recorder can be dubbed on to a still image file recorded

by a digital still camera.

Presently, the music world is going from analog to digital, and the copyright protection issue is

becoming serious along with the wide use of the Internet. The memory stick can provide a solution to

this problem by introducing ‘‘Magic Gates (MG),’’ a new technology.

Open MG means (1) allowing music download through multiple electronic music distribution plat-

forms, (2) enabling playback ofmusic files and extracting CD on PCs (OpenMG Jukebox), (3) transferring

contents securely from PCs to portable devices.

Figure 25.16 shows the stack technology applied to the memory stick with four stacked chips.

25.3.4 PlayStation 2

PlayStation 2 was originally aimed at the fusion of graphics, audio=video, and PC. The chipset includes

a 128-bit CPU called ‘‘Emotion Engine’’ with 300 MHz clock frequency with direct Rambus DRAM of

Vss

Vss

Vcc

Vcc

BS

S/P
&

P/S

I/F

DIO

Reserve

Reserve
SCLK

INS

Register

Controller

Page
buffer
(512B)

FLASH
I/F

Flash

Attri.
ROM

Reset

OSC Cont

ECC(3B)
Sequencer

512B 16B

512B 16B
512B 16B
512B 16B

512B 16B
512B 16B
512B 16B

FIGURE 25.15 Internal structure.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 12 4.10.2007 3:48pm Compositor Name: VBalamugundan

25-12 Digital Systems and Applications

32 Mbyte main memory. The chipset also includes a graphic synthesizer chip with 150 MHz clock

frequency. It has 4 MB video RAM as an embedded cache.

As SPUs, the chipset also has an I=O processor for X24 speed CR-ROM drive and X4 speed DVD-

ROM. Figure 25.17 shows PlayStation 2 (SCPH-10000) system block diagram.

PlayStation 2, which Sony Computer Entertainment, Inc., released in March 2000, integrates games,

music, and movies into a new dimension. It is designed to become the boarding gate for computer

entertainment. PlayStation 2 uses an ultra-fast computer and 3-D graphics technology to allow the

creation of video expressions that were not previously possible.

Although it supports DVD, the latest media, it also features backward compatibility with PlayStation

CD-ROM so that users can enjoy the several thousand titles of PlayStation software. PlayStation 2 is

designed as a new generation computer entertainment system that incorporates a wide range of

future possibilities. The table shows the performance specifications of the graphic synthesizer chip,

CXD2934.

4 Stacked chip

Applied to memory stick

FIGURE 25.16 Stack technology.

PlayStation 2

(SCPH-10000)

Main memory
(direct RDRAM)

Analog video
encoder

CXA3525R

Digital
video encoder

Graphics
synthesizer

CXD2934GBEmotion engine
(128-bit CPU)

I/O processor

Memory

Memory

Disc controller
CXP 102064R

Link
/USB

Controller

Two-wavelength
laser coupler
SLK3201PE

PD IC
CXA250BH2

RF amp.

CXA2605R

CD/DVD
front-end

CXD1869Q

Sound
processor

CXD2942R

Display
output

Sound
output

Motor

FIGURE 25.17 PSX2 system block diagram.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 13 4.10.2007 3:48pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-13

Clock Frequency 150 MHz

Number of pixel engines 16 parallel processors

Hybrid DRAM capacity 4 MB@150 MHz

Total memory bandwidth 48 GB=s

Maximum number of display colors 2560 bits

Z buffer 32 bits (RGBA: 8-bit each)

Process

Technology 0.25 mm

Total number of transistors 43 M Tr’sPackage

384-pin BGA image output formats NTSC=PAL, D-TV, VESA (upto 12803 1024 dots)

In addition to the 128-bit CPU Emotion Enginey and I=O processor, Playstation 2 adopts several

advanced technologies. The graphics synthesizer graphic engine, CXD2934GB, takes full advantage of

embedded DRAM system LSI technology. Figure 25.18 shows the chip photograph of Sony’s 0.25 mm

CMOS 4MB embeddedDRAM, which has 42.7MTrs. The clock rate is 150MHz, with 48GB=s bandwidth.

It can draw 75 M polygons per second. It has 384 pin in BGA. Its cross-sectional view is also shown here.

The semiconductor’s optical integrated device technology contributes significantly to miniaturization

and high reliability in the optical pickups, SLK3201PE, a two-wavelength laser coupler chip. PlayStation

2 also adopts the optical disc system chip solution which has a solid track record, CXD2942R, a sound

processor chip, and has earned the trust of the optical disc system market.

It also includes CXD1869 (CD=DVD signal processor LSI), CXP102064R (disk controller),

CXA2605R (Cd=DVD RD matrix amplifier), and CXA3525R (analog video encoder).

The first commercial product for use in consumer products were the 0.5 mm LSI chips for 8-mm

camcorders in 1995. Then, Sony had 0.35 mm LSI chips for MD products with low voltage operation of

2.0 V. Now, the 0.25 mm PlayStation 2 graphics synthesizer has eDRAM with 48 GB=s bandwidth. Figure

25.19 shows the EmDRAM history.

Sony Em-DRAM has a high-band performance of 76.8 GB=s. See Fig. 25.20. In the following three

figures, Figs. 25.21 through 25.23, the memory cell size trend, some details of our embedded DRAM

history, and the vertical critical dimensions between 0.25 and 0.18 mm EmDRAM process are shown,

respectively.

0.25 µm CMOS
4 MB embedded DRAM
42.7 M transistors
Clock 150 MHz
Band width 48 GB/s
75 M Polygon per sec
384 pin BGA

1Metal

Capacitor

W

Cross sectional view

LOCOS

Bit line

Logic Tr
BMD

P-TEOS

Word line
(Buried metal diffusion)

Playstation 2

FIGURE 25.18 4 MB EmDRAM for PSX2.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 14 4.10.2007 3:48pm Compositor Name: VBalamugundan

25-14 Digital Systems and Applications

Now, a few words on the feature and critical issues of 130 nm Emb-DRAM LSI process. The most

advanced design rule to achieve high performance Tr –

Enhance resolution, and

refine OPC system (speed, accuracy)

Large variation in duty cycles

Reduce isolation—dense bias

High global step-> Enlarge D.O.F

High aspect hole process

Enhance etching durability

Higher performance system

Many applications/products

1st EmDRAM product

0.50 µm

1995 MP start

0.35 µm
1996 MP start

0.25 µm
1999 MP start

8 mm camcoder LSI
512 kbit DRAM + 50 kG

32 Mbit DRAM + 1500 KG
DRAM bandwidth 48 GB/s

Graphics synthesizer (PS2)

MD LSI

2 Mbit DRAM + 200 kG
2.0 V low voltage operation

FIGURE 25.19 Embedded DRAM history.

0.1

1

10

100

s
DRAM

Peek bandwidth (GByte/s)

0.6 GB/s

96.1Q 97.1Q 98.1Q 99.1Q 00.1Q

1.6 GB/s

(Direct)

76.8 GB/s

MP Start (C. Year)

2.0 GB/s

33 GB/s

High-Bandwidth DRAM Performance

Sony

Em-DRAM

M EmDRAM
10.6 GB/s

MO EmDRAM
ISSCC 98 Champion

0.5 GB/s

(Concurrent--60)

NM EMDRAM

Rambus DRAM

FIGURE 25.20 Performance of embedded DRAM.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 15 4.10.2007 3:48pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-15

OPC¼ optical proximity correction

DOF¼ depth of focus

In the 0.18 mm EmDRAM process, the optical proximity correction (OPC) technology and the phase-

shift mask technology (PSM) were very important. See Figs. 25.24 and 25.25. Many high-performance

manufacturing and measurement automatic machines, such as those shown in Fig. 25.26, are necessary.

M
em

or
y

ce
ll

si
ze

 (
µm

2)

0.8 0.7 0.5 0.4 0.25 0.180.35

4M−2
8

10
ASC4

ASC5

ASC6
0.72

4.5

16M−1 2.5

16M−3
64M−1

1.8

256 M−1

0.7−0.6
0.3
1G−1

3.5

7~8
6~7

5

ASC7

0.13

10

0.1

10.0

1.0

4G−1

4

0.2

ASC8

Design rule (µm)

Embedded DRAM: COB structure from 0.25 µm

Embedded SRAM

Embedded DRAM

Commodity DRAM

4M−1

FIGURE 25.21 CMOS memory cell size.

Key process
technology

Logic
cross

section

DRAM
cross

section

Mass
production

1992~ 1994~ 1998~ 2000~

Design rule

DRAM
cell size

 2 Metal(Al) layer
 BPSG reflow
 Spin on glass
 Stacked capacitor

0.7 µm

2.10 µm x 4.28 µm
 = 8.99 (µm2)

 3 Metal(Al-Cu) layer
 SiO2 dummy
 Blanket W(Tungsten)
 Stacked capacitor

0.35 µm

1.28 µm x 2.74 µm
 = 3.51 (µm)

 5 Metal(Al-Cu) layer
 Buried metal diffusion
 CMP
 Poly shrunken contact
 cylindrical capacitor

0.25 µm

0.60 µm x 1.32 µm
 = 0.79 (µm2)

 6 metal(Al-Cu) layer
 Self aligned contact
 Hemispherical

- Grained silicon
 Self aligned Co silicide
 Shallow trench isolation

0.18 µm

0.44 µm x 0.84 µm
 = 0.37 (µm2)

FIGURE 25.22 Embedded DRAM history.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 16 4.10.2007 3:48pm Compositor Name: VBalamugundan

25-16 Digital Systems and Applications

0.25 µm process

DRAM cell 1.32*0.60 µm2 DRAM cell 0.88*0.42 µm2

0.18 µm process
 1MT

 W.CMP

Capacitor HSG

Bit Line

 SAC

 STI
BMD

(Buried Metal on Diffusion layer)

W-Policide single gate (L = 0.25 µm)
BMD(Buried metal on diffusion layer)

W-Policide dual gate (L = 0.15 µm)
High aspect ratio 1st metal contact

DRAM Tr. Gate

0.18 µm

µ

DRAM Tr. Gate

0.25 µm
Logic Tr. Gate
0.15 µm

 Logic Tr.
Gate Oxinitride
Co Salicide
0.15 µm Dual_Gate

FIGURE 25.23 Em-DRAM process technology.

MASK DATA without OPC MASK DATA with OPC

Printed pattern

DRAM cell SRAM cell

FIGURE 25.24 Optical proximity correction.

0.16 mm
0.16 mm

Logic area DRAM area

Photo resist pattern

FIGURE 25.25 Phase-shift mask (PSM) technology.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 17 4.10.2007 3:48pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-17

Figure 25.27 shows the cross-sectional view of 0.18 mm EmDRAM, which was realized by utilizing all

these technologies and high-performance machines.

Now some comments on key factors: technology extention such as optical extention and full flat

process technology. KrF lithograpy optical extention features high NA, ultra-resolution, thin photo

resist, and the OPC technology. Wirings are fully planarized interlayers of Cu=Dual Damascene.

The EmDRAM features a fully planarized capacitor with the global step-less DRAM=logic structure

by self-align process.

Courtesy of Hitachi Electronics Engineering Co., LtdO
x

y

Reference pattern A
Resist pattern B

A

B

40 µm

BA

δ

LA3200

*3 nm TIS accuracy

 *130 wafers per hour (300 mmφ)

 *Ethernet data transfer system

A

B

FIGURE 25.26 Overlay accuracy measurement system.

1 metal contact

4 metal

3 metal

2 metal

1 metal
2 metal via

3 metal via

4 metal contact

5 metal via

Cell capacitor

Bit line
Word line

P1L (0.15Gate)

5 metal

Logic regionDRAM region

0.18 mm embedded DRAM logic

FIGURE 25.27 Cross-sectional view.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 18 4.10.2007 3:48pm Compositor Name: VBalamugundan

25-18 Digital Systems and Applications

25.4 Conclusion

Some introductory comments on the basic semiconductor device concepts were given. They are strongly

related to the microelectronics of the present home entertainment LSI chips. The chapter covered in

detail some product specifications and performance aspects of the home entertainment LSI chip sets,

such as those used in digital cameras, home robotics, and games. Cost of EmDRAM and its solutions by

using EmDRAM are strongly related with new market creation such as PSX2. The EmDRAM technology

for PS2=computer and some other future home entertainment electronics gadgets has a potential to be

the technology driver in the years to come.

References

1. Yoshiaki Hagiwara, ‘‘Solid State Device Lecture Series Aph=E183 at CalTech’’ in 1998–1999,

http:www.ssdp.Caltech.edu=apheel83=.

2. Yoshiaki Hagiwara, ‘‘Measurement technology for home entertainment LSI chips,’’ Presentation at the

Tutorial Session in ICMTS2001, Kobe, Japan, March 19–22, 2001.

3. M. Fujita and H. Kitano: ‘‘{{D}evelopment of and {A}utonomous {Q}uadruped {R}obot for {R}obot

{E}ntertainment},’’ Autonomous Robots, vol. 5, pp. 7–8, Kluwer Academic Publishers, Dordrecht, the

Netherlands, 1998.

4. Kohtaro Sabe, ‘‘Architecture of entertainment robot-development of AIBO –,’’ IEEE Computer

Element MESAWorkshop 2001, Mesa, Arizona, Jan. 14–17, 2001.

5. JP 1215101 (a Japanese Patent #58-46905), Nov. 10, 1975 by Yoshiaki Hagiwara.

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 19 4.10.2007 3:48pm Compositor Name: VBalamugundan

Microelectronics for Home Entertainment 25-19

Vojin Oklobdzija/Digital Systems and Applications 6195_C025 Final Proof page 20 4.10.2007 3:48pm Compositor Name: VBalamugundan

26
Mobile and Wireless

Computing

John F. Alexander
Raymond Barrett
University of North Florida

Babak Daneshrad
University of California

Samiha Mourad
Garret Okamoto
Santa Clara University

Mohammad Ilyas
Florida Atlantic University

Abdul H. Sadka
University of Surrey

Giovanni Seni
Motorola Human Interface Labs

Jayashree Subrahmonia
IBM Thomas J. Watson Research Center

Larry Yaeger
Indiana University

Ingrid Verbauwhede
Katholieke Universiteit

Leuven and UCLA

26.1 Bluetooth—A Cable Replacement and More.............. 26-2
What is Bluetooth? . Competing Infrared Technology .

Secure Data Link . Master and Slave Roles . Bluetooth

SIG Working Groups . The Transport Protocol Group .

The Bluetooth Transceiver . The Middleware Protocol

Group . The Application Protocol Group . Bluetooth

Development Kits . Interoperability . Bluetooth Hardware

Implementation Issues

26.2 Signal Processing ASIC Requirements for
High-Speed Wireless Data Communications 26-8
Introduction . Emerging High-Speed Wireless Systems .

VLSI Architectures for Signal Processing Blocks . Conclusions

26.3 Communication System-on-a-Chip 26-16
Introduction . System-on-a-Chip (SoC) . Need for

Communication Systems . Communication SoCs .

System Latency . Communication MCMs . Summary

26.4 Communications and Computer Networks 26-27
A Brief History . Introduction . Computer Networks .

Resource Allocation Techniques . Challenges and Issues .

Summary and Conclusions

26.5 Video over Mobile Networks 26-39
Introduction . Evolution of Standard Image=Video

Compression Algorithms . Digital Representation of Raw

Video Data . Basic Concepts of Block-Based Video Coding

Algorithms . Subjective and Objective Evaluation of

Perceptual Quality . Error Resilience for Mobile Video .

New Generation Mobile Networks . Provision of Video

Services over Mobile Networks . Conclusions

26.6 Pen-Based User Interfaces—An
Applications Overview.. 26-50
Introduction . Pen Input Hardware . Handwriting

Recognition . Ink and the Internet . Extension of the

Pen-and-Paper Metaphor .

Pen Input and Multimodal Systems . Summary

26.7 What Makes a Programmable DSP
Processor Special? .. 26-72
Introduction . DSP Application Domain . DSP

Architecture . DSP Data Paths . DSP Memory and

Address Calculation Units . DSP Pipeline . Conclusions

and Future Trends

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 1 11.10.2007 8:30pm Compositor Name: TSuresh

26-1

26.1 Bluetooth—A Cable Replacement and More

John F. Alexander and Raymond Barrett

26.1.1 What is Bluetooth?

Anyone who has spent the time and effort to connect a desktop computer to its peripheral devices,

network connections, and power source knows the challenges involved, despite the use of color-coded

connectors, idiot proof icon identification, clear illustrations, and step-by-step instructions. As com-

puting becomes more and more portable, the problems are compounded in the laptop computer case,

and the palmtop device case, let alone the cell phone case, where cabling solutions are next to impossible.

The challenges associated with cabling a computer are tough enough for purposes of establishing the

‘‘correct’’ configuration, but are nearly unmanageable if the configuration must be dismantled each time

a portable device is carried about in its portable mode.

Similar to a knight in shining armor, along comes Bluetooth; offering instant connectivity, intelligent

service identification, software driven system configuration, and a myriad of other advantages associated

with replacing cabling with an RF link. All of this good stuff is provided for a target price of $5 per

termination, a cost that is substantially lower than the cost of most cables with a single pair of

terminations. This miracle of modern communication technology is achieved with a 2.4-GHz frequency

hopping trans-ceiver and a collection of communications protocols. At least, that is the promise. The

participants who include such industrial giants as IBM, Motorola, Ericsson, Toshiba, Nokia, and over a

thousand other consortium participants provide credibility for the promise.

There has been considerable interest in the press over the past few years in the evolution of the open

Bluetooth1 [1] specification for short-range wireless networking [2]. Bluetooth is one of many modern

technological ‘‘open’’ specifications that are publicly available. The dream is to support Bluetooth short-

range wireless communications (10–100 m) any where in the world. The 2.4 GHz frequency spectrum

was selected for Bluetooth primarily because of its globally available free license. As we entered the

twenty-first century there were already more than 1800 members of Bluetooth special interest group

(SIG) [3]. Its reasonably high data rate (1 Mb=s gross data rate) and advanced error correction make it a

serious consideration that is irresistible for hundreds of companies in a very diverse group of industries,

all interested in ad hoc wireless data and voice linkages.

The Bluetooth specification utilizes a frequency hopping spread spectrum algorithm for the hardware

and specifies rapid frequency hopping of 1600 times per second. As one might conclude 2.4 GHz digital

radio transceivers that support this type of high frequency communication are quite complex, however,

the hardware design and implementation is just the tip of the iceberg in understanding Bluetooth. The

goal of this chapter is to provide the reader with a thorough overview of Bluetooth. An overview is

detailed in the standard, but the Bluetooth specifications alone are thousands of pages.

Some of the proposed and existing Bluetooth usage models are the cordless computer, the ultimate

headset, the three-in-one phone, the interactive conference (file transfer), the Internet bridge, the

speaking laptop, the automatic synchronizer, the instant postcard, ad hoc networking, and hidden

computing.

26.1.2 Competing Infrared Technology

First, a brief digression will be taken into infrared wireless communication. With the advent of the

personal digital assistant (PDA), it was obvious for the need of a low cost, low power means of wireless

communication between user’s devices and peripherals. At an Apple Newton users group one could see

hundreds of enthusiasts ‘‘beaming’’ business cards back and forth. As other vendors came out with PDA

each had its own proprietary infrared communication scheme. Eventually one ‘‘standard’’ method of

communication between users applications came about as an outgrowth of the work of the Infrared

Data Association. This specification became known as IrDA [4]. An international organization creates

and promotes interoperable, low cost infrared data interconnection standards that support a walk-up,

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 2 11.10.2007 8:30pm Compositor Name: TSuresh

26-2 Digital Systems and Applications

point-to-point user model. The standards support a broad range of appliances, computing, and

communications devices.

Several reasons exist for mentioning the IrDA. First, many of the companies involved in the Bluetooth

effort are members of the IrDA and have many products, which support IrDA protocols. Thus, much of

the learning time in developing and attempting to implement a workable open standard for ad hoc short

range wireless communication is in house. Also the IrDA has been one of the many well thought out high

technology products that never gained much user acceptance. Many of the members of the Bluetooth

SIG were anxious not to make the same mistake but to gain a way to profit from all the hard work

invested in IrDA.

The proposed solution seemed simple. Just include more or less the entire IrDA software protocol

stack in Bluetooth. Thus, the many already developed but seldom-used ‘‘beaming’’ applications out

there could readily use Bluetooth RF connectivity. Whether this was a good idea, only time can tell. But

it is important in understanding the Bluetooth specification because it is so heavily influenced by

millions of hours of corporate IrDA experience and frustrations.

26.1.3 Secure Data Link

Providing a secure data link is a fundamental goal for the Bluetooth SIG. One could envision the horror of

walking through an airport with your new proprietary proposal on your laptop and having the competition

wirelessly link to your machine and steal a copy. Without good security Bluetooth could never gain wide

acceptance in virtually all cell phones, laptops, PDAs, and automobiles that the drafters envisioned.

Secure and nonsecure modes of operation are designed into the Bluetooth specification. Simple

security is provided via authentication, link keys, and PIN codes, similar to bank ATM machines. The

relatively high frequency hopping at 1600 hops=sec adds significantly to the security of the wireless link.

Several levels of encryption are available if desired. In some cases, this can be problematic in that the

level of encryption allowed for data and voice varies between countries and within countries over

time. The Bluetooth system provides a very secure environment, eavesdropping is difficult. Bluetooth

probably will be shown to be more secure than landline data transmission [5].

26.1.4 Master and Slave Roles

The Bluetooth system provides a simple network, called a piconet, nominally 10 m in radius. This is the

1-mW power mode (0 dbm). There is also a 10-mWmode allowed, which probably could reach a 100 m

in ideal cases, but it may not become widely implemented. One should think of a Bluetooth piconet as a

10 m personal bubble providing a moderately fast and secure peer-to-peer network. The specification

permits any Bluetooth device to be either a master or a slave. At the baseband level, once two devices

establish connection, one has to be a master and the other a slave. The master is responsible for

establishing and communicating the frequency-hopping pattern based on the Bluetooth device address

and the phase for the sequence based on its clock [6].

Up to seven active slaves are allowed all of which must hop in unison with the master. The Bluetooth

specification allows for the direct addressing of up to 255 total slave units, but all but seven of the slaves

must be in a ‘‘parked’’ mode. The master–slave configuration is necessary at the low protocol levels to

control the complex details of the frequency hopping, however, at higher levels, the communication

protocol is a peer-to peer and the connection established looks like point-to-point. The protocol

supports several modes, which include active, sniff & hold, and park. Active uses the most power.

While the master unit is in sniff mode, it conserves power by periodically becoming active. Additionally,

the slave is in a hold mode but wakes up periodically based on timing from the master to ‘‘see’’ if any

data is ready for it. While a slave is in park mode it consumes the least power, but the slave still maintains

synchronization with the master.

A more complex Bluetooth communication topology is the scatternet. In one of the simpler scatternet

schemes there are two masters with a common slave device active in two piconets. In another variation

on the scatternet, one device is a slave in one piconet and the master in another. Using this scatternet

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 3 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-3

idea some have speculated that an entire wireless network could be formed by having many piconets,

each with one common node. Theoretically, this would work, but the rest of the original Bluetooth

specification is not designed for making Bluetooth a wireless LAN. It is likely the newer SIG work group

on personal area networking will be interested in expanding the definition and capability of Bluetooth

scatternet capability. Currently there is lots of interest in forming location aware ad hoc wireless

networks [7]. NASA has already approached this author for ideas for use of Bluetooth for ad hoc

small area networks in space missions. The appeal of a wireless link made up of five dollar, very small,

low-power, self-configuring, parts capable of connecting various sensors is irresistible for complex space

missions where power and payload weight is at a premium.

26.1.5 Bluetooth SIG Working Groups

To understand the Bluetooth specification it is important to understand how the very large Bluetooth

SIG is organized. The actual work in producing the various specifications is done by the various SIG

working groups. Given that the Bluetooth specification is thousands of pages of detailed technical

documentation, it is not practical to just sit down and read the specification sheet. Briefly, five major

groups compose the SIG including the air interface group, the software group, the interoperability

group, the legal group, and the marketing group [3].

The software group contains three working subgroups primarily responsible for the Bluetooth

protocol stack. These are the lower Transport Protocol Group, the Middleware Protocol Group, and

the Application Group. The protocol stack follows the international origination of standardization (ISO)

seven-layer reference model for open system interconnection [8].

26.1.6 The Transport Protocol Group

The Transport Protocol Group includes ISO layers one and two, which are the Bluetooth radio, the link

controller baseband, the link manager, the logical link controller and application protocol (L2CAP)

layer, and the host controller interface. Collectively this set of protocol groups form a virtual pipe to

move voice and data from one Bluetooth device to another. Audio applications bypass all of the higher

level layers to move voice from one user to another [6].

The L2CAP layer prevents higher level layers from having to deal with any of the complexity of the

frequency hopping Bluetooth radio and its complex control or special packets used over the Bluetooth

air radio interface. The responsibility of the L2CAP layer is to coordinate and maintain the desired level

of service requested and coordinate new incoming traffic. The L2CAP layer’s concern is with asyn-

chronous information (ACL packet) transmission [6]. This layer does not know about the details of the

Bluetooth air interface such as master, slave, polling, frequency hopping, and such. Its job is to support

the higher layer protocol multiplexing so multiple applications can establish connectivity over the same

Bluetooth link simultaneously [9].

Device authentication is based on an interactive transaction from the link manager. When an

unknown Bluetooth device request connectivity, the device requested ask the requester to send back a

16 byte random number key, which is similar to the familiar bank ATM PIN code procedure. Once a

device is authenticated it is necessary for the device to store the authentication codes so this process can

be automatic in future connections. Link encryption up to 128 bytes is supported and is controlled by

desirability and governing legal issues of the area. Encryption applies only to the data payload and is

symmetric.

Power management of connected devices is also handled at this level. In sniff mode the slave must

wake up and listen at the beginning of each even-numbered slot to see if the master intends to

transmit [6]. In hold mode the slave is suspended for a specified time. The API for hold mode puts

the master in charge but provisions are available to negotiate the time. In Park mode, the slave

dissociates itself from the piconet while still maintaining synchronization of the hopping sequence.

Before going in to park mode the master informs the slave of a low-bandwidth beacon channel the

master can use to wake the parked slave if there not already seven active slaves.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 4 11.10.2007 8:30pm Compositor Name: TSuresh

26-4 Digital Systems and Applications

Paging schemes allow for a more repaid reconnection of Bluetooth devices. For example, paging is

used in the event a master and a slave need to switch rolls to solve some problem such as forming some

sort of local area network. Support for handling paging is optional in the Bluetooth specification.

Another role of the link managers is to exchange information about each other to make passing data

back and forth more efficient.

26.1.7 The Bluetooth Transceiver

The Bluetooth systems operate in the industrial and scientific (ISM) 2.4 GHz band. This band is

available license free on a global basis and is set a side for wireless data communications. In the United

States the Federal Communication Commission (FCC) sets up rules for transmitters operating in the

ISM band under section 15.247 of the Code of Federal Regulations. The frequency allocated is from

2,400 MHz to 2,483.5 MHz. The Bluetooth transceiver operates over 79 channels each of which is one

megahertz wide. At least 75 of the 79 frequencies hoped to must be pseduo-random. Bluetooth uses all

79 channels and hops at a rate of 1600 hopes per second.

26.1.8 The Middleware Protocol Group

The Middleware Protocol Group includes ISO layers three and six, which are made up of the RFCOMM

protocol, the service discovery protocol (SDP), IrDA interoperability protocols, IrDA, and Bluetooth

wireless protocol, and the audio and telephony control protocol. Fitting Bluetooth into the ISO model is

really up to the developer. If you want to make it fit it makes sense, but there is lots of strange baggage

imbedded protocols in Bluetooth that makes this difficult to see. First, we have already seen the voice

communication connect down at the L2CAP layer. Now we are faced with how the toss in multiplexed

serial port emulation, IrDA interoperability, and a bunch of protocols from telephony world. No wonder

the standard goes on for thousands of pages and hundreds of companies around the world are struggling

with comparability testing of various Bluetooth devices designed from this very complex specification.

26.1.9 The Application Protocol Group

The Application Protocol Group includes ISO layer seven. This grouping contains the most extensive

variety of special-purpose profiles all of which rely on the six lower levels for service. These include the

generic profiles, the serial and object exchange profile, the telephony profiles, and the networking

profiles.

The generic profiles includes the generic access profile and the service discovery application profile.

The serial and object exchange profile contains the serial port profile, the generic object exchange profile,

the object push profile, the file transfer profile, the synchronization profile, the networking profiles, the

dial-up networking profile, the LAN access profile, the fax profile, the telephony profiles, the cordless

telephony profile, the intercom profile, the headset profile, and the cordless telephony profile. Most of

these applications profiles are self-explanatory and are only of detailed interest to the software developer

when developing a specific application using the appropriate profile. This is not to say that they are not

important, but they provide very detailed application programmer interfaces (API) [15].

The possible Bluetooth applications keep expanding. This stimulates interest in expanding the array of

application profiles in the Bluetooth specification. Several of the newer application profiles are the car

profile, a richer audio=video profile, and a local positioning profile.

26.1.10 Bluetooth Development Kits

Given the obvious complexity of the Bluetooth hardware and software applications, having access to

good development kits is essential to speed the implementation of the specification. The first inexpen-

sive development kit to become widely available to universities was Ericsson’s Bluetooth Application and

Training Toolkit. This is a first generation Bluetooth kit that demonstrates important Bluetooth features

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 5 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-5

and has a well defined, but extensive proprietary API in Cþþ. Application development is possible, but

is time-consuming and tedious requiring knowledge of Cþþ to learn a vast API. Newer kits, specifically

for development, are more efficient.

Cambridge Silicon Radio (CSR) Bluetooth silicon radio has been very well publicized in the Bluetooth

development and features ‘‘all CMOS’’ one chip solution. The CSR development kit includes software

for CRR ‘‘BlueCorey’’ [11] IC with on-chip Bluetoothy protocol and a PC development environment.

Tools for embedded ‘‘1-chip’’ products are provided. Bluetooth BlueCore-to-host serial protocol and

integrated Bluetooth protocol: BlueStacky. An innovative feature is that BlueCore devices enable users

to configure the level of BlueStack that loads at boot time using software switches. SCR clams that

running the full Bluetooth protocol locally on a BlueCore device significantly reduces the load on the

host embedded processor, delivering major advantages to users of there Bluetooth system on a chip

solution [12].

Many other development tools can be found currently at the http:==www.bluetooth.com=

product=dev_tools=development.asp. The above two are referenced because they have been around

for a year or so and the authors have direct experience with them [2].

26.1.11 Interoperability

There is a conflict with IEEE 802.11 Wireless Network Specification, which uses a direct sequence spread

spectrum approach in the same frequency band. The direct sequence modulation is incompatible with

the frequency hopping approach employed in Bluetooth. It is unlikely that an elegant interoperability

solution can be found, without duplication of the entire hardware solutions for each; however, some

early ad hoc reports in the trade press seem to point to the interoperability between 802.11 and

Bluetooth to be minor [13,14].

Both operate in the 2.4 GHz ISM band, and both are a form of spread spectrum, but the 802.11 is

direct sequence modulated spread spectrum and allows more power. Bluetooth is frequency hopping

and low power.

26.1.12 Bluetooth Hardware Implementation Issues

First, for Bluetooth to achieve the stated goals for widespread usage at low cost, there are severe hardware

constraint issues to be addressed. Second, the environment into which Bluetooth is likely to be deployed

is rapidly changing. Finally, the business models for adoption of Bluetooth technology are also impacted.

Broadly speaking, there are two classes of hardware implementation for Bluetooth, one employs

discrete multiple chips to produce a solution, and a second in which Bluetooth becomes an embedded

intellectual property (IP) block in a system-on-a-chip (SoC) product.

For the short run, the multiple chip strategy provides an effective implementation directed at

prototype and assembly-level products. The strategy is effective during the initial period of development

for Bluetooth, while the specification is still evolving and the product volumes are still low; however, a

strong case can be made that the high volumes, low cost, and evolving environment make an IP block

approach inevitable if Bluetooth is to enjoy wide acceptance.

In addressing the environmental issues, the most widely dispersed communications product today is

the cell phone, with its service variants. The Internet connectivity of cell phones is soon to surpass the

Internet connectivity of the desktop computer. The consequence of the cell phone driving the environ-

ment for all information processing connectivity under its constraints of low power, tight packaging,

high volume, and low cost manufacturing forces examination of IP blocks for SoC solutions.

Bluetooth is highly attractive for cell phone products as a wire replacement, enabling many of the

existing profiles from a cell phone, as well as providing expansion for future applications. The desktop

computer embraces Bluetooth also as a wire replacement, but has a history of services supported by

cabling. The cell phone cannot support many services with cabling, and in contrast to the desktop,

service extensions for the raw communication capability of 3G and 4G cell phones must be addressed by

wireless solutions.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 6 11.10.2007 8:30pm Compositor Name: TSuresh

26-6 Digital Systems and Applications

Once Bluetooth IP block solutions exist, the market forces will drive high-volume products toward

either embedded or single-chip Bluetooth implementations.

Technological hurdles must be overcome in the road toward Bluetooth IP block solutions.

Presently, the RF front-end solutions for bluetooth are nearly all implemented in bipolar IC technology,

implying at least a BiCMOS IC, which is widely recognized as too high cost for high-volume SoC

products. As the lithography becomes available for denser CMOS IC products, the deep submicron

devices provide the density and speed increases to support SoC solutions in the digital arena, and also

improve the frequency response of the analog circuitry, enabling the possibility of future all-CMOS

implementation.

In addition, communications system problems must be solved in order to ensure the feasibility of an

all-CMOS implementation. For example, one of the more popular architectures for a modern commu-

nications receiver is the zero-IF (ZIF) approach. Unfortunately, the ZIF approach usually converts the

RF energy immediately to baseband without significant amplification, which places the very small signal

in the range of 1=f noise of the semiconductor devices employed. Typically, the only devices with

substantially low enough noise are bipolar devices, which are to be avoided for system level consider-

ations. Alternative architectures that are suitable include variants of super heterodyne architectures that

usually require tuned amplifiers, which are also seldom suitable for integration. One approach that

seems to meet all the requirements is one variant of the super heterodyne architecture known as low-IF,

that places the energy high enough in the spectrum to avoid noise considerations, but low enough to be

addressed by DSP processing to achieve the requisite filtering.

Regardless of the particular architecture chosen, the rapid channel switching involved in the

frequency-hopping scheme necessitates frequency synthesis for local oscillator functions. There is

considerable design challenge in developing a fully integrated voltage-controlled-oscillator (VCO) for

use in a synthesizer that slews rapidly and still maintains low phase noise.

To compound the above issues, true IP block portability implies a level of process independence that

is not currently enjoyed by any of the available architectures. Portability issues are likely to be addressed

by intelligence in the CAD tools that are used to customize the IP blocks to the target process through

process migration and shrink paths.

References

1. Bluetooth is a trademark owned by Telefonaktiebolagent L M Ericsson, Sweden and licensed to the

promoters and adopters of the Bluetooth Special Interest Group.

2. http:==www.bluetooth.com=developer=specification=specification.asp Bluetooth Specification v1.1

core and v1.1 profiles.

3. http:==www.bluetooth.com=sig=sig=sig.asp Bluetooth Special Interest Group (SIG).

4. Infrared Data Association IrDA http:==www.irda.org.

5. Bray, J. and Sturman, C.F., Bluetooth, Connectivity with our Cables, Prentice-Hall, Englewood Cliffs,

NJ, 2001.

6. Miller, B.A. and Bisdikian, C., Bluetooth Revealed, Prentice-Hall, Englewood Cliffs, NJ, 2001.

7. Tseng, Y., Wu, S., Liao, W., and Chao, C., Location Awareness in Ad Hoc Wireless Mobile Networks.

[June 2001], IEEE Computer, 46,52.

8. International Origination of Standardization Information processing systems–Open Systems

Interconnection–Connection Oriented Transport Protocol Specification, International Standard

number 8825, ISO, Switzerland, May 1987.

9. Held, G., Data Over Wireless Networks, McGraw-Hill, New York, 2001.

10. http:==www.comtec.sigma.se=Ericsson’s Bluetooth Application and Training Tool Kit 200.

11. BlueCorey’’ and BlueStacky’’ are registered trademarks of Cambridge Silicon Radio, Cambridge,

England, 2001.

12. http:==www.csr.com=software.htm, Development software for BlueCorey ICs Cambridge Silicon

Radio, Cambridge, England, 2001.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 7 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-7

13. Dornan, A., Wireless Ethernet: Neither Bitten or Blue. Network Magazine, May 2001.

14. Merritt, R., Conflicts Between Bluetooth and Wireless LANs Called Minor. EE Times, February 2001.

15. Muller, N.J., Bluetooth Demystified, McGraw-Hill, New York 2000.

26.2 Signal Processing ASIC Requirements for High-Speed
Wireless Data Communications

Babak Daneshrad

26.2.1 Introduction

To date, the role of application specific integrated circuits (ASICs) in wireless communication systems

has been rather limited. Almost all of the signal processing demands of second generation cellular

systems such as GSM and IS-136 (US TDMA) can be met with the current generation of general purpose

DSP chips (e.g., TI TMS320, Analog Device’s ADSP 21xx, or Lucent’s DSP16xx families). The use of

ASICs in wireless data communications has been limited to wireless LAN systems such as Lucent’s

WaveLAN and the front end, chip-rate processing needs of DSSS-CDMA based systems such as IS-95

(US CDMA).

Several major factors are redirecting the industry’s attention towards ASICs for the realization of

highly complex and power efficient wireless communications equipment. First, the move toward third

generation (3-G) cellular systems capable of delivering data rates of up to 384 kbps in outdoor macro-

cellular environments (an order of magnitude higher than the present second generation systems) and

2 Mbps in indoor micro-cellular environments. Second, the emergence of high-speed wireless data

communications, whether in the form of high-speed wireless LANs [1] or in the form of broadband

fixed access networks [2]. A third, but somewhat more subtle factor is the increased appeal of software

radios. Radios that can be programmed to transmit and receive different waveforms and thus enable

multi-mode and multi-standard operation. Although ASICs are by nature not programmable, they are

parameterizable. In other words, ASIC designers targeting wireless applications must develop their

architectures in such a way as to provide the user with features such as variable symbol rates and carrier

frequency, as well as the ability to shut off parts of the circuit that may be unused under benign channel

conditions. For DSSS systems the ASICs should provide sufficient flexibility to accommodate program-

mability of the chip-rate, spreading factor, and the spreading code to be used.

The next subsection further explores these elements and identify key signal processing tasks that are

suited for ASIC implementation. Section 26.2.3 will present signal processing algorithms and ASIC

architectures for the realization of these blocks. This section ends with Section 26.2.4.

26.2.2 Emerging High-Speed Wireless Systems

26.2.2.1 Third Generation (3-G) Cellular Networks

Second generation cellular systems such as IS-136, GSM, and IS-95 have mainly focused on providing

digital voice services and low-speed data traffic. With the growing popularity of the Internet and the

need for multimedia networking, standardization bodies throughout the world are looking at the

evolution of current systems to support high-speed data and multimedia services. The technology of

choice for all such 3-G systems is wideband code division multiple access (W-CDMA) based on direct

sequence spread spectrum (DSSS) techniques [3,4]. The targeted chipping rate for these systems is

3.84 Mcps for the European UTRA standardization work, and a multiple of 1.2288 Mcps for the CDMA-

2000 proposal.

In addition to providing higher data rates, which come about in part due to the increased bandwidth

utilization of 3-G systems, a second and equally important aim of these systems is to increase the

capacity of a cell (number of simultaneous calls supported by a cell). To this end, all the current

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 8 11.10.2007 8:30pm Compositor Name: TSuresh

26-8 Digital Systems and Applications

proposals call for the use of sophisticated receivers utilizing multi-user detection and possibly smart

antenna technologies.

In order to better appreciate the signal processing requirements of these receiver units, consider the

block diagrams presented in Fig. 26.1. Figure 26.1a depicts the transmitter of a DSSS system, along with

a candidate successive interference canceller (SIC) shown in Fig. 26.1b [5]. The details of the rake

receiver are shown in Fig. 26.1c.

The tremendous processing requirements of this architecture will become evident by considering a

modest system operating at a chip rate of say, 4 Mcps using a 32-tap shaping filter, four rake fingers per

user, four complex correlators per rake finger and 10 users in the cell, the number of operations (real

multiply-adds) needed for a 5-stage SIC is upwards of 14 billion operations per second or giga-operations

per second (GOPS). This amount of processing can easily overwhelm even the latest generation of general-

purpose processors such as the TI TMS320C6x which delivers 1.6 giga-instructions per seconds (GIPS),

but only 400megamultiply-add operations per second [6]. At an anticipated power dissipation of 850mW

per processor, the overall power consumption of a SIC circuit based on such units will be quite large.

It is also worth noting that many operands are in the SIC or other MUD receiver that require only a

few number of bits (i.e., multiplication with a 1-bit PN code sequence). This fact can be exploited in a

dedicated ASIC datapath architecture but not in a general-purpose software programmable architecture.

Rake

CombinerRake finger 1

Loop
filter

Variable rate
interpolator

Late correlator

Early correlator

Data correlator

PN

Σ
Pilot correlator

NCO

AFC
loop To VCO

Shaping
filter

PN, F chip

↑2

↓N
User-1
rake

User-K
rake C

ho
os

e
la

rg
es

t

Remodulator

To next stage SIC

Shaping
filter

Rake finger 2

Rake finger K

Data, F baud

Received
sig. NF chip

(a)

(b)

(c)

FIGURE 26.1 Block diagram of (a) generic DSSS transmitter, (b) successive interference canceller for multiuser

detection, and (c) rake receiver for a system with parallel pilot channel (i.e., IS-95).

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 9 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-9

26.2.2.2 Broadband Wireless Networks

Emerging broadband fixed wireless access systems provide high-speed connectivity between a cellular

base station and a home or office building at data rates of a few Mbps to a few tens of Mbps. On the

other hand, standardization activities that are currently targeting high-speed wireless mico-cellular

(wireless LAN) systems are looking at delivering 10–20 Mbps over the air data rates in the near future,

with higher rates projected in the long term.

It is generally accepted that in order to achieve such high data rates, beam switching or beamforming

techniques must be integrated into the development of the nodes. In addition, single carrier systems

must include adaptive equalization to overcome time varying channel impairments, while multicarrier

systems based on OFDM will require a large number of subcarriers [7]. The signal processing require-

ments for such high data rate systems could easily mount into the tens of GOPS range, thus necessitating

the development of ASICs.

Furthermore, the flexibility of digital implementation compared to an analog implementation of the

down-conversion path makes a digital IF architecture more appealing. Figure 26.2 depicts the detailed

block diagram of a single carrier high-speed wireless communication receiver complete with adaptive

beamforming, adaptive equalization, and variable symbol rates. The flexibility offered by such an

architecture can meet the demands of different systems requiring different levels of performance.

In this architecture, the direct digital frequency synthesizer (DDFS) serves three roles. First, it enables

down-conversion of any carrier frequency up to half the sampling frequency of the analog-to-digital

converter. Second, it can replace or complement a VCO for the purposes of carrier recovery, and third it

can easily generate different phases needed by the beamforming circuit.

The variable rate decimator block is a key element in variable symbol rate systems where it is desired

to maintain the same exact analog filtering, but yet accommodate user defined symbol rates. This is

particularly important in wireless systems where a predefined data rate is difficult to guarantee due

to statistical channel variations such as fading and shadowing. In such scenarios, the user can simply

back-off on the symbol rate and provide connectivity albeit at a lower data rate.

The flexible decimation architecture depicted in Fig. 26.2 consists of two stages. The first is a course

decimator block, which can decimate the signal by 2N for N¼ 0, 1, 2, . . . , M. This section is realized

A/D ↓ 2N ↓α

IF Freq.

↓

A/D ↓2N ↓α

IF Freq.

↓

DDFS

θK
θ1

WK

W1

Matched
filter FFF

FBF

From carrier
recovery

From timing
recovery

Beamformer
coefficients

FIGURE 26.2 Block diagram of an all-digital receiver for a single carrier system (i.e., QAM) featuring digital IF

sampling, beamforming, variable symbol rate, adaptive equalization, all digital timing, and carrier recovery loops.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 10 11.10.2007 8:30pm Compositor Name: TSuresh

26-10 Digital Systems and Applications

using a cascade of N decimate by two stages. The second part of the decimator is a variable rate

interpolator block, which can change the sampling rate by any value in the range of 2–4. Not only can

this block be used to change the sampling frequency of the signal, but it is the vital element in the

realization of an all digital timing recovery loop.

The matched filter is typically a fixed coefficient fixed impulse response (FIR) filter. This block is

followed by a decision feedback equalizer (DFE) that helps mitigate the effects of intersymbol interfer-

ence (ISI) caused by the multipath nature of the channel. The DFE is made up of two adaptive FIR filters

referred to as the feedforward filter (FFF) and the feedback filter (FBF).

The amount of processing (in terms of real multiply-adds per second) needed to realize these blocks

can easily run into several GOPS. As an example, a baseband QAM receiver consisting of a 30-tap

matched filter, a 10-tap FFF and a 5-tap FBF adapted using the least mean squares (LMS) algorithm, and

running at 10 Mbaud requires close to 2.5 GOPS of processing. Once the processing needs of the DDFS,

variable rate filters, and the beamforming network are also factored in, the processing requirements can

easily reach 7–8 GOPS.

26.2.3 VLSI Architectures for Signal Processing Blocks

26.2.3.1 Fixed Coefficient Filters

The most intuitive means of implementing a FIR filter is to use the direct form implementation presented

in Fig. 26.3a [12]. Applying the transposition theorem to this filter we get the transposed structure shown

in Fig. 26.3b. The two structures are identical in terms of I=O, however, the transposed form is ideal for

high speed filtering operations since the critical path for an N tap filter is always one multiplier delay

plus one adder delay. The critical path of the direct form, however, is one multiplier delay plus N-1

adder delays. The fact is that the symbol rate for most wireless communication systems is a few tens of

megahertz, whereas a typical multiplier in today’s CMOS process technologies can easily reach speeds of

80–100 MHz. It is thus desirable to use the hybrid architecture shown in Fig. 26.3c where each multiplier

z
−1

W5 W4 W3 W2 W1 W0

W0 W1 W2 WN-1

WN-1 WN-2 W1 W0

z
−1 z

−1

z
−1

z
−1

z
−1

(a)

(b)

(c)

FIGURE 26.3 Alternative FIR filter structures: (a) direct form FIR structure, (b) transposed form FIR structure,

and (c) hybrid FIR structure.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 11 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-11

accumulator is time-shared between several taps (three in this case) resulting in amore compact circuit for

lower symbol rates.

The implementation of fixed coefficient FIR filters can be further simplified by moving away from the

use of 2’s complement number notation, and using a signed-digit number system in which each digit can

take on one of three values {�1, 0, 1}. In general there are multiple signed-digit representations for the

same number and a canonic signed-digit (CSD) representation can be defined for which no two nonzero

digits are adjacent [8]. The added flexibility of signed-digit numbers allows us to realize the same

coefficient using fewer nonzero coefficients than would be possible with a simple 2’s complement

representation. Using an optimization program, it is possible to design an FIR filter using CSD filters

with as few as three or four nonzero digits for each coefficient. This could help significantly reduce the

complexity of fixed coefficient multipliers since the number of partial products generated is directly

proportional to the number of nonzero digits in the multiplier.

26.2.3.2 Direct Digital Frequency Synthesizer (DDFS)

Given an input frequency word W, a DDFS will produce a frequency proportional to W. The most

common techniques for realizing a DDFS consist of first accumulating the frequency wordW in a phase

accumulator and then producing the sine and cosine of the phase accumulator value using a table

lookup or a coordinate rotation (CORDIC) algorithm. These two approaches are depicted in Fig. 26.4.

The two metrics for measuring the performance of a DDFS are the minimum frequency resolution Df

and the spurious free dynamic range (SFDR). The frequency resolution can be improved by increasing

the wordlength used in the accumulator, while the SFDR is affected by the wordlengths in both the

accumulator as well as the sine=cosine generation block.

One of the main challenges in the development of the table lookup DDFS has been to limit the size of

the sine=cosine table. This has been accomplished through two steps [9]. First, by exploiting the

symmetry of the sine and cosine functions it is only necessary to store b of the period of a sine wave

and derive the remainder of the period through manipulation of the saved portion. Second, the number

of bits per entry can be reduced by dividing the sine table between a coarse ROM and a fine ROM with

the final result obtained after simple post-processing of the values. Combining these two techniques can

result in the reduction of the sine tables by an order of magnitude or better.

In the CORDIC algorithm, Fig. 26.4, sine and cosine of the argument are calculated using a cascade of

stages, each of which rotates its input complex vector by d=2k (d¼p=2) if the kth bit of W is 0 and

�d=2k if the bit is a 1. Thus each stage performs the following matrix operation:

xout
yout

� �
¼ cos u � sin u

sin u cos u

� �
xin
yin

� �
¼ cos u

1 � tan u
tan u 1

� �
xin
yin

� �

Sin()

Lookup or
generation

+
Reg

W
N bits

Cos (bWt)

Cos (bWt)

(a)

0
+

Reg

W
N bits κ

(b)

Sin (bWt)

Sin (bWt)

q (t)

q (t)

FIGURE 26.4 Two most common DDFS architectures: (a) table lookup and (b) coordinate rotation (CORDIC).

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 12 11.10.2007 8:30pm Compositor Name: TSuresh

26-12 Digital Systems and Applications

In [10] a simplification of the CORDIC DDFS is presented in which for small u, tan(u) is simply

approximated by u. In [11] a different modification to the CORDIC architecture is proposed that will

facilitate low-power operation in cases where a sustained frequency is to be generated. This is achieved

by calculating the necessary angle of rotation for each sampling clock period, and dedicating a single

rotation stage in a feedback configuration to contiually rotate the phasor through the desired angle.

26.2.3.3 Decimate=Interpolate Filters

Variable rate interpolation and decimation filters play a very important role in the development of

highly flexible and self contained all-digital receivers. As previously mentioned, they are the critical

element of all digital timing recovery loops as well as systems capable of operating at a host of user

defined symbol rates. Additionally, digital resampling allows the ASIC designer to ensure that the clock

frequency at all portions of the circuit are the minimum that they need to be to properly represent the

signals. This could have significant impact on the size and power consumption of the resulting ASIC

since power scales with the clock frequency and the square of the supply voltage. Thus, for a given circuit

with a critical path of say t seconds, if the data rate into the block is lowered by a factor K, then the

frequency dependent portion of the dissipated power is also scaled by the same factor; however,

additional power savings can be achieved by noting that the block now has Kt seconds to complete

its task. Because the speed of a digital circuit is proportional to the supply voltage, we can reduce the

supply voltage and still ensure that the circuit meets the speed constraints.

Given the coefficients of an FIR decimation or interpolation filter, the structure of choice for

the realization of a decimate by D or an interpolate by D filter is the polyphase structure [12] shown

in Fig. 26.5. The attractiveness of this structure is in the fact that the filter is always operated at the lower

sampling frequency.

In many cases it is desirable to resample the signal by a power of 2N. In which case N decimate

(interpolate) by two stages can be cascaded one after the other. Each decimator will consist of a halfband

filter followed by a decimator. The halfband filter could be realized using the polyphase structure to

simplify its implementation. Moreover, these filters are typically very small consisting of anywhere from

7 to 15 taps depending on the specified stopband attenuation and the size of the transition band. Their

implementation can be simplified by exploiting the fact that close to half of the coefficients are zero and

the remainder are symmetric about the main tap due to the linear phase characteristics of the halfband

filter. Finally, since these are fixed-coefficient filters, they can be realized using CSD coefficients [13].

It is interesting to note that for the special case of a decimate (interpolate) by 2N, it is possible to reuse

the same hardware element and simply recirculate the data through it. In this architecture, the filter is

run at the highest data sampling rate. The first pass through the filter will use up 1=2 of its computa-

tional resources, the second pass will use up 1=4 of the resources, and so on [14]. Although conceptually

attractive, the clock generation circuit for such an architecture is quite critical and complex and this

approach looses its appeal for recirculating factors greater than 3 or 4.

y(n)

h0, hU , h2U, ...

h0, hD, h2D, ...

x(n)

x(n)

y(n)

Interpolator
structure

Decimator
structure

h1, hU+1, h2U+1, ...

h1, hD+1, h2D+1, ...

hU -1, h2U -1, h3U+1 ...

hD -1, h2D -1, h3D -1, ...

FIGURE 26.5 Polyphase filter structures for interpolation and decimation.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 13 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-13

In cases where the oversampling ratio is large (e.g., narrowband signal) an alternative approach using

a cascaded integrator-comb (CIC) structure can be used to implement a multiplierless decimator. The

interested reader is referred to [15] for a brief overview of a CIC ASIC.

The continuously variable decimator block shown in Fig. 26.2 can resample the input signal by any

factor a in the range of 2–4. The operation of this block is equivalent to that shown in Fig. 26.6, where

the input data x(n), originally sampled at 1=Ts is resampled to produce an output sequence y(n) sampled

at 1=Ti. The entire operation is performed digitally.

To better understand the operation of this block, let us define the variable mk, to be the time difference

between the output sample y(k) and the most recent input sample x1. The job of the variable rate

interpolator is to weight the adjacent input samples (. . . , x0, x1, . . .), based on the ratio mk=Ts, and add

the weighted input samples to obtain the value of the output sample, y(k). Mathematically, a number of

Ts
α

Ti Ts DAC
Continuous
time filter

FIGURE 26.6 Variable rate interpolation.

X(m)

µk Y(k)

Ts

Ts

b3(i)

b2(i) b1(i) b0(i)

b3(0)

Ts

b3(1)

b3(2)

b3(3)

FIGURE 26.7 Farrow structure.

0

−10

−20

−30

−40

A
m

pl
itu

de
/d

B

−50

−60

−70

−80
0 0.5 1 1.5

Frequency/Fs

2 2.5

FIGURE 26.8 Frequency response of polynomial-based interpolator [18].

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 14 11.10.2007 8:30pm Compositor Name: TSuresh

26-14 Digital Systems and Applications

interpolation schemes can perform the desired operation; however, many of them, such as sinc-based

interpolation, require excessive computational resources for a practical hardware implementation. For

real-time calculation, Erup et al. [16] found polynomial-based interpolation to yield satisfactory results

while minimizing the hardware complexity. In this approach, the weights of the input samples are given

as polynomials in the variable mk and can be easily implemented in hardware using the Farrow structure

[17] shown in Fig. 26.7. In this sructure, all the filter coefficients are fixed and polynomials in mk are

realized by nesting the multipliers as shown in Fig. 26.7.

The signal contained in the imageband will cause aliasing after resampling; however, proper choice of

the coefficients in the Farrow structure can help optimize the frequency response of the interpolator for

a particular application. An alternative method to determine the filter coefficients is outlined in (see

Fig. 26.8) [18].

26.2.4 Conclusions

Section 26.2 reviewed trends in the wireless communications industry towards high speed data

communications in both the macrocellular and the microcellular environments. The implication of

these trends on the underlying digital circuits will move designers towards dedicated circuits and ASICs

to meet these demands. As such the paper outlined the major signal processing tasks that these ASICs

will have to implement.

References

1. K. Pahlavan, et al., ‘‘Wideband local access: wireless LAN and wireless ATM,’’ IEEE Commun. Mag.,

pp. 34–40, Nov. 1997.

2. J. Mikkonen, et al., ‘‘Emerging wireless broadband networks,’’ IEEE Commun. Mag., vol. 36, no. 2,

pp. 112–17, Feb. 1998.

3. E. Dahlman, Bjorn Gudmundson, M. Nilsson, and J. Skold, ‘‘UMTS=IMT-2000 based on wideband

CDMA,’’ IEEE Commun. Mag., pp. 70–80, Sept. 1998.

4. Y. Furuya, ‘‘W-CDMA: an approach toward next generation mobile radio system, IMT-2000,’’ Proc.

IEEE GaAs IC Symposium, pp. 3–6, Oct. 1997.

5. A. Duel-Hallen, J. Holtzman, and Z. Zvonar, ‘‘Multiuser detection for CDMA systems,’’ IEEE Pers.

Commun. Mag., pp. 46–58, April 1995.

6. http:==www.ti.com=sc=docs=dsps=products.htm.

7. B. Daneshrad, et al., ‘‘Performance and implementation of clustered OFDM for wireless

communications,’’ ACM MONET special issue on PCS, vol. 2, no. 4, pp. 305–14, 1997.

8. H. Samueli, ‘‘An improved search algorithm for the design of multiplierless FIR filters with powers-of-

two coefficients,’’ IEEE TCAS, vol. 36, no. 7, pp. 1044–1047, July 1989.

9. H.T. Nicholas, III and H. Samueli, ‘‘A 150-MHz direct digital frequency synthesizer in 1.25 mm

CMOS with �90 dBc spurious performance,’’ IEEE JSSC, vol. 25, no. 12, pp. 1959–969, Dec. 1991.

10. A. Madisetti, A. Kwentus, and A.N. Willson, Jr., ‘‘A sine=cosine direct digital frequency synthesizer

using an angle rotation algorithm,’’ Proc. IEEE ISSCC ’95, pp. 262–63.

11. E. Grayver and B. Daneshrad, ‘‘Direct digital frequency synthesis using a modified CORDIC,’’ IEEE

ISCAS, June 1998.

12. J.G. Proakis andD.G.Manolakis, Introduction toDigital Signal Processing,Macmillan, London, 1988.

13. J. Laskowsky and H. Samueli, ‘‘A 150-MHz 43-tap halfband FIR digital filter in 1.2-mm CMOS

generated by silicon compiler.’’ Proc. IEEE CICC ’92, pp. 11.4=1–4, May 1992.

14. T.J. Lin and H. Samueli, ‘‘A VLSI architecture for a universal high-speed multirate FIR digital filter

with selectable power-of-two decimation=interpolation ratios,’’ Proc. ICASSP ’91, pp. 1813–816,

May 1991.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 15 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-15

15. A. Kwentus, O. Lee, and A.Willson, Jr., ‘‘A 250Msample=sec programmable cascaded integrator-comb

decimation filter,’’ VLSI Signal Processing, IX, IEEE, New York, pp. 231–40, 1996.

16. L. Erup, F.M. Gardner, and R.A. Harris, ‘‘Interpolation in digital modems. II. Implementation and

performance,’’ IEEE Trans. on Commun., vol. 41, no. 6, pp. 998–1008, June 1993.

17. C.W. Farrow, ‘‘A continuously variable digital delay element,’’ Proc. ISCAS ’88, pp. 2641–645, June

1988.

18. J. Vesma and T. Saramaki, ‘‘Interpolation filters with arbitrary frequency response for all-digital

receivers,’’ IEEE ISCAS ’96, pp. 568–71, May 1996.

26.3 Communication System-on-a-Chip

Samiha Mourad and Garret Okamoto

26.3.1 Introduction

Communication traffic worldwide is exploding: wired and wireless, data, voice, and video. This traffic is

doubling every 100 days and it is anticipated that there will be a million people online by 2005. Today,

more people are actually using mobile phones than are surfing the Internet. This unprecedented growth

has been encouraged by the deployment of digital subscriber lines (DSL) and cable modems, which

telephone companies have provided promptly and at a relatively low price. Virtual corporations have

been created because of the availability and dependability of communication products such as laptops,

mobile phones and pagers, which all support mobile employees. For example, vending machines may

contact the suppliers when the merchandise level is low so that suppliers remotely vary the prices of the

merchandise according to supply and demand.

With such proliferation in communication products and the need for a high volume, high speed

transfer of data, new standards such as ATM and ITU-T are being developed. In addition, a vast body of

knowledge, central to problems arising in the design and planning of communication systems, has been

published; however, in fabricating products to meet these needs, the industry has continually attempted

to use new design approaches that have not been fully researched or documented.

Communication devices need to be of small size and low power dissipation for portability and need to

be operated at very high speed. Any of these devices, as other digital products, may consist of a single

integrated circuit (IC) or more likely many ICs mounted on a printed circuit broad (PCB). Although the

new technology (small feature size) has resulted in higher speed ICs, the transfer of data from one IC to

another still creates a bottleneck of information. The I=O pads, with their increasing inductance, cause

supply surges that compromise signal integrity. As an alternative to PCB design, another design approach

known as multichip module (MCM) consists of placing more than one chip in the same package. The

connections between modules have a large capacitive load that slows down communication among all of

themodules. In the late 1990s, a new paradigm design called system-on-a-chip (SoC) has been successfully

used to integrate the components of an entire system on one chip. This is in contrast to the traditional

design where the components are implemented in separate ICs and then assembled on a PCB.

Section 26.3 describes the new design paradigm of a SoC and its beneficial attributes are outlined. The

remainder of the paper concentrates on communication devices and Section 26.3.3 emphasizes the need

for these systems. Descriptions of communication SoCs and projections on their characteristics are given

in Section 26.3.4. Latency, an important attribute, is the subject of Section 26.3.5; and Section 26.3.6

describes the integration of these systems with analog parts in MCM.

26.3.2 System-on-a-Chip (SoC)

The shift toward very deep submicron technology has encouraged IC designers to increase the

complexity of their designs to the extent that an entire system is now implemented on a single chip.

To increase the design productivity and decrease time-to-market, reuse of previously designed modules

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 16 11.10.2007 8:30pm Compositor Name: TSuresh

26-16 Digital Systems and Applications

is becoming common practice in SoC design; however, the reuse approach is not limited to in-house

designs. It is extended to modules that have been designed by others as well. Such modules are referred

to as embedded cores. This design approach has encouraged the founding of several companies that

specialize in providing embedded cores to service multiple customers. It is predicted that in the near

future, cores, of which 40% to 60% will be from external sources (Smith 1997), will populate 90% of a

chip. Except for a very few, individual companies do not have the wide range of expertise that can match

the spectrum of design types in demand today.

Core-based design, justified by the need to decrease time-to-market, has created a host of challenging

problems for the design and testing community. First, there are legal issues for the core provider and the

user, regarding the intellectual property (IP). Second, there are problems with integrating and verifying a

mix of proprietary and external cores that are more involved than simply integrating ICs on a PCB.

A typical SoC configuration is shown in Fig. 26.9. It consists of several cores that are also referred to as

modules, blocks, or macros. Often, these terms are used interchangeably. These cores may be DSP, RAM

modules, or controllers. This same image of an SoC may be perceived as a PCB with the cores being the

ICs mounted on it.

It also resembles standard cells laid on the floor of an IC. In the latter case, the blocks are of

elementary gates of the same layout height. That is, they are all ICs in the PCB case or all standard

cells in the IC case. For an SoC, they may consist of a several types, as described below. A UDL is a user

defined logic that is basically equivalent to glue logic in microprocessors.

Cores are classified in three categories: hard, firm, and soft (Gupta 1997). Hard cores are optimized for

area and performance and they are mapped into a specific technology and possibly a specific foundry.

They are provided as layout files that cannot be modified by the users. Soft cores, on the other hand, may

be available as HDL technology-independent files. From a design point of view, the layout of a soft core

is flexible, although some guidelines may be necessary for good performance. The flexibility allows

optimization to the desired levels of performance or area. Firm cores are usually provided as technology-

dependent netlists using library cells whose size, aspect ratio, and pin location can be changed to meet

the customer needs. Table 26.1 summarizes the attributes of reusable cores. The table indicates a clear

trade-off between design flexibility on one hand, and predictability and hence time-to-market perform-

ance complexity on the other. Soft cores are easily embedded in a design. The ASIC designers have

complete control over the implementation of this core, but it is the designer’s job to optimize it for area,

test, or power performance.

Hard cores are very appropriate for time critical applications, whereas soft cores are candidates for

frequent customization. The relationship between flexibility and predictability is illustrated in Fig. 26.10.

The cores can also be classified from a testing perspective. For example, there is typically no way to test a

hard core unless the supplier provides a test set for this core, whereas a test set for the soft core needs to

RAM

RAMDSP
(netlist)

Interface block
(RT level)

Controller
(algorithm)

UDL UDLFPGA

Micropro.
(layout)

FIGURE 26.9 A system-on-a-chip (SoC).

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 17 11.10.2007 8:30pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-17

be created if not provided by the core provider. This makes hard cores more demanding when

developing a test strategy for the chip. For example, it would be difficult to transport through hard

cores a test for an adjacent block that may be another core or a UDL component. In some special cases,

the problem may be alleviated if the core includes well described testability functions.

26.3.2.1 Design and Test Flow

An integrated design and test process is highly recommended. This approach cannot be more appropriate

than it is for core-based systems. Conceptually, the SoC paradigm is analogous to the integration of several

ICs on a PCB, but there is a fundamental difference. Whereas in a PCB the different ICs have been

designed, verified, fabricated, and tested independently from the board, fabrication and testing of an SoC

are done only after integration of the different cores. This fact implies that even if the cores are

accompanied by a test set, incorporation of the test sets is not that simple and must be considered while

integrating the system. In other words, reuse of design does not translate to easy reuse of the test set. What

makes this task even more difficult is that the system may include different cores that have different test

strategies. Also, the cores may cover a wide range of functions as well as a diverse range of technologies, and

they may be described using different HDL languages, such as Verilog, VHDL, and Hardware C to GDSII.

The basic design flow applies to SoC design in the sense that the entire system needs to be entered,

debugged, modified for testability, validated, and mapped to a technology; but all of this has to be done

in an integrated framework. Before starting the design process, an overall strategy needs to be chartered to

Soft

F
le

xi
bi

lit
y

Firm

Hard

Predictibility, performance, and complexity

FIGURE 26.10 Trade-offs among types of cores (Hunt 1996).

TABLE 26.1 Categorizing Reusable Cores

Type Flexibility Design Flow Representation Libraries

Process

Technology Portability

Soft Very flexible

Unpredictable

System design Behavioral Not applicable Independent Unlimited

RTL design RTL

Firm Flexible Floor planning RTL, blocks

Netlist

Reference Generic Library

mapping

Placement Footprint, timing

model

Hard Inflexible

Predictable

Routing

Verification

Polygon data Process specific

library and

design rules

Fixed Process

mapping

Source: Hunt 1996.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 18 11.10.2007 8:31pm Compositor Name: TSuresh

26-18 Digital Systems and Applications

facilitate the integration. In this respect, the specification phase is enlarged and a test strategy is

included. This move toward more design on the system level and less time on the logic level.

The design must first be partitioned. Then decisions must be made on such questions as:

. Which partition can be instantiated by an existing core?

. Should a core be supplied by a vendor or done in-house?

. What type of core should be used?

. What is the integration process to facilitate verification and testing?

Because of the wide spectrum of core choices and the diversity of design approaches, SoC design requires a

meta-methodology. That is, a methodology that can streamline the demands of all other methodologies

used to design and test the reusable blocks as well as their integration with user defined logic. To optimize

on the core-based design, an industry group deemed it necessary to establish a common set of specifica-

tions. This group, known as the virtual socket interface alliance (VSIA), was announced formally in

September 1996. Its intent is to establish standards that facilitate communication between core creators

and users, the SoC designers (IEEE 1999a).

An example of using multiple cores is the IBM-designed PowerPC product line, based on the

PowerPC 40X chip series (Rincon 1997). The PowerPC micro-controller consisted of a hard core and

several soft cores. For timing critical components such as the CPU, a hard core was selected, while soft

cores were used for peripheral functions such as the DMA controller, external bus interface unit (EBIU),

timers, and serial port unit (SPU). The EBIU may be substituted by, say, a hard core from Rambus.

A change in the simulation and synthesis processes is required for embedded cores due primarily to the

need toprotect the intellectual propertyof the core provider. Firmcoresmaybe encrypted in such amanner

as to respond to the simulator without being readable by humans. For synthesis, the core is instantiated in

the design. In the case of a soft core, sometimes the parameters are scaled tomeet the design constraints. To

preserve the core performance, the vendor may include an environment option to prevent the synthesis

program from changing some parts of the design. This will protect the core during optimization, but the

designer may remove such an option andmake some changes in the design. A hard or a firm core is treated

as a black box from the library and goes through the synthesis process untouched.

26.3.2.2 Advantages of SoCs

The overall size of the end product is reduced because manufacturers can put the major system functions

on a single chip, as opposed to putting them on several chips. This reduces the total number of chips

needed for the end product. For the same reason, the power consumption is reduced.

SoC products provide faster chip speeds due to the integration of the components=functions into one

chip. Many applications such as high-speed communication devices (VoIP, MoIP, wireless LAN, 3G

cellular phones) require chip speeds that may be unattainable with separate IC products. This is primarily

due to the physical limitations of moving data from one chip to another, through bonding pads, wires,

buses, etc. Integrating chip components=functions into one chip eliminates the need to physically move

data from one chip to another, thereby producing faster chip speeds. Another important advantage of

SoCs is the reuse of previously designed circuits, thereby reducing the design process time. This conse-

quently translates into shorter time-to-market. In addition to decreasing time-to-market, it is very

important to decrease the cost of packaging and testing, which are constantly increasing with the finer

technology features. Instead of testing several chips and the PCB onwhich they are assembled, testing time

is reduced to only one IC. SoCs are, however, very complex and standards are now being developed to

facilitate their testing (IEEE 1995b). In the remainder of this paper, we focus on communication systems

that we will refer to as comm. SoC or simply SoC.

26.3.3 Need for Communication Systems

Public switched telephone networks (PSTN) are becoming congested due to increasing Internet traffic as

shown in Fig. 26.11. This drives the development of broadband access technology and high-speed optical

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 19 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-19

networks. Another important factor is the convergence of voice, data, and video. As a consequence, there

is a need for low and uniform latency devices for real time traffic. In addition, Internet service providers

(ISP) and corporate Intranet are needed for voice and data IP gateways. Mobile users drive the

development of wireless and satellite devices. In addition, there is an increasing demand for routers=

switches, DSL modems, etc.

All needs mentioned above require smaller size and faster communication devices. Telephone calls

that used to last an average of three minutes now exceed an hour or more when connected to the

Internet. This has resulted in increasing the demand on DSL that transmit data over Internet protocols

(IP) such as voice-over-IP (VoIP), mobile-over-IP (MoIP), and wireless requires speeds that may be

unattainable with separate IC products. Examples of products:

1. 2G and 3G wireless devices (CDMA2000, WCDMA), etc.

2. DSL modems

3. Infrastructure, carrier, and enterprise circuit, packet switched and VoIP devices

4. Satellite modems

5. Cable modems and HFC routing devices

6. De=MUX for data stream on optical network

7. Web browsers (WAP) or short messaging systems (I-mode)

8. LAN telephony

9. ATM systems

10. Enterprise, edge network and media-over-IP switches and high-speed routers

11. Wireless LAN (IEEE 802.11 IEEE 802.11a, and IEEE 802.11b)

12. Bluetooth

Maybe the most important example of an emerging wireless communication standard is Bluetooth. This

is a wireless personal area network (PAN) technology from the Bluetooth special interest group (SIG),

founded in 1998 by Ericsson, IBM, Intel, Nokia, 3Com, Lucent, Microsoft, Motorola, and Toshiba.

Bluetooth is an open standard for short-range transmission of digital voice and data between mobile

devices (cellular phones, PDAs, laptops) and desktop devices. Bluetooth may provide a common

standard to enable PDAs, laptop and desktop computers, cellular phones, thermostats, and virtually

every other home and business electronic device to communicate with each other. Manufacturers will

rely on SoC advances to help reach the target of $5 added cost to a consumer appliance by 2001. A study

by Merrill Lynch projected that Bluetooth semiconductor revenue will reach $3.4 billion in 2005, with

900

800

700

600

500

M
ill

io
n

400

300

200

100

0
1995 1996 1997 1998E 1999E

WWW Devices (M) WWW Users (M)

 Users and devices Annual bandwidth growth

2000 2001

1997 1998 1999 2000

2002

(a) (b)

FIGURE 26.11 Internet growth.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 20 11.10.2007 8:31pm Compositor Name: TSuresh

26-20 Digital Systems and Applications

Bluetooth included in 1.7 billion devices that year, and the Bluetooth SIG estimated that the technology

would be a standard feature in 100 million mobile phones by the end of 2001.

26.3.4 Communication SoCs

The exponential growth of the Internet and the bandwidth shown in Fig. 26.11, indicate that more

communication products are geared towards this technology, which requires a communication mode

different than that used in traditional switching telephony. For example, in a PSTN, circuit switching is

used and requires a dedicated physical circuit through the network during the life of a telephone session.

In Internet and ATM technology, however, packet switching is used. Packet switching is a connectionless

technology, where a message is broken into several small packets to be sent to a destination. The packet

header contains the destination and source address, plus a sequence number so that the message can be

reassembled.

There is a paradigm shift in digital communication motivated by the evolution of Internet as mission

critical service that demands migration from circuit switch to packet switch. The older paradigm

supported the data traffic part of the telephone networks. Whereas the new paradigm support the

convergence of voice, data, and video and require a new class of media-over-IP systems voice traffic as

part of the data network, thus requiring communication SoC for VoIP.

Most communication SoC consists of few components that are clustered around a central processing

unit (CPU), which controls some or all of the following: (1) Packet processing, (2) Programmable DSP

for data and signaling algorithm=protocol implementation, (3) I=O for interface with voice and data

network such as ATM, PCI, Ethernet, H100=110, (4) memory system for intermediate storage of voice

and data streams, (5) hardwired DSP or accelerators for Codec and multi level mod=demod to increase

system throughput, and (6) MPEG cores for media-over-IP MoIP processing (Fig. 26.12).

Communication SoCs are actually a mix of software and hardware. Some of the circuits contain

hardwired algorithms for code processing, but the software can be stored on the chip for protocols that

process data. Figure 26.13 shows the software for a typical VoIP. This include several layers of software

and IP such as:

1. Telephony signaling : Network interface protocol, which contains address translation and

parsing and protocols such as H-3xx, media gateway control protocol (MGCP), and real time

conferencing protocol (RTCP).

2. Voice processing : includes voice-coding unit using G.xx protocol, voice activation detection

(VAD), comfort noise generation (CNG), which is used in fax-to-fax communication.

3. User interface : provides system services to the user such as key pad and display drivers and user

procedures.

DSP 1...n cores and
algorithm
accelerators

I/O comm/data
cores

CPU

MEMORY

Memory system

M-Bus

P
-B

us

FIGURE 26.12 Components of a communication SoC.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 21 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-21

4. Network management: software upload and handling Java applets.

5. Network Interface Protocols: such as transmission control protocol (TCP), user datagram protocol

(UDP), which is a TCP=IP, and Ethernet driver.

Other software and protocol may also be included such as packet processing and network management

protocols, call control=signaling protocols=fax and modem tone detection, echo canceller, VAD, CNG,

read to order systems (RTOS), and other software components for MoIP systems. Communication SoCs

that accomplish the above tasks are expected to grow in size as projected in Fig. 26.14. The number of

gates per chip will increase from one million in 1999 to 7 M in 2003. A major component in a

communication SoC is the embedded memory banks, which is also expected to increase from 1 to 16

Mbit. The type of memory used will change from static RAMs (SRAM) to enhanced dynamic RAMs

(EDRAM), which are much more compact.

User interface Telephony signaling Network management

Network management agent

Web server
java apps

SMMP SW upload

Display
driver

Key pad
driver

Audible
driver

User
procedures

Cal processing

Address
translation

and parsing

SGCP/
MGCP H.225

H.245
Cap

H.323 protocols

RAS/
RSTP

Startup/
init

WDT
driver

Mem
manager

RTOS

POST

PCM
interface

unit
u-Law
A-Law
L-PCM
Tone
Gen

Echo
Cano

Gain
Cnd

Tone
detect

Voice
activity
detect
VAD

Control
unit

Voice
coding

unit

G711
PCM
G726

Packet
playout

unit

Packet
protocol
encaps

unit
(RTP)

Net int. driver

TCP UDP

IP

MAC/ARP

Ethernet driverDelay jitter,
lost packet

BSP

System services

Voice processing Network interface protocols

FIGURE 26.13 Software for VoIP SoC.

7

4

1

M gate

SSRAM
Hybrid

EDRAM

1999 2000 2001 2002 2003

16

8

Year

0

FIGURE 26.14 Communications SoCs: Density and memory size.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 22 11.10.2007 8:31pm Compositor Name: TSuresh

26-22 Digital Systems and Applications

The processing power of these SoCs is also expected to increase as illustrated in Fig. 26.15. The

processing power is measured in million instructions per second (MIPs). It is predicted to grow from

100 to 1000 MIPs (dashed line) from 1999 to 2003. In same time period, the memory bandwidth (solid

line) will increase from 100 to 1000 Mbits. The growth of the number of DSP processors by SoC is

shown in Fig. 26.16a. With all of this growth, it is interesting that the price of SoCs is estimated to

decrease according to the trend shown in Fig. 26.16b.

Several predictions were given to the bandwidth of communication chips. Two of these predictions

are shown in Fig. 26.17. One assumes that the bandwidth will triple each year in the next 25 years as

illustrated by the solid line (George Dilder-Telecosm). The other shows that the growth will be at the rate

of 8–16 times a year [SUN Microsystems]. In the 1990s, Bill Gates claimed that ‘‘we will have infinite

bandwidth in a decade of time (Gates 1994).’’

26.3.5 System Latency

Latency is defined as the delay experienced a certain processing stage. The latency trends in Fig. 26.18

refer to the time taken to map the voice data into a packet to be transmitted. Three main types of latency

are usually identified:

. Frame=packetization Delay

. Media processing delay=complexity of the system

. Bridging delay, e.g., used for conferencing or multi SoC system

1999
100

2000 2001 2002 2003

MB/s

External
memory

EDRA

MIPS
1000

M

0

FIGURE 26.15 Communications SoCs processing power and memory handwidth.

Processor
s

(a)

100

10

1

1999 2000 2001 2002 2003 Year

$

(b)

100

10

1

99 00 01 02 03 Year

FIGURE 26.16 (a) Number of DSP processors per SoC. (b) Price per functional VoIP channel.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 23 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-23

These delays may occur at different times in the life of the data in the communication system.

A simplified communication system is shown in Fig 26.18. It starts with the sender transmitting data

through the network to a receiver at the other end. The total system latency is known as the end-to-end

delay. It consists of the time taken to send the first bit of a packet to the time it takes to receive the last bit

in the stream of data, i.e.,

. Delay in processing the data at the sending end

. Transit delay within the network

. Delay in processing the data at the receiving end

With the use of SoC, latency has been reduced and this reduction is projected to continue as the

technology feature is getting finer. The trend is illustrated in Fig. 26.19. Several SoCs may themselves be

integrated in one multichip module (MCM) as will be discussed next.

26.3.6 Communication MCMs

Digital communication SoCs are usually connected to external analog functions and I=O as depicted in

Fig. 26.20. In order to optimize the interface between digital SoCs and analog functions, it is beneficial to

Log growth

1M

10,000

100

CY95 CY97 CY99 CY01 CY03 CY05 CY07

Processor
performance

2x/18mo

2x/3-4mo
WAN/MAN bandwidth

FIGURE 26.17 Bandwidth trends.

CO/GW CO/GWNetwork

Media/TV
transmitter

First bit
transmitted

Processing
delay

Network transit
delay

End-to-end delay

Processing
delay

AA Last bit received

Media/TV
receiver

t

FIGURE 26.18 System latency.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 24 11.10.2007 8:31pm Compositor Name: TSuresh

26-24 Digital Systems and Applications

integrate both designs in a MCM. The simplest

definition for an MCM is a single electronic

package containing more than one IC (Doanne

1993). An MCM then combines high perform-

ance ICs with a custom-designed common sub-

strate structure that provides mechanical

support for the chips and multiple layers of

conductors to interconnect them. Such an

arrangement takes advantage of the performance

of the ICs because the interconnect length is

much shorter.

Multichip modules are not new, they preceded SoC. They have several advantages because they

improve the maximum external memory bandwidth achieved, reduce size and weight of the product,

increase the operating speed, and decrease power dissipation of the system; however, they are limited by

wiring capacitance to frequencies below 150 MHz, e.g., Sony’s HandyCam. Thus, they are limited

by slower memory in comparison with the massive parallel processing power of an SoC with embedded

memory.

MCM wide bus pin out is restricted by cost and yield in comparison with an SoC that provides high

throughput data processing with wide 256–1024 bit on chip data bus. System configurability is harder to

achieve in MCM than in SoC that are software configurable.

Analog and digital functions are separately optimized in MCM while in SoC many analog functions

are optimized and their yield improved by using on chip integrated DSP algorithms. Multiple commu-

nication SoCs and analog functions can be packaged on a single MCM. The advantage of MCMs is even

more pronounced when the package is enhanced. For example, flip-chips may be used or even more

advanced package.

The interconnections between the various SoCs and the memory chips are the major paths for

crosstalk and other types of signal distortion. Reducing the routing length of the connection will help

to increase the operation speed. This can be achieved with a chip-on-chip (CoC) module. The metal

redistribution layers were fabricated on the top of the processor and the two memory chips, while the

original bond pads still remained for the wire bonding to the substrate. The memory chips can be

mounted on the top of the processor using flip-chip technology. Redistribution layers have been used to

replace the bond wires and traces on the substrate to provide the interconnections between memory chip

100

10

1

msec

1999 2000 2001 2002 2003

La
te

nc
y

FIGURE 26.19 Latency for voice to packet in communication SoCs.

Comm. SOC

DDR/SDRAM

Specialized I/O
and

analog
functions

MCM

FIGURE 26.20 Communication MCMs.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 25 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-25

and processor. Since Know Good Die memory chips are usually used, testing only requires open=short

test between the processor and memory chips. No burn-in and extensive memory tests are required, so

the connection to the package ball can be removed as a new test program is implemented with the

open=short test of the memory interface through other IO paths of the VGA processor.

26.3.7 Summary

The broadband access, infrastructure, carrier, and enterprise Communication SoCs will demand higher

MIPS, integration, and memory bandwidth. They will also demand lower latency, power dissipation,

and cost=channel or function. Comm. SoC utilizes programmable DSP, hardwired DSP accelerators, and

I=O to implement Comm. protocols and systems in a highly integrated form. Higher memory access

frequency, DSP interface speeds, and specialized analog functions will demand the integration of Comm.

SoCs on Comm. MCM.

References

Batista, Elisa, ‘‘Bluetooth Promises and Hurdles,’’ Wired News, June 2000.

Doanne, D.A. and P.D. Franzon, Eds. (1993),Multichip Module Technologies and Alternatives: The Basics,

Van Nostrand Reinhold, New York.

Gehring and Koutroubinas, ‘‘Designing cableless devices with the bluetooth specification,’’ Communi-

cation Systems Design, February 2000.

Gupta, R.K. and Y. Zorian (1997), ‘‘Introduction to core—based system design,’’ IEEE Des. Test Comput.,

Vol. 14, No. 4, pp. 15–25.

Hunt, M. and J.A. Rowson (1996), ‘‘Blocking in a system on a chip,’’ IEEE Spectrum, Vol. 36, No. 11,

pp. 35–41.

IEEE (1999a), P1450 Web site http==grouper.ieee.org=groups=1450=.

IEEE (1999b), P1500 Web site http==grouper.ieee.org=groups=1500=.

Mourad, S. and Y. Zorian, Principles of testing electronic systems, Wiley, 2000.

Mourad, S. and B. Greene (2000), ‘‘Scan-path based testing of system on a chip,’’ Proc. IEEE International

Conference of Electronics, Circuits and Systems, Cyprus, pp. 1081–1084.

Murray, B.T. and J.P. Hayes (1996), ‘‘Testing ICs: getting to the core of the problem,’’ IEEE Computer,

Vol. 29, No. 11, pp. 32–38.

Okamoto, G, Smart Antenna Systems and Wireless LANs, Kluwer Academic Publishers, Boston, MA,

1999.

Okamoto, G., S.-S. Jeng, and G. Xu, ‘‘Evaluation of timing synchronization algorithms for the smart

wireless LAN system,’’ Proceedings of the IEEE VTC ’99 Conference, May 1999, pp. 2014–2018.

Okamoto, G. and C.-W. Chen, ‘‘Capacity improvement of smart antenna systems via the maximum

SINR beam forming algorithm,’’ Proceedings of the ICSPAT 2000 Conference, October 2000.

Okamoto, G., et al., ‘‘An improved algorithm for dynamic slot assignment for the SWL system,’’

Proceedings of the Asilomar 2000 Conference, Pacific Grove, CA, October 2000.

Smith, G. (1997), ‘‘Test and system level integration,’’ IEEE Des. Test Comput., Vol. 14, No. 4.

Varma, P. and S. Bhatia (1997), ‘‘A structured test reuse methodology for core-based system chip,’’ Proc.

IEEE International Test Conference, pp. 294–302.

Zorian, Y. (1993), ‘‘A distributed BIST control scheme for complex VLSI devices,’’ Proc. 11th IEEE VLSI

Test Symposium, pp. 6–11.

Zorian, Y. (1997), ‘‘Test requirements for embedded core-based systems and IEEE P-1500,’’ Proc. IEEE

International Test Conference, pp. 191–199.

Zorian, Y., et al. (1998), ‘‘Testing embedded-core based system chips,’’ Proc. IEEE International Test

Conference, pp. 135–149.

VSI (1998), VSI Alliance Web site http:=www.vsi.org=. http:==www.digianswer.com=bluetooth=.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 26 11.10.2007 8:31pm Compositor Name: TSuresh

26-26 Digital Systems and Applications

26.4 Communications and Computer Networks

Mohammad Ilyas

The field of communications and computer networks deals with efficient and reliable transfer of

information from one point to another. The need to exchange information is not new but the techniques

employed to achieve information exchange have been steadily improving. During the past few decades,

these techniques have experienced an unprecedented and innovative growth. Several factors have been

and continue to be responsible for this growth. The Internet is the most visible product of this growth

and it has impacted the life of each and every one. Section 26.4 describes salient features and operational

details of communications and computer networks.

The contents of Section 26.4 are organized in several subsections. Section 26.4.1 describes a brief

history of the field of communications. Section 26.4.2 deals with the introduction of communication

and computer networks. Section 26.4.3 describes operational details of computer networks. Section

26.4.4 discusses resource allocation mechanisms. Section 26.4.5 briefly describes the challenges and

issues in communication and computer networks that are still to be overcome. Section 26.4.6 summar-

izes the article.

26.4.1 A Brief History

Exchange of information (communications) between two or more entities has been a necessity since the

existence of human life. It started with some form and shape of human voice that one entity can create

and other(s) can listen and interpret. Over a period of several centuries, these voices evolved into lang-

uages. As the population of the world grew, more and more languages were born. For a long time,

languages were used for face-to-face communications. If there were ever a need to convey some

information (a message) over a distance, someone would be briefed and sent to deliver the message to

a distant site. Gradually, additional methods were developed to represent and exchange the information.

These methods included symbols, shapes, and eventually alphabets. This development facilitated

information recording and use of nonvocal means for exchanging information. Hence, preservation,

dissemination, sharing, and communication of knowledge became easier.

Until about 150 years ago, all communication was via wireless means and included smoke signals,

beating of drums, and use of reflective surfaces for reflecting light signals (optical wireless). Efficiency of

these techniques was heavily influenced by the environmental conditions. For instance, smoke signals

were not very effective in windy conditions. In any case, as we will note later, some of the techniques that

were in use centuries ago for conveying information over a distance, were similar to the techniques

that we currently use. The only difference is that the implementation of those techniques is exceedingly

more sophisticated now than it was centuries ago.

As the technological progress continued and electronic devices started appearing on the surface, the

field of communication also started making use of the innovative technologies. Alphabets were trans-

lated into their electronic representations so that information may be electronically transmitted. Morse

code was developed for telegraphic exchange of information. Further developments led to the use of

telephone. It is important to note that in earlier days of technological masterpieces, users would go to a

common site where one could send a telegraphic message over a distance or could have a telephonic

conversation with a person at a remote location. This was a classic example of resource sharing. Of

course, human help was needed to establish a connection with remote sites.

As the benefits of the advances in communication technologies were being harvested, the electronic

computers were also emerging and making the news. The earlier computers were not only expensive and

less reliable, they were also huge in size. For instance, the computers that used vacuum tubes, were of the

size of a large room and used roughly about 10,000 vacuum tubes. These computers would stop working

if a vacuum tube had burnt, and the tube would need to be replaced by using a ladder. On the average,

those computers would function for a few minutes, before another vacuum tube’s replacement was

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 27 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-27

necessary. A few minutes of computer time was not enough to execute a large computer program. With

the advent of transistors, computers not only became smaller in size, less expensive, but also more

reliable. These aspects of computers resulted in their widespread applications. With the development of

personal computers, there is hardly any side of our lives that has not been impacted by the use of

computers. The field of communications is no exception and the use of computers has escalated our

communication capabilities to new heights.

26.4.2 Introduction

Communication of information from one point to another in an efficient and reliable manner has

always been a necessity. A typical communication system consists of the following components as shown

in Fig. 26.21:

. Source that generates or has the information to be transported

. Transmitter that prepares the information for transportation

. Transmission medium that carries the information from one end to the other

. Receiver that receives the information and prepares it for delivering to the receiver

. Destination that takes the information from receiver and utilizes it as necessary

The information can be generated in analog or in digital form. Analog information is represented as a

continuous signal that varies smoothly in time. As one speaks in a microphone, an analog voice signal is

generated. Digital information is represented by a signal that stays at some fixed level for some duration

of time followed by a change to another fixed level. A computer works with digital information that has

two levels (binary digital signals). Figure 26.22 shows an example of analog and digital signals.

Transmission of information can also be in analog or in digital form. Therefore, we have the following

four possibilities in a communication system [21]:

. Analog information transmitted as an analog signal

. Analog information transmitted as a digital signal

. Digital information transmitted as an analog signal

. Digital information transmitted as a digital signal

Source Transmitter Receiver DestinationTransmission
medium

FIGURE 26.21 A typical communication system.

Amplitude

Time
 Analog signal

Amplitude

Time
Digital signal(a) (b)

FIGURE 26.22 Typical analog and digital signals.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 28 11.10.2007 8:31pm Compositor Name: TSuresh

26-28 Digital Systems and Applications

There may not be a choice regarding the form (analog or digital) of information being generated by a

device. For instance, a voice signal as one speaks, a video signal as generated by a camera, a speed signal

generated by a moving vehicle, and an altitude signal generated by the equipment in a plane will always

be analog in nature; however, there is a choice regarding the form (analog or digital) of information

being transmitted over a transmission medium. Transmitted information could be analog or digital in

nature and information can be easily converted from one form to another.

Each of these possibilities has its pros and cons. When a signal carrying information is transmitted, it

looses its energy and strength and gathers some interference (noise) as it propagates away from the

transmitter. If energy of signal is not boosted at some intermediate point, it may attenuate beyond

recognition before it reaches its intended destination. That will certainly be a wasted effort. In order to

boost energy and strength of a signal, it must be amplified (in case of analog signals) and rebuild (in case

of digital signals). When an analog signals is amplified, the noise also becomes amplified and that

certainly lowers expectations about receiving the signal at its destination in its original (or close to it)

form. On the other hand, digital signals can be processed and reconstructed at any intermediate point

and, therefore, the noise can essentially be filtered out. Moreover, transmission of information in digital

form has many other advantages including processing of information for error detection and correction,

applying encryption and decryption techniques to sensitive information, and many more. Thus,

digital information transmission technology has become the dominant technology in the field

communications [9,18].

As indicated earlier, communication technology has experienced phenomenal growth over the past

several decades. The following two factors have always played a critical role in shaping the future of

communications [20]:

. Severity of user needs to exchange information

. State of the technology related to communications

Historically, inventions have always been triggered by the severity of needs. It has been very true for

the field of communications as well. In addition, there is always an urge and curiosity to make things

happen faster. When electricity was discovered and people (scattered around the globe) wanted to

exchange information over longer distances and in less time, telegraph was invented. Morse code was

developed with shorter sequences (of dots and dashes) for more frequent alphabets. That resulted in

transmission of message in a shorter duration of time. Presence of electricity, and capability of wires to

carry information over longer distances, led to the development of devices that converted human voice

into electrical signal, and thus led to the development of telephone systems. Behind this invention was

also a need=desire to establish full-duplex (two-way simultaneous) communication in human voice. As

the use of telephone became widespread, there was a need for a telephone user to be connected to any

other user, and that led to the development of switching offices. In the early days, the switching offices

were operated manually. As the state of the technology improved, the manual switching offices were

replaced by automatic switching offices. Each telephone user was assigned a telephone number for

identification purposes and a user able to dial the number for the purpose of establishing a connection

with the called party. As the computer technology improved and the computers became easier to afford

and smaller in size, they found countless uses including their use in communications. The computers

not only replaced the automatic (electromechanical) switching offices, they were also employed in many

other aspects of communication systems. Examples include conversion of information from analog to

digital and vice versa, processing of information for error detection and=or correction, compression of

information, and encryption=decryption of information, etc.

As computers became more powerful, there were many other applications that surfaced. The most

visible application was the amount of information that users started sharing among themselves. The

volume of information being exchanged among users has been growing exponentially over the last three

decades. As users needed to exchange such a mammoth amount of information, new techniques were

invented to facilitate the process. There was not only a need for users to exchange information with

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 29 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-29

others in an asynchronous fashion, there was also need for computers to exchange information among

themselves. The information being exchanged in this fashion has different characteristics than the

information being exchanged through the telephone systems. This need led to the interconnection of

computers with each other and that is what is called computer networks.

26.4.3 Computer Networks

Computer networks is an interconnection of computers. The interconnection forms a facility that

provides reliable and efficient means of communication among users and other devices. User commu-

nication in computer networks is assisted by computers, and the facility also provides communication

among computers. Computer networks are also referred to as computer communication networks.

Interconnection among computers may be via wired or wireless transmission medium [5,6,10,13,18].

There are two broad categories of computer networks:

. Wide area networks

. Local=metropolitan area networks

Wide area computer networks, as the name suggests, span a wider geographical area and essentially

have a global scope. On the other hand, local=metropolitan area networks span a limited distance.

Local area networks are generally confined to an industrial building or an academic institution.

Metropolitan area networks also have limited geographical scope but it is relatively larger than that

of the local area networks [19]. Typical wide and local=metropolitan area networks are shown in

Fig. 26.23.

Once a user is connected to a computer network, it can communicate with any other user that is also

connected to the network at some point. It is not required that a user must be connected directly to

another user for communicating. In fact, in wide area networks, two communicating users will rarely be

directly connected with each other. This implies that the users will be sharing the transmission links for

exchanging their information. This is one of the most important aspects of computer networks. Sharing

of resources improves utilization of the resources and is, of course, cost-effective as well. In addition to

sharing the transmission links, the users will also share the processing power of the computers at the

switching nodes, buffering capacity to store the information at the switching nodes, and any

other resources that are connected to the computer network. A user that is connected to a computer

network at any switching node will have immediate access to all the resources (databases,

research articles, surveys, and much more) that are connected to the network as well. Of course, access

to specific information may be restricted and a user may require appropriate authorization to access the

information.

The information from one user to another may need to pass through several switching nodes and

transmission links before reaching its destination. This implies that a user may have many options

available to select one out of many sequences of transmission links and switching nodes to exchange its

information. That adds to the reliability of information exchange process. If one path is not available,

not feasible or is not functional, some other path may be used. In addition, for better and effective

sharing of resources among several users, it is not appropriate to let any user exchange a large quantity

of information at a time; however, it is not uncommon that some users may have a large

quantity of information to exchange. In that case, the information is broken into smaller units known

as packets of information. Each packet is sent towards destination as a separate entity and all packets are

assembled together at the destination side to re-create the original piece of information [2].

Due to resource sharing environment, users may not be able to exchange their information at any

time they wish to because the resources (switching nodes, transmission links) may be busy serving other

users. In that case, some users may have to wait for some time before they begin their communication.

Designers of computer networks should design the network so that the total delay (including wait time)

is as small as possible and that the total amount of information successfully exchanged (throughput) is

as large as possible.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 30 11.10.2007 8:31pm Compositor Name: TSuresh

26-30 Digital Systems and Applications

As can be noted, many aspects must be addressed for enabling networks to transport users’ information

from one point to another. The major aspects are listed below:

. Addressing mechanism to identify users

. Addressing mechanism for information packets to identify their source and destination

. Establishing a connection between sender and receiver and maintaining it

. Choosing a path or a route (sequence of switching nodes and transmission links) to carry the

information from a sender to a receiver

. Implementing a selected route or path

. Checking information packets for errors and recovering from errors

. Encryption and decryption of information

. Controlling the flow of information so that shared resources are not over taxed

. Informing the sender that the information has been successfully delivered to the intended

destination (acknowledgment)

(a)

Switching
node

Source Destination

(b)

(c)

Transmission medium

Transmission medium

Source
Destination

Source
Destination

FIGURE 26.23 (a) A typical wide area computer communication network. (b) A typical local=metropolitan area

communication bus network. (c) A typical local=metropolitan area communication ring network.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 31 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-31

. Billing for the use of resources

. Making sure that different computers that are running different applications and operating

systems, can exchange information

. Preparing information appropriately for transmission over a given transmission medium

This is not an exhaustive list of items that need to be addressed in computer networks. In any case, all

such issues are addressed by very systematic and detailed procedures. The procedures are called

communication protocols. The protocols are implemented at the switching nodes by a combination

of hardware and software. It is not advisable to implement all these features in one module of hardware

or software because that will become very difficult to manage. It is a standard practice that these

features be divided in different smaller modules and then modules be interfaced together to collectively

provide implementation of these features. International Standards Organization (ISO) has suggested

dividing these features into seven distinct modules called layers. The proposed model is referred to as

Open System Interconnection (OSI) reference model. The seven layers proposed in the OSI reference

model are [2]:

. Application layer

. Presentation layer

. Session layer

. Transport layer

. Network layer

. Data link layer

. Physical layer

Physical layer deals with the transmission of information on the transmission medium. Data link layer

handles the information on a single link. Network layer deals with the path or route of information from

the switching node where source is connected to the switching node where receiver is connected. It also

monitors end-to-end information flow. The remaining four layers reside with the user equipment.

Transport layer deals with the information exchange from source to the sender. Session layer handles

establishment of session between source and the receiver and maintains it. Presentation layer deals with

the form in which information is presented to the lower layer. Encryption=decryption of information

can also be performed at this layer. Application layer deals with the application that generates the

information at the source side and what happens to it when it is delivered at the receiver side.

As the information begins from the application layer at the sender side, it is processed at every layer

according to the specific protocols implemented at that layer. Each layer processes the information and

appends a header and=or a trailer with the information before passing it on to the next layer. The

headers and trailers appended by various layers contribute to the overhead and are necessary for

transportation of the information. Finally, at the physical layer, the bits of information packets are

converted to an appropriate signal and transmitted over the transmission medium. At the destination

side, the physical layer receives the information packets from the transmission medium and prepares

them for passing these to the next higher layer. As a packet is processed by the protocol layers at the

destination side, its headers and trailers are stripped off before it is passed to the next layer. By the time

information reaches the application layer, it should be in the same form as it was transmitted by the

source.

Once a user is ready to send information to another user, he or she has two options. He or she can

establish a communication with the destination prior to exchanging information or he can just give the

information to the network node and let the network deliver the information to its destination. If

communication is established prior to exchanging the information, the process is referred to as

connection-oriented service and is implemented by using virtual circuit connections. On the other

hand, if no communication is established prior to sending the information, the process is called

connectionless service. This is implemented by using datagram environment. In connection-oriented

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 32 11.10.2007 8:31pm Compositor Name: TSuresh

26-32 Digital Systems and Applications

(virtual circuit) service, all packets between two users travel over the same path through a computer

network and hence arrive at their destination in the same order as they were sent by the source. In

connectionless service, however, each packet finds its own path through the network while traveling

towards its destination. Each packet will therefore experience different delay and the packets may arrive

at their destination out of sequence. In that case, destination will be required to put all the packets in

proper sequence before assembling them [2,10,13].

As in all resource sharing systems, allocation of resources in computer networks requires a careful

attention. The main idea is that the resources should be shared among users of a computer network as

fairly as possible. At the same, it is desired to maintain the network performance as close to its optimal

level as possible. The fairness definition, however, varies from one individual to another and depends

upon how one is associated with a computer networks. Although fairness of resource sharing is being

evaluated, two performance parameters—delay and throughput—for computer networks are consid-

ered. The delay is the duration of time from the moment information is submitted by a user for

transmission to the moment it is successfully delivered to its destination. The throughput is amount of

information successfully delivered to its intended destination per unit time. Due to the resource sharing

environment in computer networks, these two performance parameters are contradictory. It is desired to

have the delay as small as possible and the throughput as large as possible. For increasing throughput, a

computer network must handle increased information traffic, but the increased level of information

traffic also causes higher buffer occupancy at the switching nodes and hence, more waiting time for

information packets. This results in an increase in delay. On the other hand, if information traffic is

reduced to reduce the delay, that will adversely affect the throughput. A reasonable compromise between

throughput and delay is necessary for a satisfactory operation of a computer network [10,11].

26.4.3.1 Wide Area Computer Networks

A wide area network consists of switching nodes and transmission links as shown in Fig. 26.23a. Layout

of switching nodes and transmission links is based on the traffic patterns and expected volume of traffic

flow from one site to another site. Switching nodes provide the users access to a computer network and

implement communication protocols. When a user is ready to transmit its information, the switching

node, to which the user is connected to, will establish a connection if a connection-oriented service has

been opted. Otherwise, the information will be transmitted in a connectionless environment. In either

case, switching nodes play a key role in determining path of the information flow according to some

well-established routing criteria. The criteria include performance (delay and throughput) objectives

among other factors based on user needs. For keeping the network traffic within a reasonable range,

some traffic flow control mechanisms are necessary. In late 1960s and early 1970s, when data rates of

transmission media used in computer networks were low (a few thousands of bits per second), these

mechanisms were fairly simple. A common method used for controlling traffic over a transmission link

or a path was an understanding that sender will continue sending information until the receiver sends a

request to stop. The information flow will resume as soon as the receiver sends another request to

resume transmission. Basically the receiver side had the final say in controlling the flow of information

over a link or a path. As the data rates of transmission media started increasing, this method was not

deemed efficient. To control the flow of information in relatively faster transmission media, a sliding

window scheme was used. According to this scheme, sender will continuously send information packet

but no more than a certain limit. Once the limit has reached, the sender will stop sending the

information packets and will wait for the acknowledgement of the packets that have been transmitted.

As soon as an acknowledgement is received, the sender may send another packet. This method

ensures that there are no more than a certain specific number of packets in transit from sender to

receiver at any given time. Again the receiver has the control over the amount of information that sender

can transmit. These techniques for controlling the information traffic are referred to as reactive or

feedback based techniques because the decision to transmit or not to transmit is based on the current

traffic conditions.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 33 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-33

The reactive techniques are acceptable in low to moderate data rates of transmission media. As the

data rates increase from kilobits per second to megabits and gigabits per second, the situation changes.

Over the past several years, the data rates have increased manifold. Optical fibers provide enormously

high data rates. Size of the computer networks has also experienced tremendous increase. The amount of

traffic flowing through these networks has been increasing exponentially. Given that, the traffic control

techniques used in earlier networks are not quite effective anymore [11,12,22]. One more factor that has

added to the complexity of the situation is that users are now exchanging different types of information

through the same network. Consider the example of Internet. The geographical scope of Internet is

essentially global. Extensive use of optical fiber as transmission media provides very high data rates for

exchanging information. In addition, users are using Internet for exchanging any type of information

that they come across, including voice, video, data, etc. All these factors have essentially necessitated use

of modified approach for traffic management in computer networks. The main factor leading to this

change is that the information packets are moving so fast through the computer networks that any

feedback-based (or reactive) control will be too slow to be of any use. Therefore, some preventive

mechanisms have been developed to maintain the information traffic inside a computer network to a

comfortable level. Such techniques are implemented at the sender side by ensuring that only as much

information traffic is allowed to enter the network as can be comfortably handled by the networks

[1,20,22]. Based on the users’ needs and state of the technology, providing faster communications

for different types of services (voice, video, data, and others) in the same computer network in an

integrated and unified manner, has become a necessity. These computer networks are referred to as

broadband integrated services digital networks (BISDNs). Broadband ISDNs provide end-to-end digital

connectivity and users can access any type of communication service from a single point of access.

Asynchronous transfer mode (ATM) is expected to be used as a transfer mechanism in broadband

ISDNs. ATM is essentially a fast packet switching technique where information is transmitted in the

form of small fixed-size packets called cells. Each cell is 53 bytes long and includes a header of 5 bytes.

The information is primarily transported using connection-oriented (virtual circuit) environment

[3,4,8,12,17].

Another aspect of wide area networks is the processing speed of switching nodes. As the data rates of

transmission media increases, it is essential to have faster processing capability at the switching nodes.

Otherwise, switching nodes become bottlenecks and faster transmission media cannot be fully utilized.

When transmission media consists of optical fibers, the incoming information at a switching node is

converted from optical form to electronic form so that it may be processed and appropriately switched

to an outgoing link. Before it is transmitted, the information is again converted from electronic form to

optical form. This slows down the information transfer process and increases the delay. To remedy this

situation, research is being conducted to develop large optical switches to be used as switching nodes.

Optical switches will not require conversion of information from optical to electronic and vice versa at

the switching nodes; however, these switches must also possess the capability of optical processing of

information. When reasonable sized optical switches become available, use of optical fiber as transmis-

sion media together with optical switches will lead to all-optical computer and communication

networks. Information packets will not need to be stored for processing at the switching nodes and

that will certainly improve the delay performance. In addition, wavelength division multiplexing

techniques are rendering use of optical transmission media to its fullest capacity [14].

26.4.3.2 Local and Metropolitan Area Networks

A local area network has a limited geographical scope (no more than a few kilometers) and is generally

limited to a building or an organization. It uses a single transmission medium and all users are

connected to the same medium at various points. The transmission medium may be open-ended

(bus) as shown in Fig. 26.23b or it may be in the form of a loop (ring) as shown in Fig. 26.23c.

Metropolitan area networks also have a single transmission medium that is shared by all the users

connected to the network, but the medium spans a relatively larger geographical area, upto 150 km.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 34 11.10.2007 8:31pm Compositor Name: TSuresh

26-34 Digital Systems and Applications

They also use a transmission medium with relatively higher data rates. Local and metropolitan

area networks also use a layered implementation of communication protocols as needed in wide area

networks; however, these protocols are relatively simpler because of simple topology, no switching

nodes, and limited distance between the senders and the receivers. All users share the same transmission

medium to exchange their information. Obviously, if two or more users transmit their information at

the same time, the information from different users will interfere with each other and will cause a

collision. In such cases, the information of all users involved in a collision will be destroyed and will need

to be retransmitted. Therefore, there must be some well-defined procedures so that all users may share

the same transmission medium in a civilized manner and have successful exchange of information.

These procedures are called medium access control (MAC) protocols.

There are two broad categories of MAC protocols:

. Controlled access protocols

. Contention-based access protocols

In controlled access MAC protocols, users take turns in transmitting their information and only one

user is allowed to transmit information at a time. When one user has finished its transmission, the next

user begins transmission. The control could be centralized or distributed. No information collisions

occur and, hence, no information is lost due to two or more users transmitting their information at the

same time. Example of controlled access MAC protocols include token-passing bus and token-passing

ring local area networks. In both of these examples, a token (a small control packet) circulates among the

stations. A station that has the token is allowed to transmit information, and other stations wait until

they receive the token [19].

In contention-based MAC protocols, users do not take turns in transmitting their information. When

a users becomes ready, it makes its own decision to transmit and also faces a risk of becoming involved in

a collision with another stations who also decides to transmit at about the same time. If no collision

occurs, the information may be successfully delivered to its destination. On the other hand, if a

collision occurs, the information from all users involved in a collision will need to be retransmitted.

An example of contention-based MAC protocols is carrier sense multiple access with collision detection

(CSMA=CD) which is used in Ethernet. In CSMA=CD, a user senses the shared transmission medium

prior to transmitting its information. If the medium is sensed as busy (someone is already transmitting

the information), the user will refrain from transmitting its information; however, if the medium is

sensed as free, the user transmits its information. Intuitively, this MAC protocol should be able to avoid

collisions, but collisions still do take place. The reason is that transmissions travel along the transmission

medium at a finite speed. If one user senses the medium at one point and finds it free, it does not mean

that another user located at another point of the medium has not already begun its transmission. This is

referred to as the effect of the finite propagation delay of electromagnetic signal along the transmission

medium. This is the single most important parameter that causes deterioration of performance in

contention-based local area networks [11,19].

Design of local area networks has also been significantly impacted by the availability of transmission

media with higher data rates. As the data rate of a transmission medium increases, the effects of

propagation delay becomes even more visible. In higher speed local area networks such as Gigabit

Ethernet, and 100-BASE-FX, the medium access protocols are designed such that to reduce the effects of

propagation delay. If special attention is not given to the effects of propagation delay, the performance of

high-speed local area networks becomes very poor [15,19].

Metropolitan area networks essentially deal with the same issues as local area networks. These

networks are generally used as backbones for interconnecting different local area networks together.

These are high-speed networks and span a relatively larger geographical area. MAC protocols for sharing

the same transmission media are based on controlled access. Two most common examples of metro-

politan area networks are fiber distributed data interface (FDDI) and distributed queue dual bus

(DQDB). In FDDI, the transmission medium is in the form of two rings, whereas DQDB uses two

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 35 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-35

buses. FDDI rings carry information in one but opposite directions and this arrangement improves

reliability of communication. In DQDB, two buses also carry information in one but opposite

directions. The MAC protocol for FDDI is based on token passing and supports voice and data

communication among its users. DQDB uses a reservation-based access mechanism and also supports

voice and data communication among its users [19].

26.4.3.3 Wireless and Mobile Communication Networks

Communication without being physically tied-up to wires has always been of interest and mobile and

wireless communication networks promises that. The last few years have witnessed unprecedented

growth in wireless communication networks. Significant advancements have been made in the tech-

nologies that support wireless communication environment and there is much more to come in the

future. The devices used for wireless communication require certain features that wired communication

devices may not necessarily need. These features include low power consumption, light weight, and

worldwide communication ability.

In wireless and mobile communication networks, the access to a communication network is wireless so

that the end users remain free to move. The rest of the communication path could be wired, wireless, or

combination of those. In general, a mobile user, while communicating, has a wireless connection with a

fixed communication facility and rest of the communication path remains wired. The range of wireless

communication is always limited and therefore range of user mobility is also limited. To overcome this

limitation, cellular communication environment has been devised. In a cellular communication envir-

onment, geographical region is divided into smaller regions called cells, thus the name cellular. Each cell

has a fixed communication device that serves all mobile devices within that cell. However, as a mobile

device, while in active communication, moves out of one cell and into another cell, service of that

connection is transferred from one cell to another. This is called handoff process [7,16].

The cellular arrangement has many attractive features. As the cell size is small, the mobile devices do

not need very high transmitting power to communicate. This leads to smaller devices that consume less

power. In addition, it is well known that the frequency spectrum that can be used for wireless

communication is limited and can therefore only support a small number of wireless communication

connections at a time. Dividing communication region into cells allows use of the same frequency in

different cells as long as they are sufficiently apart to avoid interference. This increases the number of

mobile devices that can be supported. Advances in digital signal processing algorithms and faster

electronics have led to very powerful, smaller, elegant, and versatile mobile communication devices.

These devices have tremendous mobile communication abilities including wireless Internet access,

wireless e-mail and news items, and wireless video (through limited) communication on handheld

devices. Wireless telephones are already available and operate in different communication environments

across the continents. The day is not far when a single communication number will be assigned to every

newborn and will stay with that person irrespective of his=her location.

Another field that is emerging rapidly is the field if ad hoc wireless communication networks. These

networks are of a temporary nature and are established for a certain need and for a certain duration.

There is no elaborate setup needed to establish these networks. As a few mobile communication devices

come in one another’s proximity, they can establish a communication network among themselves.

Typical situations where ad hoc wireless networks can be used are classroom environment, corporate

meetings, conferences, disaster recovery situations, etc. Once the need for networking is satisfied, the ad

hoc networking setup disappears.

26.4.4 Resource Allocation Techniques

As discussed earlier, computer networks are resource sharing systems. Users share the common resources

as transmission media, processing power and buffering capacity at the switching nodes, and other

resources that are part of the networks. A key to successful operation of computer networks is a fair and

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 36 11.10.2007 8:31pm Compositor Name: TSuresh

26-36 Digital Systems and Applications

efficient allocation of resources among its users. Historically, there have been two approaches to

allocation of resources to users in computer networks:

. Static allocation of resources

. Dynamic allocation of resources

Static allocation of resources means that a desired quantity of resources is allocated to each user and

they may use it whenever they need. If they do not use their allocated resources, no one else can. On the

other hand, dynamic allocation of resources means that a desired quantity of resources is allocated to

users on the basis of their demands and for the duration of their need. Once the need is satisfied, the

allocation is retrieved. In that case, someone else can use these resources if needed. Static allocation

results in wastage of resources, but does not incur the overhead associated with dynamic allocation.

Which technique should be used in a given a situation is subject to the famous concept of supply and

demand. If resources are abundant and demand is not too high, it may be better to have static allocation

of resources; however, when the resources are scarce and demand is high, dynamic allocation is almost a

necessity to avoid the wastage of resources.

Historically, communication and computer networks have dealt with both the situations. Earlier

communication environments used dynamic allocation of resources when users will walk to public call

office to make a telephone call or send a telegraphic message. After a few years, static allocation of

resources was adopted, when users were allocated their own dedicated communication channels and

these were not shared among others. In late 1960s, the era of computer networks dawned with dynamic

allocation of resources and all communication and computer networks have continued with this

tradition to date. With the advent of optical fiber, it was felt that the transmission resources are

abundant and can satisfy any demand at any time. Many researchers and manufacturers held the

opinion in favor of going back to the static allocation of resources, but a decision to continue with

dynamic resource allocation approach was made and that is here to stay for many years to come [10].

26.4.5 Challenges and Issues

Many challenges and issues are related to communications and computer networks that are still to be

overcome. Only the most important ones will be described in this subsection.

High data rates provided by optical fibers and high-speed processing available at the switching nodes

has resulted in lower delay for transferring information from one point to another. However, the

propagation delay (the time for a signal to propagate from one end to another) has essentially remained

unchanged. This delay depends only on the distance and not on the data rate or the type of the

transmission medium. This issue is referred to as latency versus delay issue [11]. In this situation

traditional feedback-based reactive traffic management techniques become ineffective. New preventive

techniques for effective traffic management and control are essential for achieving the full potential of

these communication and computer networks [22].

Integration of different services in the same networks has also posed new challenges. Each type of

sexrvice has its own requirements for achieving a desired level of quality of service (QoS). Within the

networks any attempt to satisfy QoS for a particular service will jeopardize the QoS requirements for

other service. Therefore, any attempt to achieve a desired level of quality of service must be uniformly

applied to the traffic inside a communication and computer network and should not be intended for any

specific service or user. That is another challenge that needs to be carefully addressed and its solutions

achieved [13].

Maintaining security and integrity of information is another continuing challenge. The threat of

sensitive information passively or actively falling into unauthorized hands is very real. In addition,

proactive and unauthorized attempts to gain access to secure databases are also very real. These issues

need to be resolved to gain the confidence of consumers so that they may use the innovations in

communications and computer networking technologies to their fullest [13].

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 37 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-37

26.4.6 Summary and Conclusions

Section 26.4 discussed the fundamentals of communications and computer networks and the

latest developments related to these fields. Communications and computer networks have witnessed

tremendous growth and sophisticated improvements over the last several decades.

Computer networks are essentially resource sharing systems in which users share the transmission

media and the switching nodes. These are used for exchanging information among users that are not

necessarily connected directly. Transmission rates of transmission media have increased manifold and

the processing power of the switching nodes (which are essentially computers) has also been multiplied.

The emerging computer networks are supporting communication of different types of services in an

integrated fashion. All types of information, irrespective of its type and source, is being transported in

the form of packets (e.g., ATM cells). Resources are being allocated to users on a dynamic basis for better

utilization. Wireless communication networks are emerging to provide worldwide connectivity and

exchange of information at any time.

These developments have also posed some challenges. Effective traffic management techniques,

meeting QoS requirements, and information security are the major challenges that need to be

surmounted in order to win the confidence of users.

References

1. Bae, J., and Suda, T., Survey of traffic control schemes and protocols in ATM networks, Proceedings

of the IEEE, Vol. 79, No.2, February 1991, pp. 170–189.

2. Beyda, W., Data Communications from Basics to Broadband, Third Edition, 2000.

3. Black, U., ATM: Foundation for Broadband Networks, Prentice-Hall, Englewood Cliffs, NJ, 1995.

4. Black, U., Emerging Communications Technologies, Second Edition, Prentice-Hall, Englewood Cliffs,

NJ, 1997.

5. Chou, C., ‘‘Computer networks in communication survey research,’’ IEEE Transactions on

Professional Communication, Vol. 40, No. 3, September 1997, pp. 197–208.

6. Comer, D., Computer Networks and Internets, Prentice-Hall, Englewood Cliffs, NJ, 1999.

7. Goodman, D., Wireless Personal Communication Systems, Addison-Wesley, Reading, MA, 1999.

8. Goralski, W., Introduction to ATM Networking, McGraw-Hill, New York, 1995.

9. Freeman, R., Fundamentals of Telecommunications, John Wiley & Sons, New York, 1999.

10. Ilyas, M., and Mouftah, H.T., ‘‘Performance evaluation of computer communication networks,’’

IEEE Communications Magazine, Vol. 23, No. 4, April 1985, pp. 18–29.

11. Kleinrock, L., ‘‘The latency=bandwidth tradeoff in gigabit networks,’’ IEEE Communications Maga-

zine, Vol. 30, No. 4, April 1992, pp. 36–40.

12. Kleinrock, L., ‘‘ISDN-The path to broadband networks,’’ Proceedings of the IEEE, Vol. 79, No. 2,

February 1991, pp. 112–117.

13. Leon-Garcia, A., and Widjaja, I., Communication Networks, Fundamental Concepts and Key Archi-

tectures, McGraw Hill, New York, 2000.

14. Mukherjee, B., Optical Communication Networks, McGraw-Hill, New York, 1997.

15. Partridge, C., Gigabit Networking, Addison-Wesley, Reading, MA, 1994.

16. Rappaport, T., Wireless Communications, Prentice-Hall, Englewood Cliffs, NJ, 1996.

17. Schwartz, M., Broadband Integrated Networks, Prentice-Hall, Englewood Cliffs, NJ, 1996.

18. Shay, W., Understanding Communications and Networks, Second Edition, PWS, 1999.

19. Stallings, W., Local and Metropolitan Area Networks, Sixth Edition, Prentice-Hall, Englewood Cliffs,

NJ, 2000.

20. Stallings, W., ISDN and Broadband ISDN with Frame Relay and ATM, Fourth Edition, Prentice-Hall,

Englewood Cliffs, NJ, 1999.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 38 11.10.2007 8:31pm Compositor Name: TSuresh

26-38 Digital Systems and Applications

21. Stallings, W., High-Speed Networks, TCP=IP and ATM Design Principles, Prentice-Hall, Englewood

Cliffs, NJ, 1998.

22. Yuan, X., ‘‘A study of ATM multiplexing and threshold-based connection admission control in

connection-oriented packet networks,’’ Doctoral Dissertation, Department of Computer Science

and Engineering, Florida Atlantic University, Boca Raton, Florida 33431, August 2000.

26.5 Video over Mobile Networks

Abdul H. Sadka

26.5.1 Introduction

Due to the growing need for the use of digital video information in multimedia communications

especially in mobile environments, research efforts have been focusing on developing standard algorithms

for the compression and transport of video signals over these networking platforms. Digital video signals,

by nature, require a huge amount of bandwidth for storage and transmission. A 6-second monochrome

video clip of QCIF (1763 144) resolution and a frame rate of 30 Hz requires over 742 kbytes of raw video

data for its digital representation where each pixel has an 8-bit luminance (intensity) value. When this

digital signal is intended for storage or remote transmission, the occupied bandwidth becomes too large to

be accommodated and thus compression becomes necessary for the efficient processing of the video

content. Therefore, in order to transmit video data over communication channels of limited bandwidth,

some kind of compression must be applied before transmission.

Video compression technology has witnessed a noticeable evolution over the last decade as research

efforts have revolved around the development of efficient techniques for the compression of still images

and discrete raw video sequences. This evolution has then progressed into improved coding algorithms

that are capable of handling both errors and varying bandwidth availability of contemporary commu-

nication media. The contemporary standard video coding algorithms provide both optimal coding

efficiency and error resilience potential. Current research activity is focused on the technologies

associated with the provision of video services over the future mobile networks at user-acceptable

quality and with minimal cost requirements. Section 26.5 discusses the basic techniques employed by

video coding technology, and the associated most prominent error resilience mechanisms used to ensure

an optimal trade-off between the coding efficiency and quality of service of standard video coding

algorithms. This section also sheds the light on the algorithmic concepts underlying these technologies

and provides a thorough presentation of the capabilities of contemporary mobile access networks, such

as general packet radio service (GPRS), to accommodate the transmission of compressed video streams

at various network conditions and application scenarios.

26.5.2 Evolution of Standard Image=Video Compression Algorithms

The expanding interest in mobile multimedia communications and the concurrently expanding growth

of data traffic requirements have led to a tremendous amount of research work during a period of over

15 years for developing efficient image and video compression algorithms. Both International Tele-

communications Union (ITU) and International Organization for Standardization (ISO) have released

a number of standards for still image and video coding algorithms that employ the discrete cosine

transforms (DCT) and the Macroblock (MB) structure of an image to suppress the temporal and

spatial redundancies incorporated in a sequence of images. These standardized algorithms aimed at

establishing an optimal trade-off between the coding efficiency and the perceptual quality of the

reconstructed signal. After the release of the first still-image coding standard, namely JPEG [1], CCITT

recommended the standardisation of the first video compression algorithm for low-bit rate commu-

nications at p3 64 kbit=s over ISDN, namely ITU-T H.261 [2] in 1990. In post 1990s, intensive work

has been carried out to develop improved versions of the aforementioned ITU standard, and this has

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 39 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-39

culminated in a number of video coding standards, namelyMPEG-1 [3] for audiovisual data storage (1.5-

2 Mbit=s) on CD-ROM, MPEG-2 [4] (or ITU-T H.262) for HDTV applications (4–9 Mbit=s), ITU-T

H.263 [5] for very low bit rate (<64 kbit=s) communications over PSTN networks, and then the first

content-based, object-oriented audiovisual compression algorithm, namely MPEG-4 [6], for multimedia

communications over mobile networks in 1998. Recent standardization work resulted in recommending

annexes to ITU-T H.263 standard, namely H.263þ [7] and H.263þþ [8] for improved coding efficiency,

bit rate scaleability, and error resilience performance. ITU-T is currently considering the standardization

of H.26L, a new video compression algorithm expected to outperform H.263 at very low bit rate

applications. Despite this remarkable evolution of digital video coding technology, the common feature

for all the released standards so far is that they all employ the same algorithmic concepts and build on them

for further improvement in both quality and coding efficiency. In this chapter section, the fundamental

techniques that constitute the core of today’s video coders are presented.

26.5.3 Digital Representation of Raw Video Data

A video signal is a sequence of still images. When played at a high enough rate, the sequence of images

(mostly referred to as video frames) gives the impression of an animated video scene. Video frames are

captured by a camcorder at a certain sampling rate and processed as a sequence of still pictures

correlated by motion dependencies. When adjacent frames are strongly correlated, smaller redundancy

is found in the video signal if only the difference between successive frames is encoded. The process of

exploiting temporal redundancies between adjacent frames by subtracting the prediction image (some-

times referred to as the motion compensated image) from the original input image and then coding the

resulting residual is called INTER frame coding. If no motion prediction was employed in encoding a

video frame and only spatial redundancies were exploited to compress a video frame, then the frame is

said to be INTRA coded.

Each video frame is a two-dimensional matrix of pixels, each of which is represented by a luminance

(intensity) component and two chrominance (color) components Y, U, and V, respectively. In block-

based video coders, each frame is divided into groups of blocks (GOB). Each GOB is divided into a

number of MBs (macroblock). A MB relates to 16 pixels by 16 lines of luminance Y and the spatially

corresponding 8 pixels by 8 lines of chrominance U and V. A MB consists of four Y-blocks and two

spatially corresponding color difference blocks. Figure 26.24 depicts the hierarchical layering structure

of a video frame of Quadrature Common Intermediate Format (QCIF) resolution, i.e., 176 pixels by

144 lines.

26.5.4 Basic Concepts of Block-Based Video Coding Algorithms

Despite their differences, the video coding standards have the same core structure. They all adopt the MB

structure as described in the previous section and consist of the same major building blocks. The

standard video coding algorithms employ one of the two coding modes, INTRA or INTER. A typical

block diagram of a block-based transform video coder is depicted in Fig. 26.25.

26.5.4.1 Discrete Cosine Transforms (DCT)

The 64 coefficients of an 83 8 block of data are passed through a DCT transformer. DCT extracts the

spatial redundancies of the video block by gathering the biggest portion of its energy in the low

frequency components that are located in the top left corner of the block. The transfer function of a

two-dimensional DCT transformer employed in a block-based video coder is given in Eq. 26.1 below:

F(u,v) ¼ 1

4
C(u)C(v)

X7
x¼0

X7
y¼0

f (x,y) cos p(2x þ 1)
u

16

h i
cos p(2y þ 1)

v

16

h i
(26:1)

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 40 11.10.2007 8:31pm Compositor Name: TSuresh

26-40 Digital Systems and Applications

with u, v, x, y¼ 0, 1, 2, . . . , 7, where x and y are the spatial coordinates in the pixel domain, u and v are

the coordinates in the transform domain

C(u) ¼ 1ffiffiffi
2

p for u ¼ 0; 1 otherwise

C(v) ¼ 1ffiffiffi
2

p for v ¼ 0; 1 otherwise

176x44 Y, 88x72 Cb
and 88x72 Cr

MB: 16x16 Y, 8x8 Cb and 8x8 Cr

Block: 8x8

GOB: 144x16 Y, 88x8 Cb
and 88x8 Cr

GOB no. 1

GOB no. 2

GOB no. 3

GOB no. 9

MB
no. 1

MB
no. 2

MB
no. 11

MB
no. k

1 2

3 4
= +

4 Y–Blocks 1 Cb–Block

Y, Cb or CrBlock

One of 64 pixels in a Block

1 Cr–Block

+5 6

PICTURE :

FIGURE 26.24 Hierarchical layering structure for a QCIF frame in block-based video coders.

Input

Output
DCT Q

IQ

IDCT

FM

ME

RLC HUFFZigzag+

MC

+

−

DCT: Discrete cosine transform
Q: Quantisation
RLC: Run-length coding
HUFF: Huffman coding
IQ: Inverse quantisation
IDCT: Inverse DCT
FM: Frame memory
MC: Motion compensation
ME: Motion estimation

FIGURE 26.25 Block diagram of a block-based video coder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 41 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-41

26.5.4.2 Quantization

Quantization is a process that maps the symbols representing the DCT transformed coefficients from

one set of levels to a narrower one in order to minimise the number of bits required to transmit

the symbols. Quantization in block-based coders is a lossy process and thus it has a negative impact

on the perceptual quality of the reconstructed video sequence. The quantization parameter (Qp) is a

user-defined parameter that determines the level of distortion that affects the video quality due to

quantization. The higher the quantization level, Qp, the coarser the quantization process. Quantization

uses different techniques based on the coding mode employed (INTRA or INTER), the position of the

coefficient in a video block (DC or AC coefficients), and the coding algorithm under consideration.

26.5.4.3 Raster Scan Coding

It is also known as zigzag pattern coding. The aim of zigzag coding the 83 8 matrix of quantised DCT

coefficients is to convert the two-dimensional array into a stream of indices with a high occurrence of

successive 0 coefficients. The long runs of zeros will then be efficiently coded as will be shown in the next

subsection. The order of a zigzag pattern encoder is depicted in Fig. 26.26.

26.5.4.4 Run-Length Coding

The run-length encoder takes the one-dimensional array of quantised coefficients as input and generates

coded runs as output. Instead of coding each coefficient separately, the run-length coder searches for

runs of similar consecutive coefficients (normally zeros after the DCTand quantisation stages) and codes

the length of the run and the preceding nonzero level. A 1-bit flag (LAST) is sent after each run to

indicate whether or not the corresponding run is the last one in the current block. Run-lengths and levels

are then fed to the Huffman coder to be assigned variable length codewords before transmission on the

video channel.

26.5.4.5 Huffman Coding

Huffman coding, traditionally referred to as entropy coding, is a variable length coding algorithm that

assigns codes to source-generated bit patterns based on their frequency of occurrence within the

generated bit stream. The higher the likelihood of a symbol, the smaller the length of the codeword

assigned to it and vice versa. Therefore, Entropy coding results in the optimum average codeword size

for a given set of runs and levels.

26.5.4.6 Motion Estimation and Prediction

For each MB in a currently processed video frame, a sum of absolute differences (SAD) is calculated

between its pixels and those of each 163 16

matrix of pixels that lie inside a window (in the

previous frame) of a user-defined size called the

search window. The 163 16 matrix, which

results in the least SAD, is considered to most

resemble the current MB and referred to as the

‘‘best match.’’ The displacement vector between

the currently coded MB and the matrix that

spatially corresponds to its best match in the

previous frame is called the motion vector

(MV) and the relative SAD is called the MB

residual matrix. If the smallest SAD is less than

a certain threshold then the MB is INTER coded

by sending the MV and the DCT coefficients of

the residual matrix, otherwise the MB is INTRA

coded. The coordinates of the MV are transmit-

ted differentially using the coordinates of one or
FIGURE 26.26 Sequence of zigzag-coding coefficients

of a quantised 8 3 8 block.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 42 11.10.2007 8:31pm Compositor Name: TSuresh

26-42 Digital Systems and Applications

more MVs corresponding to neighboring MBs (left MB in ITU-T H.261 or left, top, and top right MBs

in ITU-T H.263 and ISO MPEG-4) within the same video frame. Figures 26.27 and 26.28 illustrate the

motion estimation and prediction processes of contemporary video coding algorithms.

26.5.5 Subjective and Objective Evaluation of Perceptual Quality

The performance of a video coding algorithm can be simply subjectively evaluated by visually comparing

the reconstructed video sequence to the original one. Two major types of subjective methods are used to

assess the quality of perceptual video quality. In the first, an overall quality rating is assigned to the

image (usually last decoded frame of a sequence). In the second, quality impairment is induced on a

standard type image until it is completely similar to the reference image or vice versa.

Objectively, the video quality is measured by using some mathematical criteria, the most common of

which is the peak-to-peak signal-to-noise ratio (PSNR) defined in Eq. 26.2.

MB1

Frame N−1 Frame N

(x1,y1) (x,y)

Maximum−area search window for current MB

MB : Currently processed MB in Frame N
MB1 : Best match 16 � 16 matrix in Frame N−1

MVx = x−x1
MVy = y−y1

MB

FIGURE 26.27 Motion estimation process in a block-based video coder.

H.261

MV1 MV
MVDx = MVx − MV1x
MVDy = MVy − MV1y

H.263

MV2 MV3

MV1 MV

MVDx = MVx − Px
MVDy = MVy − Py
Px = Median (MV1x, MV2x, MV3x)
Py = Median (MV1y, MV2y, MV3y)

MVD : Differentially coded motion vector

FIGURE 26.28 Motion prediction in 2 ITU-T video coding standards.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 43 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-43

PSNR ¼ 10 log10
2552

1
M�N

PM�1
i¼0

PN�1
j¼0 (x(i,j)� x̂(i,j))2

(26:2)

For a fair comparison of perceptual quality between two video coding algorithms, the objective and

subjective results must be evaluated at the same target bit rates. Because the bit rate in kbit=s is directly

proportional to the number of frames coded per unit of time, the frame rate (f=s) has also to be

mentioned in the evaluation process.

Figures 26.29 and 26.30 show the subjective and objective results, respectively, for coding 150 frames

of the sequence ‘‘Suzie’’ at a bit rate of 64 kbit=s and a frame rate of 25 f=s.

26.5.6 Error Resilience for Mobile Video

Mobile channels are characterised by a high level of hostility resulting from high bit error ratios (BER)

and information loss. Because of the bit rate variability and the spatial and temporal predictions, coded

video streams are highly sensitive to transmission errors. This error sensitivity can be the reason for an

ungraceful degradation of video quality, and hence the total failure of the video communication service.

A single bit error could lead to a disastrous damage to perceptual quality. The most damaging effect of

errors is that which leads to a loss of synchronisation at the decoder. In this case, the decoder is unable to

determine the size of the affected variable-length video parameter and, therefore, drops the stream bits

following the position of error until it resynchronises at the next synch word. Consequently, it is vital to

employ an error resilience mechanism for the success of the underlying video communication service.

A popular technique used tomitigate the effects of errors is called error concealment [9]. It is a decoder-

based zero-redundancy error control scheme whereby the decoder makes use of previously received

error-free video data for the reconstruction of the incorrectly decoded video segment. A commonly

used approach conceals the effect of errors on a damaged MB by relying on the content of the spatially

corresponding MB in the previous frame. In the case where motion data is corrupted, the damaged

(a) (b)

(c) (d)

FIGURE 26.29 150th Frame of original: (a) ‘‘Suzie’’ sequence and its compressed version at 64 kbit=s using,

(b) H.261, (c) baseline H.263, and (d) Full-option H.263.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 44 11.10.2007 8:31pm Compositor Name: TSuresh

26-44 Digital Systems and Applications

motion vector can be predicted from the motion vectors of spatially neighboringMBs in the same picture.

On the other hand, transform coefficients could also be interpolated from pixels in neighboring blocks.

However, error concealment schemes cannot provide satisfactory results for networks with high BERs

and long error bursts. In this case, error concealment must be used in conjunction with error resilience

schemes that make the coded streams more robust to transmission errors and video packet loss. In the

literature, there are a large number of error resilience techniques specified in the standard ISO MPEG-4

[10] and the annexes to ITU-T H.263 defined in recommendations H.263þ [11] and H.263þþ [12].

One of the most effective ways of preventing the propagation of errors in encoded video sequences is the

regular insertion of INTRA-coded frames, which do not make use of any information from previously

transmitted frames; however, this method has the disadvantage of making the traffic characteristics of a

video sequence extremely bursty since a much larger number of bits are required to obtain the same

quality levels as for INTER (predictively coded) frames. A more efficient improvement to INTRA-frame

refresh consists of regular coding of INTRA MBs per frame, referred to as Adaptive INTRA Refresh

(AIR), where the INTRA coded MBs are identified as part of the most active region in the video scene.

The insertion of a fixed number of INTRA coded MBs per frame can smooth out the bit rate fluctuations

caused by coding the whole frame in INTRA mode. In the following subsections, we present two major

standard-compliant error resilience algorithms specified in the MPEG-4 video coding standard, namely

data partitioning and two-day decoding with reversible codewords.

26.5.6.1 Video Data Partitioning

The non error-resilient syntax of video coding standards suggests that video data is transmitted on a MB

basis. In other words, the order of transmission is established such as all the parameters pertaining to a

particular MB are sent before any parameter of the following MB is transmitted. This implies that a bit

error detected in the texture data of an early MB in the video frame leads to the loss of all forthcoming

MBs in the frame. Data partitioning changes the order of transmission of video data from a MB basis to

a frame basis or a Visual Object Plane (VOP) basis in MPEG-4 terminology. Each video packet that

corresponds to a VOP consists of two different partitions separated by specific bit patterns called

markers (DC marker for INTRA coded VOPs and motion marker for INTER coded VOPs). The first

40.0

39.0

38.0

37.0

36.0

35.0

34.0

33.0

32.0

31.0

30.0

29.0

28.0

27.0

26.0

25.0

Y
-P

S
N

R
 (

dB
)

0 25 50 75

Frame No.

100 125 150

(a)
(b)
(c)

FIGURE 26.30 PSNR values for Suzie sequence compressed at 64 kbit=s (a) baseline H.263, (b) full-option H.263,

and (c) H.261.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 45 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-45

partition contains the shape information, motion data, and some administrative parameters such as

COD for INTRA frames and MCBPC of all the MBs in the VOP, while the second partition contains the

texture data (i.e., the transform coefficients TCOEFF) of all the MBs inside the VOP and other control

parameters such as CBPY. Using this partitioning structure as illustrated in Fig. 26.31, the errors that hit

the data bits of the second partition do not lead to the loss of the whole frame since the error-sensitive

motion data would have been correctly decoded upfront.

26.5.6.2 Two-Way Decoding and Reversible Variable-Length Codewords

Two-way decoding is used with reversible VLC words in order to reduce the size of the damaged area in a

video bit stream. This error resilience technique enables the video decoder to reconstruct a part of the

stream that would have been skipped in the ordinary one-way decoding due to loss of synchronisation.

This is achieved by allowing the decoding of the variable-length codewords of the video bit stream in the

reverse direction. The reversible codewords are symbols that could be decoded in both the forward

and reverse directions. An example of reversible VLCs is a set of codewords where each one of them

consists of the same number of the starting symbol, either 1 or 0. For instance, the set of variable-length

codewords that is defined by 0100, 11001, 10101, 01010, 10011, 0010, consists of codewords that contain

three 1s or 0s each, where the 1 or 0 is the starting symbol, respectively.

In conventional one-way decoding, the decoder loses synchronisation upon detection of a bit error.

This is mainly due to the variable rate nature of compressed video streams and the variable-length

Huffman codes assigned to various symbols that represent the video parameters. In order to restore its

synchronisation, the decoder skips all the data bits following the position of errors until it falls on the

first error-free synch word in the stream. The skipped bits are then discarded, regardless of their

correctness, resulting in an effective error ratio that is larger than the channel BER by orders of

magnitude. The response of the one-way video decoder to a bit error is depicted in Fig. 26.32.

With two-way decoding, a part of the skipped segment of bits can be recovered by enabling decoding

in the reverse direction as shown in Fig. 26.33. Upon detection of a bit error, the decoder stops its

operation searching for the next synch word in the bit stream. Upon gaining synchronization at the

synch word, the decoder resumes its operation in the backward direction thereby rescuing the part of the

bit stream, which has been discarded in the forward direction. If no error is detected in the reverse

direction then the damaged area is confined to the MB where the bit error has been detected in the

forward direction. If an error has also been flagged up in the backward direction, then the segment of

bits between the positions of error in both the forward and backward directions is discarded as the error

damaged area as shown in Fig. 26.33.

In many cases, a combination of error resilience techniques is used to further enhance the error

robustness of compressed video streams to transmission errors of mobile environments. For instance,

Motion marker

Texture dataMotion/Shape data Texture dataMotion/shape data

Synch word

FIGURE 26.31 Data partitioning for error resilient video communication.

Synch word 0 1 m m+1 n+1 n

ErrorError
Cannot be decoded

L

0......

FIGURE 26.32 One-way decoding of variable-length codes.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 46 11.10.2007 8:31pm Compositor Name: TSuresh

26-46 Digital Systems and Applications

both data partitioning and two-way decoding can be jointly employed to protect the error-sensitive

motion data of the first video partition. The motion vectors and the administrative parameters

contained in the first partition are all coded with reversible VLC words. The detection of a bit error

in the forward direction triggers the decoder to stop its operation, regain synchronisation at the motion

marker separating the two partitions in the corresponding VOP, and then decode backwards to salvage

some of the correctly received bits that were initially skipped in the forward direction.

26.5.7 New Generation Mobile Networks

Packet-switched mobile access networks such as GPRS [13] and EGPRS [14] are intended to give

subscribers access to a variety of mobile multimedia services that run on different networking platforms,

let it be the core mobile network, i.e., UMTS, ATM, or even Internet. The packet-switched mobile access

networks have a basic common feature in that they are all IP-based and allow time multi-slotting on a

given radio interface. The multi-slotting capabilities enable the underlying networking platform to

accommodate higher bit rates by providing the end-user with a larger physical layer capacity.

The real-time interactive and conversational services are very much delay-critical, so the provision of

these services over mobile networks can only be achieved by using a service class capable of guaranteeing

the delay constraints with one-delays in the order of 200 msec being required. In order to achieve such

delay requirements, it is necessary to avoid using any retransmissions or repeat-requests scenarios by

operating the RLC layer of the GPRS protocol stack in the unacknowledged mode of operations.

Similarly, the transport layer protocol that must be employed is the user datagram protocol (UDP),

which operates over IP and does not make use of any repeat-request system.

IP networks do not guarantee the delivery of packets and neither do they provide any mechanism to

guarantee the orderly arrival of packets. This implies that not only does the inter-packet arrival time vary

but it is also likely that packets may arrive out of order. Therefore, in order to transmit real-time

video information, some transport-layer functionality must be overlaid on the network layer to provide

timing information from which streaming video may be reconstructed. To offer this end-to-end network

transport functionality, the IETF real-time transport protocol (RTP) [15] is used. RTP fulfills functions

such as payload type identification, sequence numbering, timestamping, and delivery monitoring,

and operates on top of IP and UDP for the provision of real-time services and video applications

over the IP-based mobile networks.

On the other hand, the mobile access networks employ channel protection schemes that provide error

control capabilities against multipath fading and channel interferers. For instance, GPRS employs four

channel protection schemes (CS-1 to CS-4), offering flexibility in the degree of protection and data

traffic capacity available to the user. Varying the channel coding scheme allows for an optimization of

the throughput across the radio interface as the channel quality varies. The data rates provided by GPRS

with the channel coding schemes enabled are 8 kbit=s for CS-1, 12.35 kbit=s for CS-2, 14.55 kbit=s for

CS-3, and 20.35 kbit=s for CS-4; however, almost 15% of the bits in the payload of a radio block are used

up by header information belonging to the overlying protocols. Therefore, the rates presented to the

video source for each one of the channel coding schemes per time slot are 6.8 kbit=s for CS-1, 10.5 kbit=s

for CS-2, 12.2 kbit=s for CS-3, and 17.2 kbit=s for CS-4. It is, however, envisaged that the CS-1 and CS-2

Synch word 0 1 m 0nn+1m+1

ErrorError
Cannot be decoded

L

FIGURE 26.33 Two-way decoding of variable-length codes.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 47 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-47

schemes will be used for video applications. Obviously, the available throughput to a single terminal

will be multiples of the given rates per slot, depending upon the multi-slotting capabilities of the

terminal. Conversely, EGPRS provides 9 channel coding schemes of different protection rates and

capabilities and the choice of a suitable scheme is again a trade-off between the throughput and the

error protection potential.

26.5.8 Provision of Video Services over Mobile Networks

Taking into perspective the traffic characteristics of a coded video source employing a fixed quantiser,

we observe that the output bit rate is highly variable with high peaks taking place each time an INTRA-

coded frame is transmitted. INTRA frames require roughly three times on average the bandwidth

required for transmitting a predictively coded frame. Therefore, if the frequency of INTRA frames is

increased for error control purposes as discussed in Section 26.5.6, the encoder will have to discard a

number of frames following each INTRA coded frame until some bandwidth becomes available. Despite

the fact that a fixed quantiser leads to a constant spatial quality, yet the frequent insertion of INTRA

frames in the video sequence has a degrading effect on the temporal quality of the entire video

sequence. In order to preventively cure this situation, it is advisable that a rate control mechanism be

employed at the video encoder before the coded video bit stream is sent over the mobile channel. One

method is to vary the used quantiser value in order to truncate the high-frequency DCT coefficients in

accordance with the target bit rate of the video coder and the number of bits available to code a

particular frame, VOP or MB. Coding an INTRA frame with a coarse quantiser results in a poor spatial

quality but helps improve the temporal quality of the video sequence by maintaining the original frame

rate and reducing the jittering effect caused by the disparity in size between INTRA and INTER coded

frames.

The video delivery over mobile channels can take the form of real-time delay-sensitive conversational

services, delay-critical (on-demand or live) streaming services, or delay-insensitive multimedia messa-

ging applications. The latter requires guarantee on the error-free delivery of intended messages without

placing any stipulation on the duration of transmission and therefore allows retransmissions of

erroneous messages to take place. The former two categories of video services, however, are rather

more delay-critical and necessitate the use of both application and transport layer end-to-end error

control schemes for the robust transmission of compressed video in mobile environments.

The analysis of the GPRS protocol efficiency shows that a reduction of 15% in the data rate per time

slot, as seen by the video encoder, is enough to compensate for all the protocol overheads. The video

quality that can be achieved in video communications over the new generation mobile networks, is a

function of the time slot=coding-scheme combination and the channel conditions during the time of

video packet transmission. It is observed that in error-free conditions, CS-1 yields a sub-optimal quality

due to the large overhead it places on the available bandwidth of each time slot; however, in error-prone

conditions and for C=I ratios lower than 15 dB, CS-1 presents the best error protection capabilities and

offers the best video quality as compared to other channel coding schemes. When eight time slots are

used with CS-1, GPRS can offer a video payload data rate of 54.4 kbit=s. At this rate, it has been

demonstrated that QCIF-resolution conversational MPEG-4 video services can be offered over GPRS for

a frame rate of 10 f=s with fairly good perceptual quality, especially when frequency hopping is used;

however, for highly detailed scenes involving a high amount of motion, the error-free video quality at

high C=I ratios suffers both spatially and temporally because of the coarse quantiser used and the jitter

resulting from the large number of discarded frames respectively. The error protection schemes of the

GPRS protocol are used in conjunction with the application-layer error resilience techniques specified by

the MPEG-4 video compression standard. Figure 26.34 shows the subjective video quality achieved by

transmitting an MPEG-4 coded video sequence (at 18 kbit=s) over a GPRS channel with and without

error resilience (AIR) when CS-1 and four time slots are used.

On the other hand, video services on EGPRS are less likely to encounter the same problems posed by

the lack of bandwidth in the GPRS networks. When EGPRS employs the channel coding scheme MCS-9,

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 48 11.10.2007 8:31pm Compositor Name: TSuresh

26-48 Digital Systems and Applications

the terminal can be offered a data rate of 402.4 kbit=s when 8 time slots are employed. Obviously, at this

data rate, there exists a much higher flexibility in selecting the operating picture resolution and the video

content intended for transmission over the mobile network.

26.5.9 Conclusions

The provision of video services over the new generation mobile networks is made possible through the

enabling technologies supported by the error protection schemes and the multi-slotting capabilities of

the radio interface. Conversational video applications are delay-sensitive and thus do not support

retransmissions of corrupted video data. To provide a user-acceptable video quality, the video applica-

tion must employ an error resilience mechanism in conjunction with the physical layer channel coding

schemes. A wide range of error resilience techniques have been developed in recent video compression

algorithms and their annexed versions. The use of error resilience techniques for supporting the

provision of video services over mobile networks helps enhance the perceptual quality, especially at

times where the mobile channel is suffering from low C=I ratios resulting from high BERs and radio

block loss ratios.

References

1. ISO=IEC JTC1 10918 & ITU-T Rec. T.81: Information Technology—Digital Compression and coding

of continuous-tone still images: Requirements and guidelines, 1994.

2. CCITT Recommendation H.261: Video Codec for audiovisual services at p3 64 kbit=s, COM XV-R

37-E, 1990.

3. ISO=IEC CD 11172: Coding of moving pictures and associated audio for digital storage media at 1.5

Mbit=s, December 1991.

4. ISO=IEC CD 13818-2: Generic coding of moving pictures and associated audio, November 1993.

5. Draft ITU-T Recommendation H.263: Video coding for low bit rate communication, May 1996.

6. ISO=IEC JTC1=SC29=WG11N2802: Information technology—Generic coding of audiovisual objects—

Part 2: Visual, ISO=IEC 14496-2, MPEG Vancouver meeting, July 1999.

7. Draft ITU-T Recommendation H.263 Version 2 (H.263þ): Video coding for low bit rate communi-

cations, January 1998.

8. Rapporteur for Q.15=16—Draft for H.263þþ, Annexes U, V and W to Recommendation H.263, ITU

Telecommunication Standardisation Sector, November 2000.

9. Y. Wang, and Q.F. Zhu, ‘‘Error control and concealment for video communication: a review,’’ Proc.

of the IEEE, Vol. 86, No. 5, pp. 974–997, May 1998.

(a) (b)

FIGURE 26.34 One frame of Suzie sequence encoded with MPEG-4 at 18 kbit=s and transmitted over a GPRS

channel with C=I ¼ 15 dB, with CS-1 and 4 time-slots used: (a) no error resilience and (b) AIR.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 49 11.10.2007 8:31pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-49

10. R. Talluri, ‘‘Error resilient video coding in the MPEG-4 standard,’’ IEEE Communications Magazine,

pp. 112–119, June 1998.

11. S. Wenger, G. Knorr, J. Ott, and F. Kossentini, ‘‘Error Resilience Support in H.263þ,’’ IEEE

Transaction on Circuit and Systems for Video Technology, Vol. 8, No. 7, Nov. 1998.

12. G. Sullivan, ‘‘Rapporteur for Q.15=16—Draft for H.263þþ, Annexes U, V and W to Recommendation

H.263,’’ ITU Telecommunication Standardisation Sector, November 2000.

13. Digital Cellular Telecommunications System (Phase 2þ), ‘‘General Packet Radio Service (GPRS);

Overall description of the GPRS Radio Interface; Stage 2,’’ ETSI=SMG, GSM 03.64, V. 5.2.0, January

1998.

14. Tdoc SMG2 086=00, ‘‘Outcome of Drafting Group on MS EGPRS Rx Performance,’’ EDGE Drafting

Group, January 2000.

15. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, ‘‘RTP: A Transport Protocol for Real-Time

Applications,’’ RFC1889, January 1996.

26.6 Pen-Based User Interfaces—An Applications Overview

Giovanni Seni, Jayashree Subrahmonia, and Larry Yaeger

26.6.1 Introduction

A critical feature of any computer system is its interface with the user. This has led to the development of

user interface technologies such as mouse, touch screen, and pen-based input devices. They all offer

significant flexibility and options for computer input; however, touch screens and mice cannot take full

advantage of human fine motor control, and their use is mostly restricted to data selection, i.e., as

pointing devices. On the other hand, pen-based interfaces allow, in addition to the pointing capabilities,

other forms of input such as handwriting, gestures, and drawings. Because handwriting is one of the

most familiar forms of communication, pen-based interfaces offer a very easy and natural input method.

A pen-based interface consists of a fine-tipped stylus and a transducer device that allows the

movement of the stylus to be captured. Such information is usually given as a time ordered sequence

of x–y coordinates (digital ink) and an indication of inking, i.e., whether the pen is up or down. Digital

ink can be passed on to recognition software that will convert the pen input into appropriate text or

computer actions. Alternatively, the handwritten input can be organized into ink documents, notes, or

messages that can be stored for later retrieval or exchanged through telecommunication means. Such ink

documents are appealing because they capture information as the user composed it, including text in

any mix of languages and drawings such as equations and graphs.

Pen-based interfaces are desirable in mobile computing (e.g., personal digital assistants [PDAs]) and

mobile phones because they are scalable. Only small reductions in size can be made to keyboards before

they become awkward to use; however, if they are not shrunk in size, they can never be very portable.

This is even more problematic as mobile devices develop into multimedia terminals with numerous

functions ranging from agenda and address book to wireless web browser, because of the increasing

amounts of text that must be entered. Voice-based interfaces may appear to be a solution, but they entail

all the problems that cell phones already have introduced in terms of disturbing bystanders and loss of

privacy. Furthermore, using voice commands to control applications such as a web browser can be

difficult and tedious; by contrast, clicking on a link with a pen, or entering a short piece of text by

writing, is very natural and takes place in silence.

Recent hardware advances in alternative ink capture devices based on ultrasonic and optical tracking

technologies have also contributed to the renewed interest in pen-based systems. These technologies

avoid the need for pad electronics, thus reducing the cost, weight, and thickness of a pen-enabled

system. Furthermore, they can sometimes be retrofitted to existing writing surfaces such as whiteboards

[1,2] or used with paper, either specially marked [3,4] or plain [5].

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 50 11.10.2007 8:32pm Compositor Name: TSuresh

26-50 Digital Systems and Applications

This section reviews a number of applications, old and new, in which the pen can be used as a

convenient and natural form of input. Our emphasis will be on the user experience, highlighting

limitations of existing solutions and suggesting ways of improving them. We begin with a short review

of currently available pen data acquisition technologies in Section 26.6.2. Then, in Section 26.6.3, we

discuss handwriting recognition user interfaces for mobile devices and the need for making applications

aware of the handwriting recognition process. In Section 26.6.4, we present Internet-related applications

such as ink messaging. In Section 26.6.5 we discuss some methods for combining computer and paper

inking, and then analyze some of the benefits and issues associated with working with digital ink on the

computer. Finally, in Section 26.6.6, we present examples of synergistic interfaces being developed which

combine the pen with other input modalities.

26.6.2 Pen Input Hardware

The function of the pen input hardware is to convert pen tip position over time into X,Y coordinates at a

sufficient temporal and spatial resolution for handwriting recognition and visual presentation [6].

A pen input system consists of a combination of pen, tablet, and in some cases, paper. Examples of

these include PDAs and some electronic or graphics tablets. Some of these have a glass surface sitting

directly atop the display. These integrated tablet-plus-displays allow you to point and write where you

are looking, and are fairly intuitive to use. Others, like many graphics tablets, have an input device that is

separate from the display. These opaque tablets are less intuitive, requiring the user to write in one place

while they look in another. Users new to opaque tablets often find them difficult to use for text, image

editing, and the like, but with practice, users can become quite proficient with the devices.

Paper-based systems provide another alternative for inputting digital ink, when used with special pens

and, sometimes, special paper. They provide a natural-feeling writing surface, high resolution, and do

not suffer from screen glare or parallax issues. However, they are necessarily always at a remove from the

digital ink they are producing or from the user interface they might wish to control.

Both tablet-based and paper-based pen input systems must detect and report when the pen tip is in

contact with the writing surface. Paper systems face an additional challenge because of the need to keep a

consistent, familiar pressure between pen tip and paper, while still sensing this contact.

Pen hardware platforms available today use one of the following four kinds of technologies:

1. Magnetic tracking: Sequentially energized coils embedded in the pad couple a magnetic field into

a pen tank circuit (coil and capacitor). Neighboring coils pick up the magnetic field from the pen,

and their relative strength determines pen location [7]. The magnetic field can also be generated

in the pen, requiring a battery that increases pen weight and thickness [8] but can help enable

wireless tablets [9].

2. Electric tracking: The conductive properties of a hand and normal pen can be used for tracking

[10]. A transmitter electrode in the pad couples a small displacement current through the paper

to the hand, down through the pen, and back through the paper to an array of receiver electrodes.

Pen location is calculated as the center of mass of the received signal strengths.

3. Ultrasonic tracking: Ultrasonic tracking is based on the relatively slow speed of sound in air

(330 m=s). A pen generates a burst of acoustic energy and electronics in the pad measure the time

of arrival to two stationary ultrasonic receivers [1,2]. The ultrasonic transmission is either

synchronized to the pad, typically with an infrared signal, or a third ultrasonic receiver is

used [11].

4. Optical tracking technology: Optical sensors are mounted in the tip of the pen [12,13] that can

either provide relative tracking (like a mouse) or absolute position tracking (like a touch screen).

Optics may also be mounted at the top of a pen [5] and used to determine the pen’s position

relative to some constant frame of reference, such as the edges of a piece of paper or a tablet PC,

though the accuracy of these devices is not yet demonstrated. Yet another approach captures a

sequence of small images of handwriting and assembles them to reconstruct the entire page [14].

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 51 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-51

26.6.2.1 Discussion of Input Hardware

Magnetic tracking is the widest deployed system owing to high spatial resolution (>1000 dpi),

acceptable temporal resolution (>100 Hz), reliability, and relatively low cost [7].

Magnetic and electric tracking require pad electronics and shielding, adding modest thickness and

weight to portable devices. Electric tracking uses a normal pen but has no direct way to measure pen tip

contact, and must rely on less reliable pen trajectory analysis [15].

Ultrasonic tracking does not require the same writing-surface electronics, thus potentially eliminating

the added thickness issue. Relative tracking can reach 256 dpi, but absolute spatial resolution is limited

to about 50 dpi because of the air currents that cause Doppler shifts.

Optical tracking with tip-mounted sensors offers high spatial (>2000 dpi) and temporal (>200 Hz)

resolution, and can utilize a self-contained pen that remembers everything written. Tiny dots, acting like

bar codes, can provide absolute positioning, and can also encode page number, eliminating overwrites

when a person forgets to tell the digitizer they have changed pages (a challenge that pen hardware

systems with paper interfaces have to address).

Optical tracking with top-mounted sensors is still in its infancy as of this writing, but prototype units

are projected to produce >600 dpi relative spatial resolution, on the order of 0.25 mm absolute spatial

resolution, and >100 Hz temporal resolution.

Optical methods based on CMOS technology should lend themselves to low-power, low-cost designs.

26.6.3 Handwriting Recognition

Handwriting is a very well-developed skill that humans have used for over 5000 years as a means of

communicating and recording information. With the widespread acceptance of computers and com-

puter keyboards, the future role of handwriting in our culture might seem questionable. However, as we

discussed in the introduction, a number of applications exist where the pen can be more convenient

than a keyboard. This is particularly so in the mobile computing space where keyboards are not

ergonomically feasible.

Handwriting recognition is fundamentally a pattern classification task. The objective is to take an

input graphical mark—the handwritten signal collected via a digitizing device—and classify it as one of

a prespecified set of symbols. These symbols correspond to the characters or words in a given language

encoded in a computerized representation such as ASCII (see Fig. 26.35). In this field, the term online

has been used to refer to systems devised for the recognition of patterns captured with digitizing devices

that preserve the pen trajectory; the term offline refers to OCR (optical character recognition) tech-

niques, which instead take as input a static two-dimensional image representation, usually acquired by

means of a scanner.

Handwriting recognition systems can be further grouped according to the constraints they impose on

the user with respect to writing style (see Fig. 26.36a). The more restricted the allowed handwritten

input, the easier the recognition task and the lower the required computational resources [16]. At the

most restrictive end of the spectrum, in the boxed-discrete style, users write one character at a time

Coordinate sequence
{(X(t), Y(t), Z(t))}

Lexicon = {..., nearly, ...} Language Model

Recognition
system

Ranked results
...

“nearly ”, 0.70
...

FIGURE 26.35 The handwriting recognition problem. The image of a handwritten character, word, or phrase is

classified as one of the symbols, or symbol strings, from a known list. Some systems use knowledge about the

language in the form of dictionaries (or Lexicons) and frequency information (i.e., language models) to aid the

recognition process. Typically, a score is associated with each recognition result.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 52 11.10.2007 8:32pm Compositor Name: TSuresh

26-52 Digital Systems and Applications

within predefined areas. This removes one difficult step—character segmentation (the partitioning of

strokes into letters)—from the recognition process. Further recognition accuracy can be achieved by

requiring users to adhere to rules that restrict character shapes so as to minimize letter similarity (see

Fig. 26.36b). Of course, such techniques require users to learn a new alphabet. At the least restrictive end

of the spectrum, in the mixed style, users are allowed to write words or phrases the same way they do on

paper—in their own personal style—whether they print, write in cursive, or use a mixture of the two.

Recognition of mixed-style handwriting is a difficult task owing to ambiguity in segmentation and

large variations in letter style. Segmentation is complex because it is often possible to wrongly break up

letters into parts that are in turn meaningful (e.g., the cursive letter d can be subdivided into letters c

and l). Variability in letter shape is partly due to of coarticulation (the influence of one letter on

another), and the presence of ligatures (connected characters), which frequently give rise to unintended,

spurious letters being detected in the script. Writing styles also vary substantially from individual to

individual.

In addition to the writing style constraints, the complexity of the recognition task is also determined by

dictionary-size and writer-adaptation requirements. The size of a dictionary or language model can vary

from extremely small (for tasks such as state name recognition) to huge or even open-ended (for tasks like

proper name recognition). In open vocabulary recognition, any sequence of letters is a plausible recog-

nition result, which is the most difficult scenario for a recognizer. Yet, open-ended, out-of-dictionary

writing is essential for many situations, and the best recognizers balance probabilities at the letter and the

word levels to prefer in-dictionary solutions while still permitting out-of-dictionary solutions.

In the writer-adaptation dimension, systems capable of out-of-the box recognition are called writer

independent; i.e., they can recognize the writing of many writers. This gives a good average performance

across different writing styles. However, there is a considerable improvement in recognition accuracy

that can be obtained by customizing the letter models of the system to a writer’s specific writing style.

Recognition in this case is called writer dependent.

Despite these challenges, significant progress has been made in the building of writer-independent

systems capable of handling unconstrained text and using dictionary sizes of 20,000 words [17–19] and

more. The writer-independent recognizer that shipped in second generation Newton PDAs (the Print

Recognizer, circa 1996), and was widely regarded as the world’s first genuinely usable handwriting

recognizer, used a language model with over 75,000 words in any combination with close to 200 prefixes

and over 500 suffixes, plus regular expression grammars for punctuation, dates, times, phone numbers,

postal codes, and money, in addition to being able to write completely out-of-dictionary sequences of

characters [20]. When updated as Mac OS X’s Inkwell [21–23], in 2002, explicit support for writing

FIGURE 26.36 Different handwriting styles. In (a), Latin characters are used from top to bottom, according to the

presumed difficulty in recognition. (Adapted from Tappert, C.C., Adaptive on-line handwriting recognition, In 7th

International Conference on Pattern Recognition, Montreal, Canada, 1984.) In (b), the Graffiti unistroke (i.e.,

written with a single pen trace) alphabet that restricts characters to a unique prespecified way that simplifies

automatic recognition, the square dot indicates starting position of the pen.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 53 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-53

URLs was added. Handwriting recognition is also an integral part of Microsoft’s Windows XP Tablet PC

Edition [24], introduced in 2002 for Tablet PCs, improved and extended in 2005’s Service Pack 2, and

also driving the so-called Ultra-Mobile PCs [25] introduced in 2006. For a comprehensive survey of the

basic concepts behind written language recognition algorithms (see Refs. [26–28]).

26.6.3.1 Character-Based Interfaces

In Fig. 26.37 examples of character-based user interfaces for handwritten text input are presented that

are representative of those found on many mobile devices. Because of the limited CPU and memory

resources available on these platforms, handwritten input is often restricted to the boxed-discrete style,

in which one character is entered at a time.

The following are the additional highlights of the user interface on these text input methods:

1. Special input area: Users are not allowed the freedom of writing anywhere on the screen. Instead,

there is an area of the screen specially designated for the handwriting user interface, whether for

text input or control. This design choice offers the following advantages:

a. No toggling between edit=control and ink mode: Pen input inside the input method area is

treated as ink to be recognized by the recognizer; pen input outside this area is treated as

mouse events (for pressing on-screen buttons, selecting text, scrolling, etc.). Without this

separation, special provisions, sometimes intrusive and nonintuitive, must be taken to distin-

guish between the two pen modes.

b. Better user control: Within the specially designated writing window, it is possible to have

additional GUI (graphical user interface) elements that help the user with the input task. For

instance, there might be buttons for common edit keys such as backspace, newline, and delete.

Similarly, a list of recognition alternates can be easily displayed and selected from. This is

(a) (b)

FIGURE 26.37 Character-based text input method on today’s mobile devices. In (a), user interface for English

character input on a cellular phone. In (b), user interface for Chinese character input on a two-way pager.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 54 11.10.2007 8:32pm Compositor Name: TSuresh

26-54 Digital Systems and Applications

particularly valuable because top-N recognition accuracy—a measure of how often the

correct answer is among the highest ranked N results—is generally much higher than top-1

accuracy.

c. Consistent UI metaphor: Despite its ergonomic limitations, an on-screen keyboard is generally

available as one of the text input methods on the device. Using a special input area for

handwriting makes the user interface of alternative text entry methods similar.

2. Modal input. The possibilities of the user’s input are selectively limited in order to increase

recognition accuracy. Common modes include digits, symbols, uppercase letters, and lowercase

letters in English, or traditional versus simplified in Chinese. By limiting the number of characters

against which given input ink is matched, the opportunities for confusion and misrecognition are

decreased, thus improving recognition accuracy. Writing modes represent another trade-off

between making life simpler for the system or simpler for the user (and can cause difficulties

if, for example, the system is expecting digits for a phone number field, but the user tries to enter

1–800–GO–FEDEX).

3. Natural character set. It is possible to use any character writing style commonly used in the given

language, no need to learn a special alphabet. Characters can be multi-stroke, i.e., written with

more than one pen trace.

4. Multi-boxed input. Having the user write every character in its own box provides valuable

information for case disambiguation, helping the recognizer distinguish between an uppercase

S and a lowercase s, between C and c, and so on, based simply on letter height relative to box

height. It also almost entirely eliminates the character segmentation problem, since the strokes in

a single box comprise a single character. In addition, when multi-stroke input is allowed, end of

writing is generally detected by use of a timer that is set after each stroke is completed; the input is

deemed concluded if a set amount of time elapses before any more input is received in the writing

area. This time-out scheme is sometimes confusing to users, and gives the perception that

recognition takes longer than it actually does. Multiple boxes give better performance in this

regard because a character in one box can be concluded if input is received in another box,

removing the need to wait for the timer to finish. (However, using a word-level language model,

rather than recognizing just individual characters, almost always improves recognition accuracy,

which implies that the best hypothesis about a given character may change multiple times as

recognition proceeds, which can also be confusing to users. And if one’s tablet technology

provides entering- and exiting-proximity data, indicating when the pen is near the tablet surface,

the end-of-writing timer can be conveniently short-circuited by terminating words or phrases

when the pen leaves proximity of the tablet.)

Of all the restrictions imposed on users by these character-based input methods, modality is the one

where user feedback has been strongest: people want modeless input. One challenge facing modeless

recognition is the unavoidable increase in perplexity—the range and variability, and thus the confus-

ability, in the set of possible answers—that results from having to always allow recognition of all

modes—letters, numbers, symbols, words, dates, times, etc.—simultaneously. Another challenge results

from the fact that distinguishing between letters that have very similar forms across modes can be

virtually impossible without additional information. In English orthography, for instance, there are

letters for which the lowercase version of the character is merely a smaller version of the uppercase

version; examples include Cc, Oo, Ss, Uu, Ww, etc. Simple attempts at building modeless character

recognizers can result in a disconcerting user experience because uppercase letters, or digits, might

appear inserted into the middle of lowercase text. Such m1Xed ModE w0rdS (mixed mode words) look

like gibberish to users.

In usability studies, the authors have further found that as the text data entry needs on wireless PDA

devices shifts from short address book or calendar items to longer notes or e-mail messages, users deem

writing one letter at a time to be inconvenient and unnatural.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 55 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-55

26.6.3.2 More Natural User Interfaces

One known way of dealing with the character confusion difficulties described in the previous section is

to use contextual information in the recognition process. At the simplest level this means recognizing

characters in the context of their surrounding characters and taking advantage of visual clues derived

from word shape. One simple technique is to maintain a running estimate of capital letter height (post-

recognition, so even lowercase letters can inform the estimate), and use this to help disambiguate case

and even numbers versus letters [20]. More sophisticated applications of this geometric context

might look at relative character baselines, heights, sizes, and adjacency between pairs of adjacent

characters [29].

Beyond shape, the interpretation of the textual context in which letters are recognized can assist in the

disambiguation process. Even a simple bias toward case and mode consistency—so lowercase is more

likely to follow lowercase, everywhere except the beginnings of words, and numbers are more likely to

follow numbers—can improve recognition accuracy [20].

At a higher level, contextual knowledge can be in the form of lexical constraints, e.g., a dictionary of

known words in the language may be used to restrict or guide interpretations of the input ink. These

ideas naturally lead to the notion of a word-based text input method. By word, we mean a string of

characters that, if printed in text using normal conventions, would be surrounded by white-space

characters (see Fig. 26.38a).

Consider a mixed-case word recognition scenario where the size and position of a character, relative to

other characters in the word, is taken into account during letter identification (see Fig. 26.38b). Such

additional information would allow us to disambiguate between the lowercase and upper case version of

letters that otherwise are very much alike. Figure 26.38b also illustrates how relative position within

(a)

(b)

(c)

FIGURE 26.38 Word-based text input method for mobile devices. In (a), a user interface prototype. In (b), an

image of the mixed-case word Wow, where relative size information can be used for distinguishing among the letters

in the Ww pair. In (c), an image of the digit string 90187 where ambiguity in the identity of the first three letters can

be resolved after identifying the last two characters as digits.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 56 11.10.2007 8:32pm Compositor Name: TSuresh

26-56 Digital Systems and Applications

the word could enable us to correctly identify trailing punctuation marks such as periods and commas.

A different kind of contextual information can be used to enforce some notion of consistency among the

characters within a word. For instance, we could have a digits-string recognition context that favors

word hypotheses where all the characters can be viewed as digits; in the image example of Fig. 26.38c, the

recognizer would thus rank string ‘‘90187’’ higher than string ‘‘gol87.’’

The use of lexical dictionaries (really just word lists, though ubiquitously referred to as dictionaries)

can further guide word-level recognition. For example, despite an observed tremendous variability in

how people write their letters u and v, the presence of the word jump in a recognizer’s language model

can predispose it to produce jump, instead of jvmp. (Not to mention preferring mixed over m1Xed.) Of

course, if a user actually wants to write jvmp, she may then have to write very carefully indeed, in order

to overcome this bias, if and only if the recognizer allows writing outside of its dictionaries.

A strictly or rigidly applied language model might refuse to recognize words not in its dictionaries.

This can produce disturbing and sometimes comical whole word substitutions when a word is mis-

recognized; e.g., a person might write ‘‘catching on?’’ and get back recognition results such as ‘‘egg

freckles.’’ The Newton PDA’s first generation recognizer suffered from this problem. Together with an

untenably small dictionary of just about 10,000 words, this resulted in the Doonesbury effect—those

whole word substitutions—so named for the lampooning of the Newton in Gary Trudeau’s Doonesbury

cartoon strip (using the ‘‘egg freckles’’ example above, among others). A loosely applied language model

in the second-generation Newton Print Recognizer allowed users to write outside the dictionaries [20]

(besides having much larger dictionaries and generally higher recognition accuracy), and produced

much better results for users. This looseness was achieved by incorporating a regular expression

grammar that allowed any character anywhere, but at a much lower probability than the word-based

parts of the overall language model.

In addition to the modeless input enabled by a word-based input method, there is a writing

throughput advantage over character-based ones. In Fig. 26.39 we show the results of a timing

experiment where eight users were asked to transcribe a 42-word paragraph using our implementation

of both kinds of input methods on a keyboardless PDA device. The paragraph was derived from a

newspaper story and contained mixed-case words and a few digits, symbols, and punctuation marks.

The length of the text was assumed to be representative of a long message that users might want to

compose on such devices. For comparison purposes, users were also timed with a standard on-screen

On-screen
keyboard

S
ec

on
ds

+

+

+

Word-based
input method

Character-based
input method

350

300

250

200

150

FIGURE 26.39 Boxplots of time to enter a 42-word message using three different text input methods on a PDA

device: an on-screen QWERTY keyboard, a word-based handwriting recognizer, and a character-based handwriting

recognizer; median writing throughput was 15.9, 13.6, and 11.4 words=min, respectively.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 57 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-57

(software) keyboard. Each timing experiment was repeated three times. The median times were 158, 185,

and 220 s for the keyboard, word-based, and character-based input methods, respectively. Thus, entering

text with the word-based input method was, on average, faster than using the character-based method.

In this study, the word-based input method did not have, on average, a time advantage over the soft

keyboard; however, the user who was fastest with the word-based input method (presumably someone

for whom the recognition accuracy was very high and thus had few corrections to do) was able to

complete the task in 141 s, which is below the median soft keyboard time. Furthermore, the authors

believe that the time gap between these two input methods will be (and may have been already) reversed

with improved recognition accuracy and an intuitive, modeless means of error correction, such as were

present in the later Newtons and in modern Tablet PCs. We also expect handwriting to offer improve-

ments relative to soft-keyboard text entry in the case of European languages, which have accent marks

requiring additional key presses on a soft keyboard.

As one can expect, the advantages of nonmodality and speed associated with a word-based input

method over a character-based one comes at the expense of additional computational resources. Some

word-based recognition engines have been shown to require a 103 increment in MIPS and memory

resources compared to character-based engines. One should also say that, as evidenced by the variability

in the timing data shown in the above plots, there isn’t a single input method that works best for every

user. It is thus important to offer users a variety of input methods from which to choose.

26.6.3.3 Write-Anywhere Interfaces

In the same way that writing words, as opposed to writing one letter at a time, constitutes an

improvement in terms of naturalness of the user experience, we must explore recognition systems

capable of handling continuous handwriting such as phrases. For any kind of computer—and especially

the kind of mobile devices we have been considering here, with very limited screen real estate—this idea

leads to the notion of a write-anywhere interface

in which the user is allowed to write anywhere on

the screen; i.e., on top of any application and

system element on the screen (see Fig. 26.40).

A write-anywhere text input method is also

appealing because there is no special inking

area covering up part of the application in the

foreground. However, a special mechanism is

needed to distinguish pen movement events

intended to manipulate user interface elements

such as buttons, scrollbars, and menus

(i.e., edit=control=mouse mode) and pen events

corresponding to handwriting (i.e., ink=pen

mode). The solution typically involves a tap

and hold scheme wherein the pen has to be

maintained down without dragging it for a

certain amount of time in order to get the stylus

to act temporarily as a mouse, otherwise its

input is treated as ink. Alternative methods for

distinguishing mousing from inking include

treating the pen as a mouse, except when users

hold down a particular barrel button on the side

of the pen or a particular key on the keyboard,

whereupon they get ink. The barrel button

mousing-vs-inking option showed up in Mac

OS X’s Inkwell [21] as of the Tiger (OS X 10.4)

FIGURE 26.40 Write-anywhere text input method for

mobile devices. Example of an Address Book application

with the Company field appearing with focus. Hand-

written input is not restricted to a delimited area of the

screen but rather can occur anywhere. The company

name Data Warehouse has been written.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 58 11.10.2007 8:32pm Compositor Name: TSuresh

26-58 Digital Systems and Applications

release, as did an additional, unusual option that permitted inking in the air above the tablet surface—

while the pen is in close proximity to, but not actually pressing against the tablet—whenever the barrel

button is pressed. These options, plus the use of a key on the keyboard to trigger inking were previously

introduced in the Motion [30] professional video creation and editing application on the Mac.

When using the more common method of distinguishing mousing from inking—requiring the user to

tap and hold to perform mousing—there is another potential user interface problem, which is that users

expect certain user interface elements to perform immediate actions. Unlike a tap and drag operation,

such as one might use to make a text selection, and for which a delayed action is tolerable, when users

tap in a scrollbar or tap an open button, they expect the corresponding action to take place immediately.

The same is likely true if a user attempts to drag a window by tapping and dragging the window’s

titlebar. To accommodate these expectations, a good pen interface should add two more important

mouse-vs-ink disambiguations: (1) identify tapping (by the short time between pen down and pen up,

and the short distance traveled) and treat the input as a mousing action, and (2) identify certain controls

or regions of the screen as instant mousers. If the pen lands in an instant mouser, it immediately behaves

as a mouse, instead of an ink pen. The first accommodation takes care of simple issues like tapping on a

scrollbar or button, but the second accommodation is required to support immediate dragging of

windows, scrollbar thumbs, movable icons, and the like. One must be careful, of course, not to identify

too many user interface elements as instant mousers, lest the user feel that the decision about where to

write on the screen is overly complicated.

An additional user interface issue with a write-anywhere text input paradigm is that there are usually

no input method control elements visible anywhere on the screen. This frees up precious screen real

estate, but hides functionality. For instance, access to recognition alternates might require a special pen

gesture. As such, a write-anywhere interface will generally have more appeal to advanced users.

Furthermore, recognition in the write-anywhere case is more difficult because there is no implicit

information on word separation, orientation, or expected size of the text.

26.6.3.4 Scrolling Input Window

An interesting and innovative approach to pen input on devices with severely constrained screen sizes is

to allow the pen input window to scroll while the user is writing [31]. The originators of this idea refer to

this approach as a treadmill technique, for the way the input window moves continuously underneath

the user’s writing. For a language written left-to-right, such as English, then, the inking area would

continuously scroll to the left, so users could continue to write fairly normally, but in place on the

screen. This combines the advantages of a dedicated writing area with the advantages of a seemingly

large—in fact, unlimited—writing area. Though users must adapt their writing style somewhat and this

technology has yet to make it out of the research lab, the adjustments users must make seem minor and

the technique seems promising.

26.6.3.5 Recognition-Aware Applications

Earlier in this section, we discussed how factors such as segmentation ambiguity, letter co-articulation,

and ligatures make exact recognition of continuous handwritten input a very difficult task. To illustrate

this point, consider the image shown in Fig. 26.41 and the set of plausible interpretations given for it.

Can we choose with certainty one of these recognition results as the correct one? Clearly, additional

information, not contained within the image, is required to make such a selection. One such source

of information already mentioned is the dictionary, or lexicon, for constraining the letter strings

generated by the recognizer. At a higher-level, information from the surrounding words can be used

to decide, for example, between a verb and a noun word possibility. It is safe to say that the more

constraints explicitly available during the recognition process, the more ambiguity in the input that can

be automatically resolved. Less ambiguity results in higher recognition accuracy and thus an improved

user experience.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 59 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-59

For many common applications in PDA

devices, e.g., contacts, agenda, and web

browser, it is possible to specify the words

and patterns of words that can be entered

in certain data fields. Examples of struc-

tured data fields are telephone numbers,

zip codes, city names, dates, times, URLs,

etc. In order for recognition-based input

methods to take advantage of this kind of

contextual information, the text input

framework on PDA devices needs to

allow applications to specify the expected

context for a given input field. When text

is entered using a keyboard, lexical context

is usually not required to obtain accurate

text, although certain very precisely

defined input fields, such as social security numbers, credit card numbers, and state two-letter codes,

might benefit from such constraints. However, operating systems and applications employed largely on

pen-based devices can improve the user experience significantly by supporting and providing specific

contexts for text input fields and communicating them to recognizers.

One typically uses a grammar to define the permitted strings in a language, e.g., the language of valid

telephone numbers. A grammar consists of a set of rules or productions specifying the sequences of

characters or lexical items forming allowable strings in the defined language. Two common classes

of grammars are BNF grammar or context-free grammar and regular grammar (see [32] for a formal

treatment). Grammars are also used in the field of speech recognition and recently the W3C (World

Wide Web Consortium) Voice Browser Working Group has suggested an XML-based syntax for

representing BNF-like grammars [33]. In Fig. 26.42 we show a fragment of a possible grammar for

defining telephone number strings. In an ink-aware text input framework, this grammar, together with

the handwritten ink, could be passed along to the recognition engine when an application knows that

the user is expected to enter a telephone number.

(a) (b)

clog dog

log dug

lug lag

clay clug

clcrj doij

FIGURE 26.41 Inherent ambiguity in continuous handwrit-

ing recognition. In (a), a sample image of a handwritten word.

In (b), possible recognition results, strings not in the English

lexicon are in italics.

<rule id¼ }digits0–9} scope¼ }private}> <rule id¼ }suffix} scope¼ }private}>
<one-of> <count number¼ }4}>

<item>0<=item> <ruleref uri¼ }#digit0–9}=>
... <=count>
<item>9<=item> <=rule>

<=one-of>
<=rule>
<rule-id¼ }area-code} scope¼ }private}>
<token>(<=token> <!–– Main rule ––>

<count number¼ }3}> <rule id¼ }phone-num} scope¼ }public}>
<ruleref uri¼ }#digit0–9}=> <count number¼ }0–1}>

<=count> <ruleref uri¼ }#area-code}=>
<token>)<=token> <=count>

<=rule> <ruleref uri¼ }#prefix}=>
<rule id¼ }prefix} scope¼ }private}> <count number¼ }0–1}>
<count number¼ }3}> <token>-<=token>

<ruleref uri¼ }#digit0–9}=> <=count>
<=count> <ruleref uri¼ }#suffix}=>

<=rule> <=rule>

FIGURE 26.42 Example of an XML grammar-defining telephone numbers and written as per the W3C Voice

Working Group Specification. There are four private rule definitions that are combined to make the main rule called

phone-num.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 60 11.10.2007 8:32pm Compositor Name: TSuresh

26-60 Digital Systems and Applications

An alternative approach, one used in the Newton for example, is for the text input framework to provide

a set of common classes of input, such as phones, dates, times, general text, etc., and let the application

specify one or more of these categories, as appropriate.

Given this kind of contextual information, recognizers should, in general, use the information to

boost the probability of the relevant text strings, but should not, unless expressly requested, make the

constraint a rigidly applied one. And it may be better to factor the soft constraints appropriate to a

recognizer from the hard constraints the text input framework or the application itself might need

to apply, in order to verify a correctly formatted credit card number or two-letter state code for example.

Most text input fields are not so rigid, and users may be frustrated when they try to enter 1–800-

MY-APPLe in a phone number field if the recognizer refuses to recognize anything but digits (and

hyphens and parentheses).

Information about how the ink was collected, such as resolution and sampling rate of the capture

device, whether writing guidelines or other writing size hints were used, spatial relationships to nearby

objects in the application interface, etc., should also be made available to the recognition engine for

improved recognition accuracy.

To be fully ink- or recognition-aware, the text input framework and applications need to provide an

easy, in-place, modeless correction mechanism. This is best supported by overwriting and a top-N list of

recognition alternatives. Overwriting is the ability to write directly over the text to be replaced, making a

separate selection process unnecessary, and is particularly convenient if the interface permits overwriting

individual characters. A list of recognition alternatives leverages the fact that recognition accuracy for,

say, the top-5 alternatives is usually substantially higher than for just the top-1 alternative. Either the

recognizer or the text input framework may also explicitly substitute particularly common or convenient

alternatives in these lists, such as repeating the top choice but with altered case for the first letter. One

user interface technique for accessing such an alternatives list with a write-anywhere recognition model

is to expose the alternatives in a pop-up menu when the user taps twice and holds down the pen on the

second tap. Another technique is to take advantage of a given system’s existing contextual menu access

method, such as right-clicking (Windows) or control-clicking (Macintosh) on a recognized word, to

bring up the recognition alternates menu.

26.6.4 Ink and the Internet

Digital ink does not always need to be recognized in order to be useful. Two daily life applications where

users take full advantage of the range of graphical representations that are possible with a pen are

messaging, as when we leave someone a post-it note with a handwritten message, and annotation, as

when we circle some text in a printed paragraph or make a mark in an image inside of a document. This

subsection discusses Internet-related applications that will enable similar functionality. Both applica-

tions draw attention to the need for a standard representation of digital ink that is appropriate in terms

of efficiency, robustness, and quality.

26.6.4.1 Ink Messaging

Two-way transmission of digital ink, possibly wireless, offers PDA users a compelling new way to

communicate. Users can draw or write with a stylus on the PDA screen to compose a note in their

own handwriting. Such an ink note can then be addressed and delivered to other PDA users, e-mail

users, or fax machines. The recipient views the message as the sender composed it, including drawings

and text in any mix of languages (see Fig. 26.43).

In the context of mobile-data communications it is important for the size of such ink messages to be

small. There are two distinct modes for coding digital ink: raster scanning and curve tracing [34,35].

Facsimile (fax machine) coding algorithms belong to the first mode, and exploit the correlations within

consecutive scan lines. Chain coding (CC), belonging to the second mode, represents the pen trajectory

as a sequence of transitions between successive points in a regular lattice. It is known that curve tracing

algorithms result in a higher coding efficiency if the total trace length is not too long. Furthermore, use

of a raster-based technique implies the loss of all time-dependent information.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 61 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-61

Message sizes of about 500 bytes have been reported

for messages composed in a typical PDA screen size,

using a CC-based algorithm known as multi-ring

differential chain coding (MRDCC) [36]. MRDCC is

attractive for transmission of ink messages in terms of

data syntax, decoding simplicity, and transmission

error control; however, MRDCC is lossy, i.e., the ori-

ginal pen trajectory cannot be fully recovered. If exact

reconstructability is important, a lossless compression

technique is required. This is likely to be the case if the

message recipient might wish to run verification or

recognition algorithms on the received ink, e.g., if the

ink in the message corresponds to a signature that is to

be used for computer authentication. One example of a

lossless curve-tracing algorithm proposed by the ITU

(international telecommunication union) is zone cod-

ing [37]. Our unpublished evaluation of zone coding,

however, reveals there is ample room for improvement.

Additional requirements for an ink messaging appli-

cation include support for embedded ASCII text, sup-

port for embedded basic shapes (such as rectangles,

circles, and lines), and support for different pen-trace

attributes (such as color and thickness).

26.6.4.2 InkML and SMIL

SMIL, pronounced smile, stands for synchronized multimedia integration language. It is a W3C

recommendation [38] defining an XML compliant language that allows a spatially and temporally

synchronized description of multimedia presentations. In other words, it enables authors to choreo-

graph multimedia presentations where audio, video, text, and graphics are combined in real-time.

A SMIL document can also interact with a standard HTML page. SMIL documents are becoming

common on the web as part of streaming technologies [39,40].

The following are the basic elements in a SMIL presentation: a root-layout, which defines things like

the size and color of the background of the document; a region, which defines where and how a media

element such as an image can be rendered, e.g., location, size, overlay order, scaling method; one or more

media elements such as text, img, audio, and video; means for specifying a timeline of events, e.g., seq,

and par indicate a block of media elements that will all be shown sequentially or in parallel, respectively,

dur gives an explicit duration, begin delays the start of an element relative to when the document began

or the end of other elements; means for skipping some part of an audio or a video (clip-begin and clip-

end); means for adapting the behavior of the presentation to the end-user system capabilities (switch);

means for freezing a media element after its end (fill); and a means for hyperlinking (a). For a complete

introduction and tutorial see Refs. [41,42].

Digital ink is not currently supported as a SMIL native media type. One option would be to convert

the ink into a static image, say in GIF format, and render it as an img element; however, this would

preclude the possibility of displaying the ink as a continuous media (like an animation). Another option

is to use the SMIL generic media reference ref (see Fig. 26.44); this option requires the existence of an

appropriate MIME content-type=subtype.

Another W3C working group has produced a working draft of an Ink Markup Language, InkML [43],

which can serve as the data format for representing ink entered with an electronic pen or stylus. InkML

supports the input and processing of handwriting, gestures, sketches, music, and other notational

languages in web-based and non-web-based applications, and provides a common format for the

exchange of ink data between hardware devices and between software components such as handwriting

FIGURE 26.43 Example of ink messaging

application for mobile devices. Users can draw

or write with a stylus on the device screen to

compose an e-mail in their own handwriting;

no automatic recognition is necessarily involved.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 62 11.10.2007 8:32pm Compositor Name: TSuresh

26-62 Digital Systems and Applications

and gesture recognizers, signature verifiers, and

other ink-aware modules. InkML is currently

envisioned as an element of the broader W3C

Multimodal Interaction Framework [44].

There also exists a nonstandard but open data

format for digital ink called Unipen [45] that

flexibly captures many aspects of data representa-

tion for ink acquisition, transmission, and recog-

nition. A substantial body of handwriting data is

available in this format, for the cost of the media

only, from the International Unipen Foundation

(iUF). The iUF also sponsors handwriting recog-

nition accuracy competitions. The iUF is report-

edly working on a fusion of the InkML and

Unipen formats, called UPX, that will contain

some format extensions they feel are necessary,

but which should trivially allow export to InkML.

26.6.5 Extension of the Pen-and-
Paper Metaphor

Use of the pen-and-paper paradigm dates back to

almost 3000 BC. Paper, as we know it today, dates

back to around 200 AD. Hence, the notion of

writing with a pen on paper is an extremely

natural way of entering handwritten information.

Archival and retrieval are two primary actions

performed on handwritten information captured

using traditional pen and paper. The problem,

however, with regular pen and paper is that the

process of retrieving information can be extremely

inefficient. Retrieving information typically involves visually scanning the documents, which can be

inefficient when the amount of handwritten information becomes large. One way to make the process

efficient is to tag the information in a useful way. For example, a yellow sticker on pages that relate to a

certain topic, or entering information about different topics into different notebooks, can make the

process of looking for information on a topic more efficient, when using normal paper. The goal here is to

extend the same functionality to electronic pen-and-paper systems [46].

Extending the pen-and-paper metaphor, one of the main applications for digital ink capture systems

is to provide users with efficient ink archival=retrieval capabilities, by providing users the tools to tag

information captured on the devices in a useful way. Different systems support different methods of

tagging digitally acquired ink. Some systems combine ordinary paper with computers; some allow vocal

annotation of notes; some perform real-time recognition, providing searchable text; and some retain ink

but perform deferred or background recognition, providing searchable ink.

26.6.5.1 Combining Digital Ink and Physical Paper

Though most have so far failed in the marketplace, there have been several interesting attempts

at leveraging the best of both real, physical paper and digital ink. Paper offers a completely familiar,

intuitive writing environment and avoids the awkward and limited tactile feedback of writing with

a metal or plastic tip on a slick glass surface. (An unpublished study at Apple Computer, during

the continuing development of the Newton, showed that a modest roughening=texturing of the glass

writing surface substantially increased recognition accuracy, all other things being equal, and all later

(a)

<smil>

<head>

<meta name¼ ‘‘title’’ content¼ ‘‘Ink and SMIL’’ =>

<root-layout width¼ ‘‘300’’ height¼ ‘‘200’’

background-color¼ ‘‘white’’ =>

<=head>

<body>

<par>

<ref src¼ ‘‘car.uni’’ region¼ ‘‘onmain’’

type¼ ‘‘ink=unipen’’ fill¼ ‘‘freeze’’=>

<audio src¼ ‘‘car.wav’’ =>

<=par>

<=body>

<=smil>

(b)

FIGURE 26.44 Example of the role of digital ink in

SMIL documents. In (a), a diagram or photo taken with

a digital camera can be annotated with a pen; the digital

ink can be coordinated with a spoken commentary. In (b),

a corresponding short SMIL document fragment assuming

the existence of an appropriate MIME content-type called

ink and a subtype called unipen for representing the ink.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 63 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-63

generation models of the Newton shipped with

such a surface.) Digital ink offers the oppor-

tunity of recognition and textual or graphical

search for easier retrieval of data from hand-

written notes and drawings.

The now discontinued IBM ThinkPad

TransNote [47] combined a laptop computer

and a pad of paper overlying a digitizer into a

single portfolio. In concert with IBM, Cross

produced the now discontinued CrossPad [48],

consisting of a pad of paper over a digitizer that

could retain information about what was drawn

on the pad. In both systems, anything written or

drawn on the plain, unmarked paper was also

digitized and could be uploaded to the com-

puter. ACECAD still makes a DigiMemo pad

[49] that functions much like the CrossPad.

Ink management software on the computer

allowed users to archive handwritten notes and retrieve them, using either the time of creation of the

notes or tags associated with keywords. The tags were text strings created using a handwriting recog-

nition system. Figure 26.45 shows an example of a piece of the ink management software that displayed

blocks of ink marked as keywords in the middle column and their tags in the left column. Users could

retrieve handwritten documents by clicking on the keywords or typing a word in the search text box in

the upper right-hand-top corner of the application.

In the application shown in Fig. 26.45, all the tags are text strings; however, one could easily extend

the retrieval paradigm to use graphical queries and retrieve documents containing graphics, using

features extracted from the graphical query. An example of this is shown in Fig. 26.46.

Anoto [3] and Logitech [4] use a tip-mounted optical sensor and specially marked paper to allow

the recording of digital ink during drawing or writing. Though the pens are still somewhat expensive

and lack a wireless means of connectivity or any kind of real-time use with a computer or mobile

device, the cost of the special paper has dropped to the point that it is not the product killer many

thought it would be when the technology was first introduced. Support for handwriting recognition is

limited, but third party applications, such as Vision Objects’ MyScript [50], provide more extensive

functionality.

26.6.5.2 Digital Ink Documents and
Handwriting Recognition

The previously discussed handwriting recogni-

tion methods may be used in at least three

different modes: immediate, deferred, and

background. With immediate recognition,

handwritten input by the user is immediately

converted to text. This has the advantage that,

assuming recognition is accurate, the resulting

text is more legible than handwriting and the

user is left with a standard text document that

can be archived, retrieved, and searched like

any other computer document. Particularly

when combined with a write-anywhere pen

input model, immediate recognition can make

a very effective text inputmethod formost tasks

FIGURE 26.45 Ink retrieval using keywords. Example of

an application that uses the ASCII tags associated with

handwritten ink to retrieve information from handwrit-

ten documents.

FIGURE 26.46 Ink searching example. Users can search

for an ink pattern inside a longer ink document, or col-

lection of documents.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 64 11.10.2007 8:32pm Compositor Name: TSuresh

26-64 Digital Systems and Applications

a user performs on a computer, including providing text input from a pen for applications that are not

themselves ink-aware. It has the disadvantage that, if recognition accuracy is poor, unnoticed errors

may creep into documents; and distinguishing between graphical drawings and text becomes either

very difficult or requires a modal interface, in which the user is required to specify whether she is currently

entering text or graphics.

Some systems allow deferred recognition, in which the pen input remains visible as ink, and may be

selected for recognition at a later time. This has the advantage that the user’s writing and=or drawing is

unchanged, so no errors are introduced by recognition and graphics and text are treated identically. The

disadvantage is that conversion to text requires an extra step and legibility may suffer, particularly for

documents being shared amongst multiple users. Also, ink is not an acceptable data format for

many applications.

Background recognition provides at least some of the advantages (and disadvantages) of both

immediate and deferred recognition. With background recognition, the user’s input remains visible as

ink, but recognition is performed, predictably enough, in the background. This produces what is

sometimes referred to as searchable ink. That is, even though the original handwritten text and drawings

are untouched, because recognition results are obtained in the background, the user may ask the

computer to search through the apparently ink-based document just as if it were stored in plain text.

In fact, if the background recognition results retain a top-N list of recognition alternatives, or if the

search allows a small amount of variance between the search terms and the recognition results, even

modest recognition errors may be accommodated and still allow near perfect searching. This approach

does imply, however, a complex ink-plus-recognition-results data format, which will only be usable by

ink-aware applications. However, this problem is at least partially mitigated by the standard technique of

copy operations providing multiple data formats and the paste operation selecting the data format best

supported by the current application. For example, data copied from a note-taking application that

retains ink and the top-5 recognition results could easily be pasted as plain text into an application that

does not support ink.

Modern Tablet PCs, running Microsoft Windows XP for Tablet PC with Service Pack 2, provide all

three recognition modes. Apple’s Inkwell pen input framework in Mac OS X (10.3 and later) also

supports all three recognition modes, as may be seen in Mage Software’s inkBook [51]. The Newton

PDA offered both immediate and deferred recognition at introduction, in 1993, and fans of the device

and its (later generation) handwriting recognition capabilities continue to use the device and support

each other through Web sites [52], e-mail lists [53], worldwide organizations [54], and worldwide

conferences [55], some nine years after the product’s demise (as of 2006), giving some indication of the

value a well implemented pen-based system can bring to its users.

Tablet PCs offer the capability of directly creating and editing documents containing digital ink, and

thus makes excellent note-taking devices for meetings and classrooms. Apple has so far failed to enter the

tablet PC market, despite system level support for handwriting recognition in Mac OS X since the Jaguar

release (10.2), but a third party, Axiatron, has stepped in to fill the void with the ModBook [56].

26.6.5.3 Gesture Recognition

A gesture is handwritten ink that implies a particular action. In many cases, a gesture can be used to

represent an action much more efficiently than it may be specified through a set of keyboard events. An

example is the task of moving a portion of text from one position to another. Using a keyboard would

involve selecting the portion of ink to be moved, copying it into a clipboard, deleting the selection,

moving the cursor to the place in the document where the user would like to place the ink, and finally

pasting the ink. Using a pen would allow users to indicate the same action by drawing a selection area

around the ink to be moved and an arrow indicating the position to which the selection is to be moved.

An example of this is shown in Fig. 26.47.

Even when simple keyboard alternatives exist for a particular action, transitioning back and forth

between the pen and a keyboard can interrupt workflow. Modern pen input frameworks therefore often

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 65 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-65

provide a suite of easily learnable ges-

tures for carrying out common user

interface actions, such as cut, copy, and

paste. Figure 26.48 shows the suite of

system gestures provided by Inkwell in

Mac OS X.

Pen input and gesture recognition are

also finding a home controlling import-

ant segments of the user interface in

modern professional applications for

creating and editing video, such as

Apple’s Motion [30], now incorporated

into the Final Cut Studio suite [57]. A

suite of 38 gestures (including two of

Inkwell’s system gestures and overriding

a few others) is defined that controls

many aspects of the application’s user

interface, such as > for play, – (from

left to right) for advance one frame, –

(from right to left) for back up one

frame, and so on. These gestures are

shown in Fig. 26.49. This kind of ges-

tural user interface used to only be avail-

able on very expensive, dedicated

hardware systems, but the presence of a

modern pen input framework in Mac

OS X, Inkwell, has allowed the capabil-

ities to reach personal computers.

26.6.5.4 Smart Ink

One can extend the handwriting and

gesture recognition system to allow

users to associate more structure with

groups of pen strokes as shown in

Fig. 26.50, by combining handwriting recognition with the page segmentation features of OCR. The

handwritten document on the left side is a typical handwritten page with text, tables and drawings, and

the one on the right side is a version of the same document after being automatically interpreted by a

smart ink recognition scheme. This association allows users to work with handwritten documents in

more efficient ways, which may turn an electronic pen into a more effective way of entering information

than a keyboard and mouse.

Research tools such as SILK and DENIM [58,59] further extend these ideas to include the assignment

of dynamic behaviors to the hand-drawn objects, thus allowing graphic designers to quickly sketch a

user-interface with an electronic pen. The tool addresses the needs of designers who prefer to sketch

early interface ideas on paper or whiteboard and concentrate on behavior. This approach improves over

existing user interface construction tools that focus largely on appearance, thus making it easy to specify

widgets and their colors, alignment, fonts, etc., and showing what the interface will look like, but making

it difficult to show what it will actually do.

Innovative new user interfaces continue to make strong use of pen, such as the BumpTop prototype

[60], that uses the pen to control a 3D desktop metaphor incorporating physics, piles, and a number of

novel document and window browsing techniques, and the iPen [61] concept system, that (in theory)

combines an electronic pen, mobile display device, mobile phone, voice recorder, and mp3 player!

FIGURE 26.47 Example of pen-and-paper-like editing. Users can

perform erasing by scribbling directly on the unwanted text, mov-

ing text by circling and dragging, and transposing text by common

gesturing.

FIGURE 26.48 Inkwell’s suite of common action gestures in Mac

OS X.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 66 11.10.2007 8:32pm Compositor Name: TSuresh

26-66 Digital Systems and Applications

26.6.6 Pen Input and Multimodal Systems

A multimodal interface is one that integrates multiple kinds of input simultaneously to achieve a desired

result. With the increased availability of significant computing power on mobile devices and of efficient

wireless connectivity enabling distributed systems, development of pen-based multimodal interfaces is

becoming more and more feasible. The motivation is simple: create more robust, flexible, and user-friendly

interfaces by integrating the penwith other inputmodalities such as speech. Greater robustness is achievable

because cross-modal redundancy can be used to compensate for imperfect recognition on each individual

mode. Greater flexibility is possible because users can choose from among variousmodes of achieving a task,

or of issuing commands, employing the mode that is most appropriate at the time. Better user-friendliness

will result from having computer interfaces that more closely resemble the multi-modality naturally present

in humancommunication. In this sectionwe review some successfulmultimodal systems that take advantage

of the pen to produce synergistic interfaces, highlighting their common features.

Cohen et al. [62] combined speech and pen gestures to interact with a 2D representation, like a map,

of the entities in a 3D scene such as the one generated with a battlefield simulator. An interactive map is

displayed on a handheld device where the user can draw or speak to control the system. For example,

while holding the pen at some location in the map, the user may say ‘‘XXXX platoon;’’ this command

will result in the creation of a platoon simulation element labeled ‘‘XXXX’’ at the desired location. The

user can then assign a task to the new platoon by uttering a command like ‘‘XXXX platoon follow this

route’’ while drawing a line on the map.

Heyer and Julia [63] combined speech, pen gestures, and handwriting recognition in a travel planning

application. Users interact with the map of a city, possibly displayed on a PDA device, to find out

information about hotels, restaurants, and tourist sites. This information is accessed from a public

database through the Internet. Pen and voice may be used by speaking a query such as ‘‘what is the

1 Frame back

Go to start of
play range

Zoom in

Select tool

Play fwd.

Go to end of
play range

Zoom out

Zoom tool

1 Frame fwd.

Go to start
of clip

Go to end
of clip

Home view

Pan tool

Bring forward

Mark in

Go to start
of project

Undo

Show/hide
inspector

Set project marker

Mark out

Go to end
of project

Redo

Show/hide
file browser

Set object marker

Set start of
play range

Show/hide
timing pane

Delete

Ungroup

Copy

Motion
Gestures
© 2005 Apple Computer, Inc.
All rights reserved.

Stop/pause

Fit in window

Show/hide
library

Send backward

Set end of
play range

Show/hide
project pane

Show/hide
dashboard

Group

Paste

FIGURE 26.49 The Motion application’s suite of user interface control gestures.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 67 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-67

distance from here to Fisherman’s Wharf ’’ while making a mark on the map. Pen-only gestures can also

be used for control actions, such as moving the viewing area. Similarly, voice-only commands are

allowed as in ‘‘show me all hotels with a pool.’’

Tue Vo and Wood [64] prototyped a multimodal calendar application called Jeanie. This is a very

common application on PDA devices and one having several tasks that can be simplified by the

multimodal method of pointing to or circling objects on the screen in addition to speaking commands.

For example, a command combining spoken and handwritten input is reschedule this on Tuesday,

uttered while holding the pen on a meeting entry in the appointment list. An example of a pen-only

command is drawing an X on a meeting entry to cancel it.

Suhm et al. [65] have explored the benefits of multimodal interaction in the context of error

correction. Specifically, they have integrated handwriting recognition in an automatic dictation system.

Users can switch from continuous speech to pen-based input to correct errors. This work capitalizes on

the fact that words that might be confusable in one modality (e.g., sound similar) are not necessarily so

in another one (i.e., their handwritten shapes are likely to be different). Their study concluded that

multimodal error correction is more accurate and faster than unimodal correction by re-speaking.

Multimodal applications such as these are generally built using a distributed agent framework. The

speech recognizer, the handwriting recognizer, the gesture recognizer, the natural language understanding

module, the database access module, etc., might each be a different agent—a computing process that

provides a specific service and which runs either locally on the PDA device or remotely. These agents

cooperate and communicate with each other in order to accomplish tasks for the user. One publicly

FIGURE 26.50 Segmentation and recognition of online documents. Example of a typical handwritten page with

text, tables, and drawings; and the desired segmentation interpretation.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 68 11.10.2007 8:32pm Compositor Name: TSuresh

26-68 Digital Systems and Applications

available software environment offering facilitated agent communication is the open agent architecture

(OAA) from SRI [66].

A special agent is needed for integrating information from all input sources to arrive at a correct

understanding of complete multimodal commands. Such a unification agent is sometimes implemented

using semantic frames, a knowledge representation scheme from the early A.I. days [67], consisting

of slots specifying pieces of information about the command. Recognition results from each

modality agent are parsed into partially filled frames, which are then merged together to produce a

combined interpretation. In the merging process information from different input modes is weighted,

meaningless command hypotheses are filtered out, and additional feedback from the user might

be requested.

26.6.7 Summary

As more electronic devices with pen interfaces have and continue to become available for entering and

manipulating information, applications need to be more effective at leveraging this method of input.

Pen is a mode of input that is very familiar for most users since everyone learns to write at an early age.

Hence, users will tend to use this as a mode of input and control when available. Providing enhanced

user-interfaces that will make it easier for users to take advantage of the pen interface in effective ways

will make it easier for them to work with such devices.

Section 26.6 has given an overview of the pen input devices available today along with some of the

applications that use the electronic pen either in isolation or in conjunction with other modes of input

such as speech and the keyboard. The community has made great strides in addressing a number of the

user-interface issues for capturing and manipulating information from electronic pens. Challenges,

including recognizer accuracy, the distinguishing of geometric shapes from text, and designing more

effective, possibly multimodal interfaces, remain to be addressed as purveyors of technology seek to

provide higher and higher levels of satisfaction to users.

Acknowledgment

The authors thank Thomas G. Zimmerman, Research Staff Member with the Human=Machine Interface

Gadgets at IBM Research, for his input on Section 26.6.2, and Carlos McEvilly, Research Staff Member

with the Motorola Human Interface Labs, for proofreading the first edition manuscript. For the second

edition, the new, third author thanks Levi Thomas for her proofreading and copyediting, among many

other things.

References

1. Mimio electronic, interactive whiteboards. www.mimio.com.

2. Smart Technologies electronic, interactive whiteboards. www.smarttech.com.

3. Anoto digital pen and paper. www.anoto.com.

4. Logitech io digital pen. www.logitech.com=index.cfm?page¼ products=features=digitalwriting.

5. NaviScribe=ESPi (Electronic Scripting Products, Inc.) digital pen. www.naviscribe.com.

6. J. Subrahmonia and T. Zimmerman, Pen computing: Challenges and applications. In IEEE Confer-

ence on Pattern Recognition, Barcelona, Spain, 2000.

7. Wacom graphics tablets. www.wacom.com=productinfo.

8. ACECAD Flair graphics tablets. www.acecad.com.tw=products.html.

9. Hitachi BlueTooth graphics tablet. www.hitachi-soft.com=icg=products=BT1.html.domino.research.

ibm.com=comm=wwwr_thinkresearch.nsf=pages=paper397.html.

10. T. Zimmerman and F. Hoffmann, IBM Research, patent pending, 1995.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 69 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-69

11. N. Yamaguchi, H. Ishikawa, Y. Iwamoto, and A. Iida, Ultrasonic coordinate input apparatus. U.S.

Patent 5,637,839, June 10, 1997.

12. O. Kinrot and U. Kinrot, Interferometry: Encoder measures motion through interferometry. Laser

Focus Worlds, 36(3) March 2000. www.laserfocusworld.com=display_article=66078=12=ARCHI=

none=Feat=INTERFEROMETRY:-Encoder-measures-motion-through-interferometr.

13. OTM Technologies VPen. www.otmtech.com=vpen.asp.

14. S. Nabeshima, S. Yamamoto, K. Agusa, and T. Taguchi, MEMO-PEN: A new input device. In

Conference Companion on Human Factors in Computing Systems (Denver, Colorado, United States,

May 07–11, 1995). I. Katz, R. Mack, and L. Marks, Eds. CHI ’95, ACM Press, New York, NY,

256–257.

15. M.E. Munich and P. Perona, Visual input for pen-based computers. In 13th International Conference

on Pattern Recognition. Vienna, Austria, Aug. 25–29, 1996. www.vision.caltech.edu=mariomu=

research=papers=icpr96.pdf.

16. C.C. Tappert, Adaptive on-line handwriting recognition. In the 7th International Conference on

Pattern Recognition, Montreal, Canada, 1984.

17. G. Seni and T. Anastasakos, Non-cumulative character scoring in a forward search for online

handwriting recognition. In IEEE Conference on Acoustics, Speech, and Signal Processing, Istanbul,

Turkey, 2000.

18. K.S. Nathan, H.S.M. Beigi, J. Subrahmonia, G.J. Clary, and M. Maruyama, Real-time on-line

unconstrained handwriting recognition using statistical methods. In IEEE Conference on Acoustics,

Speech, and Signal Processing, Michigan, MI, 1995.

19. S. Jaeger, S. Manke, and A. Waibel, NPENþþ: An online handwriting recognition system. In

Proceedings of the 7th International Workshop on Frontiers in Handwriting Recognition, Amsterdam,

The Netherlands, 2000.

20. L.S. Yaeger, B.J. Webb, and R.F. Lyon, Combining neural networks and context-driven search for

on-line, printed handwriting recognition in the Newton. AI Magazine, AAAI, 19(1): 73–89, Spring

1998. beanblossom.in.us=larryy=Yaegeretal.AIMag.pdf.

21. Inkwell pen input framework in Mac OS X. www.apple.com=macosx=features=inkwell=.

22. Inkwell: Using Ink Services developer documentation. developer.apple.com=documentation=

Carbon=Conceptual=using_ink=ink_intro=chapter_1_section_1.html.

23. Inkwell: Ink Services Reference developer documentation. developer.apple.com=documentation=

Carbon=Reference=ink_services_ref=Reference=reference.html.

24. Programming the Tablet PC. windowssdk.msdn.microsoft.com=en-us=library=ms698573(VS.80).aspx.

25. Ultra-Mobile PC. www.microsoft.com=windowsxp=umpc=.

26. R. Plamondon and S.N. Srihari, On-line and off-line handwriting recognition: a comprehensive

survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1): 63–84, 2000.

27. C.C. Tappert, C.Y. Suen, and T. Wakahara, The state of the art in on-line handwriting recognition,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10): 787–808, 1990.

28. R. Plamondon, D. Lopresti, L.R.B. Schomaker, and R. Srihari, ‘‘On-Line Handwriting Recognition,’’

Encyclopedia of Electrical and Electronics Eng., J.G. Webster, ed., vol. 15, pp. 123–146, Wiley Inter-

Science, 1999.

29. R.F. Lyon and L.S. Yaeger, On-line hand-printing recognition with neural networks. (invited) Fifth

International Conference on Microelectronics for Neural Networks and Fuzzy Systems (1996), 201–212.

beanblossom.in.us=larryy=LyonYaeger.MN96.pdf.

30. Motion video creation and editing software. www.apple.com=finalcutstudio=motion=.

31. G. Seni, TreadMill ink—enabling continuous pen input on small devices. In Proceedings of the 8th

International Workshop on Frontiers in Handwriting Recognition (IWFHR’02), IEEE, 215–220, 2002.

32. H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall,

Englewood Cliffs, NJ, 1981.

33. Speech Recognition Grammar Specification for the W3C Speech Interface Framework. W3C

Working Draft. www.w3.org=TR=speech-grammar. 2001.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 70 11.10.2007 8:32pm Compositor Name: TSuresh

26-70 Digital Systems and Applications

34. H. Freeman, Computer processing of line-drawing data. Computer Surveys, 6(1): 57–97, March 1974.

35. T.S. Huang, Coding of two-tone images, IEEE Transactions on Communications, COM-25, 11,

1406–1424, November 1977.

36. J. Andrieux andG. Seni, On the coding efficiency of multi-ring and single-ring differential chain coding

for telewriting application. In IEEE Proc.—Vision, Image, and Signal Processing, 148(4), 2001.

37. ITU-T Recommendation T.150. Terminal Equipment and Protocols for Telematic Services. 1993.

38. Synchronized Multimedia Integration Language (SMIL). W3C Recommendation. www.w3.

org=TR=SMIL=. See also www.w3.org=AudioVideo=.

39. Real SMIL player. www.real.com.

40. SMIL support in QuickTime. www.apple.com=quicktime=technologies=interactivity=smil.html.

41. L. Hardman, A Smil Tutorial. homepages.cwi.nl=�media=SMIL=Tutorial=. 1998.

42. W3C SMIL tutorial. www.w3schools.com=smil=default.asp.

43. Ink Markup Language (InkML). W3C Working Draft. www.w3.org=TR=InkML=.

44. Multimodal Interaction Framework. W3C Working Draft. www.w3.org=TR=mmi-framework=.

45. Unipen digital ink format at the Int. Unipen Foundation (iUF). www.unipen.org.

46. M. Lazzouni, A. Kazeroonian, D. Gholizadeh, and O. Ali, Pen and paper information recording

system. US Patent 5,652,412. July, 1997.

47. IBM ThinkPad TransNote computers. www-132.ibm.com=search=transnote.html. www.research.

ibm.com=thinkresearch=pages=2001=20010515_transnote.shtml.

48. CrossPad digital ink and paper tablet. www.cross.com=ProductSupport=CrossPad.aspx.

49. ACECAD DigiMemo digital pen with paper pad. www.acecad.com.tw=products.html.

50. VisionObjects MyScript note-taking app and handwriting recognition. www.visionobjects.com.

51. Mage Software inkBook note-taking app. www.magesw.com=inkbook=.

52. United Network of Newton Archives. www.unna.org.

53. NewtonTalk e-mail list. newtontalk.net.

54. Worldwide Newton Association. worldwide-newton.asso.eu.org.

55. Worldwide Newton Conference. wwnc.newtontalk.net.

56. Axiotron ModBook Tablet Mac. www.axiotron.com=index.php?id¼modbook.

57. Final Cut Studio audio=video mastering software. www.apple.com=finalcutstudio=.

58. DENIM and SILK. guir.berkeley.edu=projects=denim=research=.

59. M.W. Newman and J. Landay, Sitemaps, storyboards, and specifications: A sketch of Web site design

practice. In Proceedings of the Designing Interactive Systems (DIS’00), New York, August 2000.

60. BumpTop prototype user interface. honeybrown.ca=Pubs=BumpTop.html.

61. iPen concept system. gp.co.at=works=ipen=.

62. P.R. Cohen, D. McGee, S.L. Oviatt, L. Wu, J. Clow, R. King, S. Julier, and L. Rosenblum, Multimodal

interactions for 2D and 3D environments. IEEE Computer Graphics and Applications. July=August 1999.

63. A. Heyer and L. Julia, Multimodal maps: An agent-based approach. In Multimodal Human-Computer

Communication, Lecture Notes in Artificial Intelligence. 1374. Bunt=Beun=Borghuis Eds. Springer 1998.

64. M. Tue Vo and C. Wood, Building an application framework for speech and pen input integration in

multimodal learning interfaces. In IEEE Conference on Acoustics, Speech and Signal Processing

(ICASSP), 1996.

65. B. Suhm, B. Myers, and A. Waibel, Model-based and empirical evaluation of multimodal interactive

error correction. In Proceedings of the CHI 99 Conference, Pittsburgh, PA, May 1999.

66. Open Agent Architecture. www.ai.sri.com=oaa.

67. E. Charniak and D. McDermott, Introduction to Artificial Intelligence. Addison-Wesley, Reading,

MA, 1987.

To Probe Further

Pen computing: http:==hwr.nici.kun.nl=pen-computing= AWeb site hosted at the Nijmegen University

with links related to practical issues in pen and mobile computing.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 71 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-71

Handhelds: http:==handhelds.org= A Compaq-hosted Web site created to encourage and facilitate the

creation of open source software for use on handheld and wearable computers.

Pen computing consumer products: http:==www.pencomputing.com= A commercial (paper) maga-

zine and Web site devoted to news and reviews on pen and mobile computing products.

26.7 What Makes a Programmable DSP Processor Special?

Ingrid Verbauwhede

26.7.1 Introduction

A programmable DSP processor is a processor ‘‘tuned’’ towards its application domain. Its architecture

is very different from a general-purpose von Neumann architecture to accommodate the demands

of real-time signal processing. When first developed in the beginning of the 1980s, the main application

was filtering. Since then, the architectures have evolved together with the applications. Currently,

the most stringent demands for low-power embedded DSP processors come from wireless communi-

cation applications: second, 2.5, and third generation (2G, 2.5G, and 3G) cellular standards. The

demand for higher throughput and higher quality of source and channel coding keeps growing while

power consumption has to be kept as low as possible to increase the lifetime of the batteries.

In this section, first the application domain and its historical evolution will be described in Section

26.7.2. Then, in Section 26.7.3, the overall architecture will be described. In Section 26.7.4, the specifics

of the DSP data paths will be given. In Section 26.7.5, the memory architecture and its associated address

generation units are described. In Section 26.7.6, the specifics of the DSP pipeline will be explained.

Finally, in Section 26.7.7, the conclusions will be given followed by some future trends.

26.7.2 DSP Application Domain

DSP processors were originally developed to implement traditional signal processing functions, mainly

filters, such as FIRs and IIRs [5]. These applications decided the main properties of the programmable

DSP architecture: the inclusion of a multiply-accumulate unit (MAC) as separate data path unit and a

Harvard or modified Harvard memory architecture instead of a von Neumann architecture.

26.7.2.1 Original Motivation: FIR Filtering

The fundamental properties of these applications were (and still are):

. Throughput driven calculations and real-time operation. Signal processing applications, such as

speech and video, can be represented as an ‘‘infinite stream’’ of data samples that need to be

processed at a rate determined by the application [20]. The sample rate is a fundamental property

of the application. It determines at what rate the consecutive samples arrive for processing. For

speech processing, this is the rate of speech samples (kHz range), for video processing this might

be the frame rate or the pixel rate (MHz range) [3]. The DSP has to process these samples at this

given rate. Therefore, a DSP operates under worst-case conditions. This is fundamentally different

from general-purpose processing on a micro processor, which operates on an average case base,

but which has an unpredictable worst-case behavior.

. Large amounts of computations, few amounts of control flow operations. DSP processors were

developed to process large amounts of data in a very repetitive mode. For instance, speech

filtering, speech coding, pixel processing, etc., require similar operations on consecutive samples,

pixels, frames, etc. The DSP processor has adapted to this, by providing means of implementing

these algorithms in a very efficient way. It includes zero-overhead looping, very compact

instruction code, efficient parallel memory banks, and associated address generation units.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 72 11.10.2007 8:32pm Compositor Name: TSuresh

26-72 Digital Systems and Applications

. Large amount of data, usually organized in a regular or almost regular pattern. Because of the real-

time processing and the associated ‘‘infinite’’ amount of data that is processed, DSP processors

usually have several parallel memory banks; each bank has its own address generation unit and

parallel reads and writes are supported by the DSP.

. Embedded applications. DSP processors are developed for embedded applications, ranging

from cellular phones, disk drives, cable modems, etc. The result is that all the program codes

have to reside on the processor (no external memory, no cache hierarchy). Thus, the code size

has to be minimized, as a result of which, till today there is a lot of assembly code written.

Secondly, the power consumption has to be minimized since many of these applications run from

batteries or have tight cooling requirements such as the usage of cheap plastic packages or

enclosed boxes.

26.7.2.2 Modern Applications: Digital Wireless Communications

New applications drive the design of new DSP processors. State-of-the-art DSP processors will have

more than one MAC, acceleration for Viterbi decoding, specialized instructions for Turbo decoding, and

so on. Indeed, DSP processors have become the main workhorse for wireless communications for both

the handsets and the base station infrastructure [22].

Second generation (2G) cellular standards required the introduction of optimized instructions for speech

processing and for communication algorithms used in the channel coding andmodulation=demodulation.

The fundamental components of a wireless system are shown on Fig. 26.51.

26.7.2.2.1 Speech Coding

The source coder=decoder in 2G cellular standards (GSM, IS-136, IS-95 CDMA, Japanese PDC) is

mainly a speech coder=decoder. The main function of a speech coder is to remove the redundancy and

compress the speech signal and hence, reduce the bandwidth requirements for storage or transmission

over the air. The required reduction in bit rate is illustrated in Fig. 26.52 for the Japanese PDC standard.

Receiver

Synthesizer

Demodulator

Speaker
Microphone

Transmitter Modulator

Channel CODEC
Speech
CODEC

Point A

Point B

FIGURE 26.51 Fundamental building blocks in a communication system.

125 µs (8 kHz)

-> 2,560 bits/40 ms -> 64 kbps(8 bits* 8 kHz)

8 bits
(µ-Law)

1 slot (~6.7 ms, 7 kbps)

Speech: 138 bits/40 ms -> 3.45 kbps
FEC: 86 bits/40 ms -> 2.15 kbps

Total: 5.6 kbps

User 1 User 2 User 3 User 4 User 5 User 6User 642 kbps

Point A

Point B

User 1

1 TDMA Frame (40 ms)

FIGURE 26.52 Relationship between speech signal and the transmitted signal.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 73 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-73

At point A, a ‘‘toll quality’’ digital speech signal requires the sampling of the analog speech waveform at

8 kHz. Each sample requires 8 bits of storage (m-law compressed) thus resulting in a bit rate of 64 kbits=s

or 2560 bits for one 40 ms TDMA frame. This speech signal needs to be compressed to increase the

capacity of the channel. One TDMA frame, which has a basic time period of 40 ms, is shared by six users.

The bit rate at point B is 42 kbits=s. Thus, one user slot gets only 7 kbits=s. The 2560 bits have to be reduced

to 138 bits, to which 86 bits are added for forward error correction (FEC), resulting in a total of 5.6 kbits=s.

The higher the compression ratio and the higher the quality of the speech coder, the more calculations,

usually expressed in MIPS, are required. This is illustrated in Fig. 26.53. The first generation GSM digital

cellular standard employs the Regular Pulse Excitation-Long Term Prediction (RPE-LTP) algorithm

and requires a few thousand MIPS to implement it on a current generation DSP processor. For instance,

it requires 2000 MIPS on the lode processor [21]. The Japanese half-rate coder Pitch Synchronous

Innovation-Code Excited Linear Prediction (PSI-CELP) requires at least ten times more MIPS.

26.7.2.2.2 Viterbi Decoding

The function of the channel codec is to add controlled redundancy to the bit stream on the encoder side

and to decode, detect, and correct transmission errors on the receiver side. Thus, channel encoding and

decoding is a form of error control coding. The most common decoding method for convolutional codes

is the Viterbi algorithm [4]. It is a dynamic programming technique as it tries to emulate the encoder’s

behavior in creating the transmitted bit sequence. By comparing to the received bit sequence, the

algorithm determines the difference between each possible path through the encoder and the received

bit sequence. The decoder outputs the bit sequence that has the smallest deviation, called the minimum

distance, compared to the received bit sequence.

Most practical convolutional encoders are rate 1=n, meaning that one input bit generates n coded output

bits. A convolutional encoder of constraint lengthK can be represented by a finite state machine (FSM) with

K� 1memory bits. The FSM has 2K�1 possible states, also called trellis states. If the input is binary, two next

states are possible starting from the current state and the input bit. The task of the Viterbi algorithm is to

reconstruct themost likely sequence of state transitions based on the received bit sequence. This approach is

called the ‘‘most likelihood sequence estimation.’’ These state transistions are represented by a trellis diagram.

The kernel of the trellis diagram is the Viterbi butterfly as shown in Fig. 26.54b.

26.7.2.3 Next Generation Applications

Current generation DSP processors are shaped by 2G cellular standards, the main purpose of which is

voice communication. 3G cellular standards will introduce new features: increased focus on data

communication, e-mail, web browsing, banking, navigation, and so on.

2G standards can support short messages, such as the popular SMS messages in the GSM standard,

but are limited to about 10 to 15 kbits=s. In the 2.5G cellular standards, provisions are made to support

higher data rates. By combining GSM time slots, generalized packet radio services (GPRS) can

support up to 115 kbits=s. But the 3G standards are being developed specifically for data services.

Bit rate[kbps]

[MIPS]

N
um

be
r

of
op

er
at

io
ns

10 200

10

20

5

1

15
PSI-CELP

13 kbps
VSELP

RPE-LTP11.2 kbps
VSELP

FIGURE 26.53 MIPS requirement of several speech coders.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 74 11.10.2007 8:32pm Compositor Name: TSuresh

26-74 Digital Systems and Applications

Wideband CDMA (WCDMA) will support up to 2 Mbits=s in office environments, lowered to

144 kbits=s for high mobile situations [6,13].

The increased focus on data services has large consequences for the channel codec design. The

traditional Viterbi decoder does not provide a low enough bit error rate to support data services.

Therefore, turbo codes are considered [2]. Turbo decoding (shown in Fig. 26.55) is a collaborative

structure of soft-input=soft-output (SISO) decoders with the inclusion of interleaver memories between

decoders to scatter burst errors [2]. Either soft-output viterbi algorithm (SOVA) [7] or maximum a

posteriori (MAP) [1] can be used as SISO decoders. Within a turbo decoder, the two decoders can

operate on the same or different codes. Turbo codes have been shown to provide coding performance to

within 0.7 dB of the Shannon limit (after a number of iterations).

The logMAPalgorithm can be implemented in amanner very similar to the standardViterbi algorithm.

The most important difference between the algorithms is the use of a correction factor on the ‘‘new path

metric’’ value (the alpha, beta, and log-likelihood ratio values in Log MAP). This correction factor

depends on the difference between the values being compared in the add-compare-select butterfly (as

shown in Fig. 26.54). This means that the Viterbi acceleration units, that implement this add-compare-

select operation, need to be modified. Turbo coding is one member of a large class of iterative decoding

algorithms. Recently low density parity check codes (LDPC) that have gained renewed attention as

another important class, which are potentially more easily translated to efficient implementations.

Other trends seem to place an even larger burden on the DSP processor. The Japanese i-Mode system

includes e-mail, web browsing, banking, location finding in combination with the car navigation system,

2ii +a

−a
−a

+a

000

001

010

101

110

011

100

111

000

001

010

101

110

011

100

111

000

001

010

101

110

011

100

111

000

001

010

101

110

011

100

111

11

01

11

i+s/2

2i+1

(a) (b)

FIGURE 26.54 Viterbi trellis diagram and one butterfly.

Interleaver Constituent
decoder 2

Interleaver

Constituent
decoder 1

De-
interleaver

De-
interleaver

Parity bits
1st code

Info bits

Parity bits 2nd code
Decoded

output

Soft-
decision

Soft-
decision

Constituent
decoder 1

Constituent
decoder 2

MUX

Interleaver

Parity
bits

Information bits

Parity
bits

Encoded
output

Soft-
decision

FIGURE 26.55 Turbo encoder and decoder.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 75 11.10.2007 8:32pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-75

etc. Next generation phones will need to support video and image processing, and so on. Applications

and upgrades will be downloadable from the Internet.

But at the same time, consumers are used to longer talk times (a couple of hours) and very long

standby times (days or weeks). Thus, they will not accept a reduction of talk time nor standby time in

exchange for more features. This means that these increased services have to be delivered with the same

power budget because the battery size is not expected to grow nor is the battery technology expected to

improve substantially.

26.7.3 DSP Architecture

The fundamental property of a DSP processor is that it uses a Harvard or modified Harvard architecture

instead of a von Neumann architecture. This difference is illustrated in Fig. 26.56.

A von Neumann architecture has one unified address space, i.e., data and program, are assigned to the

same memory space. In a Harvard architecture, the data memory map is split from the program

memory map. This means that the address busses and data busses are doubled. Together with specialized

address calculation units, this will increase the memory bandwidth available for signal processing

applications. This concept will be illustrated by the implementation of a simple FIR filter. The basic

equation for an N tap FIR equation is the following:

y(n) ¼
Xi¼N�1

i¼0

c(i) � x(n� i)

Expansion of this equation results in the following pseudo code statements:

y(0) ¼ c(0)x(0)þ c(1)x(�1)þ c(2)x(�2)þ . . .þ c(N� 1)x(1� N);

y(1) ¼ c(0)x(1)þ c(1)x(0)þ c(2)x(� 1)þ . . .þ c(N� 1)x(2� N);

y(2) ¼ c(0)x(2)þ c(1)x(1)þ c(2)x(0)þ . . .þ c(N� 1)x(3� N);

. . .

y(n) ¼ c(0)x(n)þ c(1)x(n� 1)þ c(2)x(n� 2)þ . . .þ c(N� 1)x(n� (N� 1));

Memory

Address bus Address bus Address bus 2

Data bus Data bus Data bus 2

Instruction
processing

unit

Instruction
processing

unit

16 � 16 mpy 16 � 16 mpy

ALU

Program
memory

Data
memory

ALU

FIGURE 26.56 von Neumann architecture and Harvard=modified Harvard architecture.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 76 11.10.2007 8:32pm Compositor Name: TSuresh

26-76 Digital Systems and Applications

When this equation is executed in software or assembly code, output samples y(n) are computed in

sequence. To implement this on a von Neumann architecture, the following operations are needed.

Assume that the von Neumann has a multiply and accumulate instruction (not necessarily the case).

Assume also that pipelining allows to execute the multiply and accumulate in parallel with the read or

write operations. Then one tap needs four cycles:

1. Read multiply-accumulate instruction.

2. Read data value from memory.

3. Read coefficient from memory.

4. Write data value to the next location in the delay line (because to start the computation of the

next output sample, all values are shifted by one location).

Thus even if the von Neumann architecture includes a single cycle multiply-accumulate unit, it will

take four cycles to compute one tap.

Implementing the same FIR filter on a Harvard architecture will reduce the number of cycles to

three because it allows the fetch of the instruction in parallel with the fetch of one of the data items.

This was a fundamental property that distinguished the early DSP processors. On the TMS

320Clx, released in the early ’80s, it took 2N cycles for a N tap filter (without the shift of the delay

line) [5].

The modified Harvard architecture improves this idea even further. It is combined with a ‘‘repeat’’

instruction and a specialized addressing mode, the circular addressing mode. In this case, one multiply-

accumulate instruction is fetched from program memory and kept in the one instruction

deep instruction ‘‘cache.’’ Then the data access cycles are performed in parallel: the coefficient is fetched

from the program memory in parallel with the data sample being fetched from data memory.

This architecture is found in all early DSP processors and is the foundation for all following DSP

architectures. The number of memory accesses for one tap are reduced to two and these occur in the

same cycle. Thus, one tap can execute in one cycle and the multiply-accumulate unit is kept occupied

every cycle.

Newer generation of DSP processors have even more memory banks, accompanying address

generation units and control hardware, such as the repeat instruction, to support multiple parallel

accesses. The execution of a 32-tap FIR filter on the dual Mac architecture of the Lucent DSP 1621,

shown in Fig. 26.57, will take only 19 cycles. The corresponding pseudo code is the following:

do 14 { ==one instruction !
a0¼a0þp0þp1
p0¼xh*yh p1¼x1*y1
y¼ *r0þþ x¼ *pt0þþ

}

This code can be executed in 19 clock cycles with only 38 bytes of instruction code. The inner loop

takes one cycle to execute and as can be seen from the assembly code, seven operations are executed in

x(n)

X

(50 TAPS)

Z−1 Z−1 Z−1

X X X

+ + +

x(n−1)

y(n)

c(0) c(N−1)

x(n−(N−1))

FIGURE 26.57 Finite impulse response filter.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 77 11.10.2007 8:33pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-77

parallel: one addition, two multiplications, two memory reads, and two address pointer updates. Note

that the second pointer update, *pt0þþ, updates a circular address pointer.

Two architectures which speed up the FIR calculation to 0.5 cycle per tap are shown in Fig. 26.58. The

first one is the above mentioned Lucent DSP16210. The second one is an architecture presented in [9]. It

has a multiply accumulate unit that operates at double the frequency from the memory accesses.

The difficult part in the implementation of this tight loop is the arrangement of the data samples in

memory. To supply the parallel Mac data paths, two 32-bit data items are read from memory and stored

in the X and Y register, as shown in Fig. 26.58. A similar split in lower and higher halfs occurs in the

Intel=ADI Frio core [10]. Then the data items are split in an upper half and a low half and supplied

to the two 163 16 multipliers in parallel or the left half and the right half of the TEMP registers in

Fig. 26.58(b). It requires a correct alignment of the data samples in memory, which is usually a tedious

work done by the programmer, since compilers are not able to handle this efficiently. Note that a similar

problem exists when executing SIMD instructions on general purpose micro-processors.

Memory accesses are a major energy drain. By rearranging the operations to compute the filter

outputs, the amount of memory accesses can be reduced. Instead of working on one output sample at a

time, two or more output samples are computed in parallel. This is illustrated in the pseudo code below:

y(0) ¼ c(0)x(0)þ c(1)x(� 1)þ c(2)x(� 2)þ . . .þ c(N� 1)x(1� N);

y(1) ¼ c(0)x(1)þ c(1)x(0)þ c(2)x(� 1)þ . . .þ c(N� 1)x(2� N);

y(2) ¼ c(0)x(2)þ c(1)x(1)þ c(2)x(0)þ . . .þ c(N� 1)x(3� N);

. . .

y(n) ¼ c(0)x(n)þ c(1)x(n� 1)þ c(2)x(n� 2)þ . . .þ c(N� 1)x(n� (N� 1));

p0 (32) p1 (32)

ADD BMU

Y(32) X(32)

ALU

XDB(32)

IDB(32)

16 � 16 mpy 16 � 16 mpy

ACC File
8 � 40

Shift /Sat. Shift /Sat.

 Lucent DSP16210 architecture MAC at double frequency [14]

BARREL SHIFTER

1 MACHINE
CYCLE

1/2 MACHINE
CYCLE

1/2 MACHINE
CYCLE

MAC UNIT

ACC

40-bit

ADDER

PIPELINE REG

32-bit

MULTIPLIER

16-bit 16-bit

16-bit16-bit

16-bit 16-bit 16-bit 16-bit

B-BUS

A-BUS

TEMP REG TEMP REG

ODD
SIDE

ODD
SIDE

EVEN
SIDE

EVEN
SIDE

POINTER X
(PX)

POINTER Y
(PY)

MEMORY Y
(MY)

MEMORY X
(MX)

(a) (b)

FIGURE 26.58 DSP architectures for 0.5 cycle per FIR tap.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 78 11.10.2007 8:33pm Compositor Name: TSuresh

26-78 Digital Systems and Applications

In the lode architecture [21] a delay register is introduced between the two Mac units as shown in

Fig. 26.59. This halves the amount of memory accesses. Two output samples are calculated in parallel as

indicated in the pseudo code of Table 26.3. One data bus will read the coefficients, c(i), the other data

bus will read the data samples, x(N� i), from memory. The first Mac will compute a multiply-

accumulate for output sample y(n). The second multiply-accumulate will compute in parallel on

y(nþ 1). It will use a delayed value of the input sample. In this way, two output samples are computed

at the same time.

This concept of inserting a delay register can be generalized. When the datapath has P Mac units,

P� 1 delay registers can be inserted and only 2N=(Pþ 1) memory accesses are needed for one output

sample. These delay registers are pipeline registers and hence if more delay registers are used, more

initialization and termination cycles need to be introduced.

The idea of working on two output samples at one time is also present in the dual Mac processor of

TI, the TIC55x. This processor has a dual Mac architecture with three 16-bit data busses. To supply both

Macs with coefficient and data samples, the same principle of computing two output samples at the

same time is used. One data bus will carry the coefficient and supply this to both Macs, the other two

data busses will carry two different data samples and supply this to the two different Macs.

A summary of the different approaches is given in Table 26.2. Note that most energy savings are

obtained from reducing the amount of memory accesses and secondly, from reducing the number of

instruction cycles. Indeed the energy associated with the Mac operations can be considered as ‘‘funda-

mental’’ energy without it, no N tap FIR filter can be implemented.

Modern processors have multiple address busses, multiple data busses and multiple memory banks,

including both single and dual port memory. They also include mechanisms to assign parts of the

physical memory to either memory space, program, or data. For instance for the C542 processor the

on-chip dual access RAM can be assigned to the data space or to the data=program space, by setting a

specific control bit (the OVLY bit) in a specific control register (the PMST register) [19].

X

+

i

A0 A1

i

DB0(16)

X

+

x (n−i +1) x (n−i)

DB1(16)

y (n+1) y (n)

MAC0MAC1

LREG

c (i)c (i)

FIGURE 26.59 Dual Mac architecture with delay register of the Lode DSP core.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 79 11.10.2007 8:33pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-79

26.7.4 DSP Data Paths

The focus of the previous section was on the overall architecture of a DSP processor and its fundamental

properties to increase the memory bandwidth. This will keep the data paths of the DSP operating every

clock cycle. In this section, some essential properties of the DSP data paths will be described.

26.7.4.1 Multiply-Accumulate Unit

The unit that is most associated with the DSP is the Mac. It is shown in Fig. 26.60. The most important

properties of the Mac unit are summarized below:

. The multiplier takes two 16-bit inputs and produces a 32-bit multiplier output. Internally the

multiplication might be implemented as a 173 17 bit multiplier. This way the multiplier can

implement both two’s complement and

unsigned numbers.

. The product register is a pipelined register to

speed up the calculation of the multiply-

accumulate operation. As a result the Mac

operation executes in most processors in

one cycle effectively although the latency can

be two cycles.

. The accumulator registers are usually 40 bits

long. Eight bits are designated as ‘‘guard’’

bits [11]. This allows the accumulation of 28

products before there is a need of scaling, trun-

cation, or saturation. These larger word lengths

are very effective in implementing DSP func-

tions such as filters. The disadvantage is that

special registers such as these accumulators are

very hard to handle by a compiler.

26.7.4.2 Viterbi Acceleration Unit

Convolutional decoding and more specifically the

Viterbi algorithm, has been recognized as one of

the main, if not the most, MIPS consuming appli-

cation in current and next generation standards.

The key issue is to reduce the number of memory

TABLE 26.2 Data Accesses, Mac Operations, Instruction Cycles, and Instructions for an N Tap FIR Filter

DSP Data Memory Accesses MAC Operations Instruction Cycles Instructions

von Neumann 3N N 4N 2N

Harvard 3N N 3N 3N

Modified Harvard with

modulo arithmetic

2N N N 2 (repeat

instruction)

Dual Mac or double

frequency Mac

2N N N=2 2 (same)

Dual Mac with 3 data

busses

1.5N N N=2 2

Dual Mac with 1 delay

registers

N N N=2 2

Dual Mac with P delay

registers

2N=(P þ 1) N N=(P þ 1) 2

Multiplier

(Product register)

Add/subtract

Accumulator reg.

Bus

16

16 16

40

32

32

BusA
BusB

40

40

FIGURE 26.60 Multiply accumulate unit.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 80 11.10.2007 8:33pm Compositor Name: TSuresh

26-80 Digital Systems and Applications

accesses and secondly the number of operations to implement the algorithm. The kernel of

the algorithm is the Viterbi butterfly as shown on Fig. 26.54. The basic equations executed in this

butterfly are:

d(2i) ¼ min {d(i)þ a,d(i þ s=2)� a}

d(2i þ 1) ¼ min {d(i)� a,d(i þ s=2)þ a}

These equations are implemented by the ‘‘add-compare-select (ACS)’’ instruction and its associated

data path unit. Indeed, one needs to add or subtract the branch metric from states i and iþ s=2, compare

them, and select the minimum. In parallel, state 2iþ 1 is updated. The butterfly arrangement is chosen

because it reduces the amount of memory accesses by half, because the two states that use the same data

to update the same two next states are combined.

DSP processors have special hardware and instructions to implement the ACS operation in the most

efficient way. The lode architecture [21] uses the two Mac units and the ALU to implement the ACS

operation as shown in Fig. 26.61a. The dual Mac operates as a dual add=subtract unit. The ALU finds the

minimum. The shortest distance is saved to memory and the path indicator, i.e., the decision bit is saved

in a special shift register A2. This results in four cycles per butterfly.

The Texas Instruments TMS320C54x and the Matsushita processor described in [14,22] use a different

approach that also results in four cycles per butterfly. This is illustrated in Fig. 26.61b. The ALU and the

accumulator are split into two halves (much like SIMD instructions), and the two halves operate

independently. A special compare, select, and store unit (CSSU) will compare the two halves, will select

the chosen one, and write the decision bit into a special register TRN. The processor described in [14]

describes two ACS units in parallel. One should note that without these specialized instructions and

hardware, one butterfly requires 15 to 25 or more instructions.

26.7.5 DSP Memory and Address Calculation Units

Besides the data paths optimized for signal processing and communication applications, the DSP

processors also have specialized address calculation units. As explained in Section 26.7.3, the parallel

memory maps in the Harvard or modified Harvard architecture are essential for the data processing in

DSP processors; however, to avoid overload on the regular data path units, specialized address gener-

ation units are included. In general, the number of address generation units will be same as the

A1

MAC0

DB1(16)

DB0(16)

+

A0

MAC1

Min()ALU

A3 A2

Decision bit

To memory

TREG

ALU

DB1(16)
DB0(16)

Accumulator

CompALU
Decision

bit

+ + +

MSW/LSW
Select

To memory
TRN reg

(a) (b)

FIGURE 26.61 Two data path variations to implement the add-compare-select operation.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 81 11.10.2007 8:33pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-81

maximum number of parallel memory accesses that can occur in one cycle. A few examples are shown in

Table 26.3. Older processors, such as the C53 with a modified Harvard architecture, have one address

generation unit serving the data address bus, and one program address generation unit serving the

program address bus. When the number of address busses go up, so will the arithmetic units inside

the address calculation unit. For instance the Frio [10] has two address busses served by two ALUs inside

the data address generation unit.

The address generation units themselves are optimized to perform address arithmetic in an efficient

way. This includes data paths with the correct word lengths. It also includes all the typical address

modifications that are common in DSP applications. For instance indirect addressing with a simple

increment can easily be done and expressed in the instruction syntax. More advanced addressing

modes include circular buffering, which especially suits filter operations, and bit-reversed addressing,

especially useful for fast Fourier transforms, and so on. There exist many good instruction manuals that

describe the detailed operation of these specialized addressing modes, [11,18,19].

26.7.6 DSP Pipeline

The pipeline of a DSP processor is different from the pipeline of a general purpose control-oriented

micro-processors. The basic slots of the DSP pipeline and the RISC pipeline are shown in Fig. 26.62. In a

DSP processor, the memory access stage in parallel with the address generation (usually ‘‘post-modifi-

cation’’) occurs before the execute stage. An example is described in [10]. In a RISC processor the

memory access stage follows the execute stage [8], because the execute stage is used to calculate

TABLE 26.3 Number of Parallel Address Generation Units for a Few DSP

Processors

Generation Units

Processor Data Address Program Address

C53 [18] 1 (ARAU) 1

C543 [19] 2 (DAGEN has two units: ARAU0, ARAU1) 1

Lode [21] 2 (ACU0, ACU1) 1

Frio [10] 2 1

Memory
access

DecodeFetch Execute Write
back

Memory access / branch

Execution/ address generation

Memory access/address post modification
Execution

ExecuteDecodeFetch Memory
access

Write
back

(a) RISC pipeline

(b) DSP pipeline

P
ro

gr
am

 in
st

ru
ct

io
n

or
de

r

Time in clock cycles

FIGURE 26.62 Basic pipeline architecture for a RISC and a DSP processor.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 82 11.10.2007 8:33pm Compositor Name: TSuresh

26-82 Digital Systems and Applications

the address on the main ALU. The fundamental reason for this difference in pipeline structure is that

DSP processors are optimized for memory intensive number-crunching type of applications (e.g., FIRs),

while RISC type processors, including micro-controllers and micro-processors, are optimized for

complex decision making. This is explained in Figs. 26.63 and 26.64. Typical for real-time compute

intensive applications, is the continuous memory accesses followed by operations in the data path units.

A typical example is the execution of the FIR filter as shown in the FIR pseudo code above. On a DSP

processor, the memory access and the multiply-accumulate operation are specified in one instruction

and follow each other in the pipeline stage. The same operation on a RISC machine will need three

instruction slots. The first instruction slot will read the value from memory and only in the

third instruction slot the actual computation takes place. If these delays are not obeyed, a data hazard

will occur [8]. Fixing data hazards will lead to a large instruction and cycle overhead.

Similarly, it can be argued that branches have a larger penalty on DSP processors than on RISC

machines. The reason is explained on Fig. 26.64. If a data dependent branch needs to be executed, e.g.,

‘‘branch if accumulator is zero,’’ then it takes that this instruction cannot follow immediately after the

accumulator is set. In the simple examples of Fig. 26.64, there needs to be two, respectively three

instruction cycles between the setting of the accumulator flag and the usage of it in the decode stage, by

the RISC and DSP processor, respectively. Therefore, the RISC has an advantage for control dominated

applications. In practice these pipeline hazards are either hidden to the programmer by hardware

solutions (e.g., forwarding or stalls) or they are visible to the programmer, who can optimize his code

around it. A typical example are the branch and the ‘‘delayed branch’’ instruction in DSP processor.

Because an instruction is fetched in the cycle before it is decoded, a regular branch instruction will incur

an unnecessary fetch of the next instruction in memory following the branch. To optimize the code in

DSP processors, the delayed branch instruction is introduced. In this case, the instruction that

follows the branch instruction in memory will be executed before the actual branch takes place.

Hence, a delayed branch instruction takes effectively one cycle to execute while a regular branch will

take two cycles to execute.

The delayed branch is a typical example on how DSP programmers are very sensitive to code size and

code execution. Indeed, for embedded applications, minimum code size is a requirement.

r0 = *p0; // load data

Memory
accessDecode Execute

Memory
access

Decode Execute

Memory
accessDecode Execute

ExecuteDecode a0 = a0 + *p0;

Write
back

Write
back

Write
back

Write
back

P
ro

gr
am

 in
st

ru
ct

io
n

or
de

r

Time in clock cycles

Time in clock cycles

P
ro

gr
am

 in
st

ru
ct

io
n

or
de

r

a0 = a0 + r 0 // operate

(a) RISC pipeline

(b) DSP pipeline

Fetch
Memory
access

Fetch

Fetch

Fetch

FIGURE 26.63 Memory-intensive number crunching on a RISC and a DSP.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 83 11.10.2007 8:33pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-83

26.7.7 Conclusions and Future Trends

DSP processors are a special type of processors, very different from the general purpose micro controller

or micro processor architectures. As argued in this section, this is visible in all components of the

processor: the overall architecture, the data paths, the address generation units, and even the pipeline

structure.

The applications of the future will keep on driving the next generation of DSP processors. Several

trends are visible. Clearly, there is a need to support higher level languages and compilers. Traditional

compiler techniques do not produce efficient, optimized code for DSP processors. Compiler technology

has only recently started to address the needs of low power embedded applications. But also the

architectures will need changes to accommodate the compiler techniques. One drastic approach is the

appearance of VLIW architectures, for which efficient compiler techniques are known. This results,

however, in code size explosion associated with a large increase in power consumption. A hybrid

approach might be a better solution. For example, the processor described in [10] has unified register

files. Yet, it also makes an exception for the accumulators.

Another challenge is the increased demand for performance while reducing the power consumption.

Next generation wireless portable applications will not only provide voice communication, but also

video, text and data, games, and so on. On top of this the applications will change and will need

reconfigurations while in use. This will require a power efficient way of runtime reconfiguration [16].

The systems on a chip that implement these wireless communication devices will include a large set of

heterogeneous programmable and reconfigurable modules, each optimized to the application running

on them. Several of these will be DSP processors and they will be crucial for the overall performance.

Acknowledgments

The author thanks Mr. Katsuhiko Ueda of Matsushita Electric Co., Japan, for the interesting discussions

and for providing several figures in this section.

zeroflag is set

Memory
accessDecodeFetch Execute

Memory
access

DecodeFetch Execute

Memory
access

DecodeFetch Execute

ExecuteDecodeFetch
Memory
access

zeroflag is set

Write
back

Write
back

Write
back

Write
back

P
ro

gr
am

 in
st

ru
ct

io
n

or
de

r Time in clock cycles

Time in clock cycles

P
ro

gr
am

 in
st

ru
ct

io
n

or
de

r

if (acc = 0) then ...

(a) RISC pipeline

(b) DSP pipeline

ExecuteDecodeFetch
Memory
access

Write
back

ExecuteDecodeFetch
Memory
access

Write
back

ExecuteDecodeFetch
Memory
access

Write
back

if (acc = 0) then ...

FIGURE 26.64 Decision making (branch) on a RISC and a DSP.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 84 11.10.2007 8:33pm Compositor Name: TSuresh

26-84 Digital Systems and Applications

References

1. Bahl L., Cocke J., Jelinek F., Raviv J., ‘‘Optimal decoding of linear codes for minimizing symbol error

rate,’’ IEEE Trans. Information Theory, vol. IT-20, pp. 284–287, March 1974.

2. Berrou C., Glavieux A., Thitimajshima P., ‘‘Near shannon limit error-correcting coding and

decoding: turbo-codes (1),’’ Proc. ICC ’93, May 1993.

3. Catthoor F., De Man H., ‘‘Application-specific architectural methodologies for high-throughput

digital signal and image processing,’’ IEEE Transactions on ASSP, Feb. 1990.

4. Forney G., ‘‘The viterbi algorithm,’’ Proceedings of the IEEE, vol. 61, no. 3, pp. 268–278, March 1973.

5. Gass W., Bartley D., ‘‘Programmable DSPs,’’ Chapter 9 in Digital Signal Processing for Multimedia

Systems, Parhi K., Nishitani T. (Eds.), Marcel Dekker Inc., New York, 1999.

6. Gatherer A., Stetzler T., McMahan M., Auslander E., ‘‘DSP-based architectures for mobile commu-

nications: past, present, future,’’ IEEE Communications Magazine, pp. 84–90, Jan. 2000.

7. Hagenauer J., Hoeher P., ‘‘A viterbi algorithm with soft-decision outputs and its applications,’’ Proc.

Globecom ’89, pp. 47.1.1–47.1.7, Nov. 1989.

8. Hennessy J., Patterson D., Computer Architecture: A Quantitative Approach, 2nd Edition, Morgan

Kaufmann Publ., San Francisco, CA, 1996.

9. Kabuo H., Okamoto M., et al. ‘‘An 80 MOPS peak high speed and low power consumption 16-bit

digital signal processor,’’ IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 494–503, 1996.

10. Kolagotla R., et al., ‘‘A 333 MHz dual-MAC DSP architecture for next-generation wireless applica-

tions,’’ Proceedings ICASSP, Salt Lake City, UT, May 2001.

11. Lapsley P., Bier J., Shoham A., Lee E.A., DSP Processor Fundamentals: Architectures and Features,

IEEE Press, 1996.

12. Lee E.A., ‘‘Programmable DSP architectures: Part I and Part II,’’ IEEE ASSP Magazine, pp. 4–19, Oct.

1988, pp. 4–14, Jan. 1989.

13. McMahan M.L., ‘‘Evolving cellular handset architectures but a continuing, insatiable desire for DSP

MIPS,’’ Texas Instruments Technical Journal, Jan.–Mar. 2000, vol. 17, no. 1, reprinted as Application

Report SPRA650-March 2000.

14. Okamoto M., Stone K., et al., ‘‘A high performance DSP architecture for next generation mobile

phone systems,’’ 1998 IEEE DSP Workshop.

15. Oliphant M., ‘‘The mobile phone meets the internet,’’ IEEE Spectrum, pp. 20–28, Aug. 1999.

16. Schaumont P., Verbauwhede I., Keutzer K., Sarrafzadeh M., ‘‘A quick safari through the reconfigur-

ation jungle,’’ Proceedings 38th Design Automation Conference, Las Vegas, NV, June 2001.

17. Strauss W., ‘‘Digital signal processing, the new semiconductor industry technology driver,’’ IEEE

Signal Processing Magazine, pp. 52–56, March 2000.

18. Texas Instruments, TMS320C5x User’s Guide, document SPRU056B, Jan. 1993.

19. Texas Instruments, TMS320C54x DSP CPU Reference Guide, document SPRU131G, March 2001.

20. Verbauwhede I., Scheers C., Rabaey J., ‘‘Analysis of multidimensional DSP specifications,’’ IEEE

Transactions on signal processing, vol. 44, no. 12, pp. 3169–3174, Dec. 1996.

21. Verbauwhede I., Touriguian M., ‘‘Wireless digital signal processing,’’ Chapter 11 in Digital Signal

Processing for Multimedia Systems, Parhi K., Nishitani T. (Eds.), Marcel Dekker Inc., New York, 1999.

22. Verbauwhede I., Nicol C., ‘‘Low power DSP’s for wireless communications,’’ Proceeding ISLPED,

pp. 303–310, Aug. 2000.

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 85 11.10.2007 8:33pm Compositor Name: TSuresh

Mobile and Wireless Computing 26-85

Vojin Oklobdzija/Digital Systems and Applications 6195_C026 Final Proof page 86 11.10.2007 8:33pm Compositor Name: TSuresh

27
Data Security

Matthew Franklin
University of California at Davis

27.1 Introduction... 27-1

27.2 Unkeyed Cryptographic Primitives.............................. 27-1
Random Oracle Model

27.3 Symmetric Key Cryptographic Primitives................... 27-2
Symmetric Key Block Ciphers . Symmetric Key Stream

Ciphers . Message Authentication Codes

27.4 Asymmetric Key Cryptographic Primitives 27-5
Public Key Encryption Schemes . Digital Signature

Schemes . Advanced Topics for Public Key Cryptography

27.5 Other Resources... 27-9

27.1 Introduction

Cryptography is the science of data security. This chapter gives a brief survey of cryptographic practice

and research. The chapter is organized along the lines of the principal categories of cryptographic

primitives: unkeyed, symmetric key, and asymmetric key. For each of these categories, this chapter

defines the important primitives, gives security models and attacks scenarios, discusses constructions

that are popular in practice, and describes current research activity in the area. Security is defined in

terms of the goals and resources of the attacker.

27.2 Unkeyed Cryptographic Primitives

The main unkeyed cryptographic primitive is the cryptographic hash function. This is an efficient

function from bit strings of any length to bit strings of some fixed length (say 128 or 160 bits). The

description of the function is assumed to be publicly available. If H is a hash function, and if y¼H(x),

then y is called the ‘‘hash’’ or ‘‘hash value’’ of x.

One desirable property of a cryptographic hash function is that it should be difficult to invert. This

means that given a specific hash value y, it is computationally infeasible to produce any x such that

H(x)¼ y. Another desirable property is that it should be difficult to find collisions. This means that it is

computationally infeasible to produce two inputs x and x 0 such that H(x)¼H(x 0). The attacker is

assumed to know a complete specification of the hash function.

A cryptographic hash function can be used for establishing data integrity. Suppose that the hash of a

large file is stored in a secure location, while the file itself is stored in an insecure location. It is infeasible

for an attacker to modify the file without detection because a rehash of the modified file will not match

the stored hash value (unless the attacker was able to invert the hash function). We will see other

applications of cryptographic hash functions when we look at asymmetric cryptographic primitives in

Section 27.4.

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 1 4.10.2007 4:06pm Compositor Name: VBalamugundan

27-1

Popular choices for cryptographic hash functions include MD-5 [1], RIPEMD-160 [2], and SHA-1

[3]. It is also common to construct cryptographic hash functions from symmetric key block ciphers [4].

Recent results of Xiaoyun Wang and colleagues (e.g., published at Eurocrypt 2005 and Crypto 2005)

show how to find random collisions faster than by exhaustive search for a number of popular hash

functions (including MD5, SHA-1, and RIPEMD). These results are worrisome despite the apparent

safety in the fact that practical security exploits usually require the ability to find meaningful collisions,

whereas these attacks so far can only find collisions with a very specific structure. NIST recommends a

transition from SHA-1 to other approved hash functions in the same family with higher security (SHA-

224, SHA-256, SHA-384, SHA-512).

27.2.1 Random Oracle Model

One direction of recent research is on the random oracle model. This is a design methodology for

protocols and primitives that make use of cryptographic hash functions. Pick a specific cryptographic

hash function such as MD-5. Its designers may believe that it is difficult to invert MD-5 or to find

collisions for it. However, this does not mean that MD-5 is a completely unpredictable function, with no

structure or regularity whatsoever. After all, the complete specification of MD-5 is publicly available for

inspection and analysis, unlike a truly random function that would be impossible to specify in a compact

manner. Nevertheless, the random oracle model asserts that a specific hash function like MD-5 behaves

like a purely random function. This is part of a methodology for proving security properties of

cryptographic schemes that make use of hash functions.

This assumption was introduced by Fiat and Shamir [5] and later formalized by Bellare and Rogaway

[6]. It has been applied to the design and analysis of many schemes (see, e.g., the discussion of optimal

asymmetric encryption padding in Section 27.4.3.1).

Recently, a cautionary note was sounded by Canetti et al. [7]. They demonstrate by construction that

it is possible for a scheme to be secure in the random oracle model and yet have no secure instantiation

whatsoever when any hash function is substituted. This is a remarkable theoretical result; however, the

cryptographic community continues to base their designs on the random oracle model, and with good

reason. Although it cannot provide complete assurance about the security of a design, a proof in the

random oracle model provides confidence about the impossibility of a wide range of attacks. Specifically,

it rules out common attacks where the adversary ignores the inner workings of the hash function and

treats it as a ‘‘black box.’’ The vast majority of protocol failures are due to this kind of black box attack,

and thus the random oracle model remains an invaluable addition to the cryptographer’s tool kit.

27.3 Symmetric Key Cryptographic Primitives

The main symmetric key cryptographic primitives are discussed, including block ciphers, stream

ciphers, and message authentication codes.

27.3.1 Symmetric Key Block Ciphers

A symmetric key block cipher is a parameterized family of functions EK, where each EK is a permutation

on the space of bit strings of some fixed length. The input to EK is called the plaintext block, the output is

called the ciphertext block, and K is called the key. The function EK is called an encryption function. The

inverse of EK is called a decryption function and is denoted DK.

To encrypt a message that is longer than the fixed-length block, it is typical to employ a block cipher

in a well-defined mode of operation. Popular modes of operation include output feedback mode, cipher

feedback mode, and cipher block chaining mode; see Ref. [8] for a good overview. In this way, the

plaintext and ciphertext can be bit strings of arbitrary (and equal) length. New modes of operations

are being solicited in connection with the development of the Advanced Encryption Standard (AES) (see

Section 27.3.1.3).

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 2 4.10.2007 4:06pm Compositor Name: VBalamugundan

27-2 Digital Systems and Applications

The purpose of symmetric key encryption is to provide data confidentiality. Security can be stated at a

number of levels. It is always assumed that the attacker has access to a complete specification of the

parameterized family of encryption functions and to a ciphertext of adequate length. Beyond this,

the specific level of security depends on the goals and resources of the attacker. An attacker might attempt

a total break of the cipher, which would correspond to learning the key K. An attacker might

attempt a partial break of the cipher, which would correspond to learning some or all of the plaintext

for a given ciphertext. An attacker might have no resources beyond a description of the block cipher and a

sample ciphertext, in which case the attacker is mounting a ciphertext-only attack. An attacker might

mount a known-plaintext attack, if the attacker is given a number of plaintext–ciphertext pairs to work

with (input–output pairs for the encryption function). If the attacker is allowed to choose plaintexts and

then see the corresponding ciphertexts, then the attacker is engaged in a chosen-plaintext attack.

Symmetric key block ciphers are valuable for data secrecy in a storage scenario (encryption by the data

owner for an insecure data repository, and subsequent decryption by the data owner at a later time), or

in a transmission scenario (across an insecure channel between a sender and receiver who have agreed on

the secret key beforehand).

Perhaps, the most popular symmetric key block cipher for the past 25 years has been the Data

Encryption Standard (DES) [9], although it may be near the end of its useful life. NIST recently

announced the AES block cipher, which we discuss in Section 27.3.1.3.

Most modern block ciphers have an iterated design, where a round function is repeated some fixed

number of times (e.g., DES has 16 rounds). Many modern block ciphers have a Feistel structure [10],

which is an iterated design of a particular type. Let (Lj�1 , Rj�1) denote the output of the (j� 1)th

round, divided into two halves for notational convenience. Then the output of the jth round is (Lj, Rj),

where Lj¼Rj�1 and Rj¼ Lj�1 XOR f(Rj�1 , Kj) for some function f. Here Kj is the jth round key, derived

from the secret key according to some fixed schedule. Note that a block cipher with a Feistel structure is

guaranteed to be a permutation even if the function f is not invertible.

27.3.1.1 Differential Cryptanalysis

Differential cryptanalysis is a powerful statistical attack that can be applied to many symmetric key block

ciphers and unkeyed cryptographic hash functions. The first publication on differential cryptanalysis is

due to Biham and Shamir [11], but Coppersmith [12] has described how the attack was understood

during the design of the DES in the early 1970s.

The central idea of differential cryptanalysis for block ciphers is to sample a large number of pairs of

ciphertexts for which the corresponding plaintexts have a known fixed difference D (under the operation

of bitwise XOR). The difference D leads to a good characteristic if the XOR of the ciphertexts (or of an

intermediate result during the computation of the ciphertext) can be predicted with a relatively large

probability. By calculating the frequency with which every difference of plaintexts and every difference of

ciphertexts coincides, it is possible to deduce some of the key bits through a statistical analysis of a

sufficiently large sample of these frequencies.

For a differential cryptanalysis of DES, the best attack that Biham and Shamir discovered requires 247

chosen-plaintext pairs with a given difference. They note that making even slight changes to the S-boxes

(nonlinear substitution transformation at the heart of DES) can lead to a substantial weakening with

respect to a differential attack.

27.3.1.2 Linear Cryptanalysis

Linear cryptanalysis is another powerful attack that can be applied to many symmetric key block ciphers

and unkeyed cryptographic hash functions. Consider the block cipher as being a composition of linear

and nonlinear functions. The goal of linear cryptanalysis is to discover linear approximations for the

nonlinear components. These approximations can be folded into the specification of the block cipher,

and then expanded to find an approximate linear expression for the ciphertext output bits in terms of

plaintext input bits and secret key bits. If the approximations were in fact perfect, then enough

plaintext–ciphertext pairs would yield a system of linear equations that could be solved for the secret

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 3 4.10.2007 4:06pm Compositor Name: VBalamugundan

Data Security 27-3

key bits; however, even when the approximations are far from perfect, they enable a successful statistical

search for the key, given enough plaintext–ciphertext pairs. This is a known-plaintext attack, unlike

differential cryptanalysis, which is chosen plaintext.

Linear cryptanalysis was introduced by Matsui and Yamagishi [13]. Matsui applied linear cryptanalysis

toDES [14]. In his best attack, 243 known plaintexts are required to breakDESwith an 85%probability. See

Langford and Hellman [15] for close connections between differential and linear cryptanalysis.

27.3.1.3 Advanced Encryption Standard (AES)

In 1997, NIST began an effort to develop a new symmetric key encryption algorithm as a Federal

Information Processing Standard (FIPS). The goal was to replace the DES, which was widely perceived to

be at the end of its usefulness. A new algorithm was sought, with longer key and block sizes, and with

increased resistance to newly revealed attacks such as linear cryptanalysis and differential cryptanalysis.

The AES was to support 128-bit block sizes, and key sizes of 128 or 192 or 256 bits. By contrast, DES

supported 64-bit block sizes and a key size of 56 bits.

Fifteen algorithms were proposed by designers around the world. This was reduced to five finalists,

announced by NIST in 1999: MARS, RC6, Rijndael, Serpent, and TwoFish. In 2000, Rijndael was selected

as the AES. Rijndael has a relatively simple structure; however, unlike many earlier block ciphers (such as

DES), it does not have a Feistel structure.

The operation of Rijndael proceeds in rounds. Imagine that the block to be encrypted is written as a

rectangular array of byte-sized words (four rows and four columns). First, each byte in the array is replaced

by a different byte, according to a single fixed lookup table (S-box). Next, each rowof the array undergoes a

circular shift by a fixed amount. Next, a fixed linear transformation is applied to each column in the array.

Last, the entire array is exclusive-or with a round key. All of the round keys are calculated by expanding the

original secret key bits according to a simple key schedule. Note that the only nonlinear component is the

S-box substitution step. Details of Rijndael’s operation can be found in Ref. [16].

27.3.2 Symmetric Key Stream Ciphers

Stream ciphers compute ciphertext one character at a time, where the characters are often individual

bits. By contrast, block ciphers compute ciphertext one block at a time, where the block is much larger

(64 bits long for DES, 128 bits long for AES). Stream ciphers are often much faster than block ciphers.

The typical operation of a stream cipher is to exclusive-or message bits with a key stream. If the key

stream were truly random, this would describe the operation of a one-time pad. The key stream is not

truly random, but it is instead derived from the short secret key.

A number of stream ciphers have been optimized for hardware implementation. The use of linear

feedback shift registers is especially attractive for hardware implementation, but unfortunately these are

not sufficiently secure when used alone. The Berlekamp–Massey algorithm [17] allows a hidden linear

feedback shift register to be determined from a very short sequence of output bits. In practice, stream

ciphers for hardware often combine linear feedback shift registers with nonlinear components to

increase security. One approach is to apply a nonlinear function to the output of several linear feedback

shift registers that operate in parallel (nonlinear combination generator). Another approach is to apply a

nonlinear function to all of the states of a single linear feedback shift register (nonlinear filter generator).

Still another approach is to have the output of one linear feedback shift register determine when a step

should be taken in other linear feedback shift registers (clock-controlled generator).

Some stream ciphers have been developed to be especially fast when implemented in software, e.g.,

RC5 [18]. Certain modes of operation for block ciphers can be viewed as symmetric key stream ciphers

(output feedback mode and cipher feedback mode).

27.3.3 Message Authentication Codes

A message authentication code (MAC) is a keyed cryptographic hash function. It computes a fixed-

length output (tag) from an input of any length (message). When both the sender and the receiver know

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 4 4.10.2007 4:06pm Compositor Name: VBalamugundan

27-4 Digital Systems and Applications

the secret key, a MAC can be used to transmit information with integrity. Without knowing the secret

key, it is very difficult for an attacker to modify the message or the tag so that the hash relation is

maintained. The MAC in the symmetric key setting is the analog of the digital signature in the

asymmetric key setting. The notion of message authentication in the symmetric key setting goes back

to Gilbert et al. [19].

Security for MACs can be described with respect to different attack scenarios. The attacker is assumed

to know a complete specification of the hash function, but not the secret key. The attacker might attempt

to insert a new message that will fool the receiver, or the attacker might attempt to learn the secret key.

The attacker might get to see some number of message–tag pairs, either for random messages or for

messages chosen by the attacker.

One popular MAC is the CBC-MAC, which is derived from a block cipher (such as DES) run in cipher

block chaining mode. Another approach is to apply an unkeyed cryptographic hash function after the

message has been combined with the key according to some prepackaging transform. Care must be taken

with the choice of transform; one popular choice is HMAC [20]. The UMAC construction [21] has been

optimized for extremely fast implementation in software, while maintaining provable security. Jutla [22]

recently showed especially efficient methods for combining message authentication with encryption, by

using simple variations on some popular modes of operation for symmetric key block ciphers.

27.4 Asymmetric Key Cryptographic Primitives

Two asymmetric key cryptographic primitives are discussed in this section: public key encryption

schemes and digital signature schemes.

27.4.1 Public Key Encryption Schemes

A public key encryption scheme is a method for deriving an encryption function EK and a corresponding

decryption function DK such that it is computationally infeasible to determine DK from EK. The

encryption function EK is made public, so that anyone can send encrypted messages to the owner of

the key. The decryption function DK is kept secret, so that only the owner of the key can read encrypted

messages. The functions are inverses of each other, so that DK(EK(M))¼M for every message M. Unlike

the symmetric key setting, there is no need for the sender and receiver to preestablish a secret key before

they can communicate securely.

Security for a public key encryption scheme relates to the resources and goals of the attacker. The

attacker is assumed to have a complete description of the scheme, as well as the public encryption key

EK. Thus, the attacker is certainly able to encrypt arbitrary messages (chosen-plaintext attack). The

attacker might be able to decrypt arbitrary messages (chosen-ciphertext attack, discussed in detail in

Section 27.4.3.1). The goal of the attacker might be to deduce the decryption function DK (total break),

or simply to learn all or some information about the plaintext corresponding to a particular ciphertext

(partial break), or merely to guess which of two plaintexts is encrypted by a given ciphertext (indis-

tinguishability).

The idea of public key encryption is due to Diffie and Hellman [23]. Most popular public key

encryption schemes base their security on the hardness of some problem from number theory. The first

public key encryption proposed remains one of the most popular today—the RSA scheme due to Rivest

et al. [24]. Other popular public key encryption schemes are based on the discrete logarithm problem,

including ElGamal [25] and elliptic curve variants [26].

For efficiency purposes, public key encryption is often used in a hybrid manner (called key transport).

Suppose that a large messageM is to be encrypted using a public encryption key EK. The sender chooses

a random key k for a symmetric key block cipher such as AES. The sender then transmits EK(k),

AESk(M). The first component enables the receiver to recover the symmetric key k, which can be used to

decrypt the second component to recover M. The popular e-mail security protocol PGP uses this

method (augmented with an integrity check).

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 5 4.10.2007 4:06pm Compositor Name: VBalamugundan

Data Security 27-5

It is also possible to use a key agreement protocol to establish a secret key over an insecure public

channel, and then to use the secret key in a symmetric key block cipher. The idea is due to Diffie and

Hellman [23], and the original Diffie–Hellman key agreement protocol is still widely used in practice.

27.4.2 Digital Signature Schemes

A digital signature scheme is a method for deriving a signing function SK and a corresponding

verification function VK, such that it is computationally infeasible to derive SK from VK. The verification

function VK is made public, so that anyone can verify a signature made by the owner of the signing key.

The signing function SK is kept secret, so that only the owner of the signing key can sign messages. The

signing function and verification function are related as follows: if the signature of a message M is

SK(M), then it should be the case that VK(SK(M))¼ valid for all messages M.

Security for a digital signature scheme depends on the goals and resources of the attacker [27]. The

attacker is assumed to know a complete specification of the digital signature scheme and the verification

function VK. The attacker might also get to see message–signature pairs for random messages (known

message attack), or for arbitrary messages chosen by the attacker (chosen message attack). The goal of

the attacker might be to derive the signature function (total break) or to forge a signature on a particular

message (selected message forgery) or to forge any message–signature pair (existential message forgery).

In practice, a signing function is applied not to the message itself but rather to the hash of the message

(i.e., to the output of an unkeyed cryptographic hash function applied to the message). The security of

the signature scheme is then related to the security of the hash function. For example, if a collision can

be found for the hash function, then an attacker can produce an existential message forgery under a

chosen message attack (by finding a collision on the hash function, and then asking for the signature of

one of the colliding inputs).

One of the most popular digital signature schemes is RSA (based on the same primitive as RSA public

key encryption, where SK¼DK and VK¼ EK). Other popular digital signature schemes include the digital

signature algorithm (DSA) [28] and ElGamal [25].

27.4.3 Advanced Topics for Public Key Cryptography

27.4.3.1 Chosen Ciphertext Security for Public Key Encryption

As discussed earlier, a number of definitions for the security of a public key encryption scheme have

been proposed. Chosen ciphertext security is perhaps the strongest natural definition, and it has

emerged as the consensus choice among cryptographers as the proper notion of security to try to

achieve. This is not to say that chosen ciphertext security is necessary for all applications, but instead of

having a single encryption scheme, that is, chosen ciphertext secure will allow it to be used in the widest

possible range of applications.

The strongest version of definition of chosen ciphertext security is due to Rackoff and Simon [29],

building from a slightly weaker definition of Naor and Yung [30]. It can be described as a game between

an adversary and a challenger. The challenger chooses a random public key and corresponding private

key [EK, DK], and sends the public key EK to the adversary. The adversary is then allowed to make a series

of decryption queries to the challenger, sending arbitrary ciphertexts to the challenger and receiving

their decryptions in reply. After this stage, the adversary chooses two messages M0 and M1 whose

encryptions the adversary thinks will be particularly easy to distinguish between. The adversary sends

M0 and M1 to the challenger. The challenger chooses one of these messages at random; call it Mb, where

b is a random bit. The challenger encrypts Mb and sends the ciphertext C to the adversary.

Now the adversary attempts to guess whether C is an encryption of M0 or M1. To help him with his

guess, he is allowed to engage in another series of decryption queries with the challenger. The only

restriction is that the adversary may never ask the challenger to directly decrypt C. At some point, the

adversary makes his guess for Mb. If the adversary can win this game with any nonnegligible advantage

(i.e., with probability 1=2 plus 1=kc, where k is the length of the private key and c is any positive

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 6 4.10.2007 4:07pm Compositor Name: VBalamugundan

27-6 Digital Systems and Applications

constant), then we say that the adversary has mounted a successful chosen ciphertext attack. If no

adversary (restricted to the class of probabilistic polynomial time turning machines) can mount a

successful chosen ciphertext attack, then we say that the cryptosystem is chosen ciphertext secure.

This might seem like overkill for a definition of security. Unlimited access to a decryption oracle

might seem like an unrealistically strong capability for the attacker. Merely distinguishing between two

plaintexts might seem like an unrealistically weak goal for the attacker. Nevertheless, this definition has

proven to be a good one for several reasons. First, it has been shown to be equivalent to other natural

and strong definitions of security [31]. Second, Bleichenbacher [32] showed that a popular standard

(RSA PKCS #1) was vulnerable to a chosen ciphertext attack in a practical scenario.

In the random oracle model, chosen ciphertext security can be achieved by combining a basic public

key encryption scheme such as RSA with a simple prepackaging transform. Such a transform uses

random padding and unkeyed cryptographic hash functions to scramble the message before encryption.

The prepackaging transform is invertible, so that the message can be unscrambled after the ciphertext is

decrypted.

The optimal asymmetric encryption padding (OAEP) transform takes an m-bit messageM, a random

bit string R of length s, and outputs OAEP(M, R)¼ ((M k 0s) xor H(R)) k (R xor G((M k 0s) xor H(R))).
Here G and H are unkeyed cryptographic hash functions that are assumed to have no exploitable

weaknesses (random oracles). This can be viewed as a two-round Feistel structure (e.g., DES is a

16-round Feistel structure). Unpackaging the transform is straightforward. The OAEP transform is

used extensively in practice, and has been incorporated in several standards. OAEP combined with RSA

yields an encryption scheme that is secure against a chosen ciphertext attack [33,34].

Shoup [35] shows that OAEP1, a variation on OAEP, yields chosen ciphertext security when

combined with essentially any public key encryption scheme: OAEP1 (M, R)¼ ((M k W(M, R)) xor

H(R)) k (R xor G(M k W(M, R)) xor H(R)), where G, H, and W are unkeyed cryptographic hash

functions that behave like random oracles. Boneh [36] shows that even simpler prepackaging transforms

(essentially one-round Feistel structure versions of OAEP and OAEP1) yield chosen ciphertext secure

encryption schemes when combined with RSA or Rabin public key encryption.

Without the random oracle model, chosen ciphertext security can be achieved using the elegant

Cramer–Shoup cryptosystem [37]. This is based on the hardness of the decision Diffie–Hellman

problem (see Section 27.4.3.3). Generally speaking, constructions in the random oracle model are

more efficient than those without it.

27.4.3.2 Threshold Public Key Cryptography

In a public key setting, the secret key (for decryption or signing) often needs to be protected from theft

for long periods against a concerted attack. Physical security is one option for guarding highly sensitive

keys, e.g., storing the key in a tamper-resistant device. Threshold public key cryptography is an attractive

alternative for safeguarding critical keys.

In a threshold public key cryptosystem, the secret key is never in one location. Instead, the secret key is

distributed across many locations. Each location has a different ‘‘share’’ of the key, and each share of the

key enables the computation of a share of the decryption or signature. Shares of a signature or

decryption can then be easily combined to arrive at the complete signature or decryption, assuming

that a sufficient number of shareholders contribute to the computation. This sufficient number is the

threshold that is built into the system as a design parameter. Note that threshold cryptography can be

combined with physical security by having each shareholder use physical means to protect his individual

share of the secret key.

Threshold cryptography was independently conceived by Desmedt [38], Croft and Harris [39], and

Boyd [40], building on the fundamental notion of secret sharing [41,42]. Satisfactory threshold schemes

have been developed for a number of public key encryption and digital signature schemes. These

threshold schemes can be designed so as to defeat an extremely strong attacker who is able to travel

from shareholder to shareholder, attempting to learn or corrupt all shares of the secret key (proactive

security). Efficient means are also available for generating shared keys from scratch by the shareholders

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 7 4.10.2007 4:07pm Compositor Name: VBalamugundan

Data Security 27-7

themselves, so that no trusted dealer is needed to initialize the threshold scheme [43,44]. Shoup [45]

recently proposed an especially simple and efficient scheme for threshold RSA.

27.4.3.3 New Hardness Assumptions for Asymmetric Key Cryptography

A trend has occurred in recent years toward the exploration of the cryptographic implications of new

hardness assumption. Classic assumption includes the hardness of factoring a product of two large

primes, the hardness of extracting roots modulo a product of two large primes, and the hardness of

computing discrete logarithms modulo a large prime (i.e., solving gx¼ y mod p for x).

One classic assumption is the Diffie–Hellman assumption. Informally stated, this assumption is that it

is difficult to compute (gab mod p) given (ga mod p) and (gb mod p), where p is a large prime. This

assumption underlies the Diffie–Hellman key agreement protocol. The decisional Diffie–Hellman

assumption has proven to be useful in recent years. Informally stated, this assumption is that it is

difficult to distinguish triples of the form (ga mod p, gb mod p, gab mod p) and triples of the form

(ga mod p, gb mod p, gc mod p) for random a, b, c. Perhaps most notably, the Cramer–Shoup chosen

ciphertext secure encryption scheme is based on this new assumption.

The security of RSA is based on a root extraction problem related to the hardness of factoring: given

messageM andmodulusN¼ pq of unknown factorization and suitable exponent e, computeM1=e modN.

Recently, a number of protocols and primitives have been based on a variant of this assumption called the

strong RSA assumption: givenM andN, find e andM1=e modN for any suitable e. For example, a provably

secure signature scheme can be based on this new assumption without the need for the random oracle

assumption [46].

The RSA public key scheme is based on arithmetic modulo N, where N¼ pq is a product of two

primes (factors known to the private key holder but not to the public). Recently, Paillier [47] has

proposed a novel public key encryption scheme based on arithmetic modulo p2q. His scheme has nice

homomorphic properties, which enable some computations to be performed directly on ciphertexts. For

example, it is easy to compute the encryption of the sum of any number of encrypted values, without

knowing how to decrypt these ciphertexts. This has many nice applications, such as for secure secret

ballot election protocols.

The Phi-hiding assumption was introduced by Cachin et al. [48]. This is a technical assumption

related to prime factors of p� 1 and q� 1 in an RSA modulus N¼ pq. This assumption enables the

construction of an efficient protocol for querying a database without revealing the queries that are being

made to the database (private information retrieval).

Lastly, a number of hardness assumptions (including the bilinear Diffie–Hellman assumption and the

decisional bilinear Diffie–Hellman assumption) have been proposed for proving the security of con-

structions in pairing-based cryptography (see Section 27.4.3.4).

27.4.3.4 Pairing-Based Cryptography

In the early 1990s, Menezes et al. [49] demonstrated a new attack on the discrete logarithm problem over

certain elliptic curves. The main technical tools were pairing functions that mapped pairs of points on

the elliptic curve to elements of a different group (where the discrete logarithm problem might be

easier). In 2000, Joux [50] showed that these pairing functions had positive uses in cryptography, by

using them to construct an efficient three-party variant of Diffie–Hellman key exchange. Independently,

and around the same time, similar ideas were explored by Sakai, Ohgishi, and Kasahara [63].

The flexibility and versatility of these tools has made pairing-based cryptography a very active field in

recent years. In this section, we briefly mention a few new constructions that have particularly interest-

ing features for secure systems design.

The problem of identity-based encryption (or IBE)—originally posed by Adi Shamir in 1984 [51]—is

to construct a public key encryption scheme in which the public key can be any desired bit string (e.g.,

the e-mail address of the recipient), while the corresponding private key can be derived by a trusted third

party that knows the master key for the system. In 2001, an efficient pairing-based construction for IBE

was proposed [52].

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 8 4.10.2007 4:07pm Compositor Name: VBalamugundan

27-8 Digital Systems and Applications

Gentry and Silverberg [53] showed a pairing-based construction for hierarchical identity-

based encryption (HIBE), in which a hierarchy of master keys can be created on the fly. This can limit

the damage if any one particular master key is exposed. HIBE is a useful building block for other pairing-

based cryptographic constructions with novel functionality. For example, Canetti et al. [54] used HIBE

to construct a forward secure encryption scheme, in which the public encryption key stays fixed while

the private decryption key evolves overtime. Exposure of the private key at any moment allows the

attacker to decrypt all current and future ciphertexts, but past ciphertexts remain secure.

Pairing-based cryptography has also influenced the design of digital signature schemes. For example, a

very short signature scheme (e.g., just 160 bits at current security levels) based on pairings was proposed

and analyzed by Boneh et al. [55]. Another example is the aggregate signature scheme of Boneh et al.

[56] that allows many different signatures of different messages by different parties to be combined

mathematically into a small string such that all of the signatures can still be verified.

27.4.3.5 Privacy Preserving Protocols

Using the cryptographic primitives described in earlier sections, it is possible to design protocols for two

or more parties to perform useful computational tasks while maintaining some degree of data confi-

dentiality. Theoretical advances were well established with the completeness theorems in Ref. [57] and

others; however, practical solutions have often required special-purpose protocols tailored to the

particular problem.

One important example—both historically and practically—is the problem of conducting a secret

ballot election [58,59]. This can be viewed as a cryptographic protocol design problem among three

types of parties: voters, talliers, and independent observers. All types of parties have different security

requirements. Voters want to guarantee that their individual ballots are included in the final tally,

and that the contents of the ballots remain secret. Talliers want to produce an accurate final count

that includes all valid ballots counted exactly once, and no invalid ballots. Independent observers

want to verify that the tally is conducted honestly. One of the best secret ballot election protocols

currently known for large-scale elections is probably [60] the protocol based on threshold public key

encryption.

27.5 Other Resources

An excellent resource for further information is the CRC Handbook of Applied Cryptography [61],

particularly the first chapter of this handbook, which has an overview of cryptography that is highly

recommended. Ross Anderson’s book on security engineering [62] is a recommended resource, espe-

cially for its treatment of pragmatic issues that arise when implementing cryptographic primitives in

practice. See also the frequently asked questions list maintained by RSA Labs (www.rsa.com=rsalabs).

Paulo Barreto’s Pairing-Based Crypto Lounge has a lot of good information about pairing-based

cryptography (http:==paginas.terra.com.br=informatica=paulobarreto=pblounge.html).

References

1. Rivest, R., The MD5 message-digest algorithm, Internet Request for Comments, RFC 1321, April

1992.

2. Dobbertin, H., Bosselers, A., and Preneel, B., RIPEMD-160: A strengthened version of RIPEMD,

Proceedings of Fast Software Encryption Workshop, Gollman, D. (Ed.), Springer-Verlag, LNCS,

Heidelberg, 1039, 71, 1996.

3. FIPS 180-1, Secure hash standard, Federal Information Processing Standards Publication 180-1, U.S.

Department of Commerce=N.I.S.T., National Technical Information Service, Springfield, VA, May

11, 1993.

4. Preneel, B., Cryptographic hash functions, Eur. Trans. Telecomm., 5, 431, 1994.

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 9 4.10.2007 4:07pm Compositor Name: VBalamugundan

Data Security 27-9

5. Fiat, A. and Shamir, A., How to prove yourself: Practical solutions to identification and signature

problems, Advances in Cryptology—Crypto’93, Springer-Verlag, LNCS, Heidelberg, 773, 480, 1994.

6. Bellare, M. and Rogaway, P., Random oracles are practical: A paradigm for designing efficient

protocols, Proceedings of the 1st ACM Conference on Computer and Communications Security,

Fairfax, VA, 62, 1993.

7. Canetti, R., Goldreich, O., and Halevi, S., The random oracle model revisited, Proceedings of the 30th

Annual ACM Symposium on the Theory of Computing, Dallas, TX, 209, 1998.

8. Davies, D. and Price, W., Security for Computer Networks, 2nd ed., John Wiley & Sons, New York,

1989.

9. FIPS 46, Data encryption standard, Federal Information Processing Standards Publication 46, U.S.

Dept. of Commerce=N.B.S., National Technical Information Service, Springfield, VA, 1977 (revised

as FIPS 46-1: 1988; FIPS 46-2:1993).

10. Feistel, H., Notz, W., and Smith, J., Some cryptographic techniques for machine-to-machine data

communications, Proc. IEEE 63, 1545, 1975.

11. Biham, E. and Shamir, A., Differential cryptanalysis of DES-like cryptosystems, J. Cryptol., 4,

3, 1991.

12. Coppersmith, D., The data encryption standard (DES) and its strength against attacks, IBM J. Res.

Dev., 38, 243, 1994.

13. Matsui, M. and Yamagishi, A., A new method for known plaintext attack of FEAL cipher, Advances

in Cryptology—Eurocrypt’92, Springer-Verlag, LNCS, Heidelberg, 658, 81, 1993.

14. Matsui, M., Linear cryptanalysis method for DES cipher, Advances in Cryptology—Eurocrypt’93,

Springer-Verlag, LNCS, Heidelberg, 765, 386, 1994.

15. Langford, S. and Hellman, M., Differential-linear cryptanalysis, Advances in Cryptology—Crypto’94,

Springer-Verlag, LNCS, Heidelberg, 839, 17, 1994.

16. National Institute of Standards and Technology, Advanced Encryption Standard (AES), http:==csrc.

nist.gov=encryption=aes=.

17. Massey, J., Shift-register synthesis and BCH decoding, IEEE Trans. Inf. Th., 15, 122, 1969.

18. Rivest, R., The RC5 encryption algorithm, Fast Software Encryption, Second International Workshop,

Springer-Verlag, LNCS, Heidelberg, 1008, 86, 1995.

19. Gilbert, E., MacWilliams, F., and Sloane, N., Codes which detect deception, Bell Sys. Tech. J., 53, 405,

1974.

20. Bellare, M., Canetti, R., and Krawczyk, H., Keying hash functions for message authentication,

Advances in Cryptology—Crypto’96, Springer-Verlag, LNCS, Heidelberg, 1109, 1, 1996.

21. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P., UMAC: Fast and secure message

authentication, Advances in Cryptology—CRYPTO’99, Springer-Verlag, LNCS, Heidelberg, 1666,

216, 1999.

22. Jutla, C., Encryption modes with almost free message integrity, Advances in Cryptology—Eurocrypt

2001, Springer-Verlag, LNCS, Heidelberg, 2045, 529, 2001.

23. Diffie, W. and Hellman, M., New directions in cryptography, IEEE Trans. Inf. Th., 22, 644, 1976.

24. Rivest, R., Shamir, A., and Adleman, L., A method for obtaining digital signatures and public-key

cryptosystems, Commn. ACM, 21, 120, 1978.

25. ElGamal, T., A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE

Trans. Inf. Th., 31, 469, 1985.

26. Koblitz, N., Elliptic curve cryptosystems, Math. Comput., 48, 203, 1987.

27. Goldwasser, S., Micali, S., and Rivest, R., A digital signature scheme secure against adaptive chosen-

message attacks, SIAM J. Comput., 17, 281, 1988.

28. Kravitz, D., Digital signature algorithm, U.S. Patent #5, 231, 668, July 27, 1993.

29. Rackoff, C. and Simon, D., Non-interactive zero-knowledge proof of knowledge and chosen ciphertext

attack, Advances in Cryptology—Crypto’91, Springer-Verlag, LNCS, Heidelberg, 576, 433, 1992.

30. Naor, M. and Yung, M., Public-key cryptosystems provably secure against chosen ciphertext attacks,

Proceedings of the ACM Symposium on Theory of Computing, Seattle, WA, 33, 1989.

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 10 4.10.2007 4:07pm Compositor Name: VBalamugundan

27-10 Digital Systems and Applications

31. Dolev, D., Dwork, C., and Naor, M., Non-malleable cryptography, SIAM J. Comput., 30, 391, 2000.

32. Bleichenbacher, D., Chosen ciphertext attacks against protocols based on RSA encryption standard

PKCS #1, Advances in Cryptology—CRYPTO’98, Springer-Verlag, LNCS, Heidelberg, 1462, 1, 1998.

33. Bellare, M. and Rogaway, P., Optimal asymmetric encryption, Advances in Cryptology—Eurocrypt’94,

Springer-Verlag, LNCS, Heidelberg, 950, 92, 1995.

34. Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J., RSA-OAEP is secure under the RSA assump-

tion, Advances in Cryptology—Crypto 2001, Springer-Verlag, LNCS, Heidelberg, 2139, 260, 2001.

35. Shoup, V., OAEP reconsidered, Advances in Cryptology—Crypto 2001, Springer-Verlag, LNCS,

Heidelberg, 2139, 239, 2001.

36. Boneh, D., Simplified OAEP for the Rabin and RSA functions, Advances in Cryptology—Crypto 2001,

Springer-Verlag, LNCS, Heidelberg, 2139, 275, 2001.

37. Cramer, R. and Shoup, V., A practical public key cryptosystem provably secure against adaptive chosen

ciphertextattack,Advances inCryptology—Crypto’98, Springer-Verlag,LNCS,Heidelberg,1462,13,1998.

38. Desmedt, Y., Society and group oriented cryptography: A new concept, Advances in Cryptology—

Crypto’87, Springer-Verlag, LNCS, Heidelberg, 293, 120, 1988.

39. Croft, R. and Harris, S., Public-key cryptography and re-usable shared secrets, in Cryptography and

Coding, Beker, H. and Piper, F. (Eds.), Clarendon Press, Oxford, 189, 1989.

40. Boyd, C., Digital multisignatures, in Cryptography and Coding, Beker, H. and Piper, F. (Eds.),

Clarendon Press, Oxford, 241, 1989.

41. Shamir, A., How to share a secret, Comm. ACM, 22, 612, 1979.

42. Blakley, R., Safeguarding cryptographic keys, Proceedings of AFIPS National Computer Conference,

Arlington, VA, 313, 1979.

43. Pedersen, T., A threshold cryptosystem without a trusted party, Advances in Cryptology—Eurocrypt’91,

Springer-Verlag, LNCS, Heidelberg, 547, 522, 1992.

44. Boneh, D. and Franklin, M., Efficient generation of shared RSA keys, J. ACM, 48, 702, 2001.

45. Shoup, V., Practical threshold signatures, Advances in Cryptology—Eurocrypt 2000, Springer-Verlag,

LNCS, Heidelberg, 1807, 207, 2000.

46. Cramer, R. and Shoup, V., Signature schemes based on the strong RSA assumption, ACM Trans. Inf.

Sys. Sec., 3, 161, 2000.

47. Paillier, P., Public key cryptosystems based on composite degree residuosity classes, Advances in

Cryptology—Eurocrypt’99, Springer-Verlag, LNCS, Heidelberg, 1592, 223, 1999.

48. Cachin, C., Micali, S., and Stadler, M., Computationally private information retrieval with poly-

logarithmic communication, Advances in Cryptology—EUROCRYPT’99, Springer-Verlag, LNCS,

Heidelberg, 1592, 402, 1999.

49. Menezes, A., Okamoto, T., and Vanstone, S.A., Reducing elliptic curve logarithms to logarithms in a

finite field. IEEE Trans. Inf. Th., 39, 1639, 1993.

50. Joux, A., A one round protocol for tripartite Diffie–Hellman, Proceedings of the ANTS IV, Springer-

Verlag, LNCS, Heidelberg, Leiden, The Netherlands, 1838, 385, 2000.

51. Shamir, A., Identity-based cryptosystems and signature schemes, Proceedings of Crypto, Springer-

Verlag, LNCS, Heidelberg, Santa Barbara, CA, 196, 47, 1984.

52. Boneh, D. and Franklin, M., Identity-based encryption from the Weil pairing. SIAM J. Comput., 32,

586, 2003.

53. Gentry, C. and Silverberg, A., Hierarchical ID-based cryptography, Proceedings of Asiacrypt,

Springer-Verlag, LNCS, Heidelberg, Queenstown, NZ, 2501, 548, 2002.

54. Canetti, R., Halevi, S., and Katz, J., A forward-secure public-key encryption scheme, Proceedings of

Eurocrypt, Springer-Verlag, LNCS, Heidelberg, Warsaw, Poland, 2656, 255, 2003.

55. Boneh, D., Lynn, B., and Shacham, H., Short signatures from the Weil pairing. J. Cryptol., 17(4):297–

319, 2004.

56. Boneh, D., Gentry, C., Lynn, B., and Shacham, H., Aggregate and verifiably encrypted signatures

from bilinear maps, Proceedings of Eurocrypt, Springer-Verlag, LNCS, Heidelberg, Warsaw, Poland,

2656, 416, 2003.

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 11 4.10.2007 4:07pm Compositor Name: VBalamugundan

Data Security 27-11

57. Goldreich, O., Micali, S., and Wigderson, A., How to play any mental game or a completeness

theorem for protocols with honest majority, Proceedings of ACM Symposium on the Theory of

Computing, 218, New York, NY, 1987.

58. Cohen, J. and Fisher, M., A robust and verifiable cryptographically secure election scheme, Proceed-

ings of the IEEE Symposium on Foundations of Computer Science, Portland, OR, 372, 1985.

59. Benaloh, J. and Yung, M., Distributing the power of a government to enhance the privacy of voters,

Proceedings of the ACM Symposium on Principles of Distributed Computing, Calgary, Canada, 52,

1986.

60. Cramer, R., Schoenmakers, B., and Genarro, R., A secure and optimally efficient multi-authority

election scheme, Eur. Trans. Telecomm., 8, 481, 1997.

61. Menezes, A., van Oorschot, P., and Vanstone, S., Handbook of Applied Cryptography, CRC Press,

Boca Raton, FL, 1997.

62. Anderson, R., Security Engineering: A Guide to Building Dependable Systems, John Wiley & Sons,

New York, 2001.

63. Sakai, R., Ohgishi, K., and Kasahara, M., Cryptosystems based on pairing, 2000 Symposium on

Cryptography and Information Security (SCIS2000), Okinawa, Japan, Jan. 26–28, 2000.

Vojin Oklobdzija/Digital Systems and Applications 6195_C027 Final Proof page 12 4.10.2007 4:07pm Compositor Name: VBalamugundan

27-12 Digital Systems and Applications

Index

A

Accelerated Strategic Computing Initiative (ASCI)

benchmark, 4-30–4-31

Acoustic wave speed, 11-2

Actel, 20-2

Adaptive signal processing

adaptive equalization

actual architectures, 18-30

CTF configurations, 18-21–18-22

equalization architectures and strategies,

18-20–18-21

FIR filter and LMS algorithm, 18-22–18-24

performance characterization, 18-25–18-30

adaptive timing recovery

basics, 18-31–18-34

jitter and BER simulation results, 18-43–18-44

performance comparison of symbol rate timing

loops, 18-39–18-42

symbol rate timing recovery schemes,

18-34–18-39

Adaptive transform acoustic coder (ATRAC) standard,

11-40–11-41

Add-compare-select (ACS) computational unit, 18-14

Address resolution buffer (ARB), 1-47

Adjacency matrix, 18-57

Adler, Coppersmith, and Hassner (ACH)

algorithm, 18-17

Admission threshold (AT)-based scheme, 14-14

Advanced high-performance bus (AHB), 7-5

Advanced Virtual component interface

(AVCI), 7-13–7-14

Agere Systems, 18-30

Aliasing effects, 18-52

ALOHA protocol, 14-7

Alpha 21364 series, 2-8

Alpha 21064 superscalar processor, 2-11

Alpha 21264 superscalar processor, 2-18, 2-20–2-21,

2-23–2-24, 2-41, 2-44, 2-49, 3-18

Altera, 20-2

Alternative mark inversion (AMI) code, 18-68

AltiVec supercomputer, 1-31

AMBA bus, 7-2, 7-4–7-5, 7-15

AMBA high-performance bus (AHB), 5-4

AMBA peripherals bus (APB), 5-4

AMULET3H microprocessor, 7-11–7-12

Analog Devices Super Harvard Architecture (SHARC),

11-19

Analog front end, of read channel, 18-11–18-12

Analog-to-digital converter (ADC), 8-1, 18-66

Apollo DN10000, 2-8

Application-specific integrated circuits (ASICs)

devices, 8-11–8-12

in wireless communication systems, 26-8

Application-specific integrated processor (ASIP),

5-3, 6-7

Application-specific standard parts (ASSPs) devices,

8-11–8-12

Application-specific standard products (ASSPs), 11-17

ARM processors, 5-3, 7-2, 7-4

Assembly language program, 6-5

Asymmetric key cryptographic primitives

digital signature schemes, 27-6

public key encryption schemes, 27-5–27-6,

27-6–27-9

Audio aids, DSP applications, 9-12

Audio signal processing

audio processing basics

discrete wavelet transformation, 11-21–11-24

filter banks, 11-27–11-28

FIR filters, 11-24–11-26

Fourier transformations, 11-19–11-21

IIR filters, 11-26–11-27

sampling rate conversion, 11-28–11-31

digital audio transmission and storage

broadcasting, 11-41

digital audio storage, 11-41–11-42

digital radio mondiale (DRM), 11-41

Internet transmission, 11-41

digital signal processing systems, 11-17–11-19

elements of technical acoustics, 11-2–11-3

fidelity factor, 11-2

lossless audio coding, 11-31–11-33

entropy coding, 11-33–11-34

parametric modeling of audio signals, 11-3–11-5

principles of audio coding, 11-14–11-17

psychoacoustics phenomena and audio perception,

11-5–11-14

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 1 10.10.2007 9:09pm Compositor Name: BMani

I-1

standards

adaptive transform acoustic coder (ATRAC),

11-40–11-41

Dolby AC-3, 11-40

lossless and lossy, 11-35–11-36

MUSICAM and MPEG, 11-36–11-40

transparent audio coding, 11-34–11-35

Automatic gain control (AGC) block, 18-24

Avalon bus, 7-5–7-6

B

Background debug module (BDM), 6-6

Backwards-taken, forwards-not-taken (BTFNT) policy,

2-43, 2-49, 2-53–2-55

Band-to-band tunneling (BTBT), 3-4

Basic vector register architecture, 1-27–1-29

Basic virtual component interface (BVCI), 7-13–7-14

BCJR algorithm, 18-88–18-89

BDTI benchmarks, 4-30–4-31

Berkeley Design Technology, Inc. (BDTI), 4-31

Bidirectional stack algorithm, 18-87–18-88

Bilinear z-transform design paradigm, 8-7

Bimodal prediction, 2-46–2-47; see also Branch

prediction, in computer programs

Binary symmetric channel (BSC), 18-97

Biomedical and biometrics, DSP applications, 9-12

Bit error rate (BER), 18-14, 18-20

Block codes, 18-17

Bluetooth, 26-20

application protocol group, 26-5

concept, 26-2

development kits, 26-5–26-6

hardware implementation issues, 26-6–26-7

interoperability, 26-6

master and slave roles, 26-3–26-4

middleware protocol group, 26-5

as secure data link, 26-3

SIG working groups, 26-4

transceiver operations, 26-5

transport protocol group, 26-4–26-5

vs. infrared technology, 26-2–26-3

Branch delay slots, 2-41–2-42

Branch history table (BHT), 2-47, 2-52

Branch prediction, in computer programs

accuracies, 2-54

concept of, 2-38–2-41

hardware prediction strategies, 2-53–2-56

hardware techniques

bimodal prediction, 2-46–2-47

branch target address caches, 2-44

hybrid prediction, 2-49

issues in predictor organizations, 251

loop prediction, 2-49–2-50

neural prediction, 2-50

partitioning predictor hardware, 2-50–2-51

pipeline issues, 2-44–2-45

static techniques, 2-43

two-level prediction, 2-47–2-49

needs for, 2-41

pipeline behavior with, 2-38–2-39

predictor configurations for hardware budget, 2-55

software techniques

branch delay slots, 2-41–2-42

predication, 2-42–2-43

profiling and compiler annotation, 2-42

technique, 1-35, 2-41–2-51

Branch target address caches (BTAC), 2-43–2-45, 2-50

Broadband integrated services digital network (B-ISDN)

ATM, 14-5–14-6

Synchronous optical network (SONET), 14-6

Broadband line card, DSP applications, 9-10

Broadband networks, 14-5–14-6

Broadband wireless networks, 26-10–26-11

4-3BSD Unix, 1-66–1-67

Bulldog tracescheduling compiler, 1-15

Butterworth filters, 18-21–18-22

C

Cached disk access time model, 4-10–4-14

disk access optimization model, 4-12

disk service time model, 4-12–4-13

disk subsystem benchmark workload, 4-13–4-14

Cache only memory architecture system, 1-47

CaffeineMark benchmarks, 4-30, 4-32

Call admission control (CAC), 14-13

Camcorder, DSP applications, 9-6

Carrier sense multiple access with collision detection

(CSMA=CD), 26-35

CDC 3600 programs, 2-3, 2-7, 2-33

CDC STAR-100 supercomputer, 1-26, 1-31

Cell phones, DSP applications, 9-4–9-5

Cell stream processor, 2-73

Cellular wireless base station,

DSP applications and, 9-10

Centralized shared memory server architecture, 1-7

Character-based user interfaces, 26-54–26-55

Chinese remainder theorem (CRT), 1-72–1-73

Chip multiprocessors (CMP), 3-2

Cirrus equalizers, 18-30

CISC processors, 2-12, 2-20

Client–server computing, 1-3–1-4

Clock cycle time (CCT), 2-1

Clock-gating, 3-7–3-8, 3-10–3-12

Clock-gating efficiency (CGE), 3-10, 3-12

CMOS microprocessors, 2-67, 3-7, 3-12

CMOS SoC technology, 7-1

Code Composer Studio, 11-19

Code-division multiple access (CDMA), 14-7–14-8

Coded orthogonal frequency division multiplexing

(COFDM), 11-41

Codes, over bytes and finite fields, 18-98–18-99

Comfort noise generation (CNG), 26-21

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 2 10.10.2007 9:09pm Compositor Name: BMani

I-2 Digital Systems and Applications

Communication and computer networks

application supports

mobile and wireless, 14-14

multimedia, 14-12–14-13

sensor networks, 14-15–14-16

architecture, OSI reference model, 14-1–14-2

background, 26-27–26-28

challenges and issues, 26-37

of information, 26-28–26-30

networks, 26-30–26-36

cellular network, 14-2

LAN, 14-2

WAN, 14-2

resource allocation techniques, 26-36–26-37

routing

in terrestrial networks, 14-9–14-10

in wireless networks, 14-10–14-11

in wireless sensor networks, 14-11–14-12

technology

broadband networks, 14-5–14-6

wireless networks, 14-6–14-9

transmission control protocol=Internet protocol

(TCP=IP), 14-3–14-5
Communication architecture (CA), 7-1–7-2

Communication bandwidths, dynamic throttling, 3-13

Communication multichip module (MCM),

26-24–26-26

Communication, of information, 26-28–26-30

Communication system-on-a-chip, 26-21–26-23

need for, 26-19–26-21

System-on-a-Chip (SoC), 26-16–26-19

Compaq Alpha processor, 1-68

Complete system simulation, 4-28

Complex instruction set computers

(CISC), 1-34

Computer peripherals and office automation, DSP

applications, 9-11

Computer programs, branch prediction, see Branch

prediction, in computer programs

Computer telephony integration (CTI), DSP

applications, 9-9–9-10

Conditional move instructions (CMOVs), 2-42–2-43

Constrained code, 18-56, 18-59

Consumer products, DSP applications, 9-5

digital cameras, 9-6

digital pictures, 9-6

digital set-top box, 9-7

DVD player, 9-7

games, 9-8

high definition TV, 9-8

MP3 Player, 9-8–9-9

PDAs, 9-6–9-7

Content-addressable memory (CAM), 2-64

3-D Continuous Fourier transform, 12-5

Continuous time filter (CTF), 18-20–18-21

Control algorithms, 6-13–6-14

Control flow graph (CFG), partitioning into

threads, 1-40

Control systems, for embedded processor

control algorithms, 6-13–6-14

digital control equations, 6-11–6-12

period measurement, 6-12–6-13

pulse-width modulation, 6-12

Conventional design methods, for digital filters,

10-7–10-12

IIR filters from analog filters, 10-7–10-8

linear programming, 10-12

Remez exchange, 10-11

windowing, 10-8–10-9

CoreConnect bus, 7-2, 7-6–7-7, 7-15

CoreFrame bus, 7-10–7-11

Core processor, 2-20, 2-23, 2-29–2-30

Cores, in chips, 26-17–26-18

Cosyma system, 5-9

C-Port network processor, 5-6–5-7

CPU-intensive benchmarks

ASCI benchmark, 4-30–4-31

Java Grande Forum benchmarks, 4-30

NAS parallel benchmark, 4-30–4-31

SciMark benchmark, 4-30–4-31

SPEC CPU2000, 4-29–4-30

SPLASH benchmark, 4-30–4-31

CPUs, for server, 1-8–1-9, 1-12

Cray X1 vector computer, 1-32, 1-34

Cross talk=inter-track interference, 18-8

Cryptosystem basic model, 1-70

CSMA=CD protocol, 14-7

Cycles per instruction (CPI), 2-1–2-2

Cyclic codes, 18-99–18-100

Cydra-5, 2-8

D

Data acquisition systems (DAS), for embedded

processor, 6-10–6-11

Data-centric storage (DCS) method, 14-8

Data dependencies, 2-2–2-3, 2-33–2-34

Data detection

advanced algorithms

BCJR algorithm, 18-88–18-89

bidirectional stack algorithm, 18-87–18-88

generalized Viterbi algorithm, 18-85–18-86

M-Algorithm, 18-85

soft-output Viterbi algorithm (SOVA), 18-89

stack algorithm, 18-86–18-87

basics of decision feedback detection,

18-73–18-74

partial-response equalization, 18-66–18-73

RAM-based decision feedback detection,

18-74–18-75

in a trellis-based system, 18-75–18-85

Data-parallel architectures, 1-25–1-27

Data sector=data field, 18-8

Data security

asymmetric key cryptographic primitives

digital signature schemes, 27-6

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 3 10.10.2007 9:09pm Compositor Name: BMani

Index I-3

public key encryption schemes, 27-5–27-6,

27-6–27-9

resources for information, 27-9

symmetric key cryptographic primitives

message authentication codes (MAC), 27-4–27-5

symmetric key block ciphers, 27-2–27-4

symmetric key stream ciphers, 27-4

unkeyed cryptographic primitives, 27-1–27-2

Decision feedback equalizer, 18-73–18-74

RAM-based, 18-74–18-75

Decision support system (DSS), 4-32–4-33

DEC VAX architecture, 1-68

Defoe processor

architecture, 1-15

assembly language syntax, 1-17

branch prediction, 1-17

examples, 1-17–1-20

function units, 1-15

instruction dispersal and issue, 1-16–1-17

instruction encoding, 1-16

registers and predication, 1-16

scoreboard, 1-17

Demand assignment protocol, 14-8

DENIM, 26-66

Description errors, in disk subsystem performance, 4-2

Design methodologies, for embedded SoCs

design flows, 5-8–5-9

energy and power analysis and optimization,

5-10–5-11

platform-based design, 5-9–5-10

software performance analysis and

optimization, 5-10

specifications, 5-7–5-8

waterfall model of software development, 5-8

Design problem, for digital filters

design specification, 10-3–10-5

differentiator, 10-5

equalizers, 10-3–10-4

error measurement, 10-5, 10-7

filter bank, 10-4–10-5

filter characteristics, 10-5–10-6

frequency selective filter, 10-3

norm problem, 10-6–10-7

Device-control register bus (DCRB), 7-7

Dicode system, 18-68

Digital audio broadcasting (DAB) system, 11-41

Digital cameras, DSP applications, 9-6

Digital communications processor (DCP), 2-65

Digital control equations, 6-11–6-12

Digital filters, 10-2

adaptive and time-varying filters, 10-3

computer tools, 10-15

conventional design methods

IIR filters from analog filters, 10-7–10-8

linear programming, 10-12

Remez exchange, 10-11

weighted least-squares, 10-9–10-11

windowing, 10-8–10-9

design problem

design specification, 10-3–10-5

differentiator, 10-5

equalizers, 10-3–10-4

error measurement, 10-5, 10-7

filter bank, 10-4–10-5

filter characteristics, 10-5–10-6

frequency selective filter, 10-3

norm problem, 10-6–10-7

for DSP

digital filter architecture, 8-8–8-9

finite impulse response filters, 8-3–8-5

infinite impulse response filters, 8-5–8-7

multirate filter systems, 8-7–8-8

special filter cases, 8-8

FFT implementation, 10-3

frequency response, 10-2–10-3

implementation, 10-2

recent design methods

combined norm, 10-13

complex Remez algorithm, 10-12

constrained least-squares, 10-12–10-13

generalized Remez algorithm, 10-13–10-14

IRLS technique, 10-13

Digital ink, 26-61

documents and handwriting recognition,

26-64–26-65

with physical paper, 26-63–26-64

Digital ITR-based system, 18-33

Digital logic, 6-6–6-7

Digital pictures, DSP applications and, 9-6

Digital PLL (DPLL) timing recovery loop, 18-25, 18-40

Digital radio mondiale (DRM), 11-41

Digital servo field, 18-48–18-49

Digital set-top box, DSP applications and, 9-7

Digital signal processing (DSP), 8-1

application, 8-13

digital filters (see Digital filters)

digital signals and systems, 8-2–8-3

Fourier and spectral analysis, 8-9–8-10

system implementation, 8-10–8-12

technology, 8-12

Digital signal processor (DSP) applications

in automotive industry, 9-12

in biomedical, 9-12

in computer peripherals and office automation, 9-11

in consumer products, 9-5

digital cameras, 9-6

digital pictures, 9-6

digital set-top box, 9-7

DVD player, 9-7

games, 9-8

high definition TV (HDTV), 9-8

MP3 Player, 9-8–9-9

PDAs, 9-6–9-7

in home networking and multimedia, 9-9

importance of, 9-2

military applications, 9-3

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 4 10.10.2007 9:09pm Compositor Name: BMani

I-4 Digital Systems and Applications

telecom infrastructure

broadband line card, 9-10

cellular wireless base station, 9-10

CTI, 9-9–9-10

DSL modem banks, 9-10

gateway, 9-10

home gateways and personal systems, 9-10–9-11

modem banks, 9-10

residential gateway, 9-11

telecommunications terminals

cell phones, 9-4–9-5

fax, 9-4

PC as terminal (modem), 9-4

phones and answering machines, 9-3

videophone, 9-4

web access terminals, 9-4

wireless terminals, 9-5

Digital signal processors (DSPs), 5-3, 5-5–5-6, 11-18;

see also Digital signal processor (DSP)

applications; Low-power digital

signal processing

application domain, 26-72–26-76

architecture, 26-76–26-80

data paths, 26-80–26-81

memory and address calculation units, 26-81–26-82

pipeline of, 26-82–26-84

Digital signature schemes, 27-6

Digital storage devices, DSP applications, 9-7

Digital television peripheral devices,

DSP applications, 9-7

Digital-to-analog converter (DAC), 8-1

Digital video camera, DSP applications and, 9-6

Digital video processing

computation of motion

motion field, 12-18–12-19

optical flow, 12-19–12-24

fundamentals

3-D continuous Fourier transform, 12-5–12-6

3-D discrete system, 12-5

moving images, 12-6–12-8

three-dimensional sampling, 12-8–12-10

image sequences, 12-4

compression, 12-24–12-28

representation, 12-14–12-18

perception of visual motion

anatomy and physiology of motion perception,

12-10–12-11

effects of eye motion, 12-13

psychophysics ofmotion perception, 12-11–12-13

video signals, 12-2–12-3

Digital video recorder (DVR), DSP applications, 9-7

Direct dispatch, principle, 2-35

Discrete cosine transforms (DCT), 26-40–26-41

Discrete Fourier transform (DFT), 8-9–8-10

3-D Discrete system, 12-5

Discrete wavelet transformation (DWT) concept,

11-4, 11-21–11-24

Disk access optimization model, 4-12

Disk service time model, 4-12–4-13

Disk subsystem benchmark workload, 4-13–4-14

Disk subsystem performance

acceleration and deceleration model, 4-3

cached disk access time model, 4-10–4-11

disk access optimization model, 4-12

disk service time model, 4-12–4-13

disk subsystem benchmark workload, 4-13–4-14

description errors, 4-2

disk access time model, 4-3

fixed maximum velocity model, 4-4–4-6

LDMVA model, 4-17–4-18

measurement and modeling, 4-1–4-20

modeling errors, 4-2

MVA models and limitations, 4-14–4-17

numerical computation, 4-6–4-10

prediction errors, 4-2

predictive power of queuing models, 4-18–4-19

Dispatch-bound fetch policy, 2-36

Distributed memory server architecture, 1-7

Distributed-memory SIMD (DM-SIMD) processor,

structure, 1-25–1-27

Distributed operating system

Amoeba, 19-9–19-10

components of

file systems, 19-4–19-6

interprocess communication services, 19-6–19-7

migrate processes, 19-8

naming services, 19-7–19-8

recovery, reliability and fault tolerance

services, 19-8

security services, 19-8–19-9

definition and significance, 19-1–19-2

difficulties with, 19-2–19-4

information resources, 19-13

locus operating system, 19-9

Plan 9, 19-10

research in

botnets, 19-13

distributed systems for ubiquitous computing,

19-12–19-13

peer computing, 19-10–19-11

server farms and grid computing, 19-11–19-12

Distributed queue dual bus (DQDB), 26-35–26-36

Distributed shared memory (DSM) systems, 1-47

Distributed systems, for embedded processor,

6-14–6-15

Dolby AC-3 standard, 11-40

Dominant error sequences, 18-16

DSL modem banks, DSP applications and, 9–10

Dual frequency format, 18-53

Dual in-line memory module (DIMM), 1-9

DVD player, DSP applications and, 9-7

Dynamic allocation, of resources, 26-37

Dynamic delay bounded multicasting algorithm

(DDBMA), 14-10

Dynamic memory allocation, 16-23–16-24

Dynamic multithreading model, 1-38–1-39

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 5 10.10.2007 9:09pm Compositor Name: BMani

Index I-5

Dynamic random access memory (DRAM) modules,

1-8–1-9, 1-36

Dynamic thermal management (DTM) schemes, 3-13

Dynamic voltage and frequency scaling (DVFS), 3-7

E

E-book, DSP applications and, 9-9

E-commerce, 1-3–1-4

EDN Embedded Microprocessor Benchmark

Consortium (EEMBC), 4-31

ED2P metric, 3-6–3-7, 3-9

EEMBC benchmarks, 4-30–4-31

Elastic pipeline clockgating (ECG), 3-12

Electric tracking, 26-51

ELI-512 processor, 1-15

Elliptic curve cryptography (ECC), 1-80–1-84

algorithms for, 1-81–1-83

architectures supporting, 1-84

elliptic curves over finite fields, 1-80

finite field arithmetic for, 1-83

modular inversion, 1-83–1-84

modular multiplication and addition, 1-83

hierarchical structure, 1-81

key-lengths for, 1-72

mathematical background, 1-80

point operations in F2n, 1-82–1-83

Elliptic curve discrete logarithm problem (ECDLP), 1-80

Embedded and media benchmarks

BDTI benchmarks, 4-30–4-31

EEMBC benchmarks, 4-30–4-31

MediaBench benchmarks, 4-30–4-31

Embedded cores, 26-17

Embedded microcomputer, 6-3–6-5

Embedded processor

control systems

control algorithms, 6-13–6-14

digital control equations, 6-11–6-12

period measurement, 6-12–6-13

pulse-width modulation, 6-12

data acquisition systems, 6-10–6-11

distributed systems, 6-14–6-15

interfacing

current-activated output devices, 6-9

digital logic, 6-6–6-7

finite state machine controller, 6-8–6-9

keyboard interfacing, 6-7–6-8

real-time systems, 6-7

stepper motor, 6-9–6-10

microcomputer, 6-3–6-5

remote systems, 6-14–6-15

software systems

assembly language program, 6-5

high-level languages, 6-5

memory allocation, 6-6

software development, 6-5–6-6

systems, 6-2

Embedded servo system, 18-15, 18-46

Embedded SoCs

components

CPUs, 5-2–5-4

interconnects, 5-4

memory, 5-4–5-5

software components, 5-5

design methodologies

design flows, 5-8–5-9

energy and power analysis and optimization,

5-10–5-11

platform-based design, 5-9–5-10

software performance analysis

and optimization, 5-10

specifications, 5-7–5-8

waterfall model of software development, 5-8

requirements on, 5-2

system architectures, 5-5–5-7

Embedded vector processor (EVP), 2-76

End-to-end delay, 26-24

Energy aware routing (EAR) protocol, 14-11

Energy-delay product (EDP) metric, 3-6–3-7, 3-9

Enhanced dynamic RAMs (EDRAM), 26-22

Entropy of signal, 11-33

EPR4 (extended class-4 partial response) channel,

18-69–18-70

Equalization loss, 18-13

Erase band, in tracks, 18-48

Error concealment, of video image, 26-44

Error control coding (ECC) system, 18-17–18-18

Error correcting codes (ECC), 18-49

codes over bytes and finite fields, 18-98–18-99

cyclic codes, 18-99–18-100

definition and Lemma, 18-92

Hamming codes, 18-96–18-98

linear codes, 18-93–18-95

Reed Solomon codes, 18-101–18-103

applications, 18-108–18-111

decoding of, 18-103–18-106

decoding with Euclid’s algorithm, 18-106–18-108

Error event likelihoods, calculation, 18-84

Error event rate (EER), 18-36

Error events e(D) propositions, 18-61–18-62
Error propagation, 18-17

ES=9000, 2-20, 2-23, 2-2
Esterel language, 5-7

Ethernet standard interfaces, 1-11

EUREKA-147 Project, 11-41

European Network of Excellence for Cryptology

(ECRYPTAZT), 1-72

European UTRA standardization, 26-8

Event response mechanisms, 1-5

Execution driven simulation, 4-27

Explicitly parallel instruction computing (EPIC),

1-20, 2-2

Explicit trace prediction, 4-41

External bus interface unit (EBIU), 26-19

External hashing, for online dictionary search,

16-15–16-16

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 6 10.10.2007 9:09pm Compositor Name: BMani

I-6 Digital Systems and Applications

F

Fabor representation, in digital video processing, 12-15

Face recognizer, 2-66–2-67

False data dependencies, 2-10–2-11

Fat-tree network, 1-57

Fax, DSP applications and, 9-4

Feedback detector, 18-71–18-72

Feedforward equalization (FFE), 18-73

Fermat’s theorem, 1-72

Fiber distributed data interface (FDDI), 26-35

Field-programmable gatearray (FPGAs) devices,

8-11–8-12

File server, 1-4

benchmarks, 4-30, 4-35

Filter banks, 10-4–10-5, 11-27–11-28

Filter operations block, 20-8

Fine-grain threads, 1-37

Finite-impulse response (FIR) filter coefficients,

18-13–18-14

Finite impulse response (FIR) filters, 8-3–8-5, 8-8,

10-2–10-3, 10-7, 11-24–11-26, 18-21

Finite state machine (FSM) controller, 6-8–6-9

Floating point instruction, 1-55

Forward-mapped page table, 1-65

Fourier and spectral analysis, of DSP, 8-9–8-10

Fourier transform (FFT) algorithm, 10-3

of dibit response, 18-7

FPGA chip, 20-1–20-2, 20-3–20-4

Freescale 6808, 6-3

Frequency selective filter, 10-3

Fringing magnetic field, of electromagnet coils, 18-3

G

Games consoles, DSP applications and, 9-8

GE 645 architecture, 1-68

Generalized packet radio services (GPRS), 26-74

Generalized Viterbi algorithm, 18-85–18-86

Generator matrix, of code, 18-93

Gesture recognition, 26-65–26-66

Gibbs phenomenon, 10-9, 11-25

Gigabit Ethernet, 26-35

Giga-operations per second (GOPS), 26-9

Global branch history register (GBHR), 2-47–2-48

Gray code, 18-49–18-51

Grid computations, I=O communication

systems, 16-11

Groups of blocks (GOB), 26-40

Gshare approach, 2-48–2-49

3G systems, 26-8–26-9

4G systems, 2-75, 2-77

G-xx protocol, 26-21

H

HAL Sparc64v, 2-51

Hamming codes, 18-96–18-98

Hamming=volume bound, 18-95, 18-99

Handwriting recognition systems, 26-52–26-61

Hardware architecture

in RSA algorithm in PKC, 1-78

for server, 1-6–1-7

CPUs, 1-8–1-9, 1-12

peripheral hub, 1-10–1-11

peripherals, 1-11

system hub, 1-10

system interconnects, 1-10

system memory, 1-8–1-10

Hardware prediction strategies, 2-53–2-56

Hardware techniques, for branch prediction

bimodal prediction, 2-46–2-47

branch target address caches, 2-44

hybrid prediction, 2-49

issues in predictor organizations, 251

loop prediction, 2-49–2-50

neural prediction, 2-50

partitioning predictor hardware, 2-50–2-51

pipeline issues, 2-44–2-45

static techniques, 2-43

two-level prediction, 2-47–2-49

Harmonic vector excitation coder (HVXC), 11-3

Harvard architecture, of DSP processor, 26-77

HDL languages, 26-18

Head position sensing, in disk drives

burst field, 18-51–18-54

of digital field, 18-48–18-49

offtrack detection, 18-49–18-51

servo writer sensing, 18-48

Hierarchical page table, 1-65

High-definition multimedia interface (HDMI), 11-2

High definition TV (HDTV), DSP applications and, 9-8

High-level languages, 6-5

High-speed communication systems

emerging systems, 26-8–26-11

VLSI architecture for, 26-11–26-15

Home storage box, DSP applications in, 9-9

HP 8300 series, 2-8

Huffman coding method, 11-33–11-34, 26-42

H-3xx, 26-21

Hypercube network, 1-57

I

IA-64 processor, 2-2

IBM 360=91, 2-11, 2-36
IBM ACS-1 supercomputer design, 2-8

IBM AIX operating system, 1-37

IBM ES=9000 processor, 2-21

IBM RS=6000 processor, 2-11

IBM S=360 Model 91, 2-7–2-8

IETF-MIP protocol, 14-5

Image sequences, in digital video processing, 12-4

compression, 12-24–12-28

representation, 12-14–12-18

Imagine stream processor, 1-15, 2-71–2-72, 2-77

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 7 10.10.2007 9:09pm Compositor Name: BMani

Index I-7

IMT-2000 mobile telecommunications, 2-74

Infinite impulse response (IIR) filters, 8-5–8-8,

10-2–10-3, 11-26–11-27

from analog filters, 10-7–10-8

bilinear transformation, 10-8

impulse invariance, 10-8

Information density, 18-5

Information society, 11-1

Infrasonic oscillations, 11-2

Ink messaging, 26-61–26-62

InkML, 26-62–26-63

Instruction cache, 4-40, 4-42

Instruction count (IC), 2-1

Instruction level parallel (ILP) processors, 1-12–1-14,

1-22, 2-10, 2-36

Instruction level parallelism, 1-2, 1-12–1-14, 1-35,

2-41, 2-67

Instruction set architecture (ISA), 2-25

Instruction shelving, principle, 2-34–2-36

Integer adder, 1-56

Integer factoring problem, in RSA algorithm

in PKC, 1-72

Integrated framework, 26-18

Integrated memory controller system hub, 1-10

Intel 386 architecture, 1-68

Intel i860, 2-8

Intel i960CA superscalar microprocessor, 2-8

Intel itanium processor, 1-20–1-21, 1-24

Intel iWarp, 1-56

Intel Pentium processor, 1-13

Intel 8086 processor, 2-29

Interfacing embedded processor

current-activated output devices, 6-9

digital logic, 6-6–6-7

finite state machine controller, 6-8–6-9

keyboard interfacing, 6-7–6-8

real-time systems, 6-7

stepper motor, 6-9–6-10

INTER frame coding, 26-40

Inter-instruction dependencies, 2-31–2-32

Interlaced display systems, 12-3

International Technology Roadmap for Semiconductors

(ITRS), 3-1–3-2

Internet exchange architecture (IXA), 2-64

Internet protocols (IP), 26-20

Internet radio, DSP applications in, 9-9

Internet service providers (ISP), 26-19

Internet transmissions, 11-41

Inter-PE data dependence speculation

address resolution buffer, 1-47

multi-version cacher, 1-48

speculative versioning cacher, 1-48

Inter-PE memory communication and synchronization

inter-PE data dependence speculation, 1-47–1-48

memory system implementation, 1-46–1-47

Inter-PE register communication and synchronization

PE interconnect for register values, 1-46

register file implementation

RF partitioning, 1-45

RF replication, 1-45–1-46

Intersymbol interference (ISI) channel, 18-49

Inter-thread synchronization, 1-39–1-40

INTRA coded frame, 26-48

Inverse discrete cosine transform (IMDCT), 11-20

Inverse-mapped page table, 1-65

Inverted page table, 1-65

I=O communication systems

disk striping for multiple disks, 16-5–16-6

dynamic memory allocation, 16-23–16-24

external hashing for online dictionary search,

16-15–16-16

external sorting and related problems

bundle sorting, 16-9

by distribution, 16-6–16-7

fast Fourier transform and permutation

networks, 16-10–16-11

general simulation, 16-9

lower bounds, 16-11

by merging, 16-7–16-9

permuting and transposition, 16-9–16-10

fundamental operations, 16-5

matrix and grid computations, 16-11

multiway tree data structures, 16-16–16-18

parallel

limitations of simple prefetching and catching

strategies, 17-6–17-7

mechanisms for performance

improvement, 17-5

optimal parallel-disk caching, 17-9–17-10

optimal parallel-disk prefetching, 17-7–17-9

organizations, 17-2–17-3

out-of-core computations, 17-10–17-11

performance model for, 17-3–17-4

randomized data placement, 17-10

problems with batches

geometric data, 16-11–16-13

on graph, 16-13–16-15

receivers

DC offsets, 15-11–15-12

designs, 15-10–15-11

equalization, 15-13

noise, 15-12–15-13

spatial data structures and range search

dynamic and kinetic data structures,

16-21–16-22

linear-space spatial structures, 16-19

other methods, 16-20–16-21

R-trees, 16-19–16-20

specialized structures for 2-D orthogonal range

search, 16-20

string and text algorithms, 16-22–16-23

timing generation and recovery

architectures, 15-14–15-15

minimizing jitter, 15-15

phase detection and static phase offsets,

15-15–15-16

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 8 10.10.2007 9:09pm Compositor Name: BMani

I-8 Digital Systems and Applications

TPIE external memory programming

environment, 16-23

transmission lines

frequency response and ISI, 15-3

reflections, termination and crosstalk, 15-2–15-3

signaling methods, 15-3–15-4

transmitters

impedance, current and slew-rate control,

15-7–15-8

large-swing output drivers, 15-5–15-6

pre-emphasis, 15-8–15-9

small-swing output drivers, 15-6–15-7

Itanium Processor Family (IPF), 2-2

ITU-T H-263 standard, 26-40

J

Jaba simulator, 4-29

Java benchmarks

CaffeineMark, 4-30, 4-32

Java Grande Forum benchmarks, 4-30, 4-32

SciMark, 4-30, 4-32

SPECjbb2000, 4-30, 4-32

SPECjvm98, 4-30–4-32

VolanoMark, 4-30, 4-32

Java Grande Forum benchmarks, 4-30, 4-32

K

Kendall Square machine, 1-54

Keyboard interfacing, 6-7–6-8

L

Lam88, 1-56

Latency, 26-23

of accessing data, 16-2

Leakage effects, 3-4

Least-mean square (LMS) algorithm, 18-13, 18-20

Leiserson92, 1-57

Leonado Spectrum, 20-2

Light-weight process, 1-37

Linear codes, 18-93–18-95

Linear prediction coding (LPC) scheme, 11-3

Link-layer network processors, 2-60

Listening musical platforms, DSP applications

in, 9-8–9-9

Load-dependent mean value analysis (LDMVA)

model, 4-17–4-19

Load-independent mean value analysis program

(LIMVA) model, 4-15–4-16

Local area computer networks, 26-34–26-36

Local area network (LAN), 14-2

Local data cache (LDC), 1-48

Logic analyzers, 4-25, 6-6

Loop prediction, 2-49–2-50

Lorentzian model, of PR4 saturation recording

channel, 18-6

Lorenzian pulse, 18-3

Low density parity check codes (LDPC), 26-75

Low-power digital signal processing

in application-specific DSPs

approximate processing, 13-13–13-15

data distribution properties, 13-11–13-13

nonstandard arithmetic structures,

13-10–13-11

optimum energy and subthreshold circuits,

13-7–13-10

variable supply voltage schemes, 13-6–13-7

power dissipation basics, 13-2–13-3

in programmable DSPs

architectural power optimizations, 13-4–13-5

circuit power optimizations, 13-5

standby modes, 13-5

voltage scaling, 13-3–13-4

LSRIP protocol, 14-4

Lucent, 20-2

M

Macroblock (MB) structure, of image, 26-39

Magnetic recording read channel

increasing recording density, 18-8–18-9

logical organization of data on disk, 18-8

operations in, 18-2

physical limits on recording density, 18-9–18-10

physical organization of data on disk, 18-7–18-8

PRML detection, 18-5

reading scenario

modern hard drives, 18-3

simple, 18-3

review of magnetic recording principles,

18-2–18-7

single parameter model, 18-3–18-4

Magnetic tracking, 26-51

Mail server benchmarks, SPECmail2001, 4-30, 4-35

M-Algorithm, 18-85

Manchester asynchronous bus for low energy

(MARBLE), 7-11

Matched-filter bound (MFB), 18-58

Matched-spectral-null (MSN) constraints, 18-55

MATLAB environment, 11-25, 11-29

Matrix computations, I=O communication

systems, 16-11

Maximum likelihood (Viterbi) sequence

detection, 18-55

Maximum transition run (MTR) constraint, 18-56

Maximun chip projection, 3-2

MDCT, defined, 11-20

Mean opinion score (MOS), 11-2

Media access control (MAC), 14-6–14-7

MediaBench benchmarks, 4-30–4-31

Media gateway control protocol (MGCP), 26-21

Medium access control (MAC) protocols, 26-35

Memory allocation, 6-6

Memory loader, 1-56

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 9 10.10.2007 9:09pm Compositor Name: BMani

Index I-9

Memory system design, 1-33–1-34

Memory system implementation, 1-46

memory partitioning, 1-47

memory replication, 1-47

Mesh network, 1-57

Message authentication codes (MAC), 27-4–27-5

Message passing model, 1-39

Message passing systems, 1-54

Meta-methodology, 26-19

Metropolitan area computer networks, 26-34–26-36

MFLOPS, 1-25

Microarchitectural predictive techniques, 3–7, 3-12

Microchip PIC10F200, 6-3

Microcoded instrumentation, for performance

measurement, 4-25

Microprocessor multimedia extensions, 1-32–1-33

Microprogrammed CPU, 1-15

Microsoft Windows NT operating system, 1-37

Military applications, of DSP, 9-3

Million instructions per second (MIPs), 26-23

MIMOMC-CDMA (multicarrier code division multiple

access) system, 2-75

MIMO–OFDM (orthogonal frequency division

multiplexing) system, 2-75, 2-77

Minimum mean square error (MMSE) criterion, in

timing recovery schemes, 18-34–18-38

MIPS processors, 5-3

MIPS R18000 processor, 1-13

MIPS R13000 series, 2-8

Mispredictions sources, 2-51

destructive PHT and BHT conflicts, 2-52

history length, 2-52–2-53

training time, 2-52

update timing, 2-53

wrong type history, 2-52

MIT Lincoln Labs TX-2 computer, 1-31

MIT RAWmachine, 2-69

Mobile and wireless computing

bluetooth

application protocol group, 26-5

concept, 26-2

development kits, 26-5–26-6

hardware implementation issues, 26-6–26-7

interoperability, 26-6

master and slave roles, 26-3–26-4

middleware protocol group, 26-5

as secure data link, 26-3

SIG working groups, 26-4

transceiver operations, 26-5

transport protocol group, 26-4–26-5

vs. infrared technology, 26-2–26-3

communication and computer networks

background, 26-27–26-28

challenges and issues, 26-37

of information, 26-28–26-30

networks, 26-30–26-36

resource allocation techniques, 26-36–26-37

communication multichip module (MCM),

26-24–26-26

communication system-on-a-chip, 26-21–26-23

need for, 26-19–26-21

System-on-a-Chip (SoC), 26-16–26-19

pen-based user interface

digital ink and Internet, 26-61–26-63

extension of pen-and-paper paradigm,

26-63–26-67

handwriting recognition, 26-52–26-61

multimodal systems, 26-67–26-69

pen input hardware, 26-51–26-52

signal processing ASIC requirements for high-speed

communications

emerging systems, 26-8–26-11

VLSI architecture for, 26-11–26-15

system latency, 26-23–26-24

video over mobile networks

block-based transform video coding,

26-40–26-43

digital representation of raw video data, 26-40

error resilience for mobile video, 26-44–26-47

evolution of standard image=video compression

algorithms, 26-39–26-40

new generation mobile networks, 26-47–26-48

provision of video services, 26-48–26-49

quality evaluation, 26-43–26-44

Model 91 FPU, 2-8

Modem, DSP applications in, 9-4, 9-10

Modified discrete cosine transformation

(MDCT), 11-4

Modified E2PR4 (ME2PR4) channel, 18-6

Modified non-return-to-zero (NRZI)

modulation, 18-57

Modulation codes, for storage systems

channels with colored noise and intertrack

interference, 18-60–18-61

constrained for ISI channels, 18-58–18-60

constrained systems and codes, 18-56–18-57

example, 18-61–18-62

reversed concatenation scheme, 18-63–18-64

soft-output decoding of, 18-62–18-63

Modulation coding, of read channel, 18-17

Modules and toy camera, DSP applications to, 9-6

Montgomery’s arithmetic, 1-74–1-76

Montgomery’s modular multiplication

(MMM), 1-75–1-77

Motion perception

anatomy and physiology of motion

perception, 12-10–12-11

effects of eye motion, 12-13

psychophysics of motion perception, 12-11–12-13

Motion vector (MV), 26-42

MPEG audio coding standard, 11-5

MPEG-1 encoder, 11-28

MPEG4 player, DSP applications in, 9-9

MPEG standard, 11-36–11-40

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 10 10.10.2007 9:09pm Compositor Name: BMani

I-10 Digital Systems and Applications

MP3 juke box, DSP applications in, 9-9

MP3 player, DSP applications in, 9-8–9-9

Mueller and Muller (MM) technique, of timing

recovery schemes, 18-34

Mueller and Muller (MM) timing loop, 18-38–18-39

Multicluster superscalar processors, 3-2, 3-17–3-18

Multiflow TRACE computers, 2-8

Multimedia coding standards, 11-1–11-2

Multimedia communications, 14-12–14-13

Multimedia storage box, DSP applications, 9-9

MultiOp, 1-13–1-14, 1-16–1-18, 1-20

Multiple input multiple output (MIMO) antenna

system, 2-74–2-75

Multiple instruction multiple data (MIMD) processors,

1-52–1-54

Multiprocessing, see Multithreading and

multiprocessing

Multiprogramming technique, 1-56

Multirate filter systems, digital filters for DSP, 8-7–8-8

Multithreaded processors, 3-2

Multithreading and multiprocessing

complexity in, 1-49

future of, 1-48–1-49

importance of, 1-35–1-36

parallel processing hardware framework

inter-PE memory communication and

synchronization, 1-46–1-48

inter-PE register communication and

synchronization, 1-45–1-46

number of PEs and PE organization,

1-43–1-45

parallel processing software framework, 1-36

coherence and consistency, 1-40

parallel programming model, 1-37–1-40

partitioning program into threads, 1-40–1-43

processor consistency model, 1-40

release consistency model, 1-40

sequential consistency model, 1-40

weak consistency model, 1-40

Multi-version cache (MVC), 1-48

Multiway tree data structures, 16-16–16-18

Musical instrument digital interface (MIDI), 11-3

Musical instruments, DSP applications and, 9-9

MUSICAM standard, 11-36–11-40

MVA models, of disk subsystem, 4-14–4-17, 4-20

MX ISAs, 1-29, 1-31–1-33

N

Nap=doze=sleep control instructions, 3-7

NAS parallel benchmark, 4-30–4-31

National Semiconductor Swordfish, 2-8

NEC SX-5 supercomputer, 1-31–1-32

Negative predictive value (NPV) system, 6-10

Network-attached storage (NAS), 1-11

Network Interface Protocols, 26-22

Network-layer processors, 2-60

Network management, 26-22

Network packet processing, architectural

support, 2-62–2-64

Network processors

architecture, 2-60–2-65

classification, 2-60

design issues, 2-61–2-62

examples, 2-64–2-65

network packet processing, 2-62–2-64

research directions, 2-65

tasks performs by, 2-61

Newton Print Recognizer, 26-57

Noise jitter analysis, of timing loop, 18-40–18-42

Noiseless input-output relationship, 18-4

Noise-Predictive Maximum Likelihood

Detectors, 18-82

Nonlinear bit shift, in magnetic recording, 18-12

Non-return-to-zero (NRZ) modulation, 18-57

Nonuniform memory access (NUMA), 1-54

NTSC television, 12-3

Nx586 processor, 2-11, 2-18, 2-20, 2-30

Nyquist frequency, 11-15

O

Off-chip hardware measurement, 4-25

Offtrack detection, 18-49–18-51

OMAPV2230, 2-76

OMAP59xx processor, 11-19

On-chip buses, advantages and disadvantages, 7-4

On-chip CAs, see On-Chip communication

architectures

On-Chip communication architectures, 7-2; see also

System-on-chip (SoC) buses

advantages and disadvantages, 7-4

atomic chains of transactions, 7-3

code division multiple access, 7-3

data format, 7-4

destination name and routing, 7-4

hierarchical bus architecture, 7-2

interconnect Issues, 7-3–7-4

latency, 7-4

lottery access, 7-3

media arbitration, 7-3

programming model, 7-3

protocols, 7-3

ring bus architecture, 7-3

shared bus architecture, 7-2

split vs. nonsplit buses, 7-3

static-priority access, 7-3

time division multiple access, 7-3

token passing access, 7-3

topologies, 7-2–7-3

transaction ordering, 7-3

On-chip peripheral bus (OPB), 7-7

Online dictionary search and hashing, 16-15–16-16

Online transaction processing (OLTP) system,

4-32–4-33

Open core protocol (OCP), 7-13

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 11 10.10.2007 9:09pm Compositor Name: BMani

Index I-11

Open System Interconnection (OSI)

reference model, 26-32

Operand fetch policies, 2-36

Operating systems, for server, 1-11

Optical tracking technology, 26-51

Optimal pipeline depth, 3-7–3-9

OSI reference model, 14-1–14-2

Out-of-order execution technique, 1-35, 2-5

Output dependency, 2-3

P

Packet-switched mobile access networks, 26-47

Page frame numbers (PFNs), 1-63–1-64

Page table entries (PTEs), 1-63, 1-65–1-67

PA8000 processor, 2-20–2-21, 2-23, 2-30

PA8200 processor, 2-20, 2-23, 2-30

PA8500 processor, 2-20, 2-23, 2-30

Parallel disk models, 16-2–16-4

Parallel execution units, 1-30–1-31

Parallel I=O system

limitations of simple prefetching and catching

strategies, 17-6–17-7

mechanisms for performance improvement, 17-5

optimal parallel-disk caching, 17-9–17-10

optimal parallel-disk prefetching, 17-7–17-9

organizations, 17-2–17-3

out-of-core computations, 17-10–17-11

performance model for, 17-3–17-4

randomized data placement, 17-10

Parallel processing, see Multithreading and

multiprocessing

Parallel processing hardware framework

number of PEs, 1-43–1-45

block interleaving, 1-43

cycle-level interleaving, 1-43

processor context interleaving, 1-43

PE organization, 1-44–1-45

Parallel programming model

inter-thread communication, 1-39–1-40

inter-thread synchronization, 1-39–1-40

thread granularity and management, 1-37

thread sequencing model, 1-38–1-40

Parallel systems

classification for, 1-52

dataflow machines, 1-52, 1-55

interconnection network, 1-57–1-58

MIMD processors, 1-52, 1-54

multithreading, 1-52, 1-56

out of order execution concept, 1-52, 1-55–1-56

portability, 1-52

scalability, 1-52

SIMD processors, 1-21, 1-25–1-26, 1-52–1-54

vector machines, 1-54–1-55

VLIW, 1-56

Parallel threads model, parallelism profile, 1-38–1-39

Parametric modeling, of audio signals, 11-3–11-5

Parity check matrix, of code, 18-94–18-95

Parks–McClellan algorithm, 10-11

Partial-response equalization, 18-66–18-73

Partial-response polynomial notation, 18-5

Partial-response signaling with maximum likelihood

(PRML) sequence estimation, 18-13

Partial response target, see Partial response polynomial

Partitioning predictor hardware, 2-50–2-51

Partitioning program into threads, 1-40

by compiler, 1-41

compiling for multithreading, 1-41–1-42

hardware-based partitioning, 1-41

object code compatibility, 1-42–1-43

by programmer, 1-41

PA7100 superscalar model, 2-11

Pattern history table (PHT), 2-46–2-48, 2-52

PA8x00 line processor, 2-21

PayloadPlus architecture, 2-65

PC benchmarks, 4-30, 4-35–4-36

PC camera, DSP applications and, 9-6

PDAs, DSP applications in, 9-6–9-7

Peak detectors, 18-5, 18-66

Peak-to-peak signal-to-noise ratio (PSNR), 26-43–26-44

Pen-based user interface

digital ink and Internet, 26-61–26-63

extension of pen-and-paper paradigm, 26-63–26-67

handwriting recognition, 26-52–26-61

multimodal systems, 26-67–26-69

pen input hardware, 26-51–26-52

Pentium III processor, 2-9, 2-20–2-21, 2-23, 2-29–2-30

Pentium II processor, 2-9, 2-20–2-21, 2-23, 2-29–2-30

Pentium-M processor, 2-9, 2-21, 2-29–2-30

Pentium 4 processor, 2-9, 2-20–2-21, 2-23,

2-29–2-30, 2-51

Pentium Pro processor, 1-55, 1-69, 2-9, 2-20–2-21, 2-23,

2-29–2-30, 2-41

Pentium superscalar model, 2-11

Performance

of disk subsystem, 4-1–4-20

evaluation techniques

measurement, 4-21–4-25

modeling, 4-21–4-22, 4-26–4-36

fundamentals, 3-2–3-3

and power (see Power)

Performance measurement, 4-21–4-25

microcoded instrumentation, 4-25

off-chip hardware measurement, 4-25

on-chip performance monitoring counters,

4-23–4-25

software monitoring, 4-25

Performance modeling, 4-21–4-22

analytical, 4-29

CPU-intensive benchmarks

ASCI benchmark, 4-30–4-31

Java Grande Forum benchmarks, 4-30

NAS parallel benchmark, 4-30–4-31

SciMark benchmark, 4-30–4-31

SPEC CPU2000, 4-29–4-30

SPLASH benchmark, 4-30–4-31

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 12 10.10.2007 9:09pm Compositor Name: BMani

I-12 Digital Systems and Applications

E-commerce benchmarks, 4-30, 4-35

embedded and media benchmarks

BDTI benchmarks, 4-30–4-31

EEMBC benchmarks, 4-30–4-31

MediaBench benchmarks, 4-30–4-31

file server benchmarks, 4-30, 4-35

Java benchmarks

CaffeineMark, 4-30, 4-32

Java Grande Forum benchmarks, 4-30, 4-32

SciMark, 4-30, 4-32

SPECjbb2000, 4-30, 4-32

SPECjvm98, 4-30–4-32

VolanoMark, 4-30, 4-32

mail server benchmarks, SPECmail2001, 4-30, 4-35

PC benchmarks, 4-30, 4-35–4-36

simulation

complete system simulation, 4-28

execution driven simulation, 4-27

program profilers, 4-28–4-29

stochastic discrete event driven simulation, 4-28

trace driven simulation, 4-26–4-27

transaction processing benchmarks, 4-30, 4-32–4-33

TPC-C, 4-30, 4-33

TPC-H, 4-30, 4-33

TPC-R, 4-30, 4-33

TPC-W, 4-30, 4-33

Web server benchmarks

SPECweb99, 4-30, 4-33, 4-35

TPC-W, 4-30, 4-33, 4-35

VolanoMark, 4-30, 4-32, 4-35

workloads and benchmarks, 4-29–4-36

Peripheral hub, for server, 1-10–1-11

Peripheral virtual component interface (PVCI),

7-13–7-14

Personal digital assistants (PDAs), 1-2, 1-4

Phase-locked loop (PLL), 18-8, 18-15

Phones and answering machines, DSP applications, 9-3

Physical-layer network processors, 2-60

Pipeline behavior with branch prediction, 2-38–2-39

Pixel modification operations, 20-8

Platform-based design, 5-9–5-10

Playdoh processor, 1-15

PM1 Pro processor, 2-20, 2-23, 2-28, 2-30, 2-32

Positive predictive value (PPV) system, 6-10

Power

aware microarchitectures, 3-6–3-20

efficiency at processor core level, 3-6

adaptive microarchitectures, 3-13

clock-gating, 3-10–3-12

dynamic thermal management, 3-13

dynamic throttling of communication

bandwidths, 3-13

optimal pipeline depth, 3-7–3-9

power reduction potential and

microarchitectural support, 3-10–3-12

predictive power-gating, 3-12

speculation control, 3-13

variable bit-width operands, 3-12

vector=SIMD processing support, 3-9–3-10

efficient microarchitecture paradigms

chip multiprocessing, 3-19

multicluster superscalar processors, 3-17–3-18

simultaneous multithreading, 3-18–3-19

single-core superscalar processor paradigm,

3-14–3-17

fundamentals, 3-3–3-5

maximun chip projection, 3-2

performance efficiency metrics, 3-5–3-6

reduction potential, microarchitectural support,

3-10–3-12

Power-delay product (PDP) metric, 3-6–3-9

PowerPC 750, 2-8–2-9

PowerPC 970, 2-10

PowerPC architecture, 1-68

PowerPC processor, 7-2

PowerPC 601 processor, 2-11, 2-18

PowerPC 603 processor, 2-11, 2-20–2-21,

2-23–2-24, 2-30

PowerPC 604 processor, 2-20, 2-23, 2-30

PowerPC 620 processor, 2-20–2-21, 2-23, 2-30

PowerPC 40X chip series, 26-19

POWER1 processor, 2-11, 2-18, 2-20, 2-30

POWER2 processor, 2-11, 2-18, 2-20–2-21, 2-30

POWER3 processor, 2-20, 2-23, 2-29–2-30

POWER4 processor, 2-9–2-10, 2-20, 2-23,

2-29–2-30, 3-18–3-19

POWER5 processor, 2-10, 2-20, 2-23, 2-29–2-30, 3-19

Precompensation circuit, in read channel, 18-12–18-13

Prediction by partial matching (PPM) compression

scheme, 2-49

Pre-renaming process, 4-43

PRML (G, I) constraint, 18-55

PR4 model reponses, 18-5–18-6

Processing elements (PEs), 1-36

Processor core level

power-efficiency at, 3-6

adaptive microarchitectures, 3-13

clock-gating, 3-10–3-12

dynamic thermal management, 3-13

dynamic throttling of communication

bandwidths, 3-13

optimal pipeline depth, 3-7–3-9

power reduction potential and

microarchitectural support, 3-10–3-12

predictive power-gating, 3-12

speculation control, 3-13

variable bit-width operands, 3-12

vector=SIMD processing support, 3-9–3-10

Processor local bus (PLB), 7-7

Profiling and compiler annotation, 2-42

Programable cut-off frequency, 18-12

Programmable digital signal processors (PDSPs), 11-17

Programmable network processor, 2-60

Program profilers, 4-28–4-29

Proportional integral derivative (PID) controller,

6-13–6-14

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 13 10.10.2007 9:10pm Compositor Name: BMani

Index I-13

Proxy server, 1-4

PR4 system, 18-68

Public-key cryptography (PKC)

algorithm, 1-71

applications from high-end to extremely constrained

devices, 1-71

architectures, 1-70–1-84

elliptic curve cryptography

algorithms for, 1-81–1-83

architectures supporting, 1-84

elliptic curves over finite fields, 1-80

finite field arithmetic for, 1-83

mathematical background, 1-80

history, 1-70–1-71

RFIDs, 1-71

RSA algorithm

architectures supporting, 1-84

Chinese remainder theorem, 1-72–1-73

hardware architectures for, 1-78

integer factoring problem, 1-72

RSA operations, 1-73–1-78

RSA problem, 1-72

systolic array architectures, 1-78–1-80

sensor nodes, 1-71

Public key encryption schemes, 27-5–27-6, 27-6–27-9

Public switched telephone networks (PSTN), 26-19

Pulse code modulation (PCM), 11-16, 11-31–11-33

Pulse-width modulation, 6-12

PUMA, 1-15

Q

QCIF-resolution conversational MPEG-4 video

services, 26-48

Q function, 18-37

Quadrature Common Intermediate Format (QCIF)

resolution, 26-40

Quad tree network, 1-57

Qualitative loop filter, 18-39–18-40

Quantization noise, 11-15–11-16

Quasi-catastrophic trellis, 18-7

Queuing models, predictive power of, 4-18–4-19

R

Radial incoherence, in tracks, 18-48

Range search, in I=O communication system, see spatial

data structures and range search

RASM features, of server, 1-4–1-5

Raster scan coding, 26-42

Rate-monotonic scheduling (RMS), 5-5

RAW stream processor, 2-72–2-73, 2-77

Reactive routing protocols (RRP), 14-11

Read access memory (RAM), 6-1–6-3, 6-6, 8-12

Read-after-write (RAW) dependencies, 2-2, 2-31–2-34

Readback waveform, responses, 18-4

Read channel architecture

adaptive equalization, 18-13–18-14

analog front end, 18-11–18-12

effect of thermal asperites, 18-18

error control coding, 18-17–18-18

error performance measures, 18-18

modulation coding, 18-17

partial-response signaling with maximum likelihood

(PRML) sequence estimation, 18-13

postprocessor, 18-16–18-17

precompensation, 18-12–18-13

servo detection, 18-15–18-16

timing recovery, 18-15

Viterbi detection, 18-14

Read only memory (ROM), 6-1–6-3, 6-6, 8-12

Real time conferencing protocol (RTCP), 26-21

Real-time object-oriented Methodology (ROOM), 5-7

Real-time operating system (RTOS), 5-5–5-6

Receivers, of I=O system

DC offsets, 15-11–15-12

designs, 15-10–15-11

equalization, 15-13

noise, 15-12–15-13

Recent design methods, for digital filters

combined norm, 10-13

complex Remez algorithm, 10-12

constrained least-squares, 10-12–10-13

generalized Remez algorithm, 10-13–10-14

IRLS technique, 10-13

Recognition-aware applications, 26-59–26-61

Recording process

ideal conditions for, 18-4

resolution, 18-4

Reduced instruction set computer (RISC) techniques,

1-2, 1-13, 1-19, 1-30, 1-56

Redundant array of independent disks (RAID)

technology, 1-5, 1-11

Reed-Solomon (RS) codes, 18-17, 18-101–18-103

applications, 18-108–18-111

decoding of, 18-103–18-106

Euclid’s algorithm, decoding with, 18-106–18-108

Register file (RF)

partitioning, 1-45

replication, 1-45–1-46

Register mapping layout, 2-13

allocation scheme of rename buffers, 2-25

deallocation scheme of rename buffers, 2-28

rename rate, 2-28–2-29

track of, 2-25–2-28

Register renaming techniques, 2-10

alternatives and possible implementation schemes,

2-29–2-33

design space, 2-17–2-18

implementation rename process, 2-29–2-33

destination and source registers, 2-31–2-32

reclaiming rename buffers, 2-31

recovery of rename process from wrongly

executed speculation and handling of

exceptions, 2-32–2-33

renaming destination registers, 2-31

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 14 10.10.2007 9:10pm Compositor Name: BMani

I-14 Digital Systems and Applications

updating architectural registers, 2-31

process, 2-11–2-12

assuming dispatch-bound operand fetching,

2v13–2-15

assuming issue-bound operand fetching,

2-16–2-18

fetching source operands, 2-13–2-14

during instruction dispatch, 2-13–2-14, 2-16

during issuing, 2-14, 2-16

renaming destination registers of dispatched

instructions, 2-13

renaming source registers, 2-13

register mapping layout (see Register mapping

layout)

rename buffers

layout, 2-19–2-25

number of, 2-22–2-24

read and write ports number, 2-24–2-25

types, 2-19–2-22

scope of, 2-17–2-18

Remez algorithm, 10-11–10-14, 11-25

Remote systems embedded processor, 6-14–6-15

Rename buffers

layout, 2-19–2-25

number of, 2-22–2-24

read and write ports number, 2-24–2-25

types, 2-19–2-22

Rename process implementation; see also Register

renaming techniques

destination and source registers, 2-31–2-32

reclaiming rename buffers, 2-31

recovery of rename process from wrongly

executed speculation and handling of

exceptions, 2-32–2-33

renaming destination registers, 2-31

updating architectural registers, 2-31

Rename register files (RRF), 2-13–2-16, 2-19–2-21

Reorder buffer (ROB), 2-19, 2-21, 2-36

Repeatable runout (RRO), 18-16

Residential gateway, DSP applications in, 9-11

Resilient data-centric storage (R-DCS) method, 14-8

Resource reservation and renegotiation (RRN)

scheme, 14-14

Resource sharing (RS)-based scheme, 14-14

Restricted data flow, 2-6

Retry rate per bit, 18-18

Reversed concatenation scheme, 18-63–18-64

RFID technology, 1-71

RISC processors, 2-12, 2-20, 2-23–2-25, 2-62–2-63,

2-65, 5-3, 5-10

RLL coding, 18-68

Round-robin access, 7-2

RSA algorithm, in PKC

architectures supporting, 1-84

Chinese remainder theorem, 1-72–1-73

hardware architectures for, 1-78

hierarchy of, 1-73

integer factoring problem, 1-72

key-lengths for, 1-72

operations

modular addition and subtraction, 1-76–1-78

modular exponentiation, 1-73–1-74

Montgomery’s arithmetic, 1-74–1-76

problem, 1-72

systolic array architectures, 1-78–1-80

R8000 superscalar model, 2-11

R10000 superscalar model, 2-20, 2-23, 2-28, 2-30, 2-32

R12000 superscalar model, 2-20, 2-23–2-24, 2-30

R-trees, 16-19–16-20

Run-length coding, 26-42

Runlength limited (RLL(d,k)) constraints, 18-55

S

Sampling rate conversion, in frequency domain,

11-29–11-31

Sampling theory, in signal processing, 11-15

SB3010 baseband processor, 2-76–2-77

Scheduling algorithm, for VLIW processor

superblock scheduling, 1-23–1-24

trace scheduling, 1-21–1-23

SciMark benchmarks, 4-30–4-32

SDL language, 5-7

Security server, 1-4

Self-servo writing, 18-48

Semiconductor Industry Association (SIA), 1-36

Sensor networks, 14-15–14-16

Sensor nodes, 1-71

Sequential threads model, 1-38

Serial port unit (SPU), 26-19

Server architecture

hardware, 1-6

CPUs, 1-8–1-9, 1-12

peripheral hub, 1-10–1-11

peripherals, 1-11

system hub, 1-10

system interconnects, 1-10

system memory, 1-8–1-10

software architecture, 1-11

Server array, 1-4

Server computer architecture

applications usage models, 1-12

centralized shared memory architecture, 1-7

client–server computing, 1-3–1-4

distributed memory architecture, 1-7

future directions, 1-12

hardware architecture, 1-6–1-7

CPUs, 1-8–1-9, 1-12

peripheral hub, 1-10–1-11

peripherals, 1-11

system hub, 1-10

system interconnects, 1-10

system memory, 1-8–1-10

IT infrastructure elements, 1-4

server architecture, 1-6–1-12

hardware architecture, 1-6–1-11

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 15 10.10.2007 9:10pm Compositor Name: BMani

Index I-15

software architecture, 1-11

server deployment considerations, 1-4–1-6

operation, 1-6

server features, 1-4–1-6

server form, 1-4

server requirements, 1-4

server types, 1-4

software architecture, 1-11

Server farm, 1-4

Server features

availability, 1-5

manageability, 1-5–1-6

RASM features, 1-4–1-5

reliability, 1-4–1-5

scalability, 1-6

security, 1-6

serviceability, 1-5

Server operation, 1-6

Servo burst fields

formatting strategies, 18-52–18-53

impairments, 18-51–18-52

position estimators, 18-53–18-54

Servo writing, 18-48

SGI MIPS processor, 1-68

Shade simulator, 4-28

Shannon capacity, 18-56

Shared memory model, 1-39

Shared-memory vector architectures, 1-26; see also

Vector architectures

Shared register model, 1-39

Shelving buffers, for renaming, 2-19, 2-21

Signal gain (KPD), of phase detector, 18-37

Signal processing ASIC requirements, for high-speed

communications

emerging systems, 26-8–26-11

VLSI architecture for, 26-11–26-15

Signal processing, in human auditory system

cases of masking, 11-9–11-14

cochlear response interpretation, 11-5–11-6

coding of sound, 11-9

passbands of peripheral auditory filters

estimation, 11-5–11-6

phases, 11-5–11-14

and sound source direction, 11-9

threshold of audibility, 11-6–11-9

SiliconBackplane bus architectures, 7-2

SiliconBackplane m network, 7-14–7-15

SIMD ISA (instruction set architecture) extensions, 1-27

SIMD processing support, for power-efficiency at

processor core level, 3-9–3-10

Simple scalar processor, 1-13

Simulation, 6-5–6-6

complete system, 4-28

execution driven, 4-27

for performance modeling, 4-26–4-29

program profilers, 4-28–4-29

stochastic discrete event driven, 4-28

trace driven, 4-26–4-27

Simultaneous multithreading (SMT), 2-51, 3-2,

3-18–3-19

Single-core superscalar processor paradigm, 3-14–3-17

Single error correct, double error detect (SECDED)

ECC, 1-10

Single in-line memory module (SIMM), 1-9

Single instruction multiple data (SIMD)

processors, 1-21, 1-25–1-26, 1-52–1-54,

2-67, 2-69, 2-71, 2-76–2-77

fat-tree network, 1-53

uniprocessor architecture, 1-53

Single-thread instruction-level parallelism

model, 3-14

Sinusoidal modeling, of audio signals, 11-4–11-5

SISD processors, 1-52

Sliding-block decodablility, 18-56

Slope lookup table (SLT), 18-34

Small computer system interface (SCSI), 1-11

Smart phones, 1-4

SMIL documents, 26-62–26-63

Soft-input=soft-output (SISO) decoders, 26-75
Soft-output Viterbi algorithm (SOVA), 18-83, 18-89

Software defined radio (SDR) system, 2-74–2-75

Software development, 6-5–6-6

Software monitoring, for performance

measurement, 4-25

Software systems, for embedded processor

assembly language program, 6-5

high-level languages, 6-5

memory allocation, 6-6

software development, 6-5–6-6

Software techniques for branch prediction

branch delay slots, 2-41–2-42

predication, 2-42–2-43

profiling and compiler annotation, 2-42

SOI-CMOS technology, 3-7

Sorting and related problems

bundle sorting, 16-9

by distribution, 16-6–16-7

fast Fourier transform and permutation networks,

16-10–16-11

general simulation, 16-9

lower bounds, 16-11

by merging, 16-7–16-9

permuting and transposition, 16-9–16-10

Spatial data structures and range search

dynamic and kinetic data structures, 16-21–16-22

linear-space spatial structures, 16-19

other methods, 16-20–16-21

R-trees, 16-19–16-20

specialized structures for 2-D orthogonal range

search, 16-20

Spatial realism, of audio representation system, 11-2

SPEC benchmarks, 3-3, 3-6

SPEC CPU2000, 4-29–4-30

SPECint95 benchmarks, 2-48, 2-53–2-54, 2-56

SPECjbb2000 benchmarks, 4-30, 4-32

SPECjvm98 benchmarks, 4-30–4-32

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 16 10.10.2007 9:10pm Compositor Name: BMani

I-16 Digital Systems and Applications

Speculative execution technique, 1-55

Speculative multithreading (SpMT)

model, 1-38, 1-43

Speculative versioning cache (SVC), 1-48

SPECweb99 benchmarks, 4-30, 4-33, 4-35

Speech coding, 9-5, 26-73–26-74

SpeedTracer from AMD, 4-25

SPLASH benchmark, 4-30–4-31

Stack algorithm, 18-86–18-87

Stand-alone rename register file, 2-19, 2-21–2-22

Standard Performance Evaluation Cooperative (SPEC)

consortium, 4-22

Stanford Imagine, 2-69

State-splitting algorithm, 18-17, 18-57

Static allocation, of resources, 26-37

Static RAMs (SRAM), 26-22

STBus architectures, 7-2

STBus bus, 7-8–7-9, 7-15

Stepper motor, 6-9–6-10

Stochastic discrete event driven simulation, 4-28

Stochastic gradient, for kth tap weight,

18-24, 18-35

Storage area networking (SAN), 1-11

Strategically programmable system

experiments, 20-8–20-10

overview, 20-5–20-7

target applications, 20-7–20-8

Streaming media server, 1-4

Stream processors, 2-66–2-77

based wireless SoCs and solutions, 2-77

computational complexity, 2-75–2-76

4G systems, 2-75

implementations

cell processor, 2-73

imagine processor, 2-71–2-72

RAW processor, 2-72–2-73

MIMO–OFDM receiver, 2-75

Philips EVP, 2-76

power consumption, 2-75–2-76

processing for wireless systems, 2-73–2-74

rationale, 2-67

Sandbridge Technologies SB3010, 2-76–2-77

stream virtual machine, 2-69

terminology used in, 2-67–2-68

Texas Instruments OMAP, 2-76

time and space multiplexing, 2-69–2-71

WCDMA physical layer technology,

2-74–2-75

Stream virtual machine (SVM), 2-69

Subband coding (SBC) technique, 11-27

Successive interference canceller (SIC), 26-9

SUN Solaris operating system, 1-37

Sun SPARC architecture, 1-68

Super chips, 18-2, 18-17

Supercomputers, vector processors, 1-2

Superparamagnetic effect, 18-8

Superscalar execution technique, 1-35

Superscalar processors, 1-13

and compiler loop unrolling, 2-6

execution with in-order execution, 2-6

execution with out-of-order execution and

register renaming, 2-7

historical designs, 2-7–2-8

instruction-level parallelism, 2-2–2-4

control dependencies, 2-3

data dependencies, 2-2–2-3

dependencies, 2-2

structural dependencies, 2-3

studies on, 2-3

techniques to increase performance, 2-3–2-4

modern designs

Pentium 4, 2-9

POWER4, 2-9–2-10

PowerPC 750, 2-8–2-9

UltraSPARC-I, 2-8

renaming, 2-12

terminology

instruction completion, 2-4–2-6

instruction issue, 2-5–2-7

precise exceptions, 2-4–2-6

program order, 2-4

SuperSPARC superscalar model, 2-11

Symmetric key cryptographic primitives

message authentication codes (MAC),

27-4–27-5

symmetric key block ciphers, 27-2–27-4

symmetric key stream ciphers, 27-4

Symmetric multiprocessor (SMP) system, 1-46

Synopsys, 20-2

Synplicity, 20-2

System file server version 2-0, 4-30, 4-35

System hub, 1-10

System memory, for server, 1-8–1-10

System-on-a-chip (SoC) design, 7-1

System-on-a-programmable-chip (SoPC), 7-5

System-on-chip (SoC) buses

AMBA bus, 7-4

Avalon bus, 7-5–7-6

CoreConnect bus, 7-6–7-7, 7-15

CoreFrame bus, 7-10–7-11

Manchester asynchronous bus for low

energy, 7-11

open core protocol, 7-13

PI bus, 7-11–7-13

SiliconBackplane m network, 7-14–7-15

STBus bus, 7-8–7-9, 7-15

virtual component interface, 7-13–7-14

Wishbone bus, 7-8–7-10, 7-15

System Performance Evaluation Cooperative

(SPEC), 4-29

Systems-on-chips (SoCs), 5-1; see also Embedded SoCs;

System-on-chip (SoC) buses

Systems-on-silicon (SoS), see Systems-on-chips (SoCs)

buses

Systolic array architectures, in RSA algorithm in

PKC, 1-78–1-80

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 17 10.10.2007 9:10pm Compositor Name: BMani

Index I-17

T

Task parallelism, 2-67

Telecom infrastructure, DSP applications

broadband line card, 9-10

cellular wireless base station, 9-10

CTI, 9-9–9-10

DSL modem banks, 9-10

gateway, 9-10

home gateways and personal systems, 9-10–9-11

modem banks, 9-10

residential gateway, 9-11

Telecommunications terminals, DSP applications and

cell phones, 9-4–9-5

fax, 9-4

PC as terminal (modem), 9-4

phones and answering machines, 9-3

videophone, 9-4

web access terminals, 9-4

wireless terminals, 9-5

Telephony signaling, 26-21

Tera machine, 1v56

Texas Instruments VelociTI, 11-19

Theorems, for codes, see Error-correcting codes

Thermal asperites effects and read channel, 18-11, 18-18

Thinking Machines CM-5, 1-53

Thread allocation unit (TAU), 1-44

Threaded multipath execution (TME), 1-38–1-39

Thread granularity and management, 1-37

Thread-level data speculation, 1-47

Thread-level parallelism (TLP), 1-35, 1-37

Thread sequencing model, 1-38–1-39

TI ASC, 1-26

Time-division multiple access (TDMA), 7-2, 14-7

Tinker processor, 1-15

TI OMAP architecture, 2-76, 5-6

TI TMS320C6x, 26-9

TI TMS320C55x processor, 2-76

TMS320C62x series of DSPs, 1-15, 1-24

Tomasulo’s algorithm, 4-44

Torus network, 1-57

Total cost of ownership (TCO), in server

operation, 1-6

Toy camera, DSP applications to, 9-6

Toys, DSP applications and, 9-8

TPC-C benchmarks, 4-30, 4-33

TPC-H benchmarks, 4-30, 4-33

TPC-R benchmarks, 4-30, 4-33

TPC-W benchmarks, 4-30, 4-33, 4-35

TPIE external memory programming

environment, 16-23

Trace caching, 4-38

control and data dependence

bottlenecks, 4-39

efficient high-bandwidth instruction

fetching, 4-40–4-41

inefficient high-bandwidth execution

mechanisms, 4-39

instruction fetch bottleneck, 4-39

and trace predictor, 4-40–4-41

Trace driven simulation, 4-26–4-27

Trace predictor, 4-40–4-42

Trace processor

analogy, 4-44–4-45

efficient high-bandwidth instruction execution,

4-41–4-45

instruction dispatch, 4-43

instruction issue logic, 4-43–4-44

instruction supply, 4-42

register file, 4-43–4-44

register renaming, 4-42–4-43

result bypasses, 4-43–4-44

Trace scheduling, 1-15, 1-22–1-23

Track densities, in modern hard drives, 18-16

Traditional vector computers, 1-32–1-33

Transaction processing benchmarks, 4-32

TPC-C, 4-30, 4-33

TPC-H, 4-30, 4-33

TPC-R, 4-30, 4-33

TPC-W, 4-30, 4-33

Transactions Processing Council (TPC), 4-22

Translation Lookaside Buffers (TLB)

structures, 1-67–1-69

Transmeta Crusoe processor, 1-21–1-22, 1-24

Transmission control protocol=Internet protocol

(TCP=IP), 14-2–14-3
Transmission lines, of I=O system

frequency response and ISI, 15-3

methods of signaling, 15-3–15-4

reflections, termination and crosstalk, 15-2–15-3

Transmitters, of I=O system

impedance, current and slew-rate control, 15-7–15-8

large-swing output drivers, 15-5–15-6

pre-emphasis, 15-8–15-9

small-swing output drivers, 15-6–15-7

Transparent audio coding algorithm, 11-34–11-35

Transparent pipeline clock-gating (TCG), 3-12

Trellis-based system, 18-75

Trimedia media-processor, 1-15, 1-24

Turbo codes, 18-98

Two-way decoding, 26-46–26-47

Two-way set tops, DSP applications, 9-7

Type 2 (CTFþanalog FIR) equalizers, 18-27

U

Ultrasonic oscillations, 11-2

Ultrasonic tracking, 26-51

UltraSPARC processor, 2-8, 2-11, 2-18

Undetected bit error rate (UBER), 18-18

Uniform memory access (UMA) system,

1-46–1-47, 1-54

Universal mobile telecommunications

system (UMTS), 2-76

Unkeyed cryptographic primitives, 27-1–27-2

Usrptmap, 1-67

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 18 10.10.2007 9:10pm Compositor Name: BMani

I-18 Digital Systems and Applications

V

Variable bit-width operands, 3-12

Variable gain amplifier (VGA), 18-67

VAX 8650 queuing model, 4-15–4-16, 4-19

VCO-based and interpolation-based algorithms,

18-31

Vector architectures, 1-26

Vector instruction set advantages, 1-29–1-30

Vector length register (VLR), 1-28

Vector processing

basic vector register architecture, 1-27–1-29

data-parallel architectures, 1-25–1-27

data parallelism, 1-25

future of, 1-34

lanes, 1-30–1-31

machine structure, 1-28

memory system design, 1-33–1-34

microprocessor multimedia extensions, 1-32–1-33

parallel execution units, 1-30–1-31

for power-efficiency at processor core level,

3-9–3-10

traditional vector computers, 1-32–1-33

vector instruction set advantages, 1-29–1-30

vector register file organization, 1-31–1-32

Vector register file organization, 1-31–1-32

Vector supercomputers, 1-28, 1-31, 1-34

Versatile parameterizable blocks (VPBs), 20-3

Very large-scale integration (VLSI) electronic

chips, 11-17

Very long instruction word (VLIW) processors, 1-2,

1-6, 1-8, 1-30, 1-52, 2-2–2-3, 2-76,

5-3–5-4, 5-10, 8-12

architectures, 1-12–1-24

Defoe processor, 1-15–1-20

EPIC style, 1-20

future of, 1-24

history of, 1-14–1-15

Intel itanium processor, 1-20–1-21

parallelism, 1-13–1-14

scheduling algorithm, 1-21–1-24

Transmeta Crusoe processor, 1-21–1-22

Video data partitioning, 26-45–26-46

Video over mobile networks

block-based transform video coding,

26-40–26-43

digital representation of raw video data, 26-40

error resilience for mobile video, 26-44–26-47

evolution of standard image=video compression

algorithms, 26-39–26-40

new generation mobile networks, 26-47–26-48

provision of video services, 26-48–26-49

quality evaluation, 26-43–26-44

Videophone, DSP applications and, 9-4

Video server, 1-4

Virtual component interface (VCI), 7-8, 7-13–7-14

Virtual IP (VIP) address, 14-3

Virtual machine paradigm, 1-60

Virtual memory systems

caching page table, 1-67–1-69

caching process address space, 1-60–1-65

page table organization, 1-65–1-67

virtual memory, 1-59–1-60

Virtual page numbers (VPNs), 1-63–1-64

Virtual socket interface alliance (VSIA), 26-19

Virtual Sockets Interface committee, 5-4

Viterbi acceleration unit, 26-80–26-81

Viterbi algorithm, 18-2, 18-78–18-79, 26-74

Viterbi detector, 18-14, 18-36, 18-55, 18-80

VLSI chips, 1-35, 1-52, 1-56

VLSI circuit, 1-2, 1-12

VLSI technology, 5-10

Voice-over-broadband, DSP applications, 9-10

VolanoMark benchmarks, 4-30, 4-32, 4-35

von Neumann architecture, of DSP

processor, 26-76–26-77

Vulcan system, 5-9

W

Waterfall model of software development,

for embedded SoCs, 5-8

Wave digital filters (WDFs), 11-4

WCDMA physical layer technology, 2-74–2-77

Web access terminals, DSP applications in, 9-4

Web-based user interfaces, 1-4

Web cache server, 1-4

Web camera, DSP applications to, 9-6

Web pad, DSP applications and, 9-4

Web phone, DSP applications and, 9-4

Web server benchmarks, 4-33

SPECweb99, 4-30, 4-33, 4-35

TPC-W, 4-30, 4-33, 4-35

VolanoMark, 4-30, 4-32, 4-35

Web station, DSP applications and, 9-4

Web TVs, DSP applications and, 9-7

White appliances, DSP applications and, 9-12

Whitened matched filter, 18-66, 18-67

Wide area computer networks, 26-33–26-34

Wide area network (WAN), 14-2

Wideband CDMA (WCDMA), 26-75

Wide-band code division multiple access

(W-CDMA), 2-74, 26-8

Wigner distribution (WD), in digital video

processing, 12-17

Winchester technology, 18-8

Wireless devices, 9-5

Wireless LAN systems, 26-8

Wireless SoCs, 2-77

Wireless terminals, DSP applications and, 9-5

Wishbone bus, 7-2, 7-8–7-10, 7-15

Word-based text input method, for mobile

devices, 26-56

Workloads and benchmarks, for performance

modeling

CPU-intensive benchmarks, 4-29–4-31

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 19 10.10.2007 9:10pm Compositor Name: BMani

Index I-19

E-commerce benchmarks, 4-30, 4-35

embedded and media benchmarks, 4-30–4-31

file server benchmarks, 4-30, 4-35

Java benchmarks, 4-30–4-32

mail server benchmarks, 4-30, 4-35

PC benchmarks, 4-30, 4-35–4-36

transaction processing benchmarks, 4-30,

4-32–4-33

Web server benchmarks, 4-30, 4-33–4-35

Write-after-read (WAR) dependencies, 2-2, 2-7,

2-10, 2-33–2-34

Write-after-write (WAW) dependencies, 2-2,

2-10–2-11, 2-33–2-34

X

Xilinx, 20-2

Y

Yuan97, 1-57

Z

Zech logarithm, 18-99

Zigzag pattern coding, 26-42

Zuse Z4, 2-7

Vojin Oklobdzija/Digital Systems and Applications 6195_C028 Final Proof page 20 10.10.2007 9:10pm Compositor Name: BMani

I-20 Digital Systems and Applications

	How to go to your page
	Preface
	Editor
	Editorial Board
	Contributors
	Contents
	SECTION I: Computer Systems and Architecture
	Chapter 1. Computer Architecture and Design
	Chapter 2. System Design
	Chapter 3. Architectures for Low Power
	Chapter 4. Performance Evaluation

	SECTION II: Embedded Applications
	Chapter 5. Embedded Systems-on-Chips
	Chapter 6. Embedded Processor Applications
	Chapter 7. An Overview of SoC Buses

	SECTION III: Signal Processing
	Chapter 8. Digital Siganl Processing
	Chapter 9. DSP Applications
	Chapter 10. Digital Filter Design
	Chapter 11. Audio Siganl Processing
	Chapter 12. Digital Video Processing
	Chapter 13. Low-Power Digital Signal Processing

	SECTION IV: Communications and Networks
	Chapter 14. Communications and Computer Networks

	SECTION V: Input/Output
	Chapter 15. Circuits for High-Performance I/O
	Chapter 16. Algorithms and Data Structures in External Memory
	Chapter 17. Parallel I/O Systems
	Chapter 18. A Read Channel for Magnetic Recording

	SECTION VI: Operating System
	Chapter 19. Distributed Operating Systems

	SECTION VII: New Directions in Computing
	Chapter 20. SPS: A Strategically Programmable System
	Chapter 21. Reconfigurable Processors
	Chapter 22. Roles of Software Technology in Intelligent Transportation Systems
	Chapter 23. Media Signal Processing
	Chapter 24. Internet Architectures
	Chapter 25. Microelectronics for Home Entertainment
	Chapter 26. Mobile and Wireless Computing
	Chapter 27. Data Security

	Index

